GG25L [STMICROELECTRONICS]

Fitness and healthcare;
GG25L
型号: GG25L
厂家: ST    ST
描述:

Fitness and healthcare

文件: 总28页 (文件大小:586K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GG25L  
Gas gauge IC with alarm output  
Datasheet - production data  
Applications  
Wearable  
Fitness and healthcare  
Portable medical equipment  
Description  
The GG25L includes the hardware functions  
required to implement a low-cost gas gauge for  
battery monitoring. The GG25L uses current  
sensing, Coulomb counting and accurate  
measurements of the battery voltage to estimate  
the state-of-charge (SOC) of the battery. An  
internal temperature sensor simplifies  
CSP (1.4 x 2.0 mm)  
Features  
implementation of temperature compensation.  
TM  
OptimGauge algorithm  
An alarm output signals a low SOC condition and  
can also indicate low battery voltage. The alarm  
threshold levels are programmable.  
0.25% accuracy battery voltage monitoring  
Coulomb counter and voltage-mode gas gauge  
operations  
The GG25L offers advanced features to ensure  
high performance gas gauging in all application  
conditions.  
Robust initial open-circuit-voltage (OCV)  
measurement at power up with debounce  
delay  
Low battery level alarm output with  
programmable thresholds  
Internal temperature sensor  
Battery swap detection  
Low power: 45 µA in power-saving mode, 2 µA  
max in standby mode  
1.4 x 2.0 mm 10-bump CSP package  
Table 1. Device summary  
Temperature range Package  
Order code  
Packing  
Marking  
GG25LJ (1)  
O22  
O23  
-40 °C to +85 °C  
CSP-12  
Tape and reel  
GG25LAJ (2)  
1. 4.35 V battery option  
2. 4.20 V battery option  
February 2014  
DocID025995 Rev 1  
1/28  
This is information on a product in full production.  
www.st.com  
Contents  
GG25L  
Contents  
1
2
3
4
5
6
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6.1  
Battery monitoring functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Internal temperature monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
6.2  
GG25L gas gauge architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
6.2.1  
6.2.2  
6.2.3  
Coulomb counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Voltage gas gauge algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Mixed mode gas gauge system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
6.3  
6.4  
6.5  
Low battery alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power-up and battery swap detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Improving accuracy of the initial OCV measurement with  
the advanced functions of BATD/CD and RSTIO pins . . . . . . . . . . . . . . . 17  
6.5.1  
BATD and RSTIO pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7
I²C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.1  
7.2  
Read and write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.2.1  
7.2.2  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8
9
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2/28  
DocID025995 Rev 1  
GG25L  
Block diagram  
1
Block diagram  
Figure 1. GG25L internal block diagram  
9&&  
%$7'ꢂ&'  
ꢄꢅꢆꢇꢈꢃ+]  
WLPHꢃEDVH  
ꢁꢋꢅꢃ9  
%DWWHU\ꢃGHWHFWLRQꢃ  
DQGꢃFRQWURO  
2VFLOODWRU  
UHIHUHQFH  
567,2ꢂ%$7'  
7HPSHUDWXUH  
VHQVRU  
$/0  
&RQWUROꢃORJLF  
DQG  
9,1  
&*  
$'ꢃFRQYHUWHU  
VWDWHꢃPDFKLQH  
&RQWURO  
&*ꢉ  
&*ꢊ  
UHJLVWHUV  
6&/  
6'$  
5$0ꢃDQGꢃ,'ꢃUHJLVWHUVꢃ  
*1'  
, &ꢃ  
LQWHUIDFH  
$06ꢀꢀꢀꢁB9ꢁ  
DocID025995 Rev 1  
3/28  
28  
Pin assignment  
GG25L  
2
Pin assignment  
Table 2. GG25L pin description  
Pin  
n°  
CSP  
bump  
Pin name  
Type(1)  
Function  
Alarm signal output, open drain,  
external pull-up with resistor  
1
A1  
ALM  
I/OD  
2
3
4
5
6
7
B1  
C1  
D1  
D2  
D3  
C3  
SDA  
SCL  
GND  
NC  
I/OD  
I_D  
I²C serial data  
I²C serial clock  
Ground Analog and digital ground  
-
NC  
CG  
I_A  
I/OD  
Current sensing input  
RSTIO  
Reset sense input & reset control output (open drain)  
Battery charge inhibit (active high output)  
Battery detection (input)  
8
B2  
BATD/CD  
I/OA  
9
B3  
A3  
VCC  
VIN  
Supply Power supply  
I_A Battery voltage sensing input  
10  
1. I = input, 0 = output, OD = open drain, A = analog, D = digital, NC = not connected  
3
Absolute maximum ratings and operating conditions  
Table 3. Absolute maximum ratings  
Symbol  
Parameter  
Value  
Unit  
VCCMAX  
VIO  
TSTG  
TJ  
Maximum voltage on VCC pin  
Voltage on I/O pins  
6
-0.3 to 6  
-55 to 150  
150  
V
Storage temperature  
°C  
kV  
Maximum junction temperature  
Electrostatic discharge (HBM: human body model)  
ESD  
2
Table 4. Operating conditions  
Parameter  
Symbol  
Value  
Unit  
VCC  
VMIN  
Operating supply voltage on VCC  
2.7 to 4.5  
2.0  
V
Minimum voltage on VCC for RAM content retention  
TOPER  
TPERF  
-40 to 85  
-20 to 70  
Operating free air temperature range  
°C  
4/28  
DocID025995 Rev 1  
GG25L  
Electrical characteristics  
4
Electrical characteristics  
Table 5. Electrical characteristics (2.7 V < V < 4.5 V, -20C to 70C)  
CC  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Units  
Supply  
Average value over 4 s in  
power-saving voltage  
mode  
45  
60  
ICC  
Operating current consumption  
Average value over 4 s in  
mixed mode  
100  
µA  
Standby mode,   
inputs = 0 V  
ISTBY  
IPDN  
Current consumption in standby  
2
1
VCC < UVLOTH,   
inputs = 0 V  
Current consumption in power-down  
UVLOTH  
UVLOHYST  
POR  
Undervoltage threshold  
(VCC decreasing)  
(VCC decreasing)  
2.5  
2.6  
100  
2.0  
2.7  
V
mV  
V
Undervoltage threshold hysteresis  
Power-on reset threshold  
Current sensing  
Vin_gg  
Input voltage range  
-40  
-3  
+40  
500  
mV  
nA  
IIN  
Input current for CG pin  
AD converter granularity  
AD converter offset  
ADC_res  
ADC_offset  
ADC_time  
5.88  
µV  
CG = 0 V  
3
1
LSB  
ms  
AD conversion time  
500  
0.5  
25 °C  
AD converter gain accuracy at full  
scale (using external sense resistor)  
ADC_acc  
FOSC  
%
Over temperature range  
Internal time base frequency  
Internal time base accuracy  
Current register LSB value  
32768  
2
Hz  
25 °C, VCC = 3.6 V  
Osc_acc  
Cur_res  
%
Over temperature and  
voltage ranges  
2.5  
5.88  
µV  
DocID025995 Rev 1  
5/28  
28  
Electrical characteristics  
GG25L  
Table 5. Electrical characteristics (2.7 V < V < 4.5 V, -20C to 70C) (continued)  
CC  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Units  
Battery voltage and temperature measurement  
Vin_adc  
LSB  
Input voltage range  
LSB value  
V
CC = 4.5 V  
0
4.5  
V
Voltage measurement  
2.20  
1
mV  
°C  
Temperature measurement  
ADC_time  
AD conversion time  
250  
ms  
2.7 V < Vin < 4.5 V,   
-0.25  
+0.25  
VCC = Vin 25 °C  
Volt_acc  
Battery voltage measurement accuracy  
%
Over temperature range  
-0.5  
-3  
+0.5  
3
Temp_acc  
Internal temperature sensor accuracy  
°C  
Digital I/O pins (SCL, SDA, ALM, RSTIO)  
Vih  
Input logic high  
1.2  
Vil  
Input logic low  
0.35  
0.4  
V
V
Vol  
Output logic low (SDA, ALM, RSTIO)  
Iol = 4 mA  
BATD/CD pin  
Vith  
Input threshold voltage  
Input voltage hysteresis  
1.46 1.61 1.76  
0.1  
Vihyst  
Output logic high   
(charge inhibit mode enable)  
Vbat-  
0.4  
Voh  
Ioh = 3 mA  
6/28  
DocID025995 Rev 1  
GG25L  
Electrical characteristics  
Table 6. I²C timing - V = 2.8 V, T  
= -20 °C to 70 C (unless otherwise specified)  
IO  
amb  
Symbol  
Fscl  
thd,sta  
tlow  
Parameter  
SCL clock frequency  
Min  
Typ  
Max  
Unit  
0
400  
kHz  
Hold time (repeated) START condition  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Setup time for repeated START condition  
Data hold time  
0.6  
1.3  
0.6  
0.6  
0
thigh  
µs  
tsu,dat  
thd,dat  
tsu,dat  
0.9  
Data setup time  
100  
ns  
ns  
-
20+  
0.1Cb  
tr  
Rise time of both SDA and SCL signals  
300  
300  
20+  
0.1Cb  
tf  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
ns  
µs  
µs  
pF  
tsu,sto  
tbuf  
Cb  
0.6  
1.3  
Bus free time between a STOP and  
START condition  
Capacitive load for each bus line  
400  
Figure 2. I²C timing diagram  
WI  
9LK  
6'$  
6&/  
9LO  
WKGꢌVWD  
WVXꢌGDW  
WU  
WKLJK  
WORZ  
WVXꢌVWD  
WKGꢌGDW  
*$3060'ꢀꢀꢀꢅꢇ  
DocID025995 Rev 1  
7/28  
28  
Application information  
GG25L  
5
Application information  
Figure 3. Example of an application schematic using the GG25L in mixed mode  
Optional filter  
IO voltage  
VCC  
VIN  
C1  
R1  
C2  
Other  
detection  
circuit  
SCL  
SDA  
GG25L  
Battery pack  
BATD/CD  
CG  
ALM  
R2  
Rid  
RSTIO  
GND  
Rcg  
Table 7. External component list  
Tolerance Comments  
Name  
Value  
Rcg  
C1  
C2  
R1  
R2  
5 to 50 m  
1 µF  
1% to 5% Current sense resistor (2% or better recommended)  
Supply decoupling capacitor  
220 nF  
1 kΩ  
Battery voltage input filter (optional)  
Battery voltage input filter (optional)  
Battery detection function  
1 kΩ  
Figure 4. Example of an application schematic using the GG25L without current  
sensing  
Optional filter  
IO voltage  
VCC  
R1  
C2  
C1  
Other  
detection  
circuit  
VIN  
SCL  
SDA  
GG25L  
Battery pack  
BATD/CD  
ALM  
R2  
Rid  
RSTIO  
CG  
GND  
8/28  
DocID025995 Rev 1  
GG25L  
Application information  
Table 8. External component list  
Comments  
Name  
Value  
C1  
C2  
R1  
R2  
1 µF  
220 nF  
1 kΩ  
Supply decoupling capacitor  
Battery voltage input filter (optional)  
Battery detection function  
1 kΩ  
DocID025995 Rev 1  
9/28  
28  
Functional description  
GG25L  
6
Functional description  
6.1  
Battery monitoring functions  
6.1.1  
Operating modes  
The monitoring functions include the measurement of battery voltage, current, and  
temperature. A Coulomb counter is available to track the SOC when the battery is charging  
or discharging at a high rate. A sigma-delta A/D converter is used to measure the voltage,  
current, and temperature.  
The GG25L can operate in two different modes with different power consumption (see  
Table 9. Mode selection is made by the VMODE bit in register 0 (refer to Table 14 for  
register 0 definition).  
Table 9. GG25L operating modes  
VMODE  
Description  
0
Mixed mode, Coulomb counter is active, voltage gas gauge runs in parallel  
Voltage gas gauge with power saving  
1
Coulomb counter is not used. No current sensing.  
In mixed mode, current is measured continuously (except for a conversion cycle every 4 s  
and every 16 s seconds for measuring voltage and temperature respectively). This provides  
the highest accuracy from the gas gauge.  
In voltage mode with no current sensing, a voltage conversion is made every 4 s and a  
temperature conversion every 16 s. This mode provides the lowest power consumption.  
It is possible to switch between the two operating modes to get the best accuracy during  
active periods, and to save power during standby periods while still keeping track of the  
SOC information.  
6.1.2  
Battery voltage monitoring  
Battery voltage is measured by using one conversion cycle of the A/D converter every 4 s.  
13  
The conversion cycle takes 2 = 8192 clock cycles. Using the 32768 Hz internal clock, the  
conversion cycle time is 250 ms.  
The voltage range is 0 to 4.5 V and resolution is 2.20 mV. Accuracy of the voltage  
measurement is ±0.5% over the temperature range. This allows accurate SOC information  
from the battery open-circuit voltage.  
The result is stored in the REG_VOLTAGE register (see Table 13).  
10/28  
DocID025995 Rev 1  
 
GG25L  
Functional description  
6.1.3  
Internal temperature monitoring  
The chip temperature (close to the battery temperature) is measured using one conversion  
cycle of the A/D converter every 16 s.  
13  
The conversion cycle takes 2 = 8192 clock cycles. Using the 32768 Hz internal clock, the  
conversion cycle time is 250 ms. Resolution is 1° C and range is -40 to +125 °C.  
The result is stored in the REG_TEMPERATURE register (see Table 13).  
6.1.4  
Current sensing  
Voltage drop across the sense resistor is integrated during a conversion period and input to  
the 14-bit sigma-delta A/D converter.  
Using the 32768 Hz internal clock, the conversion cycle time is 500 ms for a 14-bit  
resolution. The LSB value is 5.88 µV. The A/D converter output is in two’s complement  
format.  
When a conversion cycle is completed, the result is added to the Coulomb counter  
accumulator and the number of conversions is incremented in a 16-bit counter.  
The current register is updated only after the conversion closest to the voltage conversion  
(that is: once per 4-s measurement cycle). The result is stored in the REG_CURRENT  
register (see Table 13).  
DocID025995 Rev 1  
11/28  
28  
Functional description  
GG25L  
6.2  
GG25L gas gauge architecture  
6.2.1  
Coulomb counter  
The Coulomb counter is used to track the SOC of the battery when the battery is charging or  
discharging at a high rate. Each current conversion result is accumulated (Coulomb  
counting) for the calculation of the relative SOC value based on the configuration register.  
The system controller can control the Coulomb counter and set and read the SOC register  
through the I²C control registers.  
Figure 5. Coulomb counter block diagram  
REG_COUNTER  
register  
16-bit counter  
REG_CURRENT  
register  
EOC  
CC SOC  
register (internal)  
CC SOC  
calculator  
CG  
AD converter  
GND  
REG_CC_CNF  
register  
The REG_CC_CNF value depends on battery capacity and the current sense resistor. It  
scales the charge integrated by the sigma delta converter into a percentage value of the  
battery capacity. The default value is 395 (corresponding to a 10 msense resistor and  
1957 mAh battery capacity).  
The Coulomb counter is inactive if the VMODE bit is set, this is the default state at power-  
on-reset (POR) or reset (VMODE bit = 1).  
Writing a value to the register REG_SOC (mixed mode SOC) forces the Coulomb counter  
gas gauge algorithm to restart from this new SOC value.  
REG_CC_CNF register is a 16-bit integer value and is calculated as shown in Equation 1:  
Equation 1  
REG_CC_CNF = Rsense Cnom 49.556  
Rsense is in mand Cnom is in mAh.  
Example: Rsense =10 m, Cnom = 1650 mAh, REG_CC_CNF = 333  
12/28  
DocID025995 Rev 1  
 
GG25L  
Functional description  
6.2.2  
Voltage gas gauge algorithm  
No current sensing is needed for the voltage gas gauge. An internal algorithm precisely  
simulates the dynamic behavior of the battery and provides an estimation of the OCV. The  
battery SOC is related to the OCV by means of a high-precision reference OCV curve built  
into the GG25L.  
Any change in battery voltage causes the algorithm to track both the OCV and SOC values,  
taking into account the non-linear characteristics and time constants related to the chemical  
nature of the Li-Ion and Li-Po batteries.  
A single parameter fits the algorithm to a specific battery. The default value provides good  
results for most battery chemistries used in hand-held applications.  
Figure 6. Voltage gas gauge block diagram  
Voltage register  
VM configuration  
VIN  
AD  
converter  
OCV value  
Voltage mode  
(VM)  
algorithm  
To SOC  
management  
Reference  
OCV  
curve  
OCV adjustment registers  
Voltage gas gauge algorithm registers  
The REG_VM_CNF configuration register is used to configure the parameter used by the  
algorithm based on battery characteristic. The default value is 321.  
The REG_OCV register holds the estimated OCV value corresponding to the present  
battery state.  
The REG_OCVTAB registers are used to adjust the internal OCV table to a given battery  
type.  
The REG_VM_CNF register is a 12-bit integer value and is calculated from the averaged  
internal resistance and nominal capacity of the battery as shown in Equation 2:  
Equation 2  
REG_VM_CNF = Ri Cnom 977.78  
Ri is in mand Cnom is in mAh.  
Example: Ri = 190 m, Cnom =1650 mAh, REG_VM_CNF = 321  
DocID025995 Rev 1  
13/28  
28  
 
Functional description  
GG25L  
6.2.3  
Mixed mode gas gauge system  
The GG25L provides a mixed mode gas gauge using both a Coulomb counter (CC) and a  
voltage-mode (VM) algorithm to track the SOC of the battery in all conditions with optimum  
accuracy. The GG25L directly provides the SOC information.  
The Coulomb counter is mainly used when the battery is charging or discharging at a high  
rate. Each current conversion result is accumulated (Coulomb counting) for the calculation  
of the relative SOC value based on a configuration register.  
The voltage-mode algorithm is used when the application is in low power consumption state.  
The GG25L automatically uses the best method in any given application condition.  
However, when the application enters standby mode, the GG25L can be put in power-  
saving mode: only the voltage-mode gas gauge stays active, the Coulomb counter is  
stopped and power consumption is reduced.  
Figure 7. Mixed mode gas gauge block diagram  
Voltage mode  
gas gauge  
(VM)  
SOC  
management  
REG_SOC  
register  
Coulomb  
counter  
(CC)  
Alarm  
management  
REG_VM_ADJ  
register  
Parameter  
tracking  
REG_CC_ADJ  
register  
The combination of the CC and VM algorithms provides optimum accuracy under all  
application conditions. The voltage gas gauge cancels any long-term errors and prevents  
the SOC drift problem that is commonly found in Coulomb counter only solutions.  
Furthermore, the results of the two algorithms are continuously compared and adjustment  
factors are calculated. This enables the application to track the CC and VM algorithm  
parameters for long-term accuracy, automatically compensating for battery aging,  
application condition changes, and temperature effects. Five registers are dedicated to this  
monitoring:  
REG_CC_ADJ and REG_VM_ADJ are continuously updated. They are signed, 16-bit,  
user-adjusted registers with LSB = 1/512 %.  
ACC_CC_ADJ and ACC_VM_ADJ are updated only when a method switch occurs.  
They are signed, 16-bit user adjusted accumulators with LSB = 1/512%  
RST_ACC_CC_ADJ and RST_ACC_VM_ADJ bits in the REG_MODE register are  
used to clear the associated counter.  
14/28  
DocID025995 Rev 1  
GG25L  
Functional description  
6.3  
Low battery alarm  
The ALM pin provides an alarm signal in case of a low battery condition. The output is an  
open drain and an external pull-up resistor is needed in the application. Writing the  
IO0DATA bit to 0 forces the ALM output low; writing the IO0DATA bit to 1 lets the ALM  
output reflect the battery condition. Reading the IO0DATA bit gives the state of the ALM pin.  
When the IO0DATA bit is 1, the ALM pin is driven low if either of the following two conditions  
is met:  
The battery SOC estimation from the mixed algorithm is less than the programmed  
threshold (if the alarm function is enabled by the ALM_ENA bit).  
The battery voltage is less than the programmed low voltage level (if the ALM_ENA bit  
is set).  
When a low-voltage or low-SOC condition is triggered, the GG25L drives the ALM pin low  
and sets the ALM_VOLT or ALM_SOC bit in REG_CTRL.  
The ALM pin remains low (even if the conditions disappear) until the software writes the  
ALM_VOLT and ALM_SOC bits to 0 to clear the interrupt.  
Clearing the ALM_VOLT or ALM_SOC while the corresponding low-voltage or low-SOC  
condition is still in progress does not generate another interrupt; this condition must  
disappear first and must be detected again before another interrupt (ALM pin driven low) is  
generated for this alarm. Another alarm condition, if not yet triggered, can still generate an  
interrupt.  
Usually, the low-SOC alarm occurs first to warn the application of a low battery condition,  
then if no action is taken and the battery discharges further, the low-voltage alarm signals a  
nearly-empty battery condition.  
At power-up, or when the GG25L is reset, the SOC and voltage alarms are enabled  
(ALM_ENA bit = 1). The ALM pin is high-impedance directly after POR and is driven low if  
the SOC and/or the voltage is below the default thresholds (1% SOC, 3.00 V voltage), after  
the first OCV measurement and SOC estimation.  
The REG_SOC_ALM register holds the relative SOC alarm level in 0.5 % units (0 to 100 %).  
Default value is 2 (i.e. 1% SOC).  
The REG_ALARM_VOLTAGE holds the low voltage threshold and can be programmed over  
the full scale voltage range with 17.60 (2.20 * 8) mV steps. The default value is 170 (3.00 V).  
DocID025995 Rev 1  
15/28  
28  
Functional description  
GG25L  
6.4  
Power-up and battery swap detection  
When the GG25L is powered up at first battery insertion, an automatic battery voltage  
measurement cycle is made immediately after startup and debounce delay.  
This feature enables the system controller to get the SOC of a newly inserted battery based  
on the OCV measured just before the system actually starts.  
Figure 8. Timing diagram at power-up  
A battery swap is detected when the battery voltage drops below the undervoltage lockout  
(UVLO) for more than 1 s. The GG25L restarts when the voltage goes back above UVLO, in  
the same way as for a power-up sequence.  
Such filtering provides robust battery swap detection and prevents restarting in case of short  
voltage drops. This feature protects the application against high surge currents at low  
temperatures.  
Figure 9. Restart in case of battery swap  
<1s  
>1s  
VCC  
UVLO  
POR  
Short UVLO  
event < 1s  
No restart,  
No operation  
interuption  
Long battery disconnection  
events > 1s  
GG25L restarts  
GAMS2502141520SG  
Example: When BATD/CD is high (voltage above the 1.61 V threshold) for more than 1 s, a  
battery swap is detected. The GG25L restarts when the BATD/CD level returns below the  
threshold, in the same way as for a power-up sequence.  
Using the 1-s filter prevents false battery swap detection if short contact bouncing occurs at  
the battery terminals due to mechanical vibrations or shocks.  
16/28  
DocID025995 Rev 1  
GG25L  
Functional description  
6.5  
Improving accuracy of the initial OCV measurement with the  
advanced functions of BATD/CD and RSTIO pins  
The advanced functions of the BATD/CD and RSTIO pins provide a way to ensure that the  
OCV measurement at power-up is not affected by the application startup or by the charger  
operation. This occurs as follows:  
The BATD/CD pin is driven high to V voltage which inhibits the charge function  
(assuming that the BATD/CD signal is connected to disable input of the charger circuit).  
CC  
The RSTIO pin senses the system reset state and if the system reset is active (that is  
RSTIO is low), the RSTIO is kept low until the end of the OCV measurement.  
Figure 10 describes the BATD/CD and RSTIO operation at power-up. Please refer to the  
block diagram of Figure 11 for the RSTI, RSTO, BATD_comp_out, and BATD_drive_high  
signals.  
At the end of the OCV measurement, the BATD/CD and RSTIO pin are released (high  
impedance), the application can start and the charger is enabled.  
Figure 10. BATD and RSTIO timing diagram at power-up  
SOC  
calc.  
Application can start,  
charge is enabled  
OCV  
meas.  
delay  
VCC  
UVLO  
POR  
1.61V  
BATD_comp_out  
BATD_drive_high  
RSTI  
RST0  
Voltage  
measurement  
Voltage  
register  
SOC register  
6.5.1  
BATD and RSTIO pins  
The GG25L provides platform synchronization signals to provide reliable SOC information in  
different cases.  
The BATD/CD pin senses the presence of the battery independently of the battery voltage  
and it controls the battery charger to inhibit the charge during the initial OCV measurement.  
The RSTIO pin can be used to delay the platform startup during the first OCV measurement  
at battery insertion.  
DocID025995 Rev 1  
17/28  
28  
 
Functional description  
GG25L  
Figure 11. BATD and RSTIO  
VCC  
BATD_drive_high  
BATD/CD  
+
-
BATD_comp_out  
1.61 V  
RSTIO  
RSTI  
RSTO  
The BATD/CD pin used as a battery detector is an analog I/O.The input detection threshold  
is typically 1.61 V.  
BATD/CD is also an output connected to V level when active. Otherwise, it is high  
CC  
impedance.  
The RSTIO signal is used to control the application system reset during the initial OCV  
measurement. The RSTIO pin is a standard I/O pin with open drain output.  
BATD/CD can be connected to the NTC sensor or to the identification resistor of the battery  
pack. The GG25L does not provide any biasing voltage or current for the battery detection.  
An external pull-up resistor or another device has to pull the BATD/CD pin high when the  
battery is removed.  
Figure 12. BATD/CD pin connection when used as battery detector  
Other biasing  
and/or detection  
circuit  
GG25L  
GG25L  
(>1 M)  
Ru  
Battery  
pack  
Battery pack  
BATD/CD  
BATD/CD  
1K  
1K  
Rid  
Rid  
BATD resistor biasing  
BATD biasing by external circuitry  
18/28  
DocID025995 Rev 1  
GG25L  
I²C interface  
7
I²C interface  
7.1  
Read and write operations  
The I²C interface is used to control and read the current accumulator and registers. It is  
compatible with the Philips I²C Bus® (version 2.1). It is a slave serial interface with a serial  
data line (SDA) and a serial clock line (SCL).  
SCL: input clock used to shift data  
SDA: input/output bidirectional data transfers  
A filter rejects the potential spikes on the bus data line to preserve data integrity.  
The bidirectional data line supports transfers up to 400 Kbit/s (fast mode). The data are  
shifted to and from the chip on the SDA line, MSB first.  
The first bit must be high (START) followed by the 7-bit device address and the read/write  
control bit. Bits DevADDR0 to DevADDR2 are factory-programmable, the default device  
address value being 1110 000 (AddrID0 = AddrID1 = AddrID2 = 0). The GG25L then sends  
an acknowledge at the end of an 8-bit long sequence. The next eight bits correspond to the  
register address followed by another acknowledge.  
The data field is the last 8-bit long sequence sent, followed by a last acknowledge.  
Table 10. Device address format  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
1
1
1
0
DevADDR2 DevADDR1 DevADDR0  
R/W  
Table 11. Register address format  
bit5 bit4 bit3 bit2  
bit7  
bit6  
bit1  
bit0  
RegADDR7 RegADDR6 RegADDR5 RegADDR4 RegADDR3 RegADDR2 RegADDR1 RegADDR0  
Table 12. Register data format  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
DATA7  
DATA6  
DATA5  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
DocID025995 Rev 1  
19/28  
28  
I²C interface  
GG25L  
Figure 13. Read operation  
6ODYH  
0DVWHU  
5HJꢃGDWDꢃ  
ꢈꢃELWV  
5HJꢃGDWDꢃ  
ꢈꢃELWV  
5HJꢃGDWDꢃ  
ꢈꢃELWV  
$
$
5
$
$
6WDUW 'HYLFHꢃDGGU  
ꢆꢃELWV  
:
$
5HJꢃDGGUHVVꢃ  
ꢈꢃELWV  
5HVWDUW 'HYLFHꢃDGGU  
ꢆꢃELWV  
6WRS  
$
$GGUHVV  
Qꢉꢅ  
$GGUHVV  
Qꢉꢁ  
6WDUWꢃELWꢃ ꢃ6'$ꢃIDOOLQJꢃZKHQꢃ6&/ꢃ ꢃꢁ  
6WRSꢃELWꢃ ꢃ6'$ꢃULVLQJꢃZKHQꢃ6&/ꢃ ꢃꢁꢃ  
5HVWDUWꢃELWꢃ ꢃVWDUWꢃDIWHUꢃDꢃVWDUW  
$FNQRZOHGJHꢃ ꢃ6'$ꢃIRUFHGꢃORZꢃGXULQJꢃDꢃ6&/ꢃFORFN  
*$3060'ꢀꢀꢀꢄꢅ  
Figure 14. Write operation  
5HJꢃGDWDꢃ  
ꢈꢃELWV  
5HJꢃGDWDꢃ  
ꢈꢃELWV  
$
$
$
$
6WDUW 'HYLFHꢃDGGU  
ꢆꢃELWV  
:
$
5HJꢃDGGUHVVꢃ  
ꢈꢃELWV  
5HJꢃGDWD  
ꢈꢃELWV  
6WRS  
$GGUHVV  
Qꢉꢅ  
$GGUHVV  
Qꢉꢁ  
6WDUWꢃELWꢃ ꢃ6'$ꢃIDOOLQJꢃZKHQꢃ6&/ꢃ ꢃꢁ  
6WRSꢃELWꢃ ꢃ6'$ꢃULVLQJꢃZKHQꢃ6&/ꢃ ꢃꢁꢃ  
5HVWDUWꢃELWꢃ ꢃVWDUWꢃDIWHUꢃDꢃVWDUW  
*$3060'ꢀꢀꢀꢄꢄ  
20/28  
DocID025995 Rev 1  
GG25L  
I²C interface  
7.2  
Register map  
7.2.1  
Register map  
The register space provides 28 control registers, 1 read-only register for device ID, 16  
read/write RAM working registers reserved for the gas gauge algorithm, and 16 OCV  
adjustment registers. Mapping of all registers is shown in Table 13. Detailed descriptions of  
registers 0 (REG_MODE) and 1 (REG_CTRL) are shown in Table 14 and Table 15. All  
registers are reset to default values at power-on or reset, and the PORDET bit in register  
REG_CTRL is used to indicate the occurrence of a power-on reset.  
Table 13. Register map  
Address  
(decimal)  
Soft  
POR  
Name  
Type  
POR  
Description  
LSB  
Control registers  
REG_MODE  
REG_CTRL  
0 to 23  
0
1
R/W  
R/W  
R/W  
Mode register  
Control and status register  
Gas gauge relative SOC  
REG_SOC  
2-3  
1/512%  
5.88 µV  
Number of conversions   
(2 bytes)  
REG_COUNTER  
REG_CURRENT  
4-5  
6-7  
R
R
0x00  
0x00  
0x00  
0x00  
Battery current value   
(2 bytes)  
Battery voltage value   
(2 bytes)  
REG_VOLTAGE  
8-9  
10  
11  
R
R
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
2.2 mV  
1 °C  
REG_TEMPERATURE  
REG_CC_ADJ_HIGH  
Temperature data  
Coulomb counter adjustment  
factor  
R/W  
1/2%  
Voltage mode adjustment  
factor  
REG_VM_ADJ_HIGH  
REG_OCV  
12  
R/W  
R/W  
R/W  
0x00  
0x00  
395  
0x00  
0x00  
395  
13-14  
15-16  
OCV register (2 bytes)  
0.55 mV  
Coulomb counter gas gauge  
configuration  
REG_CC_CNF  
Voltage gas gauge algorithm  
parameter  
REG_VM_CNF  
17-18  
19  
R/W  
R/W  
R/W  
321  
0x02  
0xAA  
321  
0x02  
0xAA  
SOC alarm level   
(default = 1%)  
REG_ALARM_SOC  
REG_ALARM_VOLTAGE  
1/2%  
Battery low voltage alarm  
level (default is 3 V)  
20  
17.6 mV  
47.04 µV  
Current threshold for the  
relaxation counter  
REG_CURRENT_THRES  
REG_RELAX_COUNT  
REG_RELAX_MAX  
REG_ID  
21  
22  
23  
24  
R/W  
R
0x0A  
0x78  
0x78  
0x14  
0x0A  
0x78  
0x78  
0x14  
Relaxation counter  
Relaxation counter max  
value  
R/W  
R
Part type ID = 14h  
DocID025995 Rev 1  
21/28  
28  
 
I²C interface  
GG25L  
LSB  
Table 13. Register map (continued)  
Address  
Soft  
Name  
Type  
POR  
Description  
(decimal)  
POR  
Coulomb counter adjustment  
factor  
REG_CC_ADJ_LOW  
REG_VM_ADJ_LOW  
ACC_CC_ADJ  
25  
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Voltage mode adjustment  
factor  
26  
1/512%  
Coulomb Counter correction  
accumulator  
27-28  
Voltage mode correction  
accumulator  
ACC_VM_ADJ  
RAM registers  
REG_RAM0  
...  
29-30  
32 to 47  
32  
Working register 0 for gas  
gauge  
R/W Random Unchanged  
R/W Random Unchanged  
...  
...  
Working register 15 for gas  
gauge  
REG_RAM15  
47  
OCV adjustment  
registers  
OCV adjustment table   
(16 registers)  
REG_OCVTAB  
48 to 63  
R/W  
0x00  
0x00  
0.55 mV  
22/28  
DocID025995 Rev 1  
GG25L  
I²C interface  
7.2.2  
Register description  
Values held in consecutive registers (such as the charge value in the REG_SOC register  
pair) are stored with high bits in the first register and low bits in the second register. The  
registers must be read with a single I²C access to ensure data integrity. It is possible to read  
multiple values in one I²C access. All values must be consistent.  
The SOC data are coded in binary format and the LSB of the low byte is 1/512 %. The  
battery current is coded in 2’s complement format and the LSB value is 5.88 µV. The battery  
voltage is coded in 2’s complement format and the LSB value is 2.20 mV. The temperature  
is coded in 2’s complement format and the LSB value is 1°C.  
Table 14. REG_MODE - address 0  
Name  
Position Type  
Def.  
Description  
0: Mixed mode (Coulomb counter active)  
1: Power saving voltage mode  
VMODE  
0
1
2
3
R/W  
R/W  
R/W  
R/W  
1
Write 1 to clear ACC_VM_ADJ and  
REG_VM_ADJ.   
Auto clear bit if GG_RUN = 1  
CLR_VM_ADJ  
CLR_CC_ADJ  
ALM_ENA  
0
0
1
Write 1 to clear ACC_CC_ADJ and REG_CC_ADJ  
Auto clear bit if GG_RUN = 1  
Alarm function  
0: Disabled  
1: Enabled  
0: Standby mode. Accumulator and counter  
registers are frozen, gas gauge and battery  
monitor functions are in standby.  
1: Operating mode.  
GG_RUN  
FORCE_CC  
FORCE_VM  
4
5
R/W  
R/W  
R/W  
0
0
0
Forces the mixed mode relaxation timer to switch  
to the Coulomb counter mode.  
Write 1, self clear to 0  
Relaxation counter = 0  
Forces the mixed mode relaxation timer to switch  
to voltage gas gauge mode.  
Write 1, self clear to 0  
6
7
Relaxation counter = Relax_max  
Unused  
DocID025995 Rev 1  
23/28  
28  
I²C interface  
GG25L  
Table 15. REG_CTRL - address 1  
Name  
Position Type  
Def.  
Description  
ALM pin status  
0 = ALM input is low  
1 = ALM input is high  
R
W
X
IO0DATA  
0
ALM pin output drive  
0 = ALM is forced low  
1 = ALM is driven by the alarm conditions  
1
0
0
0
1
0: no effect  
1: resets the conversion counter  
GG_RST is a self-clearing bit.  
GG_RST  
GG_VM  
BATFAIL  
1
2
3
W
Voltage mode active  
0 = REG_SOC from Coulomb counter mode  
1 = REG_SOC from Voltage mode  
R
Battery removal or UVLO detection bit.   
Write 0 to clear   
(Write 1 is ignored)  
R/W  
R
Power on reset (POR) detection bit  
0 = no POR event occurred  
1 = POR event occurred  
Soft reset  
PORDET  
4
5
0 = release the soft-reset and clear the POR  
detection bit,  
1 = assert the soft-reset and set the POR detection  
bit.   
W
0
This bit is self clearing.  
Set with a low-SOC condition.   
Cleared by writing 0.  
ALM_SOC  
ALM_VOLT  
R/W  
R/W  
0
0
Set with a low-voltage condition.   
Cleared by writing 0.  
6
7
Unused  
24/28  
DocID025995 Rev 1  
GG25L  
Package information  
8
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Figure 15. Flip Chip CSP 1.40 x 2.04 mm package mechanical drawing  
'ꢁ  
$ꢁꢃVHHꢃQRWHꢃꢁ  
I'  
H
I(  
H
(ꢁ  
'
&
%
$
%RWWRPꢃYLHZ  
‘ꢃE  
&
$ꢁ  
$
$ꢅ  
*
FFF  
&
(
'
7RSꢃYLHZ  
&63BꢈꢁꢁꢇꢄꢈꢍBRSWLRQ+B9ꢆꢈꢈ  
1. The terminal A1 on the bump side is identified by a distinguishing feature - for instance, by a circular “clear  
area” typically 0.1 mm in diameter and/or a missing bump.  
2. The terminal A1, on the back side, is identified by a distinguishing feature - for instance, by a circular “clear  
DocID025995 Rev 1  
25/28  
28  
Package information  
GG25L  
area” typically 0.2 mm in diameter depending on the die size.  
Table 16. Flip Chip CSP 1.4 x 2.04 mm package mechanical data  
Dimensions  
Symbol  
Millimeters  
Typ.  
Inches  
Typ.  
Min.  
Max.  
Min.  
Max.  
A
A1  
A2  
b
0.545  
0.165  
0.330  
0.220  
1.98  
0.600  
0.200  
0.350  
0.260  
2.01  
0.655  
0.235  
0.370  
0.300  
2.04  
0.021  
0.006  
0.013  
0.009  
0.078  
0.024  
0.008  
0.014  
0.010  
0.079  
0.047  
0.054  
0.031  
0.016  
0.016  
0.011  
0.002  
0.026  
0.009  
0.015  
0.012  
0.080  
D
D1  
E
1.20  
1.34  
1.37  
1.40  
0.053  
0.055  
E1  
e
0.800  
0.400  
0.405  
0.285  
0.050  
0.360  
0.395  
0.275  
0.440  
0.415  
0.295  
0.014  
0.016  
0.011  
0.017  
0.016  
0.012  
fD  
fE  
G
ccc  
0.050  
0.002  
Figure 16. Flip Chip CSP 1.4 x 2.04 mm footprint recommendation  
26/28  
DocID025995 Rev 1  
GG25L  
Revision history  
9
Revision history  
Table 17. Document revision history  
Changes  
Date  
Revision  
28-Feb-2014  
1
Initial release  
DocID025995 Rev 1  
27/28  
28  
GG25L  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE  
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)  
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS  
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT  
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS  
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY  
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE  
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2014 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
28/28  
DocID025995 Rev 1  

相关型号:

GG25LAJ

Fitness and healthcare
STMICROELECTR

GG25LJ

Fitness and healthcare
STMICROELECTR

GG32C

UM-1, UM-4, UM-5 Microprocessor Crystal
ETC

GG32C1

UM-1, UM-4, UM-5 Microprocessor Crystal
CALIBER

GG32C3

UM-1, UM-4, UM-5 Microprocessor Crystal
CALIBER

GG32C5

UM-1, UM-4, UM-5 Microprocessor Crystal
CALIBER

GG32E

UM-1, UM-4, UM-5 Microprocessor Crystal
ETC

GG32E1

UM-1, UM-4, UM-5 Microprocessor Crystal
CALIBER

GG32E3

UM-1, UM-4, UM-5 Microprocessor Crystal
CALIBER

GG32E5

UM-1, UM-4, UM-5 Microprocessor Crystal
CALIBER

GG32F

UM-1, UM-4, UM-5 Microprocessor Crystal
ETC

GG32F1

UM-1, UM-4, UM-5 Microprocessor Crystal
CALIBER