L6983CQTR [STMICROELECTRONICS]

38 V, 3 A synchronous step-down converter with 17 μA quiescent current;
L6983CQTR
型号: L6983CQTR
厂家: ST    ST
描述:

38 V, 3 A synchronous step-down converter with 17 μA quiescent current

文件: 总63页 (文件大小:4968K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6983  
Datasheet  
38 V, 3 A synchronous step-down converter with 17 µA quiescent current  
Features  
3.5 V to 38 V operating input voltage  
Output voltage from 0.85 V to VIN  
3.3 V and 5 V fixed output voltage versions  
3 A DC output current  
17 μA operating quiescent current  
Internal compensation network  
QFN16 (3 x 3 mm)  
Two different versions: LCM for high efficiency at light loads and LNM for noise  
sensitive applications  
2 μA shutdown current  
Internal soft-start  
Enable  
Overvoltage protection  
Output voltage sequencing  
Thermal protection  
200 kHz to 2.3 MHz programmable switching frequency. Stable with low ESR  
capacitor  
Optional spread spectrum for improved EMC  
Power Good  
Synchronization to external clock for LNM devices  
QFN16 package  
Maturity status link  
Applications  
L6983  
Designed for 24 V buses industrial power systems  
24 V battery powered equipment  
Decentralized intelligent nodes  
Sensors and always-on applications  
Low noise applications  
Description  
The L6983 is an easy to use synchronous monolithic step-down regulator capable of  
delivering up to 3 A DC to the load. The wide input voltage range makes the device  
suitable for a broad range of applications. The L6983 is based on a peak current  
mode architecture and is packaged in a QFN16 3x3 with internal compensation thus  
minimizing design complexity and size.  
The L6983 is available both in low consumption mode (LCM) and low noise mode  
(LNM) versions. LCM maximizes the efficiency at light-load with controlled output  
voltage ripple so the device is suitable for battery-powered applications. LNM makes  
the switching frequency constant and minimizes the output voltage ripple for light  
load operations, meeting the specification for low noise sensitive applications. The  
L6983 allows the switching frequency to be selected in the 200 kHz - 2.3 MHz range  
with optional spread spectrum for improved EMC.  
DS13116 - Rev 2 - April 2020  
For further information contact your local STMicroelectronics sales office.  
www.st.com  
L6983  
The EN pin provides enable/disable function. The typical shutdown current is 2 µA  
when disabled. As soon as the EN pin is pulled up, the device is enabled and the  
internal 1.3 ms soft-start takes place. The L6983 features Power Good open collector  
that monitors the FB voltage. Pulse-by-pulse current sensing on both power elements  
implements an effective constant current protection and thermal shutdown prevents  
thermal run-away.  
DS13116 - Rev 2  
page 2/63  
L6983  
Diagram  
1
Diagram  
Figure 1. Block diagram  
DS13116 - Rev 2  
page 3/63  
 
 
L6983  
Pin configuration  
2
Pin configuration  
Figure 2. Pin connection (top through view)  
16  
15  
14  
13  
VIN  
1
2
3
4
12  
11  
10  
9
VIN  
BOOT  
AGND  
VCC  
VINLDO  
E.P.  
AGND  
EN/CLKIN  
5
6
7
8
Table 1. Pin description  
Pin  
1
Symbol  
VIN  
Function  
DC input voltage.  
2
VINLDO  
AGND  
DC input voltage connected to the supply rail with a simple RC filter.  
Analog ground.  
3
Enable pin with internal voltage divider. Pull-down/up to disable/  
enable the device.  
4
EN / CLKIN  
In LNM versions, this pin is also used to provide an external clock  
signal, which synchronizes the device.  
The PGOOD open collector output is driven to low impedance when  
the output voltage is out of regulation and released once the output  
voltage becomes valid.  
5
6
PGOOD  
VBIAS  
Typically connected to the regulated output voltage, an external  
voltage source can be used to supply part of the analog circuitry to  
reduce current consumptions at light load. Connect it to AGND if not  
used.  
This pin operates as VOUT or FB according to the selected part  
number. In fixed output voltage versions, VOUT is the output voltage  
sensing with selected internal voltage divider.  
7
8
FB/VOUT  
FSW  
In adjustable versions, FB is output voltage sensing with eternal  
voltage divider.  
Connect an external resistor to program the oscillator frequency and  
enable the optional dithering.  
This pin supplies the embedded analog circuitry. Connect a ceramic  
capacitor (≥ 1 µF) to filter internal voltage reference.  
9
VCC  
10  
AGND  
Analog ground.  
Connect an external capacitor (100 nF typ.) between BOOT and SW  
pins. The gate charge required to drive the internal NMOS is  
refreshed during the low-side switch conduction time.  
11  
BOOT  
DS13116 - Rev 2  
page 4/63  
 
 
 
L6983  
Pin configuration  
Pin  
12  
13  
14  
15  
16  
-
Symbol  
VIN  
Function  
DC input voltage.  
Power ground.  
Switching node.  
Switching node.  
Power ground.  
PGND  
SW  
SW  
PGND  
Exposed PAD  
Exposed pad must be connected to AGND and PGND.  
DS13116 - Rev 2  
page 5/63  
L6983  
Typical application circuit  
3
Typical application circuit  
Figure 3. Basic application (adjustable version)  
L6983  
RPGOOD  
CBOOT  
VIN  
PGOOD  
BOOT  
SW  
VIN  
RFILT  
VIN  
L
VINLDO  
EN/CLKIN  
FSW  
VOUT  
SW  
RFBH  
R FSW  
C VCC  
VBIAS  
VOUT/FB  
PGND  
PGND  
CIN  
VCC  
COUT  
CFILT  
AGND  
AGND  
RFBL  
E.P.  
GND  
GND  
Table 2. Typical application component  
Symbol  
Value  
Description  
C
IN  
10 µF  
Input capacitor  
R
0.1 kΩ  
1 µF  
VINLDO filter resistor  
VINLDO filter capacitor  
VCC bypass capacitor  
Bootstrap capacitor  
Output capacitor  
FILT  
C
FILT  
C
VCC  
1 µF  
C
BOOT  
100 nF  
40 µF  
400 kΩ  
82 kΩ  
C
OUT  
R
FBH  
VOUT divider upper resistor  
VOUT divider lower resistor  
Output inductor  
R
FBL  
4.7 µH (F  
= 1 MHz)  
L
SW  
R
1 MΩ  
10 kΩ  
PGOOD resistor  
PGOOD  
R
FSW setting resistor  
FSW  
DS13116 - Rev 2  
page 6/63  
 
 
 
L6983  
Absolute maximum ratings  
4
Absolute maximum ratings  
Stressing the device above the rating listed in Section 4 Absolute maximum ratings may cause permanent  
damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum  
rating conditions may affect device reliability.  
Table 3. Absolute maximum ratings  
Symbol  
VIN  
Parameter  
Maximum pin voltage  
Min.  
- 0.3  
Max.  
Unit  
V
42  
0
AGND  
PGND  
BOOT  
VCC  
Maximum pin voltage  
Maximum pin voltage  
Maximum pin voltage  
Maximum pin voltage  
Maximum pin voltage  
Maximum pin voltage  
Maximum pin voltage  
Maximum pin voltage  
Maximum pin voltage  
0
V
- 0.3  
0.3  
V
SW - 0.3  
- 0.3  
SW + 4  
V
Min. (VIN + 0.3 V; 4 V)  
8
V
VOUT/FB  
FSW  
- 0.3  
V
- 0.3  
VCC + 0.3  
VIN + 0.3  
VIN + 0.3  
VIN + 0.3  
VIN + 0.3  
V
VBIAS  
EN  
- 0.3  
V
- 0.3  
V
PGOOD  
- 0.3  
V
- 0.85  
- 3.8 for 0.5 ns (1)  
V
SW  
Maximum pin voltage  
V
IHS, ILS  
High-side / Low-side RMS switch current  
Operating temperature range  
3
A
T
J
- 40  
- 65  
150  
150  
260  
°C  
°C  
°C  
TSTG  
Storage temperature range  
TLEAD  
Lead temperature (soldering 10 sec.)  
1. Negative peak voltage during switching activities caused by parasitic layout elements.  
4.1  
4.2  
ESD protection  
Table 4. ESD performance  
Symbol  
Parameter  
Test conditions  
Value  
2
Unit  
kV  
V
HBM  
CDM  
ESD  
ESD protection voltage  
500  
Thermal characteristics  
Table 5. Thermal data  
Parameter  
Symbol  
Package Value Unit  
Thermal resistance junction ambient (device soldered on the STMicroelectronics  
demonstration board, please refer to Section 9 Application board)  
R
th_JA  
QFN16  
30  
°C/W  
DS13116 - Rev 2  
page 7/63  
 
 
 
 
 
 
 
L6983  
Electrical characteristics  
5
Electrical characteristics  
TJ = 25 °C, VIN = 24 V unless otherwise specified.  
Table 6. Electrical characteristics  
Symbol  
Parameter  
Test conditions  
Min.  
3.5  
Typ.  
Max.  
38  
Unit  
V
Operating input voltage  
range  
V
IN  
V
V
rising threshold  
CC  
2.3  
3.3  
V
IN_H  
V
falling  
CC UVLO  
V
2.15  
3.15  
V
IN_L  
threshold  
No slope contribution  
Full slope contribution  
4.1  
3.1  
3.3  
4.6  
3.6  
3.9  
A
A
A
(1)  
I
Peak current limit  
PK  
I
Valley current limit  
Skip current limit  
Reverse current limit  
High-side RDSON  
Low-side RDSON  
Minimum off-time  
Minimum on-time  
4.5  
VY  
(1) (2)  
SKIP  
I
0.6  
1.5  
A
A
(1)  
I
LNM or VOUT overvoltage  
1.25  
1.75  
VY_SINK  
R
0.130  
0.085  
200  
DSON_HS  
R
DSON_LS  
T
ns  
ns  
OFF_MIN  
T
75  
ON_MIN  
Enable  
Rising  
0.7  
V
V
V
V
V
Wake-up threshold  
Enable threshold  
WAKE_UP  
Falling  
0.2  
Rising  
1.08  
1.2  
0.2  
1.32  
V
EN  
Hysteresis  
VCC regulator  
V
LDO output voltage  
3.0  
3.3  
2
3.6  
3
V
CC  
Power consumption  
Shutdown current from  
I
I
I
VEN = GND  
μA  
SHTDWN  
V
IN  
LCM device  
VBIAS = GND  
VBIAS = 5 V  
20  
1
35  
60  
6
μA  
μA  
Quiescent current from  
I
Q_VIN  
V
IN  
3.5  
Quiescent current from  
VBIAS = 5 V  
20  
35  
60  
μA  
Q_VBIAS  
V
BIAS  
LNM device  
VBIAS = GND  
VBIAS = 5 V  
1.6  
2.3  
3
mA  
μA  
Quiescent current from  
I
Q_VIN  
V
IN  
300  
550  
800  
Quiescent current from  
VBIAS = 5 V  
1.3  
1.8  
2.3  
mA  
Q_VBIAS  
V
BIAS  
Soft-start  
DS13116 - Rev 2  
page 8/63  
 
 
L6983  
Electrical characteristics  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
T
Internal soft-start  
1
1.3  
1.6  
ms  
SS  
Error amplifier  
Adjustable version  
0.845  
0.842  
3.27  
0.85  
0.85  
3.3  
3.3  
5.0  
5
0.855  
0.858  
3.33  
V
V
V
V
V
V
T = 25 °C  
J
Adjustable version  
T = - 40 °C ≤ T ≤ 125 ° (4)  
J
J
Fixed 3.3 V version  
T = 25 °C  
J
V
Voltage feedback  
FB  
Fixed 3.3 V version  
3.284  
4.955  
4.93  
3.346  
5.045  
5.07  
T = -40 °C ≤ T ≤ 125 °C (4)  
J
J
Fixed 5.0 V version  
T = 25 °C  
J
Fixed 5.0 V version  
T = -40 °C ≤ T ≤ 125 °C (4)  
J
J
Overvoltage protection  
Overvoltage trip (VOVP/  
VREF)  
V
115  
1
120  
2
125  
6
%
%
OVP  
V
Overvoltage hysteresis  
OVP_HYST  
Synchronization (LNM versions only)  
200  
(3)  
f
Synchronization range  
2200  
kHz  
V
CLKIN  
Amplitude of  
synchronization clock  
(3)  
V
2.3  
60  
CLKIN_TH  
Synchronization pulse  
ON and OFF time 2.3 V  
V
= 2.3 V  
ns  
ns  
CLKIN_TH  
≤ V  
≤ 2.5 V  
CLKIN_TH  
(3)  
V
CLKIN_T  
Synchronization pulse  
ON and OFF time  
20  
V
> 2.5 V  
CLKIN_TH  
Power Good  
Adjustable output version  
87  
87  
87  
90  
90  
93  
93  
93  
%
%
%
T = -40 °C ≤ T ≤ 125 °C (4)  
J
J
Fixed 3.3 output version  
V
PGOOD threshold  
PGOOD hysteresis  
THR  
T = -40 °C ≤ T ≤ 125 °C (4)  
J
J
Fixed 5.0 output version  
90  
3
T = -40 °C ≤ T ≤ 125 °C (4)  
J
J
(4)  
V
THR_HYST  
VIN > VIN_H AND  
VFB < VTH  
0.4  
0.8  
V
V
PGOOD open collector  
output  
V
4 mA sinking load  
PGOOD  
2 < VIN < VIN_H  
4 mA sinking load  
DS13116 - Rev 2  
page 9/63  
L6983  
Frequency selection table  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Thermal shutdown  
temperature  
(5)  
T
165  
°C  
SHDWN  
Thermal shutdown  
hysteresis  
(5)  
T
30  
°C  
HYS  
1. Parameter tested in the static condition during testing phase. The parameter value may change over a dynamic application  
condition.  
2. LCM version.  
3. LNM version.  
4. Specifications in the - 40 to 125 °C temperature range are assured by characterization and statistical correlation.  
5. Not tested in production.  
5.1  
Frequency selection table  
Specification referred to - 40 ≤ TJ ≤ 125 °C and VIN = 24 V, assured by testing at TJ = 25 °C, design,  
characterization and statistical correlation.  
Table 7. FSW selection  
Symbol  
Option  
RVCC (kΩ)  
1.8  
RGND (kΩ)  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
1.8  
Min.  
Typ.  
200  
Max.  
Unit  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
0
400  
3.3  
500  
5.6  
700  
Dithering (5 % F  
typ.)  
SW  
10  
1000  
1500  
2000  
2300  
200  
18  
33  
56  
FSW  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
0
360  
400  
440  
3.3  
500  
5.6  
630  
900  
700  
770  
No dithering  
10  
1000  
1500  
2000  
2300  
1100  
18  
33  
56  
2000  
2600  
DS13116 - Rev 2  
page 10/63  
 
 
 
 
 
 
 
L6983  
Functional description  
6
Functional description  
The L6983 device is based on a “peak current mode" architecture with constant frequency control. Therefore, the  
intersection between the error amplifier output and the sensed inductor current generates the PWM control signal  
to drive the power switch.  
The device features LNM (low noise mode) that is forced PWM control, or LCM (low consumption mode) to  
increase the efficiency at light-load on the selected part number.  
The main internal blocks shown in the block diagram in Figure 1. Block diagram and Figure 2. Pin connection (top  
through view) are:  
Embedded power elements  
A fully integrated adjustable oscillator which is able to set eight different switching frequencies from 200 to  
2300 kHz  
The ramp for the slope compensation avoiding subharmonic instability  
A transconductance error amplifier with integrated compensation network  
The high-side current sense amplifier to sense the inductor current  
A “Pulse Width Modulator” (PWM) comparator and the driving circuitry of the embedded power elements  
The soft-start block ramps up the reference voltage on error amplifier thus decreasing the inrush current at  
power-up. The EN pin inhibits the device when driven low  
The EN/CLK pin section, which, for LNM versions, allows synchronizing the device to an external clock  
generator  
The pulse-by-pulse high-side / low-side switch current sensing to implement the constant current protection  
A circuit to implement the thermal protection function  
The OVP circuitry to discharge the output capacitor in case of overvoltage event  
The switchover capability of the internal regulator to supply a portion of the quiescent current when the  
VBIAS pin is connected to an external output voltage  
Enable/ disable dithering operation  
6.1  
Enable  
The EN pin is a digital input that turns the device on or off.  
In order to maximize both the EN threshold accuracy and the current consumption, the device implements two  
different thresholds:  
1.  
2.  
The wake-up threshold, VWAKE_UP = 0.5 V (see Table 6. Electrical characteristics)  
The start-up threshold, VEN = 1.2 V (see Table 6. Electrical characteristics)  
The following picture shows the device behavior.  
DS13116 - Rev 2  
page 11/63  
 
 
L6983  
Soft-start  
Figure 4. Power-up/down behavior  
When the voltage applied on the EN pin rises over VWAKEUP, RISING, the device powers up the internal circuit thus  
increasing the current consumption.  
As soon as the voltage rises over the VEN, RISING, the device starts the switching activities as described on  
Section 6.2 Soft-start.  
Once the voltage becomes lower than VEN, FALLING, the device interrupts the switching activities.  
As soon as the voltage becomes lower than VWAKEUP.FALLING, the device powers down the internal circuit  
reducing the current consumption.  
The pin is VIN compatible.  
Please refer to Table 6. Electrical characteristics for the reported thresholds.  
6.2  
Soft-start  
The soft-start (SS) limits the inrush current surge and makes the output voltage increase monotonically.  
The device implements the soft-start phase ramping the internal reference with very small steps. Once the SS  
ends the error amplifier reference is switched to the internal value of 0.85 V coming directly from the band gap  
cell.  
DS13116 - Rev 2  
page 12/63  
 
 
L6983  
Undervoltage lockout  
Figure 5. Soft-start procedure  
During the normal operation, a new soft-start cycle takes place in case of:  
1.  
2.  
3.  
Thermal shutdown event  
UVLO event  
EN pin rising over VEN threshold. Please refer to Table 6. Electrical characteristics  
Figure 6. Soft-start phase with IOUT = 2.5 A  
6.3  
Undervoltage lockout  
The device implements the undervoltage lockout (UVLO) continuously sensing the voltage on the VCC pin, if the  
UVLO lasts more than 10 μs, the internal logic resets the device by turning off both LS and HS.  
After the reset, if the EN pin is still high, the device repeats the soft-start procedure.  
DS13116 - Rev 2  
page 13/63  
 
 
 
L6983  
Light-load operation  
6.4  
Light-load operation  
The L6983 implements two different light load strategies:  
1.  
2.  
Low consumption mode (LCM)  
Low noise mode (LNM)  
Please refer to Table 12. Order codes to select the part number with the preferred light load strategy.  
6.4.1  
Low consumption mode (LCM)  
The LCM maximizes the efficiency at light load.  
When the switch peak current request is lower than the ISKIP threshold (see Table 6. Electrical characteristics),  
the device regulates VOUT by the skip threshold. The minimum voltage is given by:  
R
+ R  
PL  
PH  
V
= V  
FB, LCM  
(1)  
OUT, LCM  
R
PL  
Where VFB, LCM is 1.8% (typ.) higher than VFB  
.
The device interrupts the switching activities when two conditions happen together:  
1.  
2.  
The peak inductor current required is lower than ISKIP  
The voltage on the FB pin is higher than VFB, LCM  
Figure 7. Light load operation  
VCOMP  
VCOMP,MIN  
VFB  
t
VFB, LCM  
VFB  
t
t
VSW  
IL  
ISKIP  
t
A new switching cycle takes place once the voltage on the FB pin becomes lower than VFB,LCM  
.
The HS switch is kept on until the inductor current reaches ISKIP  
.
Once the current on the HS reaches the defined value, the device turns the HS off and turns the LS on. The LS is  
kept enabled until one of the following conditions occurs:  
1) The inductor current sensed by the LS becomes equal to zero  
2) The switching period ends up  
If, at the end of the switching cycle, the voltage on the FB pin rises over the VFB,LCM threshold, the LS is kept  
enabled until the inductor current becomes equal to zero. Otherwise, the device turns on again the HS and starts  
a new switching pulse.  
During the burst pulse, if the energy transferred to COUT increases the VFB level over the threshold defined on  
Eq. (1), the device interrupts the switching activities. The new cycle takes place only when VFB becomes lower  
than the defined threshold. Otherwise, as soon as the LS is turned off the HS is turned on.  
Given the energy stored in the inductor during a burst, the voltage ripple depends on the capacitor value:  
T
0
BURST  
I t dt  
L
∆ Q  
C
IL  
V
=
=
(2)  
OUT RIPPLE  
C
OUT  
OUT  
DS13116 - Rev 2  
page 14/63  
 
 
 
 
L6983  
Light-load operation  
Figure 8. LCM operation with ISKIP = 600 mA typ. at zero load. L = 15 µH; COUT = 40 µF  
Figure 9. LCM operation over loading condition (part 1-pulse skipping)  
DS13116 - Rev 2  
page 15/63  
 
 
L6983  
Light-load operation  
Figure 10. LCM operation over loading condition (part 2-pulse skipping)  
Figure 11. LCM operation over loading condition (part 3-pulse skipping)  
DS13116 - Rev 2  
page 16/63  
 
 
L6983  
Light-load operation  
Figure 12. LCM operation over loading condition (part 4-CCM)  
DS13116 - Rev 2  
page 17/63  
 
L6983  
Light-load operation  
6.4.2  
Low noise mode (LNM)  
The low noise mode implements a forced PWM operation over the different loading conditions. The LNM features  
a constant switching frequency to minimize the noise in the final application and a constant voltage ripple at fixed  
VIN.  
The regulator in steady loading condition operates in continuous conduction mode (CCM) over the different  
loading conditions.  
The triangular shape current ripple (with zero average value) flowing into the output capacitor gives the output  
voltage ripple, that depends on the capacitor value and the equivalent resistive component (ESR). Consequently,  
the output capacitor has to be selected in order to have a voltage ripple compliant with the application  
requirements.  
∆ I  
LMAX  
V
= ESR ∙ ∆ I  
LMAX  
+
(3)  
OUT RIPPLE  
8 ∙ C  
∙ f  
OUT SW  
Usually the resistive component of the ripple can be neglected if the selected output capacitor is a multi-layer  
ceramic capacitor (MLCC).  
Figure 13. Low noise mode operation at zero load  
DS13116 - Rev 2  
page 18/63  
 
 
L6983  
Light-load operation  
6.4.3  
Efficiency for low consumption mode and low noise mode part number  
Figure 14. Light-load efficiency for low consumption mode and low noise mode - linear scale, and  
Figure 15. Light-load efficiency for low consumption mode and low noise mode - log scale report the efficiency  
measurements to highlight the gap at the light-load between LNM and LCM part numbers. The graph reports also  
exactly the same efficiency at the medium / high load.  
Figure 14. Light-load efficiency for low consumption mode and low noise mode - linear scale  
VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHz  
100  
90  
80  
70  
60  
50  
40  
LCM  
30  
LNM  
20  
10  
0
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
Figure 15. Light-load efficiency for low consumption mode and low noise mode - log scale  
VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHz  
100  
90  
80  
70  
60  
50  
40  
LCM  
30  
LNM  
20  
10  
0
0.001  
0.01  
0.1  
1
IOUT [A]  
DS13116 - Rev 2  
page 19/63  
 
 
 
L6983  
Light-load operation  
6.4.4  
Load regulation for low consumption mode and Low noise mode part number  
Figure 16. Load regulation for LCM and LNM. VIN = 24 V; VOUT = 5 V; FSW = 400 kHz - linear scale and  
Figure 17. Load regulation for low noise mode. VIN = 24 V; VOUT = 5 V; FSW = 400 kHz - log scale report the load  
regulation to highlight the gap, given by the different regulation strategy, at the light-load between LNM and LCM  
part numbers. When the required IOUT is higher than the threshold defined on the Section 6.4.1 Low  
consumption mode (LCM) the behavior of the different part number is exactly the same.  
Figure 16. Load regulation for LCM and LNM. VIN = 24 V; VOUT = 5 V; FSW = 400 kHz - linear scale  
VIN = 24 V ; VOUT = 5 V; FSW = 0.4 MHz  
2
LCM  
1.5  
LNM  
1
0.5  
0
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
Figure 17. Load regulation for low noise mode. VIN = 24 V; VOUT = 5 V; FSW = 400 kHz - log scale  
VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHz  
2
1.5  
1
LCM  
0.5  
LNM  
0
-0.5  
0.001  
0.01  
0.1  
1
IOUT [A]  
DS13116 - Rev 2  
page 20/63  
 
 
 
L6983  
Switch-over feature  
6.5  
Switch-over feature  
The switch-over maximizes the efficiency at light load that is crucial for low consumption application.  
Figure 18. Switch-over  
No Switch-Over  
Switch -Over  
L6983  
L6983  
RPGOOD  
RPGOOD  
PGOOD  
BOOT  
SW  
PGOOD  
BOOT  
SW  
L
L
CBOOT  
CBOOT  
VOUT  
GND  
VOUT  
GND  
SW  
SW  
RFBH  
RFBL  
RFBH  
RFBL  
VBIAS  
VOUT/FB  
PGND  
PGND  
VBIAS  
VOUT/FB  
PGND  
PGND  
COUT  
COUT  
E.P.  
E.P.  
In order to minimize the regulator quiescent current sink from the input voltage, the VBIAS pin can be connected  
to an external voltage source in the range of 3.0 V < VBIAS < VIN.  
In case the VBIAS pin is connected to the regulated output voltage (VOUT), the total current drawn from the input  
voltage is given by the following equation:  
V
1
BIAS  
I
= I  
QOPVIN  
+
∙ I  
QOPVBIAS  
(4)  
QVIN  
η
V
L6983  
IN  
6.6  
Spread spectrum  
The spread spectrum is selectable by connecting the RFSW resistor to VCC (please refer to Table 7. FSW  
selection). The internal dithering circuit changes the switching frequency in a range of ± 5%.  
∆ F  
SW  
= 5% ∙ F  
sw  
(5)  
The device updates the frequency every clock period by fixed steps:  
Ramps up in 63 steps from minimum to maximum FSW  
Ramps down in 63 steps from maximum to minimum FSW  
The modulation shape is almost triangular with a frequency of:  
F
sw  
F
=
(6)  
Ditering  
126  
6.7  
Overvoltage protection  
The overvoltage protection monitors the FB pin and enables the low-side MOSFET to discharge the output  
capacitor if the output voltage is 20% (typ.) over the nominal value.  
This is a second level protection and it should never be triggered in normal operating conditions if the system is  
properly dimensioned. In other words, the selection of the external power components and the dynamic  
performance determined by the compensation network should guarantee an output voltage regulation within the  
overvoltage threshold even during the worst-case scenario in term of load transitions.  
The protection is reliable and able to operate even during normal load transitions for a system whose dynamic  
performance is not in line with the load dynamic request. Consequently, the output voltage regulation would be  
affected.  
The L6983 device implements a 1.5 A (IVY_SINK refer to Table 6. Electrical characteristics) negative current  
limitation to limit the maximum reversed switch current during the overvoltage operation.  
DS13116 - Rev 2  
page 21/63  
 
 
 
 
L6983  
Overcurrent protection  
6.8  
Overcurrent protection  
The current protection circuitry features a constant current protection, so the device limits the maximum peak  
current (please refer to Table 6. Electrical characteristics) in overcurrent condition.  
The L6983 device implements a pulse-by-pulse current sensing on both power elements (high-side and low-side  
switches) for effective current protection over the duty cycle range. The high-side current sensing is called “peak”  
the low-side sensing “valley”.  
The internal noise generated during the switching activity makes the current sensing circuitry ineffective for a  
minimum conduction time of the power element. This time is called “masking time” because the information from  
the analog circuitry is masked by the logic to prevent an erroneous detection of the overcurrent event. Therefore,  
the peak current protection is disabled for a masking time after the high-side switch is turned on. The masking  
time for the valley sensing is activated after the low-side switch is turned on. In other words, the peak current  
protection can be ineffective at extremely low duty cycles, the valley current protection at extremely high duty  
cycles.  
The L6983 device assures an effective overcurrent protection sensing the current flowing in both power elements.  
In case one of the two current sensing circuitry is ineffective because of the masking time, the device is protected  
sensing the current on the opposite switch. Thus, the combination of the “peak” and “valley” current limits assure  
the effectiveness of the overcurrent protection even in extreme duty cycle conditions.  
In case the current diverges because of the high-side masking time, the low-side power element is turned on until  
the switch current level drops below the valley current sense threshold. The low-side operation is able to prevent  
the high-side turn on, so the device can skip pulses decreasing the switching frequency.  
Figure 19. Over current protection behavior  
In worst case scenario, reported in Figure 19. Over current protection behavior of the overcurrent protection the  
switch current is limited to:  
V
− V  
L
IN  
OUT  
I
= I  
VY  
+
∙ T  
MASKHS  
(7)  
MAX  
Where IVY is the current threshold of the valley sensing circuitry (please refer to Table 6. Electrical  
characteristics) and TMASKHS is the masking time of the high-side switch (75 ns typ.).  
DS13116 - Rev 2  
page 22/63  
 
 
L6983  
Overcurrent protection  
In most of the overcurrent conditions, the conduction time of the high-side switch is higher than the masking time  
and so the peak current protection limits the switch current.  
I
= I  
PK  
(8)  
MAX  
The DC current flowing in the load in overcurrent condition is:  
I
V
V
− V  
OUT  
2 ∙ L  
RIPPLE OUT  
IN  
I
= I  
MAX  
= I  
MAX  
∙ T  
ON  
(9)  
DCOUT  
2
The Figure 20. Soft-start procedure with VOUT shorted to GND shows the L6983 soft-start procedure with VOUT  
shorted to GND.  
Figure 20. Soft-start procedure with VOUT shorted to GND  
The Figure 21. Over current procedure with persistent short circuit between VOUT and GND shows the L6983 over  
current protection with a persistent short circuit between VOUT and GND.  
DS13116 - Rev 2  
page 23/63  
 
L6983  
Thermal shutdown  
Figure 21. Over current procedure with persistent short circuit between VOUT and GND  
6.9  
Thermal shutdown  
The shutdown block disables the switching activity if the junction temperature is higher than a fixed internal  
threshold (TSHDWN refer to Table 6. Electrical characteristics). The thermal sensing element is close to the power  
elements, assuring fast and accurate temperature detection. A hysteresis of approximately 30 °C prevents the  
device from turning ON and OFF too fast. After a thermal protection event is expired, the L6983 restarts with a  
new soft-start.  
6.10  
Power Good  
The PGOOD pin indicates whether the output voltage is within its regulation level. The pin output is an open drain  
MOSFET. The PG is pulled low when:  
1.  
2.  
The FB pin voltage is lower than 90% (typ.) of the nominal internal reference for more than 10 µs  
The FB pin voltage is higher than 120% (typ.) of the nominal internal reference for more than 10 µs (see  
Section 6.7 Overvoltage protection)  
3.  
4.  
5.  
During the soft-start procedure also with pre-charged VOUT  
If a thermal shutdown event occurs  
If a UVLO event occurs  
The PG pin is VIN compatible.  
DS13116 - Rev 2  
page 24/63  
 
 
 
L6983  
Power Good  
Figure 22. PGOOD thresholds  
VFB  
120%  
87%  
118%  
90%  
t
t
VPGOOD  
VHIGH  
VLOW  
DS13116 - Rev 2  
page 25/63  
 
L6983  
Closing the loop  
7
Closing the loop  
The following picture shows the typical compensation network required to stabilize the system.  
Figure 23. Block diagram of the loop  
VIN  
PWM control  
Current sense  
LC  
filter  
Resistor divider  
HS  
switch  
L
LS  
switch  
IHS/gCS  
R1  
COUT  
FB  
Compensation  
network  
RLOAD  
VREF  
R2  
PWM comparator  
RC  
CC  
Error amplifier  
7.1  
GCO(s) control to output transfer function  
The accurate control to output transfer function for a buck peak current mode converter can be written as follows:  
s
1 +  
ω
1
Z
G
s = R  
∙ g  
∙ F  
s
(10)  
CO  
LOAD CS  
H
R
∙ T  
s
ω
LOAD SW  
L
1 +  
1 +  
∙ m 1 − D 0.5  
C
P
Where RLOAD represents the load resistance, the gCS equivalent sensing trans-conductance of the current sense  
circuitry, ωP the single pole introduced by the power stage and the ωZ zero given by the ESR of the output  
capacitor. FH(s) accounts the sampling effect performed by the PWM comparator on the output of the error  
amplifier that introduces a double pole at one half of the switching frequency.  
1
ω
=
(11)  
Z
ESR ∙ C  
OUT  
m
1 − D 0.5  
1
C
ω
=
+
(12)  
P
R
∙ C  
L ∙ C  
∙ f  
LOAD OUT  
OUT SW  
where:  
S
e
S
n
m
= 1 +  
C
S
= I  
∙ f  
(13)  
e
SLOPE SW  
V
− V  
L
IN  
OUT  
S
=
n
Where ISLOPE is equal to 1 A.  
Sn represents the on-time slope of the sensed inductor current, Se the on-time slope of the external ramp that  
implements the slope compensation to avoid sub-harmonic oscillations at duty cycle over 50%.  
The sampling effect contribution FH (s) is:  
DS13116 - Rev 2  
page 26/63  
 
 
 
L6983  
Error amplifier compensation network  
1
F
s =  
(14)  
(15)  
H
2
2
s
∙ Q  
P
s
1 +  
+
ω
n
ω
n
where:  
1
Q
=
P
π ∙ m ∙ 1 − D 0.5  
C
7.2  
Error amplifier compensation network  
The following figure shows the typical compensation network required to stabilize the system.  
Figure 24. Trans-conductance embedded error amplifier  
VREF  
E/A  
FB  
RC  
CC  
VREF  
RC  
dV  
RO  
CO  
CC  
Gm dV  
VFB  
RC and CC introduce a pole and a zero in the open loop gain. The transfer function of the error amplifier and its  
compensation network is:  
A
1 + s ∙ R ∙ C  
C C  
VO  
∙ R ∙ C ∙ R ∙ C + s ∙ R ∙ C + R ∙ C + R ∙ C + 1  
A
s =  
(16)  
O
2
s
O
O
C
C
O
C
O
O
C
C
where:  
A
= G ∙ R  
m O  
(17)  
VO  
The poles of this transfer function are (if CC >> CO):  
1
f
=
=
(18)  
(19)  
PLF  
2 ∙ π ∙ R ∙ C  
O
C
1
f
PHF  
2 ∙ π ∙ R ∙ C  
O
O
Whereas the zero is defined as:  
DS13116 - Rev 2  
page 27/63  
 
 
L6983  
Voltage divider  
1
f
=
(20)  
Z
2 ∙ π ∙ R ∙ C  
C
C
7.3  
Voltage divider  
The contribution of a simple voltage divider is:  
R
2
G
s =  
(21)  
DIV  
R
+ R  
2
1
A small signal capacitor in parallel to the upper resistor (only for the adjustable part number) of the voltage divider  
implements a leading network (fZERO < fPOLE), sometimes necessary to improve the system phase margin:  
Figure 25. Leading network example  
L6983  
R
PGOOD  
VIN  
PGOOD  
BOOT  
SW  
VIN  
R
VIN  
FILT  
L
C
BOOT  
VINLDO  
EN/CLKIN  
FSW  
VOUT  
GND  
SW  
R
R
1
FSW  
VBIAS  
VOUT/FB  
PGND  
PGND  
C
R1  
C
IN  
VCC  
COUT  
C
FILT  
C
VCC  
A GND  
A GND  
R
2
E.P.  
GND  
Laplace transformer of the leading network:  
R
1 + s ∙ R ∙ C  
1 R1  
2
G
s =  
(22)  
DIV  
R
+ R  
R ∙ R  
1 2  
1
2
1 + s ∙  
∙ C  
R1  
R
+ R  
2
1
where:  
1
f
=
(23)  
(24)  
Z
2 ∙ π ∙ R ∙ C  
1
R1  
1
∙ R  
2
+ R  
2
f
=
P
R
1
2 ∙ π ∙  
∙ C  
R1  
R
1
f
< f  
(25)  
(26)  
Z
P
So closing the loop, the loop gain is:  
G s = G  
DIV  
s ∙ G  
CO  
s ∙ A  
s
O
DS13116 - Rev 2  
page 28/63  
 
 
L6983  
Application notes  
8
Application notes  
8.1  
Programmable power up threshold  
The enable rising threshold is equal to 1.2 V typical (refer to Table 6. Electrical characteristics). The power-up  
threshold is adjusted according to the following equation:  
R
EN H  
V
= 1.2V ∙ 1 +  
(27)  
Power Up  
R
EN L  
Figure 26. Leading network example  
VIN  
VIN  
VIN  
R
EN H  
R
FILT  
VINLDO  
EN/CLKIN  
FSW  
R
C
FSW  
C
IN  
VCC  
R
EN L  
VCC  
C
AGND  
AGND  
FILT  
GND  
The enable falling threshold is equal to 1.0 V typical (refer to Table 6. Electrical characteristics). The turn  
threshold is obtained according to the following equation:  
R
EN H  
V
= 1.0V ∙ 1 +  
(28)  
Power Up  
R
EN L  
8.2  
External synchronization (available for low noise mode only)  
The device allows a direct connection between a clock source and the EN/CLKIN pin.  
Figure 27. External synchronization. Direct connection.  
VIN  
VIN  
EXT. Clock(t)  
VPP  
VIN  
RFILT  
CFILT  
VINLDO  
EN/CLKIN  
FSW  
RFSW  
CVCC  
CIN  
VCC  
Clock  
Source  
AGND  
AGND  
GND  
The device internally implements a low-pass filter connected to EN/CLKIN pin that is able to acquire the average  
value of the applied signal.  
DS13116 - Rev 2  
page 29/63  
 
 
 
 
 
L6983  
Output voltage adjustment  
The device turns on when the average of the signal applied is higher than VEN rising (refer to Table 6. Electrical  
characteristics). The device turns off when the average of the signal should be lower than VEN falling (refer to  
Table 6. Electrical characteristics).  
Considering, for example, a clock source with VPP = 5.0 V, the minimum duty cycle to guarantee the power-up is  
given by:  
V
EN, Rising  
Duty  
min  
=
= 0.24  
(29)  
(30)  
V
PP  
The maximum duty cycle to guarantee the turn-off is given by:  
V
EN, Falling  
Duty  
MAX,  
=
= 0.2  
V
PP  
The device allows also the AC coupling.  
Figure 28. External synchronization. AC coupling  
VIN  
VIN  
VIN  
REN H  
RFILT  
VINLDO  
EN/CLKIN(*)  
FSW  
CEN  
RFSW  
CIN  
EXT. Clock(t)  
CFILT  
VCC  
REN L  
CVCC  
VPP  
Clock  
AGND  
AGND  
Source  
GND  
The AC-coupling allows the device to keep the power-up and down thresholds defined by the partition connected  
to EN/CLKIN pin and described on Section 8.1 Programmable power up threshold.  
The following table resumes the minimum pulse duration for the external signal and maximum duty cycle that  
allows the synchronization by keeping the selected power-up and down thresholds.  
Table 8. External synchronization AC coupling suggested operation range  
V
[V]  
TON, MIN, EXT  
[ns]  
DMAX, EXT  
[%]  
Clock  
PP  
Clock  
2.3  
60  
20  
20  
45  
30  
20  
3.3  
5
The minimum amplitude for the external clock signal is, for both the configurations, equal to 2.3 V.  
The network given by CEN and RENL sets a high-pass filter. Considering a resistor in the order of 220 kΩ, a  
capacitor equal to 1 nF is a correct choice.  
8.3  
Output voltage adjustment  
The error amplifier reference voltage is 0.85 V typical (refer to Table 6. Electrical characteristics). The output  
voltage is adjustable as per the following equation:  
R
1
V
= 0.85V ∙ 1 +  
(31)  
OUT  
R
2
DS13116 - Rev 2  
page 30/63  
 
 
 
L6983  
Switching frequency  
CR1 capacitor is sometimes useful to increase the small signal phase margin (please refer to the Section  
7 Closing the loop).  
Figure 29. Application circuit  
L6983  
RPGOOD  
CBOOT  
VIN  
PGOOD  
BOOT  
SW  
VIN  
RFILT  
VIN  
L
VINLDO  
EN/CLKIN  
FSW  
VOUT  
GND  
SW  
R1  
R FSW  
C VCC  
CR1  
VBIAS  
VOUT/FB  
PGND  
PGND  
CIN  
VCC  
COUT  
CFILT  
AGND  
AGND  
R2  
E.P.  
GND  
8.4  
Switching frequency  
A resistor connected to the FSW pin features the selection of the switching frequency (refer to the Table 7. FSW  
selection).  
Connecting the resistor between the pins RFSW and VCC, the internal dithering circuit is turned on. (refer to the  
Section 6.6 Spread spectrum).  
8.5  
Design of the power components  
8.5.1  
Input capacitor selection  
The input capacitor voltage rating must be higher than the maximum input operating voltage of the application.  
During the switching activity a pulsed current flows into the input capacitor and so, its RMS current capability must  
be selected according to the application conditions. Internal losses of the input filter depends on the ESR value so  
usually low ESR capacitors (such as multilayer ceramic capacitors) have higher RMS current capability. On the  
other hand, given the RMS current value, lower ESR input filter has lower losses and so contributes to higher  
conversion efficiency.  
The maximum RMS input current, flowing through the capacitor, can be calculated as follows:  
D
η
D
η
I
= I  
OUT  
1 −  
(32)  
RMS  
Where IOUT is the maximum DC output current, D is the duty cycles, η is the efficiency. This function has a  
maximum at D = 0.5 and, considering η = 1, it is equal to IOUT/2. In a specific application, the range of possible  
duty cycles has to be considered in order to find out the maximum RMS input current. The maximum and  
minimum duty cycles can be calculated as:  
V
+ ∆ V  
OUT  
LOWSIDE  
− ∆ V  
HIGHSIDE  
D
=
(33)  
(34)  
MAX  
V
+ ∆ V  
INmin  
LOWSIDE  
V
+ ∆ V  
OUT  
LOWSIDE  
− ∆ V  
HIGHSIDE  
D
=
min  
V
+ ∆ V  
INMAX  
LOWSIDE  
Where ΔVHIGHSIDE and ΔVLOWSIDE are the voltage drops across the embedded switches. The peak-to-peak  
voltage across the input filter can be calculated as the equation below:  
I
OUT  
∙ F  
D
η
D
η
V
=
1 −  
+ ESR ∙ I  
OUT  
+ ∆ I  
(35)  
PP  
L
C
IN SW  
In case of negligible ESR (MLCC capacitor), the equation of CIN as a function of the target VPP can be written as  
follows:  
DS13116 - Rev 2  
page 31/63  
 
 
 
 
L6983  
Design of the power components  
I
OUT  
∙ F  
D
η
D
η
C
=
1 −  
(36)  
(37)  
IN  
V
PP SW  
Considering η = 1 this function has its maximum in D = 0.5:  
I
OUT  
C
=
INmin  
4 ∙ V  
∙ F  
PPMAX SW  
Typically, CIN is dimensioned to keep the maximum peak-peak voltage across the input filter in the order of 5%  
VINMAX  
.
In the following table, some suitable capacitor part numbers are listed.  
Table 9. Capacitor part numbers  
Manufacturer  
Series  
Size  
1206  
1206  
1206  
Cap value (µF)  
Rated voltage (V)  
TDK  
CGA5L3X5R1H106K160AB  
C3216X5R1H106K160AB  
GRT31CR61H106KE01  
10  
10  
10  
50  
50  
50  
Murata  
8.5.2  
Inductor selection  
The inductor current ripple flowing into the output capacitor determines the output voltage ripple. Usually the  
inductor value is selected in order to keep the current ripple lower than 20% - 40% of the output current over the  
input voltage range. The inductance value can be calculated by the following equation:  
V
− V  
L
V
OUT  
L
IN  
OUT  
∆ I  
=
∙ T  
ON  
=
∙ T  
OFF  
(38)  
L
Where TON and TOFF are the on and off time of the internal power switch. The maximum current ripple, at fixed  
VOUT, is obtained at maximum TOFF that is at minimum duty cycle. So fixing ΔIL = 20% to 40% of the maximum  
output current, the minimum inductance value can be calculated:  
V
1 − D  
OUT  
min  
L
=
(39)  
min  
∆ IL  
MAX  
F
SW  
For those applications requiring higher inductor value for minimized current ripple, pay attention the maximum  
value must prevent the sub-harmonic instability given the designed internal slope compensation. As a  
consequence the inductor value must satisfy the quality factor range:  
0.4 ≤ Q 1.33  
(40)  
(41)  
P
Where QP has been defined in Section 7.1 GCO(s) control to output transfer function.  
The peak current through the inductor is given by:  
∆ I  
L
2
I
= I +  
OUT  
L, PK  
So if the inductor value decreases, the peak current (that has to be lower than the current limit of the device)  
increases. The higher is the inductor value, the higher is the average output current that can be delivered, without  
reaching the current limit.  
8.5.3  
Output capacitor selection  
The triangular shape current ripple (with zero average value) flowing into the output capacitor gives the output  
voltage ripple, that depends on the capacitor value and the equivalent resistive component (ESR). Therefore, the  
output capacitor has to be selected in order to have a voltage ripple compliant with the application requirements.  
The voltage ripple equation can be calculated as:  
∆ I  
L, MAX  
∆ V  
OUT  
= ESR ∙ ∆ I  
L, MAX  
+
(42)  
8 ∙ C  
∙ F  
OUT SW  
For a ceramic (MLCC) capacitor, the capacitive component of the ripple dominates the resistive one. While for an  
electrolytic capacitor the opposite is true. Neglecting the ESR contribution the minimum value of the output  
capacitor is given by:  
DS13116 - Rev 2  
page 32/63  
 
 
 
L6983  
Design of the power components  
∆ I  
L, MAX  
C
=
(43)  
OUT, min, RIPPLE  
8 ∙ ∆ V  
∙ F  
OUT SW  
As the compensation network is internal, the output capacitor should be selected in order to have a proper phase  
margin and then a stable control loop. A good rule to obtain a proper dimensioning for the minimum amount of the  
output capacitor is set the target system bandwidth equal to FSW/8. The following equation keep into account the  
precedent consideration:  
8.04  
C
=
(44)  
OUT, BW, min  
Fsw  
∙ V  
OUT  
8
The maximum amount of the output capacitor is given by:  
3  
0.960 10  
C
=
(45)  
OUT, BW, MAX  
V
OUT  
DS13116 - Rev 2  
page 33/63  
L6983  
Application board  
9
Application board  
The figure below shows the reference evaluation board schematic:  
Figure 30. Evaluation board schematic  
V
1 6 = p e T y  
5 C  
F
2 2 µ  
0
1 2 e 1 i z s  
V
1 6 = p e T y 4 C  
F
1 0 µ  
6
1 2 e 0 i z s  
V
1 6 = p e T y  
3 C  
F
1 0 µ  
6
1 2 e 0 i z s  
5
0 8 e 0 i z s  
N D G P  
W F S  
F B  
1
3 1  
4 1  
5 1  
6 1  
8
7
6
5
1
2
2
W S  
W S  
N D G P  
S A V B I  
O O D G P  
5
0 8 e 0 i z s  
F
V
1 µ  
6
C 1  
5
0 8 e 0 i z s  
5 0 = p e T y  
F
1 0 µ  
5
1 0 0 u  
C 1  
V
5 0 F  
V
5 0 = p e T y 1 C  
1 2 e 0 i z s  
0
1 0 P x 1 1 0 H 1 1 Z A H E E  
c i o s n n a P  
6
F
7 . µ 4  
2
C 1  
V
5 0 = p e T y  
6
1 2 e 0 i z s  
F
7 . µ 4  
V
5 0 = p e T y  
3
C 1  
6
1 2 e 0 i z s  
6
1 2 e 0 i z s  
F
7 . µ 4  
4
C 1  
V
5 0 = p e T y  
The additional input filter (C14, L3, C13, L2, C12, and C15) limits the conducted emission on the power supply.  
DS13116 - Rev 2  
page 34/63  
 
 
L6983  
Application board  
Table 10. Bill of material  
Reference  
Part number  
Description  
10 µF 50 V  
1 µF 50 V  
Manufacturer  
TDK  
C1  
CGA5L3X5R1H106K160AB  
CGA4J3X7R1H105K125AB  
GCM31CR71C106KA64L  
CGA6P1X7R1C226M250AC  
CGA3E2X7R1H104K080AA  
C2012X8R1C105K125AB  
C2A, C2B, C16  
TDK  
C3-C4  
10 µF 16 V  
22 µF 16 V  
100 nF 50 V  
1 µF 16V  
MURATA  
TDK  
C5  
C6  
TDK  
C7  
TDK  
C8, C9, C11, C17  
NOT MOUNTED  
4.7 µF 50 V  
100 µF, 50 V  
NOT MOUNTED  
4.7 µH  
C12-C13-C14  
C15  
L1B  
L1A  
L2  
GRM31CR71H475KA12L  
EEHZA1H101P  
Murata  
Panasonic  
XAL6060-472ME  
XAL4030-472ME  
MPZ2012S221A  
Coilcraft  
Coilcraft  
TDK  
4.7 µH  
L3  
220 Ω 100 MHz  
10 k 1%  
R1  
any  
R2  
NOT MOUNTED  
400 k 1%  
R3  
any  
any  
any  
R4  
82 k 1%  
R5  
0
R6  
NOT MOUNTED  
1 M 1%  
R7  
any  
any  
R8  
10 k 1%  
R9  
NOT MOUNTED  
NOT MOUNTED  
0
R11  
R12  
R13  
J2  
any  
any  
0.1 k 1%  
U1  
L6983CQTR  
ST Microelectronics  
DS13116 - Rev 2  
page 35/63  
 
L6983  
Application board  
Figure 31. Top layer  
Figure 32. Bottom layer  
DS13116 - Rev 2  
page 36/63  
 
 
L6983  
Efficiency curves  
10  
Efficiency curves  
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the  
device, STEVAL-ISA208V1, selecting the following output filter:  
COUT  
:
1 x CGA6P1X7R1C226M250AC 22 µF 16 V (TDK);  
2 x CGA5L3X5R1H106K160AB 10 µF 50 V (TDK).  
Inductor:  
XAL6060-153ME (Coilcraft)  
Figure 33. Efficiency VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHZ  
V = 24 V; VOUT = 5 V; FSW = 0.4 MHz  
IN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LCM  
LNM  
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
Figure 34. Efficiency VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHZ (log scale)  
VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LCM  
LNM  
0.001  
0.01  
0.1  
1
IOUT [A]  
DS13116 - Rev 2  
page 37/63  
 
 
 
L6983  
Efficiency curves  
Figure 35. Power losses VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHZ  
V
IN  
= 24 V ; VOUT = 5 V; FSW = 0.4 MHz  
2.5  
2
16  
14  
12  
10  
8
1.5  
1
6
4
LCM  
LNM  
0.5  
0
2
0
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the  
device, STEVAL-ISA208V1, selecting the following output filter:  
COUT  
:
1 x CGA6P1X7R1C226M250AC 22 µF 16 V (TDK);  
2 x CGA5L3X5R1H106K160AB 10 µF 50 V (TDK).  
Inductor:  
XAL6060-153ME (Coilcraft).  
Figure 36. Efficiency VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHZ  
V = 12 V; VOUT = 5 V; FSW = 0.4 MHz  
IN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LCM  
LNM  
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
DS13116 - Rev 2  
page 38/63  
 
 
L6983  
Efficiency curves  
Figure 37. Efficiency VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHZ (log scale)  
VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
LCM  
LNM  
20  
10  
0
0.001  
0.01  
0.1  
1
IOUT [A]  
Figure 38. Power losses VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHZ  
VIN = 12 V ; VOUT = 5 V; FSW = 0.4 MHz  
2
16  
14  
12  
10  
8
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
6
LCM  
4
LNM  
2
POUT  
0
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the  
device, STEVAL-ISA208V1, selecting the following output filter:  
COUT  
:
2 x CGA6P1X7R1C226M250AC 22 µF 16 V (TDK);  
2 x CGA5L3X5R1H106K160AB 10 µF 50 V (TDK).  
Inductor:  
XAL6060-822ME (Coilcraft).  
DS13116 - Rev 2  
page 39/63  
 
 
L6983  
Efficiency curves  
Figure 39. Efficiency VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHZ  
V = 24 V; VOUT = 3.3 V; FSW = 0.4 MHz  
IN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LCM  
LNM  
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
Figure 40. Efficiency VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHZ (log scale)  
VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
LCM  
LNM  
20  
10  
0
0.001  
0.01  
0.1  
1
IOUT [A]  
DS13116 - Rev 2  
page 40/63  
 
 
L6983  
Efficiency curves  
Figure 41. Power losses VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHZ  
Vin = 24 V ; Vout = 3.3 V ; Fsw = 0.4 MHz  
1.8  
12  
10  
8
1.6  
1.4  
1.2  
1
6
0.8  
0.6  
0.4  
0.2  
0
4
LCM  
LNM  
2
POUT  
0
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the  
device, STEVAL-ISA208V1, selecting the following output filter:  
COUT  
:
2 x CGA6P1X7R1C226M250AC 22 µF 16 V (TDK);  
2 x CGA5L3X5R1H106K160AB 10 µF 50 V (TDK).  
Inductor:  
XAL6060-822ME (Coilcraft)  
DS13116 - Rev 2  
page 41/63  
 
L6983  
Efficiency curves  
Figure 42. Efficiency VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHZ  
VIN = 12 V ; VOUT = 3.3 V ; FSW = 0.4 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LCM  
LNM  
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
Figure 43. Efficiency VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHZ (log scale)  
VIN = 12 V ; VOUT = 3.3 V ; FSW = 0.4 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
LCM  
LNM  
20  
10  
0
0.001  
0.01  
0.1  
1
IOUT [A]  
DS13116 - Rev 2  
page 42/63  
 
 
L6983  
Efficiency curves  
Figure 44. Power losses VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHZ  
VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHz  
1.8  
12  
10  
8
1.6  
1.4  
1.2  
1
6
0.8  
0.6  
0.4  
0.2  
0
4
LCM  
LNM  
2
POUT  
0
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the  
device, STEVAL-ISA208V1, selecting the following output filter:  
COUT  
:
1 x CGA6P1X7R1C226M250AC 22 µF 16 V (TDK);  
1 x CGA5L3X5R1H106K160AB 10 µF 50 V (TDK).  
Inductor:  
XAL6060-472ME (Coilcraft).  
DS13116 - Rev 2  
page 43/63  
 
L6983  
Efficiency curves  
Figure 45. Efficiency VIN = 24 V; VOUT = 3.3 V; FSW = 1.0 MHZ  
VIN = 24 V ; VOUT = 3.3 V ; FSW = 1.0 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LCM  
LNM  
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
Figure 46. Efficiency VIN = 24 V; VOUT = 3.3 V; FSW = 1.0 MHZ (log scale)  
VIN = 24 V ; VOUT = 3.3 V ; FSW = 1.0 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
LCM  
LNM  
20  
10  
0
0.001  
0.01  
0.1  
1
IOUT [A]  
DS13116 - Rev 2  
page 44/63  
 
 
L6983  
Efficiency curves  
Figure 47. Power losses VIN = 24 V; VOUT = 3.3 V; FSW = 1.0 MHZ  
VIN = 24 V ; VOUT = 3.3 V ; FSW = 1.0 MHz  
2.5  
2
12  
10  
8
1.5  
1
6
LCM  
4
LNM  
0.5  
0
2
POUT  
0
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the  
device, STEVAL-ISA208V1, selecting the following output filter:  
COUT  
:
1 x CGA6P1X7R1C226M250AC 22 µF 16 V (TDK);  
1 x CGA5L3X5R1H106K160AB 10 µF 50 V (TDK).  
Inductor:  
XAL6060-472ME (Coilcraft).  
DS13116 - Rev 2  
page 45/63  
 
L6983  
Efficiency curves  
Figure 48. Efficiency VIN = 12 V; VOUT = 3.3 V; FSW = 1.0 MHZ  
VIN = 12 V ; VOUT = 3.3 V ; FSW = 1.0 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LCM  
LNM  
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
Figure 49. Efficiency VIN = 12 V; VOUT = 3.3 V; FSW = 1.0 MHZ (log scale)  
VIN = 12 V ; VOUT = 3.3 V ; FSW = 1.0 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
LCM  
LNM  
20  
10  
0
0.001  
0.01  
0.1  
1
IOUT [A]  
DS13116 - Rev 2  
page 46/63  
 
 
L6983  
Efficiency curves  
Figure 50. Power losses VIN = 12 V; VOUT = 3.3 V; FSW = 1.0 MHZ  
Vin = 12 V ; Vout = 3.3 V ; Fsw = 1.0 MHz  
2
1.8  
1.6  
1.4  
1.2  
1
12  
10  
8
6
0.8  
0.6  
0.4  
0.2  
0
LCM  
4
LNM  
2
POUT  
0
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the  
device, STEVAL-ISA208V1, selecting the following output filter:  
COUT  
:
1 x CGA6P1X7R1C226M250AC 22 µF 16V (TDK);  
2 x CGA5L3X5R1H106K160AB 10 µF 50V (TDK).  
Inductor:  
XAL6060-472ME (Coilcraft).  
DS13116 - Rev 2  
page 47/63  
 
L6983  
Efficiency curves  
Figure 51. . Efficiency VIN = 24 V; VOUT = 5 V; FSW = 1.0 MHZ  
V = 24 V ; VOUT = 5.0 V ; FSW = 1.0 MHz  
IN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LCM  
LNM  
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
Figure 52. Efficiency VIN = 24 V; VOUT = 5.0 V; FSW = 1.0 MHZ (log scale)  
V
IN  
= 24 V ; VOUT = 5.0 V ; FSW = 1.0 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LCM  
LNM  
0.001  
0.01  
0.1  
1
IOUT [A]  
Figure 53. Power losses VIN = 24 V; VOUT = 5.0 V; FSW = 1.0 MHZ  
DS13116 - Rev 2  
page 48/63  
 
 
 
L6983  
Efficiency curves  
VIN = 24 V ; VOUT = 5.0 V ; FSW = 1.0 MHz  
3
2.5  
2
16  
14  
12  
10  
8
1.5  
1
6
LCM  
4
LNM  
0.5  
0
2
POUT  
0
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
The following three figures show the efficiency and power losses acquired on the standard evaluation board of the  
device, STEVAL-ISA208V1, selecting the following output filter:  
COUT  
:
1 x CGA6P1X7R1C226M250AC 22 µF 16 V (TDK);  
1 x CGA5L3X5R1H106K160AB 10 µF 50 V (TDK).  
Inductor:  
XAL6060-472ME (Coilcraft).  
Figure 54. Efficiency VIN = 12 V; VOUT = 5.0 V; FSW = 1.0 MHZ  
V
IN  
= 12 V ; VOUT = 5.0 V ; FSW = 1.0 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LCM  
LNM  
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
DS13116 - Rev 2  
page 49/63  
 
L6983  
Efficiency curves  
Figure 55. Efficiency VIN = 12 V; VOUT = 5.0 V; FSW = 1.0 MHZ (log scale)  
VIN = 12 V; VOUT = 5.0 V; FSW = 1.0 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
LCM  
LNM  
20  
10  
0
0.001  
0.01  
0.1  
1
IOUT [A]  
Figure 56. Power losses VIN = 12 V; VOUT = 5.0 V; FSW = 1.0 MHZ  
Vin = 12 V ; Vout = 5.0 V ; Fsw = 1.0 MHz  
2.5  
2
16  
14  
12  
10  
8
1.5  
1
6
LCM  
LNM  
4
0.5  
0
2
POUT  
0
0
0.5  
1
1.5  
2
2.5  
3
IOUT [A]  
DS13116 - Rev 2  
page 50/63  
 
 
L6983  
Thermal dissipation  
11  
Thermal dissipation  
The thermal design is important in order to prevents thermal shutdown of the device if junction temperature goes  
above 165 °C. The three different sources of losses within the device are:  
1.  
Conduction losses due to the on-resistance of high-side switch (RDSON_HS) and low-side switch (RDSON_LS);  
these are equal to:  
2
2
P
= R  
∙ I  
∙ D + R  
∙ I  
1 − D  
(46)  
(47)  
COND  
DSON_HS OUT  
DSON_LS OUT  
where D is the duty cycle of the selected application and is given by the following formula:  
V
+ R  
+ DCRl ∙ I  
OUT  
OUT  
− R  
DSON_LS  
D =  
V
− R  
∙ I  
IN  
DSON  
HS  
DSON_LS OUT  
In order to obtain a more accurate extimation it is necessary to keep into account that the amount of resistance of  
the internal power MOSFET increases together with the temperature. For this reason, the value of RDSONHS and  
RDSONLS, should be increased from the typical of a factor equal to 15%.  
1.  
Switching losses due to high-side power MOSFET turn-ON and OFF; these can be calculated as per below:  
T
+ T  
RISE  
FALL  
P
= V ∙ I  
IN OUT  
F
= V ∙ I  
∙ T  
∙ F  
(48)  
SW  
SW IN OUT SW SW  
2
where TRISE and TFALL are the overlap times of the voltage across the high side power switch (VDS) and the  
current flowing into it during turn-ON and turn-OFF phases, as shown in Figure 57. Switching losses.  
TSW is the equivalent switching time. For this device the typical value for the equivalent switching time is 20 ns.  
1. Quiescent current losses, calculated as the equation below:  
P
= V ∙ I  
IN Q, MAX  
(49)  
Q
where IQ is the quiescent current and depends on the VBIAS connections. If VBIAS is connected to GND, the  
maximum is equal to 3 mA. Otherwise if VBIAS is connected to VOUT the quiescent current is given by:  
V
1
BIAS  
I
= 0.8 mA +  
2.3 mA  
(50)  
Q, MAX  
η
V
L6983  
IN  
The power losses are given by:  
P
= P  
COND  
+ P  
+ P  
Q
(51)  
(52)  
LOSS  
SW  
The junction temperature TJ can be calculated as:  
T
= T + R  
∙ P  
J
A
tJA LOSS  
where TA is the ambient temperature. RthJA is the equivalent thermal resistance junction to ambient of the device;  
it can be calculated as the parallel of many paths of heat conduction from the junctions to the ambient. For this  
device the path through the exposed pad is the one conducting the largest amount of heat. The RthJA measured  
on the demonstration board described in the following section is about 30 °C/W.  
DS13116 - Rev 2  
page 51/63  
 
L6983  
Thermal dissipation  
Figure 57. Switching losses  
VIN  
VSW(t)  
ISW,HS (t)  
VDS,HS(t)  
t
PSW  
PCOND,LS  
PCOND,HS  
t
TFALL  
TRISE  
It is also possible to estimate the junction temperature directly from the efficiency measures acquired on a  
stationary application condition.  
Considering that the power losses are given by:  
P
= P − P  
IN OUT  
(53)  
LOSS  
Neglecting the AC losses of the selected inductor, the power losses related to the L6983 are given by:  
2
OUT  
P
= V ∙ I − V  
∙ I  
− DCRl ∙ I  
(54)  
(55)  
LOSS L6983  
IN IN OUT OUT  
Therefore, the junction temperature TJ can be calculated as:  
T
= T + R  
∙ P  
J
A
tJA LOSS, L6983  
DS13116 - Rev 2  
page 52/63  
 
L6983  
Package information  
12  
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,  
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product  
status are available at: www.st.com. ECOPACK is an ST trademark.  
DS13116 - Rev 2  
page 53/63  
 
L6983  
QFN16 (3x3 mm) package information  
12.1  
QFN16 (3x3 mm) package information  
Figure 58. QFN16 (3x3 mm) package outline  
DS13116 - Rev 2  
page 54/63  
 
 
L6983  
QFN16 (3x3 mm) package information  
Table 11. QFN16 (3x3 mm) mechanical data  
mm  
Dim.  
Min.  
0.7  
Typ.  
0.75  
0.02  
Max.  
0.8  
A
A1  
A3  
b
0
0.05  
0.203 Ref.  
0.18  
0.25  
0.3  
D
3.00 BSC  
3.00 BSC  
0.50 BSC  
0.43  
E
e
D2  
E2  
L
0.48  
0.86  
0.4  
0.53  
0.91  
0.45  
0.81  
0.35  
K
0.84  
K1  
K2  
N
0.5  
0.86  
16  
4
ND  
NE  
aaa  
bbb  
ccc  
ddd  
eee  
4
0.05  
0.1  
0.05  
0.05  
0.05  
Figure 59. QFN16 (3x3 mm) recommended footprint  
0.85  
0.43  
0.30  
0.50  
0.90  
0.77  
0.80  
0.50  
DS13116 - Rev 2  
page 55/63  
 
 
L6983  
Ordering information  
13  
Ordering information  
Table 12. Order codes  
Light load behavior  
Part numbers  
L6983CQTR  
Output voltage  
Package  
Packaging  
Adj.  
5 V  
LCM  
L6983C50QTR  
L6983C33QTR  
L6983NQTR  
(Low Consumption Mode)  
3.3 V  
Adj.  
QFN16  
Tape and reel  
LNM  
L6983N50QTR  
L6983N33QTR  
5 V  
(Low Noise Mode)  
3.3 V  
DS13116 - Rev 2  
page 56/63  
 
 
L6983  
Revision history  
Table 13. Document revision history  
Date  
Revision  
Changes  
29-Oct-2019  
1
Initial release.  
Updated: Feature on the cover page, R  
value in  
DSON_LS  
20-Apr-2020  
2
Table 6. Electrical characteristics, Section 8.5.2 Inductor selection,  
Figure 30. Evaluation board schematic and Table 10. Bill of material.  
DS13116 - Rev 2  
page 57/63  
 
 
L6983  
Contents  
Contents  
1
2
3
4
Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Typical application circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
4.1  
4.2  
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
5
6
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
5.1  
Frequency selection table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Functional description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
6.1  
6.2  
6.3  
6.4  
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Soft-start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Undervoltage lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Light-load operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
Low consumption mode (LCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Low noise mode (LNM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Efficiency for low consumption mode and low noise mode part number . . . . . . . . . . . . . . 19  
Load regulation for low consumption mode and Low noise mode part number . . . . . . . . . 20  
6.5  
6.6  
6.7  
6.8  
6.9  
Switch-over feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Spread spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Thermal shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
6.10 Power Good. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
7
8
Closing the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
7.1  
7.2  
7.3  
GCO(s) control to output transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Error amplifier compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Voltage divider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Application notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
8.1  
Programmable power up threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
DS13116 - Rev 2  
page 58/63  
L6983  
Contents  
8.2  
8.3  
8.4  
8.5  
External synchronization (available for low noise mode only) . . . . . . . . . . . . . . . . . . . . . . . . .29  
Output voltage adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Switching frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Design of the power components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
8.5.1  
8.5.2  
8.5.3  
Input capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Output capacitor selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9
Application board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
10 Efficiency curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
11 Thermal dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
12 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
12.1 DFN6 (3x3) package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
13 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
DS13116 - Rev 2  
page 59/63  
L6983  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Typical application component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
ESD performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
FSW selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
External synchronization AC coupling suggested operation range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Capacitor part numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 10. Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 11. QFN16 (3x3 mm) mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 12. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 13. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
DS13116 - Rev 2  
page 60/63  
L6983  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin connection (top through view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Basic application (adjustable version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Power-up/down behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Soft-start procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Soft-start phase with IOUT = 2.5 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Light load operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
LCM operation with ISKIP = 600 mA typ. at zero load. L = 15 µH; COUT = 40 µF. . . . . . . . . . . . . . . . . . . . . . . 15  
LCM operation over loading condition (part 1-pulse skipping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
LCM operation over loading condition (part 2-pulse skipping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
LCM operation over loading condition (part 3-pulse skipping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
LCM operation over loading condition (part 4-CCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Low noise mode operation at zero load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Light-load efficiency for low consumption mode and low noise mode - linear scale. . . . . . . . . . . . . . . . . . . . . 19  
Light-load efficiency for low consumption mode and low noise mode - log scale . . . . . . . . . . . . . . . . . . . . . . 19  
Load regulation for LCM and LNM. VIN = 24 V; VOUT = 5 V; FSW = 400 kHz - linear scale. . . . . . . . . . . . . . . . 20  
Load regulation for low noise mode. VIN = 24 V; VOUT = 5 V; FSW = 400 kHz - log scale. . . . . . . . . . . . . . . . . 20  
Switch-over . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Over current protection behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Soft-start procedure with VOUT shorted to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Over current procedure with persistent short circuit between VOUT and GND . . . . . . . . . . . . . . . . . . . . . . . . 24  
PGOOD thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Block diagram of the loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Trans-conductance embedded error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Leading network example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Leading network example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
External synchronization. Direct connection.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
External synchronization. AC coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Evaluation board schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Bottom layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Efficiency VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Efficiency VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHZ (log scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Power losses VIN = 24 V; VOUT = 5 V; FSW = 0.4 MHZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Efficiency VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Efficiency VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHZ (log scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Power losses VIN = 12 V; VOUT = 5 V; FSW = 0.4 MHZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Efficiency VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Efficiency VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHZ (log scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Power losses VIN = 24 V; VOUT = 3.3 V; FSW = 0.4 MHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Efficiency VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Efficiency VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHZ (log scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Power losses VIN = 12 V; VOUT = 3.3 V; FSW = 0.4 MHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Efficiency VIN = 24 V; VOUT = 3.3 V; FSW = 1.0 MHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Efficiency VIN = 24 V; VOUT = 3.3 V; FSW = 1.0 MHZ (log scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Power losses VIN = 24 V; VOUT = 3.3 V; FSW = 1.0 MHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Efficiency VIN = 12 V; VOUT = 3.3 V; FSW = 1.0 MHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Efficiency VIN = 12 V; VOUT = 3.3 V; FSW = 1.0 MHZ (log scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Figure 20.  
Figure 21.  
Figure 22.  
Figure 23.  
Figure 24.  
Figure 25.  
Figure 26.  
Figure 27.  
Figure 28.  
Figure 29.  
Figure 30.  
Figure 31.  
Figure 32.  
Figure 33.  
Figure 34.  
Figure 35.  
Figure 36.  
Figure 37.  
Figure 38.  
Figure 39.  
Figure 40.  
Figure 41.  
Figure 42.  
Figure 43.  
Figure 44.  
Figure 45.  
Figure 46.  
Figure 47.  
Figure 48.  
Figure 49.  
DS13116 - Rev 2  
page 61/63  
L6983  
List of figures  
Figure 50.  
Figure 51.  
Figure 52.  
Figure 53.  
Figure 54.  
Figure 55.  
Figure 56.  
Figure 57.  
Figure 58.  
Figure 59.  
Power losses VIN = 12 V; VOUT = 3.3 V; FSW = 1.0 MHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
. Efficiency VIN = 24 V; VOUT = 5 V; FSW = 1.0 MHZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Efficiency VIN = 24 V; VOUT = 5.0 V; FSW = 1.0 MHZ (log scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Power losses VIN = 24 V; VOUT = 5.0 V; FSW = 1.0 MHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Efficiency VIN = 12 V; VOUT = 5.0 V; FSW = 1.0 MHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Efficiency VIN = 12 V; VOUT = 5.0 V; FSW = 1.0 MHZ (log scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Power losses VIN = 12 V; VOUT = 5.0 V; FSW = 1.0 MHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Switching losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
QFN16 (3x3 mm) package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
QFN16 (3x3 mm) recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
DS13116 - Rev 2  
page 62/63  
L6983  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST  
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST  
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of  
Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service  
names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS13116 - Rev 2  
page 63/63  

相关型号:

L6983N33QTR

38 V, 3 A synchronous step-down converter with 17 μA quiescent current
STMICROELECTR

L6983N50QTR

38 V, 3 A synchronous step-down converter with 17 μA quiescent current
STMICROELECTR

L6983NQTR

38 V, 3 A synchronous step-down converter with 17 μA quiescent current
STMICROELECTR

L6983_V01

38 V, 3 A synchronous step-down converter with 17 μA quiescent current
STMICROELECTR

L6984

36 V 400 mA synchronous step-down switching regulator
STMICROELECTR

L6984A

36 V 400 mA synchronous step-down switching regulator
STMICROELECTR

L6984ATR

36 V 400 mA synchronous step-down switching regulator
STMICROELECTR

L6984TR

36 V 400 mA synchronous step-down switching regulator
STMICROELECTR

L6986

38 V, 2 A synchronous step-down switching regulator with 30 A quiescent current
STMICROELECTR

L6986H

38 V, 2 A synchronous step-down switching regulator with 30 μA quiescent current
STMICROELECTR

L6986H3V3

38 V, 2 A synchronous step-down switching regulator with 30 μA quiescent current
STMICROELECTR

L6986H3V3TR

38 V, 2 A synchronous step-down switching regulator with 30 μA quiescent current
STMICROELECTR