L6491DTR [STMICROELECTRONICS]

Power supply unit;
L6491DTR
型号: L6491DTR
厂家: ST    ST
描述:

Power supply unit

文件: 总24页 (文件大小:844K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6491  
High voltage high and low-side 4 A gate driver  
Datasheet - production data  
Applications  
Motor driver for home appliances, factory  
automation, industrial drives and fans  
HID ballasts  
Power supply unit  
Induction heating  
Wireless chargers  
Industrial inverters  
UPS  
SO-14  
Features  
High voltage rail up to 600 V  
dV/dt immunity ± 50 V/ns in full temperature  
Description  
range  
The L6491 is a high voltage device manufactured  
with the BCD6 “OFF-LINE” technology. It is  
a single-chip half-bridge gate driver for N-channel  
power MOSFET or IGBT.  
Driver current capability: 4 A source/sink  
Switching times 15 ns rise/fall with 1 nF load  
3.3 V, 5 V TTL/CMOS inputs with hysteresis  
Integrated bootstrap diode  
The high-side (floating) section is designed to  
stand a voltage rail up to 600 V. The logic inputs  
are CMOS/TTL compatible down to 3.3 V for easy  
interfacing microcontroller/DSP.  
Comparator for fault protections  
Smart shutdown function  
Adjustable deadtime  
An integrated comparator is available for fast  
protection against overcurrent, overtemperature,  
etc.  
Interlocking function  
Compact and simplified layout  
Bill of material reduction  
Table 1. Device summary  
Effective fault protection  
Order code  
Package  
Packaging  
Flexible, easy and fast design  
L6491D  
SO-14  
SO-14  
Tube  
L6491DTR  
Tape and reel  
March 2015  
DocID024832 Rev 1  
1/24  
This is information on a product in full production.  
www.st.com  
Contents  
L6491  
Contents  
1
2
3
4
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.1  
4.2  
4.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
5.1  
5.2  
AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
6
7
8
9
Waveform definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Smart shutdown function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
CBOOT selection and charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
10  
11  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2/24  
DocID024832 Rev 1  
L6491  
Block diagram  
1
Block diagram  
Figure 1. Block diagram  
VCC  
PGND  
DocID024832 Rev 1  
3/24  
24  
Pin connection  
L6491  
2
Pin connection  
Figure 2. Pin connection (top view)  
/,1  
6'2'  
+,1  
%227  
+9*  
287  
ꢁꢄ  
ꢁꢂ  
ꢁꢃ  
ꢁꢁ  
ꢁꢇ  
1&  
&3ꢆ  
9&&  
'7  
&3ꢅ  
6*1'  
3*1'  
/9*  
$0ꢇꢂꢃꢊꢋ  
Table 2. Pin description  
Type  
Pin  
number  
Pin name  
Function  
1
2
LIN  
I
Low-side driver logic input (active low)  
Shutdown logic input (active low)/open-drain  
comparator output  
SD/OD(1)  
I/O  
3
4
HIN  
VCC  
DT  
I
P
I
High-side driver logic input (active high)  
Lower section supply voltage  
Deadtime setting  
5
6
SGND  
PGND  
LVG(1)  
CP-  
P
P
O
I
Signal ground  
7
Power ground  
8
Low-side driver output  
Comparator negative input  
Comparator positive input  
Not connected  
9
10  
11  
12  
13  
14  
CP+  
I
NC  
OUT  
HVG(1)  
BOOT  
P
O
P
High-side (floating) common voltage  
High-side driver output  
Bootstrapped supply voltage  
1. The circuit guarantees less than 1 V on the LVG and HVG pins (at Isink = 10 mA), with VCC > 3 V. This  
allows omitting the “bleeder” resistor connected between the gate and the source of the external MOSFET  
normally used to hold the pin low.  
When the SD is set low, gate driver outputs are forced low and assure low impedance.  
4/24  
DocID024832 Rev 1  
L6491  
Truth table  
3
Truth table  
Table 3. Truth table  
HIN  
Input  
LIN  
Output  
SD  
LVG  
HVG  
L
X(1)  
H
X(1)  
L
L
L
L
H
L
L
L
L
L
H
H
H
L
H
H
H
L
L
H
H
1. X: don't care.  
DocID024832 Rev 1  
5/24  
24  
Electrical data  
L6491  
4
Electrical data  
4.1  
Absolute maximum ratings  
(1)  
Table 4. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Unit  
Min.  
Max.  
VCC  
Supply voltage  
-0.3  
VCC - 21  
Vboot - 21  
-0.3  
21  
VCC + 0.3  
Vboot + 0.3  
620  
V
V
VPGND Low-side driver ground  
Vout  
Vboot  
Vhvg  
Vlvg  
Vcp-  
Vcp+  
Vi  
Output voltage  
V
Bootstrap voltage  
V
High-side gate output voltage  
Low-side gate output voltage  
Comparator negative input voltage(2)  
Comparator positive input voltage(2)  
Logic input voltage  
Vout - 0.3  
PGND - 0.3  
-0.3  
Vboot + 0.3  
VCC + 0.3  
5.5  
V
V
V
-0.3  
5.5  
V
-0.3  
15  
V
VOD  
Open-drain voltage  
-0.3  
15  
V
dvout / dt Allowed output slew rate  
50  
V/ns  
W
°C  
°C  
kV  
Ptot  
TJ  
Total power dissipation (TA = 25 °C)  
1.0  
Junction temperature  
Storage temperature  
Human body model  
150  
Tstg  
ESD  
-50  
150  
2
1. Each voltage referred to SGND unless otherwise specified.  
2. Spikes up to 20 V can be tolerated if the duration is shorter than 50 ns (fSW = 120 kHz).  
4.2  
Thermal data  
Table 5. Thermal data  
Symbol  
Parameter  
SO-14  
Unit  
Rth(JA)  
Thermal resistance junction to ambient  
120  
°C/W  
6/24  
DocID024832 Rev 1  
L6491  
Electrical data  
4.3  
Recommended operating conditions  
Table 6. Recommended operating conditions  
Parameter Test conditions  
Supply voltage  
Symbol  
Pin  
Min.  
Max.  
Unit  
VCC  
4
10  
-1.5  
9.3  
20  
+1.5  
20  
V
V
V
V
(1)  
VPS  
7 - 6 Low-side driver ground  
14 - 12 Floating supply voltage  
(2)  
VBO  
Vout  
12  
9
DC output voltage  
- 9(3)  
580  
Comparator negative  
input pin voltage  
VCP-  
VCP+ 2.5 V  
5(4)  
5(4)  
V
V
Comparator positive  
input pin voltage  
VCP+  
10  
VCP- 2.5 V  
fsw  
TJ  
Switching frequency  
Junction temperature  
HVG, LVG load CL = 1 nF  
800  
125  
kHz  
°C  
-40  
1. VPS = VPGND - SGND.  
2. VBO = Vboot - Vout  
3. LVG off. VCC = 12.5 V. Logic is operational if Vboot > 5 V.  
4. At least one of the comparator's inputs must be lower than 2.5 V to guarantee proper operation.  
.
DocID024832 Rev 1  
7/24  
24  
Electrical characteristics  
L6491  
5
Electrical characteristics  
5.1  
AC operation  
Table 7. AC operation electrical characteristics (VCC = 15 V; PGND = SGND; T = +25 °C)  
J
Symbol  
Pin  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
High/low-side driver turn-on  
propagation delay  
ton  
85 120 ns  
OUT = 0 V  
1 vs. 8  
3 vs 13  
BOOT = VCC  
CL = 1 nF  
High/low-side driver turn-off  
propagation delay  
toff  
tsd  
85 120 ns  
85 120 ns  
Vi = 0 to 3.3 V  
see Figure 3  
2 vs. Shutdown to high/low-side  
8, 13 driver propagation delay  
Comparator triggering to  
high/low-side driver turn-off  
propagation delay  
Measured applying a voltage step from  
0 V to 3.3 V to pin CP+; CP- = 0.5 V  
tisd  
175 220 ns  
Delay matching, HS and LS  
turn-on/off(1)  
MT  
30  
ns  
RDT = 0 , CL = 1 nF  
0.12 0.18 0.24 µs  
Deadtime setting range  
DT  
5
RDT = 100 k, CL = 1 nF, CDT = 100 nF 1.2 1.4 1.6  
µs  
µs  
ns  
see Figure 4  
RDT = 200 k, CL = 1 nF, CDT = 100 nF 2.2  
DT = 0 , CL = 1 nF  
2.6  
3
R
50  
MDT  
Matching deadtime(2)  
RDT = 100 k, CL = 1 nF, CDT = 100 nF  
RDT = 200 k, CL = 1 nF, CDT = 100 nF  
CL = 1 nF  
165 ns  
260 ns  
tr  
tf  
Rise time  
8,13  
15  
15  
40  
40  
ns  
ns  
Fall time  
CL = 1 nF  
1. MT = max. (|ton(LVG) - toff(LVG)|, |ton(HVG) - toff(HVG)|, |toff(LVG) - ton(HVG)|, |toff(HVG) - ton(LVG)|).  
2. MDT = | DTLH - DTHL | (see Figure 5 on page 14).  
8/24  
DocID024832 Rev 1  
L6491  
Electrical characteristics  
Figure 3. Timing  
ꢉꢇꢍ  
ꢉꢇꢍ  
/,1  
WU  
WI  
ꢈꢇꢍ  
ꢈꢇꢍ  
ꢁꢇꢍ  
ꢁꢇꢍ  
/9*  
+,1  
WRQ  
WRII  
ꢉꢇꢍ  
ꢉꢇꢍ  
WU  
WI  
ꢈꢇꢍ  
ꢈꢇꢍ  
ꢁꢇꢍ  
ꢁꢇꢍ  
+9*  
6'  
WRQ  
WRII  
ꢉꢇꢍ  
WI  
ꢈꢇꢍ  
ꢁꢇꢍ  
/9*ꢀ+9*  
WVG  
$0ꢇꢂꢃꢊꢈ  
DocID024832 Rev 1  
9/24  
24  
Electrical characteristics  
L6491  
Figure 4. Typical deadtime vs. DT resistor value  
ꢃꢎꢊꢉ  
ꢃꢎꢉꢇ  
ꢃꢎꢃꢉ  
ꢃꢎꢇꢇ  
ꢁꢎꢊꢉ  
ꢁꢎꢉꢇ  
ꢁꢎꢃꢉ  
ꢁꢎꢇꢇ  
ꢇꢎꢊꢉ  
ꢇꢎꢉꢇ  
ꢇꢎꢃꢉ  
ꢇꢎꢇꢇ  
$SSUR[LPDWHGIRUPXODꢏIRUꢏ5GWꢏ  
FDOFXODWLRQꢏꢐW\Sꢑꢒ  
5
ꢏ>N:@ꢏ ꢏꢌꢃ ꢏ'7ꢏ>—V@ꢏꢅꢏꢁꢄꢎꢌ  
ꢏꢏ  
GW  
ꢉꢇ  
 
ꢁꢉꢇ  
ꢃꢇꢇ  
ꢃꢉꢇ  
5
ꢏ>N:@ꢏ  
GW  
$0ꢇꢂꢂꢌꢇ  
10/24  
DocID024832 Rev 1  
L6491  
Electrical characteristics  
5.2  
DC operation  
Table 8. DC operation electrical characteristics  
(VCC = 15 V; PGND = SGND; T = + 25 °C)  
J
Symbol  
Pin  
Parameter  
Test conditions  
Min. Typ. Max.  
Unit  
Vcc_hys  
Vcc_thON  
Vcc_thOFF  
VCC UV hysteresis  
0.5  
8.7  
8.2  
0.6  
9.3  
8.7  
0.72  
9.8  
V
V
V
VCC UV turn-ON threshold  
VCC UV turn-OFF threshold  
9.2  
VCC = 8 V  
SD = 5 V; LIN = 5 V;  
HIN = SGND;  
Undervoltage quiescent  
supply current  
Iqccu  
160  
540  
210  
700  
A  
A  
4
RDT = 0 ;  
CP+ = SGND; CP- = 5 V  
VCC = 15 V  
SD = 5 V; LIN = 5 V;  
HIN = SGND;  
Iqcc  
Quiescent current  
RDT = 0 ;  
CP+ = SGND; CP- = 5 V  
Bootstrapped supply voltage section(1)  
VBO_hys  
VBO_thON  
VBO_thOFF  
VBO UV hysteresis  
0.48  
8
0.6  
8.6  
8.0  
0.7  
9.1  
8.5  
V
V
V
VBO UV turn-ON threshold  
VBO UV turn-OFF threshold  
7.5  
VCC = VBO = 7 V  
SD = 5 V; LIN and  
HIN = 5 V;  
Undervoltage VBO quiescent  
current  
IQBOU  
20  
30  
A  
A  
14-12  
RDT = 0 ;  
CP+ = SGND; CP- = 5 V  
VBO = 15 V  
SD = 5 V; LIN and  
HIN = 5 V;  
IQBO  
VBO quiescent current  
90  
120  
8
RDT = 0 ;  
CP+ = SGND; CP- = 5 V  
ILK  
High voltage leakage current BOOT = HVG = OUT = 600 V  
A  
Bootstrap driver on  
resistance(2)  
RDS(on)  
175  
DocID024832 Rev 1  
11/24  
24  
Electrical characteristics  
L6491  
Unit  
Table 8. DC operation electrical characteristics  
(VCC = 15 V; PGND = SGND; T = + 25 °C) (continued)  
J
Symbol  
Pin  
Parameter  
Test conditions  
Min. Typ. Max.  
Driving buffer section  
LVG/HVG ON  
TJ = 25 °C  
3.5  
2.5  
3.5  
2.5  
4
4
A
A
A
A
High/low-side source peak  
current  
Iso  
Full temperature range  
8, 13  
LVG/HVG OFF  
TJ = 25 °C  
High/low-side sink peak  
current  
Isi  
Full temperature range  
Logic inputs  
Vil  
Low level logic threshold  
0.95  
2
1.45  
2.5  
0.8  
0.8  
V
V
V
V
1, 2, 3  
High level logic threshold  
voltage  
Vih  
VSSD  
Vil_S  
2
SmartSD unlatch threshold  
Single input voltage  
1, 3  
LIN and HIN connected  
together and floating  
HIN logic “1” input bias  
current  
IHINh  
IHINl  
ILINl  
ILINh  
ISDh  
ISDl  
HIN = 15 V  
HIN = 0 V  
LIN = 0 V  
LIN = 15 V  
SD = 15 V  
SD = 0 V  
120  
5
200  
10  
260  
1
A  
A  
A  
A  
A  
A  
3
1
2
HIN logic “0” input bias  
current  
LIN logic “0” input bias  
current  
15  
1
LIN logic “1” input bias  
current  
SD logic “1” input bias  
current  
20  
40  
60  
1
SD logic “0” input bias  
current  
1. VBO = Vboot - Vout  
.
2. RDS(on) is tested in the following way:  
RDS(on) = [(VCC - VBOOT1) - (VCC - VBOOT2)] / [I1(VCC, VBOOT1) - I2(VCC, VBOOT2)] where I1 is pin 14 current when  
BOOT = VBOOT1, I2 when VBOOT = VBOOT2  
V
.
12/24  
DocID024832 Rev 1  
L6491  
Electrical characteristics  
(1)  
Table 9. Sense comparator (V = 15 V, T = +25 °C)  
CC  
J
Symbol  
Pin  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Vio  
Iib  
9, 10 Input offset voltage  
9, 10 Input bias current  
-15  
15  
1
mV  
VCP+ = 1 V, VCP- = 1 V  
A  
Open-drain low level sink  
current  
SD\OD = 400 mV, VCP+ = 1  
V; VCP - = 0.5 V;  
I
2
13  
20  
27  
mA  
ns  
OD  
Rpu = 100 kto 5 V;  
VCP - = 0.5 V;  
td_comp  
Comparator delay  
100  
155  
voltage step on CP+ = 0 to  
3.3 V; 50% CP+ to 90% SD  
CL = 10 nF;  
SR  
2
Slew rate  
Rpu = 5 kto 5 V;  
90% SD to 10% SD  
10  
V/s  
1. Comparator is disabled when VCC is in UVLO condition.  
DocID024832 Rev 1  
13/24  
24  
Waveform definitions  
L6491  
6
Waveform definitions  
Figure 5. Deadtime and interlocking waveform definitions  
/,1  
+,1  
&21752/ꢏ6,*1$/ꢏ('*(  
29(5/$33('ꢒꢏ  
,17(5/2&.,1*ꢏꢆꢏ'($'7,0(  
/9*  
'7+/  
'7/+  
'7/+  
'7/+  
+9*  
JDWHꢏGULYHUꢏRXWSXWVꢏ2))  
ꢐ+$/)ꢅ%5,'*(ꢏꢂꢅ67$7(ꢑ  
JDWHꢏGULYHUꢏRXWSXWVꢏ2))  
ꢐ+$/)ꢅ%5,'*(ꢏꢂꢅ67$7(ꢑ  
/,1  
&21752/ꢏ6,*1$/ꢏ('*(  
+,1  
/9*  
+9*  
ꢐꢁꢑ  
6<1&+521286 ꢒꢏ  
'($'7,0(  
'7+/  
JDWHꢏGULYHUꢏRXWSXWVꢏ2))  
JDWHꢏGULYHUꢏRXWSXWVꢏ2))  
ꢐ+$/)ꢅ%5,'*(ꢏꢂꢅ67$7(ꢑ  
ꢐ+$/)ꢅ%5,'*(ꢏꢂꢅ67$7(   
/,1  
+,1  
&21752/ꢏ6,*1$/ꢏ('*(  
127ꢏ29(5/$33('ꢓꢏ  
%87ꢏ,16,'(ꢏ7+(ꢏ'($'7,0(ꢒ  
'($'7,0(  
/9*  
+9*  
'7+/  
JDWHꢏGULYHUꢏRXWSXWVꢏ2))  
ꢐ+$/)ꢅ%5,'*(ꢏꢂꢅ67$7(   
JDWHꢏGULYHUꢏRXWSXWVꢏ2))  
ꢐ+$/)ꢅ%5,'*(ꢏꢂꢅ67$7(ꢑ  
/,1  
+,1  
&21752/ꢏ6,*1$/ꢏ('*(  
127ꢏ29(5/$33('ꢓꢏ  
2876,'(ꢏ7+(ꢏ'($'7,0(ꢒ  
',5(&7ꢏ'5,9,1*  
/9*  
+9*  
'7/+  
'7+/  
JDWHꢏGULYHUꢏRXWSXWVꢏ2))  
ꢐ+$/)ꢅ%5,'*(ꢏꢂꢅ67$7(   
JDWHꢏGULYHUꢏRXWSXWVꢏ2))  
ꢐ+$/)ꢅ%5,'*(ꢏꢂꢅ67$7(   
ꢐꢁꢑ  
ꢏꢏ+,1ꢏDQGꢏ/,1ꢏFDQꢏEHꢏFRQQHFWHGꢏWRJKHWHUꢏDQGꢏGULYHQꢏE\ꢏMXVWꢏRQHꢏFRQWUROꢏVLJQDOꢎ  
$0ꢇꢂꢃꢊꢌ  
14/24  
DocID024832 Rev 1  
L6491  
Smart shutdown function  
7
Smart shutdown function  
The L6491 device integrates a comparator committed to the fault sensing function. The  
comparator input can be connected to an external shunt resistor in order to implement  
a simple overcurrent detection function.  
The output signal of the comparator is fed to an integrated MOSFET with the open-drain  
output available on pin 2, shared with the SD input. When the comparator triggers, the  
device is set in shutdown state and both its outputs are set to low level leaving the half-  
bridge in 3-state.  
Figure 6. Smart shutdown timing waveforms  
&3ꢅ  
&3ꢆ  
+,1ꢀ/,1  
3527(&7,21  
+9*ꢀ /9*  
6'ꢀ2'  
2SHQꢏGUDLQꢏJDWH  
ꢐLQWHUQDOꢑ  
GLVDEOHꢏWLPH  
)DVWꢏVKXWGRZQ  
7KHꢏGULYHUꢏRXWSXWVꢏDUHꢏVHWꢏLQꢏ6'ꢏVWDWHꢏLPPHGLDWHO\ꢏDIWHUꢏWKHꢏFRPSDUDWRU  
WULJJHULQJꢓꢏHYHQꢏLIꢏWKHꢏ6'ꢏVLJQDOꢏKDVꢏQRWꢏ\HWꢏUHDFKꢏWKHꢏORZHUꢏLQSXWꢏWKUHVKROGꢎ  
$QꢏDSSUR[LPDWLRQꢏRIꢏWKHꢏGLVDEOHꢏWLPHꢏLVꢏJLYHQꢏE\ꢒ  
6+87ꢏ'2:1ꢏ&,5&8,7  
9%,$6  
ZKHUHꢒ  
5
6'ꢏ  
6'ꢀ2'  
)520ꢀ72  
ꢏ&21752//(5  
60$57  
6'  
/2*,&  
521B2'  
53'B6'  
&
6'  
$0ꢇꢂꢂꢂꢄ  
DocID024832 Rev 1  
15/24  
24  
Smart shutdown function  
L6491  
In common overcurrent protection architectures, the comparator output is usually connected  
to the SD input and an RC network is connected to this SD/OD line in order to provide  
a monostable circuit, which implements a protection time following the fault condition.  
Differently from the common fault detection systems, the L6491 smart shutdown  
architecture allows immediate turn-off of the output gate driver in case of fault, by minimizing  
the propagation delay between the fault detection event and the current output switch-off. In  
fact the time delay between the fault and the output turn-off is no longer dependent on the  
RC value of the external network connected to the SD/OD pin. In the smart shutdown  
circuitry, the fault signal has a preferential path which directly switches off the outputs after  
the comparator triggering. At the same time, the internal logic turns on the open-drain output  
and holds it on until the SD voltage goes below the smartSD unlatch threshold V  
. When  
SSD  
such threshold is reached, the open-drain output is turned off, allowing the external pull-up  
to recharge the capacitor. The driver outputs restart following the input pins as soon as the  
voltage at the SD/OD pin reaches the higher threshold of the SD logic input. The smart  
shutdown system gives the possibility to increase the time constant of the external RC  
network (that determines the disable time after the fault event) up to very large values  
without increasing the delay time of the protection.  
Any external signal provided to the SD pin is not latched and can be used as control signal  
in order to perform, for instance, PWM chopping through this pin. In fact when a PWM signal  
is applied to the SD input and the logic inputs of the gate driver are stable, the outputs  
switch from the low level to the state defined by the logic inputs and vice versa.  
16/24  
DocID024832 Rev 1  
L6491  
Typical application diagram  
8
Typical application diagram  
Figure 7. Typical application diagram  
BOOTSTRAP DRIVER  
FLOATING STRUCTURE  
VCC  
+
VCC  
HIN  
LIN  
BOOT  
14  
4
3
CVCC1  
H.V.  
Cboot  
Rg  
HVG  
DRIVER  
13 HVG  
FROM CONTROLLER  
FROM CONTROLLER  
LEVEL  
SHIFTER  
Rfilt  
Cfilt  
5V  
LOGIC  
SHOOT  
THROUGH  
PREVENTION  
1
OUT  
LVG  
12  
8
Rfilt  
Cfilt  
TO LOAD  
VCC  
LVG  
Vpu  
RSD  
DRIVER  
Rg  
FROM/TO  
SD/OD  
CONTROLLER  
2
PGND  
5V  
SMART  
SD  
CSD  
COMPARATOR  
RLP  
CP+  
10  
9
+
-
CLP  
CP-  
VCC  
Vpu  
Rp1  
Rp2  
DEAD  
TIME  
DT  
5
6
CVCC2  
Rshunt  
7
RDT  
CDT  
SGND  
Cp2  
PGND  
System power ground  
Figure 8. Suggested PCB layout  
Vpu  
SD/OD  
C
BOOT  
LIN  
Rfilt  
R
SD  
Cfilt  
CSD  
Cfilt  
HIN  
Rfilt  
VCC  
C
C
LP  
p2  
C
VCC1  
RDT  
C
DT  
Rg  
Vpu  
C
VCC2  
Rp2  
R
p1  
RLP  
uC Signal GROUND  
Rshunt  
POWER GROUND  
BOTTOM layer  
TOP layer  
DocID024832 Rev 1  
17/24  
24  
Bootstrap driver  
L6491  
9
Bootstrap driver  
A bootstrap circuitry is needed to supply the high voltage section. This function is usually  
accomplished by a high voltage fast recovery diode (Figure 9). In the L6491 an integrated  
structure replaces the external diode.  
CBOOT selection and charging  
To choose the proper CBOOT value the external MOS can be seen as an equivalent  
capacitor. This capacitor CEXT is related to the MOS total gate charge:  
Equation 1  
Qgate  
CEXT = -------------  
Vgate  
The ratio between the capacitors CEXT and CBOOT is proportional to the cyclical voltage loss.  
It has to be:  
Equation 2  
CBOOT>>>CEXT  
if Qgate is 30 nC and Vgate is 10 V, CEXT is 3 nF. With CBOOT = 100 nF the drop is 300 mV.  
If HVG has to be supplied for a long time, the CBOOT selection has also to take into account  
the leakage and quiescent losses.  
HVG steady-state consumption is lower than 120 A, so if HVG TON is 5 ms, CBOOT has to  
supply CEXT with 0.6 C. This charge on a 1 F capacitor means a voltage drop of 0.6 V.  
The internal bootstrap driver gives a great advantage: the external fast recovery diode can  
be avoided (it usually has great leakage current).  
This structure can work only if VOUT is close to SGND (or lower) and in the meanwhile the  
LVG is on. The charging time (Tcharge) of the CBOOT is the time in which both conditions are  
fulfilled and it has to be long enough to charge the capacitor.  
The bootstrap driver introduces a voltage drop due to the DMOS RDS(on) (typical value:  
175 ). At low frequency this drop can be neglected. Anyway, the rise of frequency has to  
take into account.  
The following equation is useful to compute the drop on the bootstrap DMOS:  
Equation 3  
Qgate  
Vdrop = IchargeRDSonVdrop = ------------------ RDSon  
Tcharge  
where Qgate is the gate charge of the external power MOS, RDS(on) is the on resistance of  
the bootstrap DMOS and Tcharge is the charging time of the bootstrap capacitor.  
18/24  
DocID024832 Rev 1  
L6491  
Bootstrap driver  
For example: using a power MOS with a total gate charge of 30 nC the drop on the  
bootstrap DMOS is about 1 V, if the Tcharge is 5 s. In fact:  
Equation 4  
30nC  
5s  
V
= -------------- 175  1V  
drop  
Vdrop has to be taken into account when the voltage drop on CBOOT is calculated: if this drop  
is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diode  
can be used.  
Figure 9. Bootstrap driver with external high voltage fast recovery diode  
DBOOT  
VCC  
BOOT  
H.V.  
HVG  
OUT  
CBOOT  
TO LOAD  
LVG  
DocID024832 Rev 1  
19/24  
24  
Package information  
L6491  
10  
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK is an ST trademark.  
20/24  
DocID024832 Rev 1  
L6491  
Package information  
Figure 10. SO-14 package outline  
ꢇꢇꢁꢋꢇꢁꢈB(  
Table 10. SO-14 package mechanical data  
Dimensions (mm)  
Symbol  
Min.  
Typ.  
Max.  
A
A1  
A2  
B
1.35  
0.10  
1.10  
0.33  
0.19  
8.55  
3.80  
1.75  
0.25  
1.65  
0.51  
0.25  
8.75  
4.00  
C
D
E
e
1.27  
H
5.80  
0.25  
0.40  
0
6.20  
0.50  
1.27  
8
h
L
k
ddd  
0.10  
DocID024832 Rev 1  
21/24  
24  
Package information  
L6491  
Figure 11. SO-14 package suggested land pattern  
4.0  
6.7  
22/24  
DocID024832 Rev 1  
L6491  
Revision history  
11  
Revision history  
Table 11. Document revision history  
Changes  
Date  
Revision  
11-Mar-2015  
1
Initial release.  
DocID024832 Rev 1  
23/24  
24  
L6491  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2015 STMicroelectronics – All rights reserved  
24/24  
DocID024832 Rev 1  

相关型号:

L6495

Analog IC
ETC

L64951

Peripheral IC
ETC

L6495DP

Analog IC
ETC

L65-121

Logic IC
ETC

L65-122

Logic IC
ETC

L65-123

Logic IC
ETC

L65-124

Logic IC
ETC

L65-125

Logic IC
ETC

L65-126

Logic IC
ETC

L65-127

Logic IC
ETC

L65-128

Logic IC
ETC

L65-129

Logic IC
ETC