L6910_05 [STMICROELECTRONICS]

ADJUSTABLE STEP DOWN CONTROLLER WITH SYNCHRONOUS RECTIFICATION; 采用同步整流可调降压控制器
L6910_05
型号: L6910_05
厂家: ST    ST
描述:

ADJUSTABLE STEP DOWN CONTROLLER WITH SYNCHRONOUS RECTIFICATION
采用同步整流可调降压控制器

控制器
文件: 总29页 (文件大小:683K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6910  
L6910A  
ADJUSTABLE STEP DOWN CONTROLLER  
WITH SYNCHRONOUS RECTIFICATION  
Figure 1. Packages  
1 FEATURES  
OPERATING SUPPLY VOLTAGE FROM 5V  
TO 12V BUSES  
UP TO 1.3A GATE CURRENT CAPABILITY  
ADJUSTABLE OUTPUT VOLTAGE  
N-INVERTING E/A INPUT AVAILABLE  
0.9V 1.5% VOLTAGE REFERENCE  
VOLTAGE MODE PWM CONTROL  
VERY FAST LOAD TRANSIENT RESPONSE  
0% TO 100% DUTY CYCLE  
HTSSOP16 (Exposed Pad)  
SO-16 (Narrow)  
Table 1. Order Codes  
Part Number  
L6910  
Package  
SO-16  
POWER GOOD OUTPUT  
L6910TR  
L6910A  
SO-16 in Tape & Reel  
HTSSOP16  
OVERVOLTAGE PROTECTION  
HICCUP OVERCURRENT PROTECTION  
200kHz INTERNAL OSCILLATOR  
OSCILLATOR EXTERNALLY ADJUSTABLE  
FROM 50kHz TO 1MHz  
L6910ATR  
HTSSOP16 in Tape & Reel  
dc-dc conversion from 3.3V, 5V and 12V buses.  
The output voltage is adjustable down to 0.9V;  
higher voltages can be obtained with an external  
voltage divider.  
SOFT START AND INHIBIT  
PACKAGES: SO-16 & HTSSOP16  
High peak current gate drivers provide for fast switch-  
ing to the external power section, and the output  
current can be in excess of 20A.  
2 APPLICATIONS  
SUPPLY FOR MEMORIES AND TERMI-  
NATIONS  
The device assures protections against load overcur-  
rent and overvoltage. An internal crowbar is also pro-  
vided turning on the low side mosfet as long as the  
over-voltage is detected. In case of over-current de-  
tection, the soft start capacitor is discharged and the  
system works in HICCUP mode.  
COMPUTER ADD-ON CARDS  
LOW VOLTAGE DISTRIBUTED DC-DC  
MAG-AMP REPLACEMENT  
3 DESCRIPTION  
The device is a pwm controller for high performance  
Figure 2. Block Diagram  
Vin 5V to 12V  
VCC  
OCSET  
PGOOD  
MONITOR  
BOOT  
PROTECTION  
VREF  
SS  
&
REF  
UGATE  
VO  
OSC  
BOOT  
OSC  
R
T
PWM  
-
E/A  
LGATE  
PGND  
EAREF  
+
-
+
GND  
VFB  
COMP  
D03IN1509  
Rev. 9  
1/29  
May 2005  
L6910 - L6910A  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
15  
Unit  
V
Vcc  
Vcc to GND, PGND  
Boot Voltage  
V
-
15  
V
BOOT  
V
PHASE  
V
-
15  
V
HGATE  
V
PHASE  
OCSET, LGATE, PHASE  
-0.3 to Vcc+0.3  
V
V
SS, FB, PGOOD, VREF, EAREF, RT  
COMP  
7
6.5  
V
T
Junction Temperature Range  
Storage temperature range  
Maximum power dissipation at Tamb = 25°C  
-40 to 150  
-40 to 150  
1
°C  
°C  
W
j
T
stg  
P
tot  
Table 3. Thermal Data  
Symbol  
Parameter  
SO-16  
HTSSOP16 HTSSOP16 (*)  
Unit  
R
Thermal Resistance Junction to Ambient  
120  
110  
50  
°C/W  
th j-amb  
(*) Device soldered on 1 S2P PC board  
Figure 3. Pins Connection (Top view)  
VREF  
OSC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCC  
VREF  
OSC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
N.C.  
LGATE  
PGND  
VCC  
OCSET  
SS/INH  
N.C.  
OCSET  
SS/INH  
COMP  
FB  
LGATE  
PGND  
BOOT  
HGATE  
PHASE  
PGOOD  
BOOT  
HGATE  
PHASE  
PGOOD  
EAREF  
COMP  
FB  
GND  
GND  
EAREF  
D03IN1510  
D03IN1511  
2/29  
L6910 - L6910A  
Table 4. Pins Function  
SO HTSSOP Name  
Description  
1
1
VREF Internal 0.9V 1.5% reference is available for external regulators or for the internal error  
amplifier (connecting this pin to EAREF) if external reference is not available.  
A minimum 1nF capacitor is required.  
If the pin is forced to a voltage lower than 70%, the device enters the hiccup mode.  
2
2
OSC  
Oscillator switching frequency pin. Connecting an external resistor (R ) from this pin to  
T
GND, the external frequency is increased according to the equation:  
4.94 106  
fOSC,RT = 200KHz + -------------------------  
RT(KΩ)  
Connecting a resistor (RT) from this pin to Vcc (12V), the switching frequency is reduced  
according to the equation:  
4.306 107  
fOSC,RT = 200KHz ----------------------------  
RT(KΩ)  
If the pin is not connected, the switching frequency is 200KHz.  
The voltage at this pin is fixed at 1.23V. Forcing a 50µA current into this pin, the built in  
oscillator stops to switch.  
In Over Voltage condition this pin goes over 3V until that conditon is removed.  
3
4
3
4
OCSET A resistor connected from this pin and the upper Mos Drain sets the current limit  
protection.  
The internal 200µA current generator sinks a constant current through the external  
resistor. The Over-Current threshold is due to the following equation:  
I
ROCSET  
RDSon  
IP = --O----C----S----E---T----------------------------  
SS/INH The soft start time is programmed connecting an external capacitor from this pin and  
GND. The internal current generator forces through the capacitor 10µA.  
This pin can be used to disable the device forcing a voltage lower than 0.4V  
5
6
6
7
COMP This pin is connected to the error amplifier output and is used to compensate the voltage  
control feedback loop.  
FB  
This pin is connected to the error amplifier inverting input and is used to compensate the  
voltage control feedback loop.  
Connected to the output resistor divider, if used, or directly to Vout, it manages also over-  
voltage conditions and the PGOOD signal  
7
8
8
9
GND  
All the internal references are referred to this pin. Connect it to the PCB signal ground.  
EAREF Error amplifier non-inverting input. Connect to this pin an external reference (from 0.9V to  
3V) for the PWM regulation or short it to VREF pin to use the internal reference.  
If this pin goes under 650mV (typ), the device shuts down.  
9
10  
11  
PGOOD This pin is an open collector output and it is pulled low if the output voltage is not within the  
above specified thresholds. If not used it may be left floating.  
10  
PHASE This pin is connected to the source of the upper mosfet and provides the return path for the  
high side driver. This pin monitors the drop across the upper mosfet for the current limit  
together with OCSET.  
11  
12  
12  
13  
HGATE High side gate driver output.  
BOOT Bootstrap capacitor pin. Through this pin is supplied the high side driver and the upper  
mosfet. Connect through a capacitor to the PHASE pin and through a diode to Vcc  
(cathode vs. boot).  
13  
14  
PGND Power ground pin. This pin has to be connected closely to the low side mosfet source in  
order to reduce the noise injection into the device  
14  
15  
5
LGATE This pin is the lower mosfet gate driver output  
16  
VCC  
Device supply voltage. The operative supply voltage ranges is from 5V to 12V.  
DO NOT CONNECT V TO A VOLTAGE GREATER THAN V  
.
CC  
IN  
16  
5
N.C.  
This pin is not internally bonded. It may be left floating or connected to GND.  
3/29  
L6910 - L6910A  
Table 5. Electrical Characteristics (Vcc = 12V, TJ =25°C unless otherwise specified)  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
V
cc  
SUPPLY CURRENT  
Icc  
Vcc Supply current  
OSC = open; SS to GND  
4
7
9
mA  
POWER-ON  
Turn-On Vcc threshold  
Turn-Off Vcc threshold  
VOCSET = 4V  
VOCSET = 4V  
4.0  
3.8  
4.3  
4.1  
4.6  
4.4  
1.4  
750  
V
V
Rising V  
threshold  
1.24  
650  
V
OCSET  
Turn On EAREF threshold  
SOFT START AND INHIBIT  
VOCSET = 4V  
mV  
Iss  
Soft start Current  
S.S. current in INH condition  
SS = 2V  
SS = 0 to 0.4V  
6
10  
35  
14  
60  
µA  
µA  
OSCILLATOR  
f
Initial Accuracy  
OSC = OPEN  
OSC = OPEN; T = 0° to 125°  
180  
170  
200  
1.9  
220  
230  
KHz  
kHz  
OSC  
j
f
Total Accuracy  
16 K< R to GND < 200 KΩ  
-15  
15  
%
V
OSC,RT  
T
Vosc  
Ramp amplitude  
REFERENCE  
V
Output Voltage Accuracy  
Reference Voltage  
V
= V ; V  
= V  
REF  
0.886  
0.886  
-2  
0.900  
0.900  
0.913  
0.913  
+2  
V
V
OUT  
OUT  
FB EAREF  
V
V
C
C
= 1nF; I  
= 0 to 100µA  
REF  
REF  
REF  
REF  
REF  
Reference Voltage  
= 1nF; T = 0 to 125°C  
%
J
ERROR AMPLIFIER  
I
N.I. bias current  
V
= 3V  
10  
µA  
kΩ  
µA  
V
EAREF  
EAREF  
EAREF Input Resistance  
I.I. bias current  
Vs. GND  
300  
0.01  
I
FB  
V
= 0V to 3V  
FB  
0.5  
3
V
Common Mode Voltage  
Output Voltage  
0.8  
0.5  
70  
CM  
V
4
V
COMP  
G
Open Loop Voltage Gain  
85  
10  
10  
dB  
MHz  
V/µs  
V
GBWP Gain-Bandwidth Product  
SR Slew-Rate  
GATE DRIVERS  
COMP = 10pF  
I
High Side  
Source Current  
V
V
- V = 12V  
PHASE  
1
1.3  
2
A
HGATE  
BOOT  
- V  
= 6V  
PHASE  
HGATE  
R
High Side  
Sink Resistance  
V
BOOT  
- V = 12V  
PHASE  
4
HGATE  
I
Low Side Source Current  
Low Side Sink Resistance  
Output Driver Dead Time  
Vcc = 12V; V  
Vcc = 12V  
= 6V  
0.9  
1.1  
1.5  
A
LGATE  
LGATE  
R
3
LGATE  
PHASE connected to GND  
90  
210  
ns  
PROTECTIONS  
OCSET Current Source  
I
V
V
V
= 4V  
170  
200  
117  
30  
230  
120  
µA  
%
OCSET  
OCSET  
Over Voltage Trip (V / V  
)
Rising  
FB  
EAREF  
FB  
FB  
I
OSC Sourcing Current  
> OVP Trip  
15  
mA  
OSC  
POWER GOOD  
Upper Threshold (V / V  
)
V
V
Rising  
Falling  
108  
88  
110  
90  
112  
92  
%
%
%
V
FB  
EAREF  
FB  
Lower Threshold (V / V  
)
FB  
EAREF  
FB  
Hysteresis (V / V  
)
Upper and Lower threshold  
2
FB  
EAREF  
V
I
PGOOD Voltage Low  
I
= -4mA  
= 6V  
PGOOD  
0.4  
0.2  
PGOOD  
PGOOD  
Output Leakage Current  
V
1
µA  
PGOOD  
4/29  
L6910 - L6910A  
4 DEVICE DESCRIPTION  
The device is an integrated circuit realized in BCD technology. The controller provides complete con-  
trol logic and protection for a high performance step-down DC-DC converter. It is designed to drive N  
Channel Mosfets in a synchronous-rectified buck topology. The output voltage of the converter can be  
precisely regulated down to 900mV with a maximum tolerance of 1.5% when the internal reference is  
used (simply connecting together EAREF and VREF pins). The device allows also using an external  
reference (0.9V to 3V) for the regulation. The device provides voltage-mode control with fast transient  
response. It includes a 200kHz free-running oscillator that is adjustable from 50kHz to 1MHz. The er-  
ror amplifier features a 10MHz gain-bandwidth product and 10V/µs slew rate that permits to realize  
high converter bandwidth for fast transient performance. The PWM duty cycle can range from 0% to  
100%. The device protects against over-current conditions entering in HICCUP mode. The device  
monitors the current by using the rDS(ON) of the upper MOSFET(s) that eliminates the need for a cur-  
rent sensing resistor. The device is available in SO16 narrow package.  
4.1 Oscillator  
The switching frequency is internally fixed to 200kHz. The internal oscillator generates the triangular waveform  
for the PWM charging and discharging with a constant current an internal capacitor. The current delivered to the  
oscillator is typically 50µA (F = 200KHz) and may be varied using an external resistor (R ) connected between  
s
w
T
OSC pin and GND or V . Since the OSC pin is maintained at fixed voltage (typ. 1.235V), the frequency is var-  
CC  
ied proportionally to the current sunk (forced) from (into) the pin.  
In particular connecting R vs. GND the frequency is increased (current is sunk from the pin), according to the  
T
following relationship:  
6
4.94 10  
f
= 200KHz + -------------------------  
OSC,RT  
R (KΩ)  
T
Connecting R to V = 12V or to V = 5V the frequency is reduced (current is forced into the pin), according  
T
CC  
CC  
to the following relationships:  
7
4.306 10  
f
= 200KHz ----------------------------  
V
= 12V  
CC  
OSC,RT  
R (KΩ)  
T
6
15 10  
f
= 200KHz ---------------------  
V
= 5V  
CC  
OSC,RT  
R (KΩ)  
T
Switching frequency variation vs. RT are repeated in Fig. 4.  
Note that forcing a 50  
oscillator.  
µ
A current into this pin, the device stops switching because no current is delivered to the  
Figure 4.  
10000  
1000  
100  
RT to GND  
10  
RT to VCC=12V  
RT to VCC=5V  
10  
100  
1000  
Frequency [kHz]  
5/29  
L6910 - L6910A  
4.2 Reference  
A precise 1.5% 0.9V reference is available. This reference must be filtered with 1nF ceramic capacitor to avoid  
instability in the internal linear regulator. It is able to deliver up to 100µA and may be used as reference for the  
device regulation and also for other devices. If forced under 70% of its nominal value, the device enters in Hic-  
cup mode until this condition is removed.  
Through the EAREF pin the reference for the regulation is taken. This pin directly connects the non-inverting  
input of the error amplifier. An external reference (or the internal 0.9V 1.5%) may be used. The input for this  
pin can range from 0.9V to 3V. It has an internal pull-down (300k  
no reference is connected (pin floating). However the device is shut down if the voltage on the EAREF pin is  
lower than 650mV (typ).  
resistor) that forces the device shutdown if  
4.3 Soft Start  
At start-up a ramp is generated charging the external capacitor C with an internal current generator. The initial  
SS  
value for this current is of 35  
10 A until the final charge value of approximatively 4V.  
When the voltage across the soft start capacitor (V ) reaches 0.5V the lower power MOS is turned on to dis-  
µA and speeds-up the charge of the capacitor up to 0.5V. After that it becames  
µ
SS  
charge the output capacitor. As V reaches 1.1V (i.e. the oscillator triangular wave inferior limit) also the upper  
SS  
MOS begins to switch and the output voltage starts to increase.  
No switching activity is observable if SS is kept lower than 0.5V and both mosfets are off.  
If VCC and OCSET pins are not above their own turn-on thresholds and V  
is not above 650mV, the Soft-  
EAREF  
Start will not take place, and the relative pin is internally shorted to GND. During normal operation, if any under-  
voltage is detected on one of the two supplies, the SS pin is internally shorted to GND and so the SS capacitor  
is rapidly discharged.  
Figure 5. Soft Start (with Reference Present)  
Vcc Turn-on threshold  
Vcc  
Vin  
Vin Turn-on threshold  
1V  
Vss  
LGATE  
Vout  
to GND  
0.5V  
Acquisition: CH1 = PHASE; CH2 = V  
;
out  
Timing Diagram  
CH3 = PGOOD; CH4 = V  
ss  
4.4 Driver Section  
The driver capability on the high and low side drivers allows using different types of power MOS (also multiple  
MOS to reduce the R ), maintaining fast switching transition.  
DSON  
The low-side mos driver is supplied directly by Vcc while the high-side driver is supplied by the BOOT pin.  
Adaptative dead time control is implemented to prevent cross-conduction and allow to use several kinds of mos-  
fets. The upper mos turn-on is avoided if the lower gate is over about 200mV while the lower mos turn-on is  
6/29  
L6910 - L6910A  
avoided if the PHASE pin is over about 500mV. The lower mos is in any case turned-on after 200ns from the  
high side turn-off.  
The peak current is shown for both the upper (fig. 6) and the lower (fig. 7) driver at 5V and 12V. A 3.3nF capac-  
itive load has been used in these measurements.  
For the lower driver, the source peak current is 1.1A @ V = 12V and 500mA @ V = 5V, and the sink peak  
CC  
CC  
current is 1.3A @ V = 12V and 500mA @ V = 5V.  
CC  
CC  
Similarly, for the upper driver, the source peak current is 1.3A @ Vboot-Vphase = 12V and 600mA @ Vboot-  
Vphase = 5V, and the sink peak current is 1.3A @ Vboot-Vphase =12V and 550mA @ Vboot-Vphase = 5V.  
Figure 6. High Side Driver Peak Current. Vboot-Vphase = 12V (right) Vboot-Vphase = 5V (left)  
CH1 = High Side Gate CH4 = Gate Current  
Figure 7. Low Side Driver Peak Current. VCC = 12V (right) VCC = 5V (left)  
CH1 = Low Side Gate CH4 = Gate Current  
4.5 Monitoring and Protections  
The output voltage is monitored by means of pin FB. If it is not within 10% (typ.) of the programmed value, the  
powergood output is forced low.  
The device provides overvoltage protection, when the voltage sensed on pin FB reaches a value 17% (typ.)  
greater than the reference the OSC pin is forced high (3V typ.) and the lower driver is turned on as long as the  
over-voltage is detected.  
7/29  
L6910 - L6910A  
Overcurrent protection is performed by the device comparing the drop across the high side MOS, due to the  
R
, with the voltage across the external resistor (R ) connected between the OCSET pin and drain of the  
DSON OCS  
upper MOS. Thus the overcurrent threshold (I ) can be calculated with the following relationship:  
P
R
I  
OCS OCS  
I
= --------------------------------  
P
R
dsON  
Where the typical value of I  
is 200  
µ
A. To calculate the R  
value it must be considered the maximum  
OCS  
OCS  
R
(also the variation with temperature) and the minimum value of I  
. To avoid undesirable trigger of  
OCS  
dsON  
overcurrent protection this relationship must be satisfied:  
I  
+ ---- = I  
PEAK  
I I  
P
OUTMAX  
2
Where  
I is the inductance ripple current and I  
is the maximum output current.  
OUTMAX  
In case of over current detectionthe soft start capacitor is discharged with constant current (10  
µ
A typ.) and when  
the SS pin reaches 0.5V the soft start phase is restarted. During the soft start the over-current protection is al-  
ways active and if such kind of event occurs, the device turns off both mosfets, and the SS capacitor is dis-  
charged again (after reaching the upper threshold of about 4V). The system is now working in HICCUP mode,  
as shown in figure 8. After removing the cause of the over-current, the device restart working normally without  
power supplies turn off and on.  
Figure 8. Hiccup Mode  
Figure 9. Inductor Ripple Current vs. Vout  
9
L=1.5µH, Vin=12V  
8
L=2µH,  
Vin=12V  
7
6
L=3µH,  
Vin=12V  
5
4
3
2
1
0
L=1.5µH,  
Vin=5V  
L=2µH,  
Vin=5V  
L=3µH, Vin=5V  
0.5  
1.5  
2.5  
3.5  
Output Voltage [V]  
CH1 = SS; CH4 = Inductor current  
4.6 Inductor Design  
The inductance value is defined by a compromise between the transient response time, the efficiency, the cost  
and the size. The inductor has to be calculated to sustain the output and the input voltage variation to maintain  
the ripple current  
culated with this relationship:  
I between 20% and 30% of the maximum output current. The inductance value can be cal-  
L
V
V  
V
OUT OUT  
IN  
------------------------------ --------------  
L =  
is the switching frequency, V is the input voltage and V is the output voltage. Figure 9 shows  
OUT  
f
⋅ ∆I  
V
IN  
sw  
L
Where f  
SW  
IN  
the ripple current vs. the output voltage for different values of the inductor, with V = 5V and V = 12V.  
IN  
IN  
Increasing the value of the inductance reduces the ripple current but, at the same time, reduces the converter  
response time to a load transient. If the compensation network is well designed, the device is able to open or  
close the duty cycle up to 100% or down to 0%. The response time is now the time required by the inductor to  
change its current from initial to final value. Since the inductor has not finished its charging time, the output cur-  
rent is supplied by the output capacitors. Minimizing the response time can minimize the output capacitance  
required.  
8/29  
L6910 - L6910A  
The response time to a load transient is different for the application or the removal of the load: if during the ap-  
plication of the load the inductor is charged by a voltage equal to the difference between the input and the output  
voltage, during the removal it is discharged only by the output voltage. The following expressions give approx-  
imate response time for I load transient in case of enough fast compensation network response:  
L ⋅ ∆I  
------------------------------  
IN  
L ⋅ ∆I  
t
=
t
= --------------  
application  
removal  
V
V  
OUT  
V
OUT  
The worst condition depends on the input voltage available and the output voltage selected. Anyway the worst  
case is the response time after removal of the load with the minimum output voltage programmed and the max-  
imum input voltage available.  
4.7 Output Capacitor  
The output capacitor is a basic component for the fast response of the power supply. In fact, during load tran-  
sient, for first few microseconds they supply the current to the load. The controller recognizes immediately the  
load transient and sets the duty cycle at 100%, but the current slope is limited by the inductor value. The output  
voltage has a first drop due to the current variation inside the capacitor (neglecting the effect of the ESL):  
V  
= I  
ESR  
OUT  
OUT  
A minimum capacitor value is required to sustain the current during the load transient without discharge it. The  
voltage drop due to the output capacitor discharge is given by the following equation:  
2
I  
L  
OUT  
V  
= ---------------------------------------------------------------------------------------------  
OUT  
2 C  
⋅ (V  
D  
V  
)
OUT  
OUT  
INMIN  
MAX  
Where D  
is the maximum duty cycle value that is 100%. The lower is the ESR, the lower is the output drop  
MAX  
during load transient and the lower is the output voltage static ripple.  
4.8 Input Capacitor  
The input capacitor has to sustain the ripple current produced during the on time of the upper MOS, so it must  
have a low ESR to minimize the losses. The rms value of this ripple is:  
I
= I  
D ⋅ (1 D)  
OUT  
rms  
Where D is the duty cycle. The equation reaches its maximum value with D = 0.5. The losses in worst case are:  
2
P = ESR I  
rms  
4.9 Compensation Network Design  
The control loop is a voltage mode (figure 10). The output voltage is regulated to the input Reference voltage  
level (EAREF). The error amplifier output V  
is then compared with the oscillator triangular wave to provide  
COMP  
a pulse-width modulated (PWM) wave with an amplitude of V at the PHASE node. This wave is filtered by the  
IN  
output filter. The modulator transfer function is the small-signal transfer function of V  
/V  
. This function  
OUT COMP  
has a double pole at frequency F depending on the L-C resonance and a zero at F depending on the  
LC  
out  
ESR  
output capacitor ESR. The DC Gain of the modulator is simply the input voltage V divided by the peak-to-peak  
IN  
oscillator voltage  
V
.
OSC  
9/29  
L6910 - L6910A  
Figure 10. Compensation Network  
VIN  
VOSC  
L
VOUT  
ESR  
COUT  
PWM  
COMPARATOR  
C18  
C19  
R5  
R3  
C20  
R4  
EAREF  
VCOMP  
D03IN1512  
+
The compensation network consists in the internal error amplifier and the impedance networks Z (R3, R4 and  
IN  
C20) and Z (R5, C18 and C19). The compensation network has to provide a closed loop transfer function with  
FB  
the highest 0dB crossing frequency to have fast response (but always lower than fsw/10) and the highest gain  
in DC conditions to minimize the load regulation.  
A stable control loop has a gain crossing with -20dB/decade slope and a phase margin greater than 45°. Include  
worst-case component variations when determining phase margin.  
To locate poles and zeroes of the compensation networks, the following suggestions may be used:  
Modulator singularity frequencies:  
1
1
---------------------------  
ω
=
ω
= --------------------------------  
LC  
ESR  
ESR C  
L C  
OUT  
OUT  
Compensation network singularity frequency:  
1
1
-----------------------------------------------  
ω
=
ω
= -----------------------  
P1  
P2  
R4 C20  
C18 C19  
----------------------------  
R5 ⋅  
C18 + C19  
1
1
-----------------------  
ω
=
ω
= ------------------------------------------  
Z1  
Z2  
R5 C19  
(R3 + R4) ⋅ C20  
– Put the gain R5/R3 in order to obtain the desired converter bandwidth;  
– Place ωZ1 before the output filter resonance ωLC  
– Place ωZ2 at the output filter resonance ωLC  
;
;
– Place ωP1 at the output capacitor ESR zero ωESR  
– Place ωP2 at one half of the switching frequency;  
;
– Check the loop gain considering the error amplifier open loop gain.  
10/29  
L6910 - L6910A  
Figure 11. Asymptotic Bode Plot of Converter's Gain  
dB  
Error Amplifier  
R5/R3  
ωΖ1  
ωLC  
ωΖ2  
ωP1  
ωP2  
ω
Modulator Gain  
ωESR  
Compensation Network Gain  
Error Amplifier  
Closed Loop Gain  
5 15A DEMO BOARD DESCRIPTION  
The demo board shows the operation of the device in a general purpose application. This evaluation board al-  
lows voltage adjustability from 0.9V to 5V through the switches S2-S5 according to the reported table when the  
internal 0.9V reference is used (G1 closed). Output current in excess of 20A can be reached dependently on  
the kind of mosfet used: up to three SO8 mosfet may be used for both High side and Low side switches. External  
reference may be used for the regulation simply leaving open G1 and the switches S2-S5. The device may also  
be disabled with the switch S1. The V input rail supplies the device while the power conversion starts from  
CC  
the V input rail. The device is also able to operate with a single supply voltage; in this case the jumper G2 has  
IN  
to be closed and a 5V to 12V input can be directly connected to the V input. The four layers demo board's  
IN  
copper thickness is of 70µm in order to minimize conduction losses considering the high current that the circuit  
is able to deliver.The PGOOD signal is used as a logic level and it's been pulled up to V because there's no  
IN  
other appropriate voltage available on the demo board. In case of input voltage higher than 7V (PGOOD Pin  
Maximum Absolute Rating) a 5V reference is required. Figure 12 shows the demo board's schematic circuit  
Figure 12. 15A Demo Board Schematic  
L1  
F1  
VIN  
GNDIN  
R7  
C14  
C13  
C1-C3  
G2  
D1  
VCC  
BOOT  
OCSET  
Q1-3  
Q4-6  
R6  
UGATE  
12  
3
VCC  
15  
11  
10  
14  
13  
L2  
GNDCC  
C17  
C15  
PHASE  
LGATE  
PGND  
VOUT  
7
8
GND  
C4-  
11  
R2  
D2  
R8  
EAREF  
REFIN  
GNDOUT  
PWRGD  
GNDREFIN  
C16  
G1  
PGOOD  
VREF  
9
+VREF  
1
GNDREF  
C12  
R9  
SS  
4
2
C21  
OSC  
C22  
R1  
5
6
COMP  
VFB  
C19  
VOUT  
S2 S3 S4 S5  
Open Open Open Open  
ON Open Open Open  
Open ON Open Open  
ON ON Open Open  
Open Open ON Open  
Open Open Open ON  
Open Open ON ON  
R5  
R3  
R4  
0.9  
1.2  
1.5  
1.8  
2.5  
3.3  
5.0  
C20  
S1  
S2  
S3  
S4  
S5  
C18  
R10  
R11  
SR12  
SR13  
D03IN1513  
11/29  
L6910 - L6910A  
Table 6. Part List  
Reference  
R1  
Description  
Manufacturer  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
N.C  
R2  
10K  
5% 125mW  
5% 125mW  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
R3  
4.7K  
R4  
1KOhm 5% 125mW  
2.7K 5% 125mW  
R5  
R6  
10Ohm 5% 125mW  
510Ohm 5% 125mW  
N.C  
R7  
R8  
R9  
0 Ohm  
SMD 0805  
SMD 0805  
R10  
R11  
R12  
R13  
C1, C3  
C9, C10  
14K  
5% 125mW  
5% 125mW  
5% 125mW  
5 5% 125mW  
NEOHM  
NEOHM  
6.98K  
2.61K  
1.74K  
SMD 0805  
NEOHM  
SMD 0805  
NEOHM  
SMD 0805  
100µF - 20V  
OSCON 20SA100M  
POSCAP 6TPB330M  
KEMET  
RADIAL 10X10.5  
SMD7343  
330µF - 6.3V  
C12, C13,  
C15, C21  
100nF  
SMD0805  
C14  
C16  
1nF  
KEMET  
KEMET  
AUX  
SMD0805  
100nF  
C17  
4.7µF - 16V  
SMA6032  
SMD0805  
SMD0805  
SMD0805  
C18  
1.5nF  
KEMET  
KEMET  
KEMET  
C19  
15nF  
C20  
47nF  
N.C  
C22  
L1  
Short  
L2  
3µH (T50-52B Core, 7T AWG15)  
STS11NF30L  
1N4148  
MICROMETALS  
ST  
Q2,Q3,Q4,Q6  
D1  
SO8  
SOT23  
D2  
STPS2L25U  
Device L6910  
Short  
ST  
ST  
SMB  
U1  
SO16Narrow  
F1  
SWITCH  
DIP SWITCH 6 POS.  
Table 7. Other Inductor Manufacturer  
Manufacturer  
WÜRTH ELEKTRONIK  
PANASONIC  
Series  
Inductor Value (µH)  
Saturation Current (A)  
744318  
1.8 to 2.7  
1.8  
16 to 20  
20  
ETQP6F1R8FA  
CDEP134-2R7MC-H  
SUMIDA  
2.7  
15  
12/29  
L6910 - L6910A  
Figure 13. PCB and Components Layouts  
Component Side  
Internal Signal GND Layer  
Figure 14. PCB and Components Layouts  
Internal Power GND Layer  
Solder Side  
Figure 15. Efficiency vs Output Current  
100  
95  
Vo=3.3V  
Vo=2.5V  
90  
Vo=1.8V  
Vo=1.5V  
85  
Vo=1.2V  
Vo=0.9V  
15  
Vin=Vcc=5V  
80  
Fsw=200KHz  
75  
1
3
5
7
9
11  
13  
17  
Output Current (A)  
13/29  
L6910 - L6910A  
Figure 16. Efficiency vs Output Current  
100  
95  
90  
85  
80  
75  
70  
65  
Vo=5V  
Vo=3.3V  
Vo=1.5V  
Vo=1.8V  
Vo=2.5V  
Vo=1.2V  
Vo=0.9V  
Vin=Vcc=12V  
Fsw.=200KHZ  
60  
55  
50  
1
3
5
7911  
13  
15  
17  
Output Current (A)  
6 COMPONENTS SELECTION  
6.1 Inductor Selection  
To select the right inductor value, the application conditions must be fixed. For example we can consider:  
Vin=12V Vout =3.3V Iout=15A  
Considering a ripple of approximately 25% to 30% of Iout, the inductor value will be L=3  
An iron powder core (TO50-52B) with 7 windings has been chosen.  
µH.  
6.2 Output Capacitors  
2 POSCAP capacitors, model 6TPB330M, have been chosen, with a maximum ERS equal to 40m  
each.  
Therefore, the resultant ESR is of 20m  
. Considering a current ripple of 4A, the output voltage ripple is:  
Vout = 4 · 0.02 = 80mV  
6.3 Input Capacitors  
For I  
= 15A and D = 0.5 (worst case for input current ripple), the RMS current of the input capacitor is equal  
OUT  
to 7.5A.  
Two OSCON electrolytic capacitors 6SP680M, with a maximum ESR equal to 13m  
tain the ripple. Therefore, the resultant ESR is equal to 13m/2 = 6.5m. The losses, in worst case, are:  
, have been chosen to sus-  
2
P = ESR · I rms = 366mW  
6.4 Over-Current Protection  
The current limit can be set to approximately 20A. Substituting the demo board parameters in the relation-  
ship reported in the relative section, (IOSCMIN =170µA; IP = 20A; RDSONMAX = 9m/ 2=4.5mΩ) it results  
that ROCS = 510Ω  
14/29  
L6910 - L6910A  
6.5 APPLICATION SUGGESTIONS FOR HIGHER CURRENTS  
For higher output currents, up to 20A, the following configuration can be used (with reference to the demo board  
schematic):  
Q1,Q2,Q3: STS11NF30L  
Q4,Q5,Q6: STS17NF3LL  
L: 2.5µH Magnetic 77121A7 Core 7T 2x AWG16  
In these conditions, the following performance have been achieved:  
Table 8.  
V
(V)  
V
OUT  
(V)  
I
(A)  
V
(V)  
V
OUT  
(V)  
I
(A)  
OUT  
η (%)  
81  
η (%)  
80  
IN  
OUT  
IN  
5
1.2  
1.5  
1.8  
2.5  
3.3  
20  
12  
1.2  
1.5  
1.8  
2.5  
3.3  
5
20  
5
5
5
5
20  
20  
20  
20  
83  
12  
12  
12  
12  
12  
20  
20  
20  
20  
20  
83  
85  
85  
89  
88  
91  
91  
93  
For currents higher than 20A, bigger mosfets should be selected (e.g. STS25NH3LL) both for the high side and  
low side (depending on the duty cycle and input voltage).  
7 6A DEMO BOARD DESCRIPTION  
A compact demo board has been realized to manage currents in the range of 5A-6A .  
The external power mosfets are included in a single SO8 package to save space and increase power density.  
Two separate rails are provided, for V and V . They can be connected together by shorting the jumper J1.  
CC  
IN  
The PGOOD signal is used as a logic level and it's been pulled up to V because there's no other appropriate  
IN  
voltage available on the demo board. In case of input voltage higher than 7V (PGOOD Pin Maximum Ab-  
solute Rating) a 5V reference is required.  
Figure 17. 6A Demo Board Schematic  
VIN  
R7  
C7  
J1  
GNDIN  
D1  
C6  
UGATE  
PHASE  
LGATE  
PGND  
C1-C2  
BOOT  
OCSET  
12  
R8  
R9  
R6  
VCC  
3
15  
11  
VCC  
L1  
Q1/Q1  
Q2/Q1  
C5  
10  
14  
13  
9
VOUT  
GND  
GNDCC  
7
R11  
C10  
R2  
U1  
L6910  
D2  
SS  
OSC  
C3-4  
4
2
8
GNDOUT  
PWRGD  
C9  
C8  
PGOOD  
VREF  
EAREF  
1
5
6
VFB  
COMP  
R10  
R3  
R5  
C19  
C20  
R4  
C18  
R1  
15/29  
L6910 - L6910A  
Table 9. Part List  
Reference  
Resistor  
R1  
Description  
Manufacturer  
2K7 Ohm 0805 5% 125mW  
1K8 Ohm 0805 5% 125mW  
1K Ohm 0805 5% 125mW  
10K 5% 125mW  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
(Vout = 2.5V)  
(Vout = 3.3V)  
(Vout = 5V)  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
R2  
R3  
4K7 5% 125mW  
4K7 5% 125mW  
2K7 5% 125mW  
10 Ohm 5% 125mW  
680 Ohm 5% 125mW  
2.2 Ohm 5% 125mW  
N.C  
R4  
R5  
R6  
R7  
R8 R9  
R10  
R11  
N.C  
Capacitors  
C1,C2  
C3,C4  
C5,C6,C9  
C7,C8  
C10  
10µF 25V  
100µF - 6.3V  
100nF  
1nF  
TOKIN  
POSCAP 6TPB100M  
KEMET  
C34Y5U1E106ZTE12  
SMD7343  
SMD0805  
KEMET  
SMD0805  
N.C  
C18  
1.5nF  
KEMET  
KEMET  
KEMET  
SMD0805  
SMD0805  
SMD0805  
C19  
15nF  
C20  
47nF  
Magnetics  
L1  
Transistor  
Q1  
7µH (T50-52B Core, 12T AWG 21)  
STS8DNF3LL  
MICROMETALS  
ST  
Diodes  
D1  
1N4148  
SOT23  
SMB  
D2  
STPS2L25U  
ST  
ST  
Device  
U1  
Device L6910  
SO16Narrow  
Table 10. Other inductor manufacturer  
Manufacturer  
WÜRTH ELEKTRONIK  
PANASONIC  
Series  
744 382  
Inductor Value (µH)  
Saturation Current (A)  
4.8 to 5.8  
4.6 to 6.4  
6 to 8  
7.5 to 8  
9.3 to 7.9  
7.2 to 9.6  
5.4  
ETQP6F  
SUMIDA  
CDEP134-H  
DO3316P-472HC  
DO3340P  
COILCRAFT  
4.7  
10 to 22  
8.2  
8 to 5.5  
7.8  
COILTRONICS  
16/29  
DR125-8R2  
L6910 - L6910A  
Figure 18. PCB and Components Layouts  
Component Side  
Solder Side  
7.1 Compact Demo Board Performances  
Figures 19, 20 show the measured efficiency versus load current for different values of output voltage. The mea-  
sure has been done at 5V and 12V input. Output voltage has been changed modifying the value of R1 in the  
demo board as reported in the part list.  
Figure 19. Efficiency vs. Output Current  
100  
95  
Vo=3.3V  
90  
Vo=2.5V  
85  
Vo=1.8V  
80  
Vo=1.5V  
Vin=Vcc=5V  
Fsw=200KHz  
75  
Vo=1.2V  
70  
1
2
3
4
5
6
7
8
Output Current (A)  
Figure 20. Efficiency vs. Output Current  
95  
90  
85  
80  
Vo=5V  
Vo=3.3V  
Vo=2.5V  
Vo=1.8V  
Vo=1.5V  
Vin=Vcc=12V  
Fsw=200KHz  
75  
Vo=1.2V  
70  
1
2
3
4
5
6
7
8
Output Current (A)  
17/29  
L6910 - L6910A  
8 15A HTSSOP16 DEMO BOARD DESCRIPTION  
A specific Demo Board has been realized for the HTSSOP16 package. The features are the same of the 15A  
Demo Board previously described but thermal performance are improved. The PGOOD signal is used as a logic  
level and it's been pulled up to V because there's no other appropriate voltage available on the demo board.  
IN  
In case of input voltage higher than 7V (PGOOD Pin Maximum Absolute Rating) a 5V reference is re-  
quired  
.
Figure 21. 15A HTSSOP16 Demo Board Schematic  
L1  
F1  
VIN  
R7  
C14  
G2  
GNDIN  
D1  
C13  
UGATE  
PHASE  
LGATE  
PGND  
C1-C3  
BOOT  
OCSET  
R14  
R15  
13  
3
R6  
VCC  
VCC  
12  
16  
8
L2  
Q1-3  
Q4-6  
C17  
C15  
VOUT  
11  
15  
GND  
GNDCC  
R16  
C23  
U1  
L6910A  
D2  
R2  
SS  
OSC  
C4 -11  
4
2
GNDOUT  
PWRGD  
14  
10  
1
PGOOD  
VREF  
EAREF  
Ref IN  
9
+Vref  
C12  
6
7
C16  
GNDref  
R8  
C21  
GNDRef  
R1  
R3  
R9  
R5  
C19  
C20  
R4  
C22  
C18  
S1  
S2  
S3  
S4  
S5  
Vout  
S2 S3 S4 S5  
R10  
0.9  
1.2  
1.5  
1.8  
2.5  
3.3  
5.0  
R11  
R12  
R13  
Open Open Open Open  
ON  
Open Open Open  
ON  
Open  
Open Open  
Open Open  
ON ON  
ON  
Open Open  
Open  
ON  
Open Open Open  
ON ON  
Open Open  
Table 11. Part List  
Reference  
R1  
Description  
Manufacturer  
N.C  
R2  
R3  
R4  
R5  
R6  
R7  
10K  
4.7K  
1K Ohm  
2.7K  
10 Ohm  
560 Ohm  
5% 125mW  
5% 125mW  
5% 125mW  
5% 125mW  
5% 125mW  
5% 125mW  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
R8  
R9  
N.C  
0 Ohm  
5% 125mW  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
C1,C3  
14K  
6.98K  
2.61K  
1.74K  
5% 125mW  
5% 125mW  
5% 125mW  
0 Ohm  
0 Ohm  
N.C  
100uF 20V  
OSCON  
20SA100M  
POSCAP  
RADIAL 10X10.5  
SMD7343  
C9,C10  
330uF - 6.3V  
6TPB330M  
18/29  
L6910 - L6910A  
Table 11. Part List (continued)  
Reference  
Description  
Manufacturer  
C12,C13,  
100nF  
KEMET  
SMD0805  
C15,C21,C16  
C14  
C17  
C18  
C19  
C20  
C22  
C23  
L1  
1nF  
4.7uF - 16V  
1.5nF  
15nF  
KEMET  
AVX  
KEMET  
KEMET  
KEMET  
SMD0805  
SMA6032  
SMD0805  
SMD0805  
SMD0805  
47nF  
N.C  
N.C  
Short  
L2  
3uH T50-52B Core, 7T AWG15  
STS11NF30L  
1N4148  
MICROMETALS  
SO8  
SOT23  
SMB  
HTSSOP16  
Q2,Q3,Q4,Q6  
ST  
D1  
D2  
U1  
STPS340U  
Device L6910  
Short  
ST  
ST  
F1  
SWITCH  
DIP SWITCH  
Table 12. Other inductor manufacturer  
Manufacturer  
WÜRTH ELEKTRONIK  
PANASONIC  
Series  
744318  
Inductor Value (µH)  
Saturation Current (A)  
1.8 to 2.7  
16 to 20  
20  
ETQP6F1R8FA  
CDEP134-2R7MC-H  
1.8  
SUMIDA  
2.7  
15  
Figure 22. PCB and Components Layout  
Component Side  
Internal Power GND Layer  
Solder Side  
Internal Signal GND Layer  
19/29  
L6910 - L6910A  
9 APPLICATION IDEA 1: DDR MEMORY AND TERMINATION SUPPLY  
Double Data Rate (DDR) Memories require a particular Power Management Architecture. This is due to the fact  
that the trace between the driving chipset and the memory input must be terminated with resistors.  
Since the Chipset driving the Memory has a push pull output buffer, the Termination voltage must be capable  
of sourcing and sinking current.  
Moreover, the Termination voltage must be equal to one half of the memory supply (the input of the memory is  
a differential stage requiring a reference bias midpoint) and in tracking with it. For DDRI the Memory Supply is  
2.5V and the Termination voltage is 1.25V while, for DDRII, the Memory Supply is 1.8V and the Termination  
voltage is 0.9V. Fig. 23 shows a complete DDRI Memory and Termination Power Supply realized by using 2 x  
L6910. The 2.5V section is powering the memory while the 1.25V section is providing the termination voltage.  
The tracking between the two sections is realized by providing the EAREF voltage of the 1.25V section through  
a resistor divider connected to the 2.5V.  
Figure 23. Application idea : DDR Memory Supply  
VIN  
12V  
BOOT  
OCSET  
11  
12  
15  
3
VCC  
GND  
UGATE  
PHASE  
LGATE  
STS11NF3LL  
DDR  
VREF  
10  
14  
7
MEMORY  
VDDQ  
U1  
STS11NF3LL  
PGND  
SS  
OSC  
4
2
8
2.5V@15A  
PWRGD  
L6910  
13  
9
PGOOD  
VREF  
EAREF  
TERMINATION  
NETWORK  
1
6
5
VIN  
12V  
STS8DNF3LL  
BOOT  
12  
OCSET  
11  
3
VCC  
UGATE  
PHASE  
LGATE  
PGND  
15  
CHIPSET  
10  
GND  
7
U2  
L6910  
14  
VTT  
SS  
OSC  
4
2
8
13  
9
+
1.25V@ - 5A  
PWRGD  
R
PGOOD  
VREF  
EAREF  
1
6
5
R
-
+
The current required by the memory and the termination supply, depends on the memory type and size.  
The figure 24, 25 shows the efficiency of the L6910 for the termination section of the application shown in fig.  
23, in sink and source mode. The figures show the efficiency values also when the input voltage is coming di-  
rectly from the 12V rail.  
20/29  
L6910 - L6910A  
Figure 24. Efficiency vs Output Current Source  
Mode  
Figure 27. Efficiency vs Output Current Sink  
Mode  
95  
90  
100  
90  
Vin=2.5V  
85  
Vin=1.8V  
80  
80  
70  
Vin=12V  
Vin=12V  
75  
Vcc=12V  
70  
60  
Vcc=12V  
Vout=0.9V  
Fsw=200KHz  
Vout=1.25V  
Fsw=200KHz  
50  
65  
60  
40  
1
2
3
4
5
6
7
1
3
5
7
9
11 13 15 17  
8
Output Current (A)  
Output Current (A)  
Figure 25. Efficiency vs Output Current Sink  
Mode  
Figure 28. Efficiency vs Output Current Source  
Mode  
95  
90  
85  
100  
Vout=2.5V  
90  
Vin=2.5V  
80  
80  
75  
Vout=12V  
70  
70  
65  
60  
Vcc=12V  
Vout=1.25V  
Fsw=200KHz  
Vcc=12V  
Vout=1.25V  
Fsw=200KHz  
Vin=12V  
60  
1
2
3
4
5
6
7
8
50  
Output Current (A)  
1
3
5
7
9
11 13 15 17  
Output Current (A)  
For very big systems (e.g. servers), the DDR memory  
termination can require much higher currents, in the  
range of 10A-15A and more.  
Figures 26, 27 and 28, 29 show the efficiency of the  
L6910 in sink and source mode, up to 17A both for DDRI  
and DDRII memories.The measurements have been re-  
alized with the 15A demo board. (See pag.11 )  
Figure 29. Efficiency vs Output Current Source  
Mode  
100  
90  
Figure 26. Efficiency vs Output Current Sink  
Mode  
Vin=1.8V  
80  
Vin=12V  
100  
70  
90  
Vin=12V  
Vout=0.9V  
60  
Vin=2.5V  
Fsw=200KHz  
80  
Vin=12V  
50  
1
3
5
7
9
11 13 15 17  
70  
Vcc=12V  
Vout=1.25V  
Output Current (A)  
60  
Fsw=200KHz  
50  
1
3
5
7
9
11 13 15 17  
Output Current (A)  
21/29  
L6910 - L6910A  
10 APPLICATION IDEA 2: POSITIVE BUCK-BOOST REGULATOR 3V TO 13.2V  
INPUT / 5V 2.5A OUTPUT  
In some applications the input voltage changes in a very wide range while the output must be regulated to a  
fixed value. In this case a Buck-Boost topology can be required in order to keep the output voltage in regulation.  
The schematic below shows how to implement a Buck-Boost regulating 5V at the output from both 3.3V and 5V  
and 12V input buses.  
In a Buck-Boost topology the current is delivered to the output during the OFF phase only. So, for a given current  
limit, the maximum output current depends strongly on the duty cycle. Assuming a 100% efficiency and neglect-  
ing the current ripple across the inductor, the relationship betweent the current limit and the maximum output  
current is the following:  
IOMAX = ILIM ⋅ (1 D)  
Where I  
is the current limit and D is the duty cycle of the application.  
LIM  
The worst case is with D  
. Since, in a Buck-Boost application, D is given by the following formula:  
MAX  
VO  
D = ----------------------  
V
IN + VO  
The worst case is with V  
.
INMIN  
Obviously, since the efficiency is lower than 100% and the ripple is usually not negligible, the maximum output  
current is always lower than the value calculated in the above formula  
Figure 30. Positive buck-boost regulator 3V to 13.2V input / 5V 2.5A Output Circuit  
VIN (3.3V-5V-12V BUSES)  
C3  
R1  
G1  
GNDIN  
D1  
C4  
C1-C2  
Q4  
BOOT  
OCSET  
12  
R7  
VCC (12V BUS)  
3
VCC  
UGATE  
15  
11  
10  
14  
13  
9
L1  
Q1  
Q2  
C6  
C5  
VOUT ( 5V 2.5A )  
PHASE  
LGATE  
PGND  
GND  
GNDCC  
7
R2  
U1  
L6910/A  
D2  
SS  
OSC  
Q3  
C13-14  
4
2
8
GNDOUT  
PGOOD  
VREF  
EAREF  
1
C8  
C7  
5
6
C12  
R3  
R5  
C9  
C11  
R4  
C10  
R6  
22/29  
L6910 - L6910A  
Table 13. Part List  
Reference  
R1  
Description  
910 Ohm 5% 125mW  
10K 5% 125mW  
4.7K 5% 125mW  
1K 5% 125mW  
2.7K 5% 125mW  
1K1  
Manufacturer  
NEOHM  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
RADIAL 10X10.5  
SMD7343  
R2  
NEOHM  
R3  
NEOHM  
R4  
NEOHM  
R5  
NEOHM  
R6  
NEOHM  
R7  
10 Ohm 125mW  
100µF - 20V  
330µF - 6.3V  
100nF  
NEOHM  
C1,C2  
C13,C14  
C12,C5,C8  
C3  
OSCON 20SA100M  
POSCAP 6TPB330M  
KEMET  
SMD0805  
1nF  
KEMET  
SMD0805  
C4  
470nF  
KEMET  
SMD0805  
C6  
4.7µF - 16V  
100nF  
AUX  
SMA6032  
C7  
KEMET  
C9  
15nF  
KEMET  
SMD0805  
SMD0805  
SMD0805  
C10  
C11  
G1  
1.5nF  
KEMET  
47nF  
KEMET  
Open  
Jumper  
L1  
Q1,Q2,Q3  
Q4  
2.5µH (77121A7 Core, Double winding 7 AWG16)  
MAGNETICS  
ST  
STS11NF30L  
STS5P30L  
SO8  
SO8  
ST  
D1  
1N4148  
SOT23  
D2  
STPS3L25U (STPS340U)  
Device L6910  
ST  
ST  
SMB (D0144)  
SO16 Narrow  
U1  
Figure 31. Efficiency vs. Output Current  
90  
Vin=5V  
85  
Vin=12V  
80  
75  
Vin=3.3V  
Vcc=5V  
70  
Vout=5V  
Fsw=200KHz  
65  
1
1.5  
2
2.5  
3
3.5  
Output Current (A)  
23/29  
L6910 - L6910A  
11 APPLICATION IDEA 3: BUCK-BOOST REGULATOR 3V TO 5.5V INPUT/-5V  
3A OUTPUT  
In applications where a negative output voltage is required, a standard Buck-Boost topology can be implement-  
ed. The considerations related to the maximum output current are the same of the "Positive Buck-Boost" (Ap-  
plication Idea 2).  
A particularity of this topology is that the device undergoes a voltage that is the sum of V and V  
. So, con-  
IN  
OUT  
verting 5V to -5V, the device undergoes 10V voltage. It must be checked that the sum of the input and output  
voltage is lower than the maximum operating input voltage of the device.  
Figure 32. buck-boost regulator 3V to 5.5V input / -5V 3A Output Circuit  
VIN (3V to 5.5V )  
R1  
G1  
C3  
C1-C2  
GNDIN=GNDOUT  
D1  
C4  
BOOT  
12  
OCSET  
3
R7  
VCC  
C5  
UGATE  
PHASE  
LGATE  
PGND  
15  
7
11  
VCC (5V)  
GNDCC  
L1  
Q1  
Q2  
C6  
10  
14  
13  
9
GNDOUT  
GND  
C13 14  
U1  
L6910/A  
D2  
-
SS  
OSC  
VOUT (-5V 3A)  
4
2
8
PGOOD  
VREF  
EAREF  
1
C7  
5
6
C8  
C12  
R3  
R5  
C9  
C11  
R4  
C10  
R6  
Table 14. Part List  
Reference  
Description  
Manufacturer  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
NEOHM  
R1  
910 Ohm 5% 125mW  
10K 5% 125mW  
4.7K 5% 125mW  
1K Ohm 5% 125mW  
2.7K 5% 125mW  
1K 5% 125mW  
10 Ohm 5% 125mW  
100µF - 20V  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
SMD 0805  
RADIAL 10X10.5  
SMD7343  
R2  
R3  
R4  
R5  
R6  
R7  
C1,C2  
C13,C14  
C12,C4,C5,C8  
C3  
OSCON 20SA100M  
POSCAP 6TPB330M  
KEMET  
330µF - 6.3V  
100nF  
SMD0805  
1nF  
KEMET  
SMD0805  
C6  
4.7µF - 16V  
AUX  
SMA6032  
C7  
100nF  
KEMET  
24/29  
L6910 - L6910A  
Table 14. Part List (continued)  
C9  
C10  
15nF  
1.5nF  
KEMET  
KEMET  
SMD0805  
SMD0805  
Reference  
C11  
Description  
47nF  
Manufacturer  
KEMET  
SMD0805  
G1  
Open  
Jumper  
L1  
Q1,Q2  
D1  
2.5µH (77121A7 Core, Double winding 7 AWG16)  
MAGNETICS  
ST  
STS11NF30L  
1N4148  
SO8  
SOT23  
D2  
STPS3L25U ( STPS340U)  
Device L6910  
ST  
ST  
SMB (D0144)  
SO16 Narrow  
U1  
Figure 33. Efficiency vs. Output Current  
94  
92  
90  
88  
Vin=5V  
Vin=3.3V  
86  
Vcc=5V  
Vout= -5V  
Fsw=200KHz  
84  
82  
1
1.5  
2
2.5  
3
Output Current (A)  
25/29  
L6910 - L6910A  
Figure 34. HTSSOP16 (Exposed pad) Mechanical Data & Package Dimensions  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN.  
TYP. MAX.  
0.047  
A
A1  
A2  
b
1.2  
0.15  
0.006  
0.8  
0.19  
0.09  
4.9  
1.0  
5.0  
1.05 0.031 0.039 0.041  
0.3  
0.2  
5.1  
0.007  
0.003  
0.012  
0.008  
c
D (*)  
D1  
E
0.192 0.197 0.200  
0.067  
1.7  
6.2  
6.4  
4.4  
6.6  
4.5  
0.244 0.252 0.260  
0.169 0.173 0.177  
0.059  
E1 (*)  
E2  
e
4.3  
1.5  
0.65  
0.6  
0.026  
L
0.45  
0.75 0.018 0.024 0.029  
0.039  
L1  
k
1.0  
0˚ (min), 8˚ (max)  
aaa  
0.10  
0.004  
HTSSOP16  
(Exposed Pad)  
(*) Dimensions D and E1 does not include mold flash or  
protusions. Mold flash or protusions shall not exeed  
0.15mm per side.  
7419276  
26/29  
L6910 - L6910A  
Figure 35. SO-16 (Narrow) Mechanical Data & Package Dimensions  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN.  
TYP. MAX.  
0.069  
A
a1  
a2  
b
1.75  
0.1  
0.25 0.004  
1.6  
0.009  
0.063  
0.35  
0.19  
0.46 0.014  
0.25 0.007  
0.018  
b1  
C
0.010  
0.5  
0.020  
c1  
45°  
(typ.)  
0.386  
(1)  
D
9.8  
5.8  
10  
0.394  
E
e
6.2  
0.228  
0.244  
0.050  
1.27  
8.89  
e3  
0.350  
(1)  
F
3.8  
4.0  
0.150  
0.157  
G
L
4.60  
0.4  
5.30 0.181  
1.27 0.150  
0.62  
0.208  
0.050  
0.024  
M
S
8 ° (max.)  
SO16 (Narrow)  
(1) "D" and "F" do not include mold flash or protrusions - Mold  
flash or protrusions shall not exceed 0.15mm (.006inc.)  
0016020 D  
27/29  
L6910 - L6910A  
Table 1. Revision History  
Date  
Revision  
Description of Changes  
Migration from ST-Press to EDOCS dms.  
January 2004  
August 2004  
7
8
Changed any figures and textes; add. the section “15A HTSSOP16  
Demo Board Description”.  
Changed the style-look following the new “Corporate Technical  
Pubblications Design Guide” rules; and figs 23, 30, 32  
May 2005  
9
Changed the figure 30.  
28/29  
L6910 - L6910A  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
29/29  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY