E-STLC3085 [STMICROELECTRONICS]

Integrated Pots Interface for Home Access Gateway and WLL; 综合POTS接口,用于家庭接入网关和WLL
E-STLC3085
型号: E-STLC3085
厂家: ST    ST
描述:

Integrated Pots Interface for Home Access Gateway and WLL
综合POTS接口,用于家庭接入网关和WLL

数字传输接口 电池 电信集成电路 电信电路 栅 CD WLL
文件: 总28页 (文件大小:355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STLC3085  
Integrated Pots Interface  
for Home Access Gateway and WLL  
Preliminary Data  
Features  
Monochip SLIC optimised for WLL & VoIP  
applications  
Implement all key features of the borsht  
function  
Single supply (4.5 to 12V)  
Built in DC/DC Converter controller  
TQFP44  
Soft battery reversal with programmable  
transition time  
On-hook transmission  
Programmable off-hook detector threshold  
Integrated ringing  
is the ability to operate with a single supply  
voltage (from +4.5V to +12V) and self generate  
the negative battery by means of an on chip DC/  
DC converter controller that drives an external  
MOS switch.  
Integrated ring trip  
Parallel control interface (3.3V logic level)  
Programmable constant current feed  
Surface mount package  
The battery level is properly adjusted depending  
on the operating mode. A useful characteristic for  
these applications is the integrated ringing  
generator.  
Integrated thermal protection  
Dual gain value option  
Automatic recognition flyback and buckboost  
The control interface is a parallel type with open  
drain output and 3.3V logic levels. Constant  
current feed can be set from 20mA to 25mA.  
configuration  
BCDIIIS 90V technology  
-40 to +85°C operating range  
Off-hook detection threshold is programmable  
from 5mA to 9mA.  
Description  
The device, developed in BCDIIIS technology  
(90V process), operates in the extended  
temperature range and integrates a thermal  
protection that sets the device in power down  
when Tj exceeds 140°C..  
The STLC3085 is a SLIC device specifically  
designed for WLL (Wireless Local Loop), and  
ISDN Terminal Adaptors and VoIP applications.  
One of the distinctive characteristic of this device  
Order codes  
Part number  
Temp range, °C  
Package  
Packing  
E-STLC3085 (*)  
-40 to 85  
TQFP44  
Tube  
(*) ECOPACK® (see Section 5)  
February 2006  
Rev 1  
1/28  
www.st.com  
28  
Contents  
STLC3085  
Contents  
1
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.1  
1.2  
1.3  
1.4  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
3
Electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.1  
2.2  
2.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1  
3.2  
DC/DC converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.2.1 Power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.2.2 High impedance feeding (HI-Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.2.3 Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.2.4 Ringing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.2.5 Layout recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.2.6 External components list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4
Applications diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Appendix A STLC3085 test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Appendix B STLC3085 overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Appendix C Typical state diagram for STLC3085 operation. . . . . . . . . . . . . . . . 25  
5
6
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2/28  
STLC3085  
Block diagram and pin description  
1
Block diagram and pin description  
1.1  
Block diagram  
Figure 1. Block diagram  
D0  
D1  
D2  
DET  
INPUT LOGIC AND DECODER  
OUTPUT LOGIC  
BGND  
TIP  
Status and functions  
TX  
RX  
LINE  
OUTPUT  
STAGE  
SUPERVISION  
DRIVER  
ZAC1  
ZAC  
RING  
AC PROC  
RS  
ZB  
CREV  
CSVR  
DC PROC  
CLK  
RSENSE  
GATE  
VF  
DC/DC  
CONV.  
Vcc  
CVCC  
VPOS  
REFERENCE  
Vss  
VOLT.  
REG.  
VBAT  
Agnd  
Vbat  
CAC  
ILTF RD IREF RLIM RTH  
AGND  
1.2  
Pin connection  
Figure 2. Pin connection  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
1
2
3
4
5
6
7
8
9
D0  
D1  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
ILTF  
RD  
D2  
RTH  
PD  
IREF  
RLIM  
AGND  
CVCC  
VPOS  
RSENSE  
GATE  
CLK  
GAIN SET  
N.C.  
DET  
RES  
RES  
RES  
10  
11  
RES  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
D00TL488  
3/28  
Block diagram and pin description  
STLC3085  
1.3  
Pin description  
Table 1.  
N°  
Pin description  
Pin  
Function  
1
2
3
4
D0  
D1  
D2  
PD  
Control Interface: input bit 0.  
Control Interface: input bit 1.  
Control interface: input bit 2.  
Power Down input. Normally connected to CVCC (or to logic level high).  
Control gain interface: 0 Level Rxgain = 0dB Txgain = -6dB  
1 Level Rxgain = +6dB Txgain = -12dB  
5
Gain SET  
6,22,38,  
39,40,42  
NC  
Not connected.  
7
8
DET  
Logic interface output of the supervision detector (active low).  
RESERVED Connected to GND  
RESERVED Connected to GND  
RESERVED Connected to GND  
RESERVED Left open.  
9
10  
11  
12  
RESERVED Connected to GND  
4 wire input port (RX input); 300Kinput impedance. This signal is referred to AGND.  
If connected to single supply CODEC output it must be DC decoupled with proper  
13  
RX  
capacitor.  
14  
15  
16  
ZAC1  
ZAC  
RS  
RX buffer output (the AC impedance is connected from this node to ZAC).  
AC impedance synthesis.  
Protection resistors image (the image resistor is connected from this node to ZAC).  
Balance Network for 2 to 4 wire conversion (the balance impedance ZB is connected from  
this node to AGND. ZA impedance is connected from this node to ZAC1).  
17  
18  
ZB  
CAC  
AC feedback input, AC/DC split capacitor (CAC).  
4 wire output port (TX output). The signal is referred to AGND. If connected to single  
supply  
19  
TX  
CODEC input it must be DC decoupled with proper capacitor.  
20  
21  
CZ  
VF  
Fly-Back compensation  
Feedback input for DC/DC converter controller.  
Power Switch Controller Clock (typ. 125KHz). This pin can also be connected to CVCC or  
AGND. When the CLK pin is connected to CVCC an internal auto-oscillation is internally  
generated and it is used instead of the external clock. When the CLK pin is connected to  
AGND, the GATE output is disabled.  
23  
CLK  
Driver for external Power MOS transistor (P-chanell in Buck-boost configuration, N-  
channel in Fly-back configuration).  
24  
25  
GATE  
Voltage input for current sensing. RSENSE resistor should be connected close to this pin  
and VPOS pin (Buck-boost) or GND (Fly-back). The PCB layout should minimize the  
extra resistance introduced by the copper tracks.  
RSENSE  
4/28  
STLC3085  
Block diagram and pin description  
Table 1.  
N°  
Pin description (continued)  
Pin  
Function  
26  
27  
28  
VPOS  
CVCC  
AGND  
Positive supply input.  
Internal positive voltage supply filter.  
Analog Ground, must be shorted with BGND.  
Constant current feed programming pin (via RLIM). RLIM should be connected close to  
this pin and AGND pin to avoid noise injection.  
29  
30  
31  
32  
RLIM  
IREF  
RTH  
RD  
Internal bias current setting pin. RREF should be connected close to this pin and AGND  
pin to avoid noise injection.  
Off-hook threshold programming pin (via RTH). RTH should be connected close to this  
pin and AGND pin to avoid noise injection.  
DC feedback and ring trip input. RD should be connected close to this pin and AGND pin  
to avoid noise injection.  
33  
34  
35  
ILTF  
Transversal line current image output.  
Battery supply filter capacitor.  
CSVR  
BGND  
Battery Ground, must be shorted with AGND.  
Regulated battery voltage self generated by the device via DC/DC converter.  
Must be shorted to VBAT1.  
36  
VBAT  
37  
41  
RING  
TIP  
2 wire port; RING wire (Ib is the current sunk into this pin).  
2 wire port; TIP wire (Ia is the current sourced from this pin).  
Reverse polarity transition time control. A proper capacitor connected between this pin  
and AGND is setting the reverse polarity transition time. This is the same transition time  
used to shape the "trapezoidal ringing" during ringing injection.  
43  
44  
CREV  
VBAT1  
Frame connection. Must be shorted to VBAT.  
1.4  
Thermal data  
Table 2.  
Symbol  
Thermal data  
Parameter  
Value  
Unit  
Rth j-amb  
Thermal Resistance Junction to Ambient  
Typ.  
60  
°C/W  
5/28  
Electrical specification  
STLC3085  
2
Electrical specification  
2.1  
Absolute maximum ratings  
Table 3.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
Vpos  
Positive Supply Voltage  
-0.4 to +13  
-1 to +1  
-0.4 to 5.5  
150  
V
V
A/BGND AGND to BGND  
Vdig  
Tj  
Pin D0, D1, D2, DET  
V
Max. junction Temperature  
°C  
Vbtot=|Vpos|+|Vbat|. (Total voltage applied to the device  
supply pins).  
Vbtot  
85  
V
Human Body Model  
1750  
500  
V
V
ESD  
RATING  
Charged Device Model  
2.2  
Operating range  
Table 4. Operating range  
Symbol  
Parameter  
Value  
Unit  
Vpos  
A/BGND AGND to BGND  
Positive Supply Voltage  
4.5 to +12  
-100 to +100  
-0.25 to 5.25  
-40 to +85  
V
mV  
V
Vdig  
Top  
Pin D0, D1, D2, DET, PD  
Ambient Operating Temperature Range  
Self Generated Battery Voltage  
°C  
(1)  
-64 max.  
V
Vbat  
(1) Vbat is self generated by the on chip DC/DC converter and can be programmed via RF1 and RF2.  
RF1 and RF2 shall be selected in order to fulfil the a.m limits (see Table 10 )  
6/28  
STLC3085  
Electrical specification  
2.3  
Electrical characteristics  
Table 5.  
Electrical characteristics  
Test conditions: Vpos = 6.0V, AGND = BGND, Normal Polarity, Tamb = 25°C.  
External components as listed in the "Typical Values" column of EXTERNAL COMPONENTS Table.  
Note: Testing of all parameter is performed at 25°C. Characterisation as well as design rules used allow correlation of  
tested performances at other temperatures. All parameters listed here are met in the operating range: -40 to +85°C.  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
DC CHARACTERISTICS  
Il = 0, HI-Z  
Vlohi  
(High impedance feeding)  
Tamb = 0 to 85°C  
Line voltage  
Line voltage  
40  
46  
44  
V
Il = 0, HI-Z  
Vlohi  
(High impedance feeding)  
Tamb = -40 to 85°C  
38  
31  
V
V
Il = 0, ACTIVE  
Vloa  
Vloa  
Ilim  
Line voltage  
Line voltage  
38  
35  
Tamb = 0 to 85°C  
Il = 0, ACTIVE  
29  
20  
V
Tamb = -40 to 85°C  
Lim. current programming  
range  
ACTIVE mode  
25  
mA  
ACTIVE mode.  
Ilima  
Lim. current accuracy  
Rel. to programmed value  
20mA to 25mA  
-10  
2.4  
10  
%
Rfeed HI Feeding resistance  
HI-Z (High Impedance feeding)  
3.6  
kΩ  
AC CHARACTERISTICS  
Rp = 50, 1% tol.,  
ACTIVE N. P., RL = 600(1)  
Long. to transv.  
L/T  
50  
40  
58  
45  
dB  
dB  
(see Appendix for test circuit)  
f = 300 to 3400Hz  
Rp = 50, 1% tol.,  
ACTIVE N. P., RL = 600(1)  
Transv. to long.  
T/L  
(see Appendix for test circuit)  
f = 300 to 3400Hz  
Rp = 50, 1% tol.,  
ACTIVE N. P., RL = 600(1)  
f = 1kHz  
Transv. to long.  
T/L  
2WRL  
THL  
48  
22  
30  
53  
26  
dB  
dB  
dB  
(see Appendix for test circuit)  
300 to 3400Hz,  
ACTIVE N. P., RL = 600(1)  
2W return loss  
300 to 3400Hz,  
20Log|VRX/VTX|,  
Trans-hybrid loss  
ACTIVE N. P., RL = 600(1)  
7/28  
Electrical specification  
STLC3085  
Table 5.  
Electrical characteristics (continued)  
Test conditions: Vpos = 6.0V, AGND = BGND, Normal Polarity, Tamb = 25°C.  
External components as listed in the "Typical Values" column of EXTERNAL COMPONENTS Table.  
Note: Testing of all parameter is performed at 25°C. Characterisation as well as design rules used allow correlation of  
tested performances at other temperatures. All parameters listed here are met in the operating range: -40 to +85°C.  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
dBm  
mV  
at line terminals on ref. imped.  
ACTIVE N. P., RL = 600(1)  
Ovl  
2W overload level  
3.2  
ACTIVE N. P., RL = 600(1)  
TXoff  
G24  
TX output offset  
-250  
-6.4  
250  
-5.6  
0dBm @ 1020Hz,  
ACTIVE N. P., RL = 600(1)  
Transmit gain abs.  
dB  
0dBm @ 1020Hz,  
ACTIVE N. P., RL = 600(1)  
G42  
Receive gain abs.  
-0.4  
0.4  
dB  
dB  
rel. 1020Hz; 0dBm,  
300 to 3400Hz,  
G24f  
TX gain variation vs. freq.  
-0.12  
0.12  
ACTIVE N. P., RL = 600(1)  
rel. 1020Hz; 0dBm,  
300 to 3400Hz,  
ACTIVE N. P., RL = 600(1)  
G24f  
V2Wp  
V2Wp  
V4Wp  
RX gain variation vs. freq.  
-0.12  
0.12  
-68  
dB  
psophometric filtered  
ACTIVE N. P., RL = 600(1)  
Tamb = 0 to +85°C  
Idle channel noise at line 0dB  
gainset  
-73  
-68  
-75  
-75  
dBmp  
dBmp  
dBmp  
dBmp  
psophometric filtered  
ACTIVE N. P., RL = 600(1)  
Tamb = -40 to +85°C  
Idle channel noise at line 0dB  
gainset  
psophometric filtered  
ACTIVE N. P., RL = 600(1)  
Tamb = 0 to +85°C  
Idle channel noise at line 0dB  
gainset  
-70  
psophometric filtered  
ACTIVE N. P., RL = 600(1)  
Tamb = -40 to +85°C  
Idle channel noise at line 0dB  
gainset  
V4Wp  
Thd  
ACTIVE N. P., RL = 600(1)  
Total Harmonic Distortion  
-44  
dB  
CLKfreq CLK operating range  
RING  
-10%  
41  
125  
45  
10%  
kHz  
RING D2 toggling @ fr = 25Hz  
Load = 2REN;  
Crest Factor = 1.25  
1REN = 1800+ 1.0µF  
Tamb = 0 to +85°C  
Vring  
Line voltage  
Vrms  
8/28  
STLC3085  
Table 5.  
Electrical specification  
Electrical characteristics (continued)  
Test conditions: Vpos = 6.0V, AGND = BGND, Normal Polarity, Tamb = 25°C.  
External components as listed in the "Typical Values" column of EXTERNAL COMPONENTS Table.  
Note: Testing of all parameter is performed at 25°C. Characterisation as well as design rules used allow correlation of  
tested performances at other temperatures. All parameters listed here are met in the operating range: -40 to +85°C.  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
RING D2 toggling @ fr = 25Hz  
Load = 2REN;  
Crest Factor = 1.25  
Vring  
Line voltage  
40  
44  
Vrms  
1REN = 1800+ 1.0µF  
Tamb = -40 to +85°C  
DETECTORS  
ACT. mode, RTH = 32.4k1%  
(Prog. ITH = 9mA)  
IOFFTHA Off/hook current threshold  
10.5  
mA  
kΩ  
mA  
kΩ  
mA  
W
Off/hook loop resistance  
ACT. mode, RTH = 32.4k1%  
(Prog. ITH = 9mA)  
ROFTHA  
threshold  
3.4  
6
ACT. mode, RTH = 32.4k1%  
(Prog. ITH = 9mA)  
IONTHA On/hook current threshold  
On/hook loop resistance  
ACT. mode, RTH = 32.4k1%  
(Prog. ITH = 9mA)  
RONTHA  
threshold  
8
Hi Z mode, RTH = 32.4k1%  
(Prog. ITH = 9mA)  
IOFFTHI Off/hook current threshold  
10.5  
Off/hook loop resistance  
Hi Z mode, RTH = 32.4k1%  
(Prog. ITH = 9mA)  
ROFFTHI  
threshold  
800  
6
Hi Z mode, RTH = 32.4k1%  
(Prog. ITH = 9mA)  
IONTHI On/hook current threshold  
mA  
On/hook loop resistance  
Hi Z mode, RTH = 32.4k1%  
(Prog. ITH = 9mA)  
RONTHI  
threshold  
8
kΩ  
mA  
%
Ring Trip detector threshold  
range  
Irt  
RING  
RING  
20  
-15  
50  
15  
Ring Trip detector threshold  
accuracy  
Irta  
Trtd  
Td  
Ring trip detection time  
Dialling distortion  
RING  
TBD  
160  
ms  
ms  
W
ACTIVE  
-1  
1
Rlrt (2)  
ThAl  
Loop resistance  
500  
Tj for th. alarm activation  
°C  
DIGITAL INTERFACE  
INPUTS: D0, D1, D2, PD, CLK  
OUTPUTS: DET  
Vih  
Vil  
In put high voltage  
Input low voltage  
2
V
V
0.8  
9/28  
Electrical specification  
STLC3085  
Table 5.  
Electrical characteristics (continued)  
Test conditions: Vpos = 6.0V, AGND = BGND, Normal Polarity, Tamb = 25°C.  
External components as listed in the "Typical Values" column of EXTERNAL COMPONENTS Table.  
Note: Testing of all parameter is performed at 25°C. Characterisation as well as design rules used allow correlation of  
tested performances at other temperatures. All parameters listed here are met in the operating range: -40 to +85°C.  
Symbol  
Parameter  
Input high current  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Iih  
Iil  
-10  
-10  
10  
10  
µA  
µA  
V
Input low current  
Vol  
Output low voltage  
Iol = 1mA  
0.45  
PSRR AND POWER CONSUMPTION  
Vripple = 100mVrms  
50 to 4000Hz  
Power supply rejection Vpos to  
PSERRC  
2W port  
26  
36  
dB  
HI-Z On-Hook  
13  
50  
55  
25  
80  
90  
mA  
mA  
mA  
Ivpos  
Ipk (3)  
Vpos supply current @ ii = 0  
Peak current limiting accuracy  
ACTIVE On-Hook,  
RING (line open)  
RING Off-Hook  
-20%  
770  
+20% mApk  
RSENSE = 130mΩ  
(1) RL: Line Resistance  
(2) Rlrt = Maximum loop resistance (incl. telephone) for correct ring trip detection.  
(3) Buck Boost configuration.  
10/28  
STLC3085  
Functional description  
3
Functional description  
The STLC3085 is a device specifically developed for WLL VoIP and ISDN-TA applications.  
It is based on a SLIC core, on purpose optimised for these applications, with the addition of a  
DC/DC converter controller to fulfil the WLL and ISDN-TA design requirements.  
The SLIC performs the standard feeding, signalling and transmission functions.  
It can be set in three different operating modes via the D0, D1, D2 pins of the control logic  
interface (0 to 3.3V logic levels). The loop status is carried out on the DET pin (active low).  
The DET pin is an open drain output to allow easy interfacing with both 3.3V and 5V logic  
levels.  
The four possible SLIC’s operating modes are:  
Power Down  
High Impedance Feeding (HI-Z)  
Active  
Ringing  
Table 6 shows how to set the different SLIC operating modes.  
Table 6.  
PD  
SLIC operating modes.  
D0  
D1  
D2  
Operating Mode  
0
1
1
1
0
0
0
0
0
0
1
1
X
X
0
Power Down  
H.I. Feeding (HI-Z)  
Active Normal Polarity  
Active Reverse Polarity  
Not used  
1
Not used  
1
1
0
0/1  
Ring (D2 bit toggles @ fring)  
3.1  
DC/DC converter  
The DC/DC converter controller is driving an external power MOS transistor N-Ch plus  
transformer (Flyback configuration) or P-Ch plus inductor (BuckBoost configuration), in order to  
generate the negative battery voltage needed for device operation.  
The DC/DC converter controller is synchronised with an external CLK (125KHz typ.) or with an  
internal clock generated when the pin CLK is connected to CVCC. One Rsense in series to  
PGND supply (FlyBack) or to VPOS supply (BuckBoost) allows to fix the maximum allowed  
input peak current.  
This feature is implemented in order to avoid overload on Vpos supply in case of line transient  
(ex. ring trip detection). Typ. value of 130mguarantees an average current consumption from  
Vpos < 600mA for BuckBoost configuration and < 1.25A for Fly- Back configuration.  
11/28  
Functional description  
STLC3085  
Typ. value of 220mguarantees an average current consumption from Vpos < 800mA for Fly-  
Back configuration  
The self generated battery voltage is set to a predefined value in on-hook state.  
This value can be adjusted via one external resistor (RF1) and it is typical -46V. When RING  
mode is selected this value is increased to -64V typ.  
Once the line goes in off-hook condition, the DC/DC converter automatically adjusts the  
generated battery voltage in order to feed the line with a fixed DC current (programmable via  
RLIM) optimising the power dissipation.  
3.2  
Operating modes  
3.2.1 Power down  
When this mode is selected the SLIC is switched off and the TIP and RING pins are in high  
impedance. Also the line detectors are disabled therefore the off-hook condition cannot be  
detected. This mode can be selected in emergency condition when it is necessary to cut any  
current delivered to the line. This mode is also forced by STLC3085 in case of thermal overload  
(Tj > 140°C).  
In this case the device goes back to the previous status as soon as the junction temperature  
decrease under the hysteresis threshold.  
No AC transmission is possible  
3.2.2 High impedance feeding (HI-Z)  
This operating mode is normally selected when the telephone is in on-hook in order to monitor  
the line status keeping the power consumption at the minimum.  
The output voltage in on-hook condition is equal to the self generated battery voltage (-46V typ).  
When off-hook occurs the DET becomes active (low logic level).  
The off-hook threshold in HI-Z mode is the same value as programmed in ACTIVE mode.  
The DC characteristic in HI-Z mode is just equal to the self generated battery with  
2x(1600+Rp) in series (see Figure 3), where Rp is the external protection resistance.  
No AC transmission is possibile.  
Figure 3. DC Characteristic in HI-Z Mode.  
IL  
Vbat  
2x(R1+Rp)  
Slope: 2x(R1+Rp)  
(R1=1500ohm)  
VL  
Vbat (-46V)  
12/28  
STLC3085  
Functional description  
3.2.3 Active  
3.2.3.1 DC characteristics & supervision  
When this mode is selected the STLC3085 provides both DC feeding and AC transmission.  
The STLC3085 feeds the line with a constant current fixed by RLIM (20mA to 25mA range).  
The on-hook voltage is typically 38V allowing on-hook transmission; the self generated Vbat is -  
46V typ.  
If the loop resistance is very high and the line current cannot reach the programmed constant  
current feed value, the STLC3085 behaves like a 38V voltage source with a series impedance  
equal to the protection resistors 2xRp (typ. 2x50). Figure 4 shows the typical DC  
characteristic in ACTIVE mode.  
The line status (on/off hook) is monitored by the SLIC’S supervision circuit. The off-hook  
threshold can be programmed via the external resistor RTH in the range from 5mA to 9mA.  
Independently on the programmed constant current value, the TIP and RING buffers have a  
current source capability limited to 65mA typ.  
Figure 4. DC characteristic in ACTIVE mode  
IL  
Ilim  
(20 to  
25mA)  
2Rp  
VL  
10V  
Vbat (-46V)  
Moreover the power available at Vbat is controlled by the DC/DC converter that limits the peak  
current drawn from the Vpos supply. The maximum allowed current peak is set by RSENSE  
resistor.  
3.2.3.2 AC characteristics  
The SLIC provides the standard SLIC transmission functions:  
Once in active mode the SLIC can operate with two different Tx, Rx Gain. Setting properly by  
the Gain set control bit (see Table 7).  
Table 7.  
Gain Set in Active Mode  
Gain set  
4 to 2 wire Gain  
2 to 4 wire Gain  
Impedance Synthesis Scale Factor  
0
1
0dB  
-6dB  
x 50  
x 25  
+6dB  
-12dB  
Input impedance synthesis: can be real or complex and is set by a scaled (x50 or x25)  
external ZAC impedance.  
13/28  
Functional description  
STLC3085  
Transmit and receive: The AC signal present on the 2W port (TIP/RING) is transferred to  
the TX output with a -6dB or -12dB gain and from the RX input to the 2W port with a 0dB or  
+6dB gain.  
2 to 4 wire conversion: The balance impedance can be real or complex, the proper  
cancellation is obtained by means of two external impedance ZA and ZB  
Once in Active mode (D1=1) the SLIC can operate in different states setting properly D0 and  
D2 control bits (see also Table 8).  
Table 8.  
D0  
SLIC states in ACTIVE mode  
D1  
D2  
Operating Mode  
0
0
1
1
0
1
Active Normal Polarity  
Active Reverse Polarity  
3.2.3.3 Polarity reversal  
The D2 bit controls the line polarity, the transition between the two polarities is performed in a  
"soft" way. This means that the TIP and RING wire exchange their polarities following a ramp  
transition (see Figure 5).  
The transition time is controlled by an external capacitor CREV. This capacitor is also setting  
the shape of the ringing trapezoidal waveform. When the control pins set battery reversal the  
line polarity is reversed with a proper transition time set via an external capacitor (CREV).  
Figure 5. TIP/RING typical transition from Direct to Reverse Polarity  
GND  
TIP  
4V typ.  
38 V typ  
ON-HOOK  
dV/dT set  
by CREV  
RING  
3.2.4 Ringing  
When this mode is selected STLC3085 self generate an higher negative battery (-64V typ.) in  
order to allow a balanced ringing signal of typically 59Vpeak.  
In this condition both the DC and AC feedback loop are disabled and the SLIC line drivers  
operate as voltage buffers. The ring waveform is obtained toggling the D2 control bit at the  
desired ring frequency. This bit in fact controls the line polarity (0=direct; 1= reverse).  
As in the ACTIVE mode the line voltage transition is performed with a ramp transition, obtaining  
in this way a trapezoidal balanced ring waveform (see Figure 6).  
The shaping is defined by the CREV external capacitor.  
14/28  
STLC3085  
Functional description  
Figure 6. TIP/RING typical ringing waveform  
GND  
TIP  
2.5V typ.  
59V  
typ.  
dV/dT set  
by CREV  
RING  
VBAT  
2.5V typ.  
Selecting the proper capacitor value it is possible to get different crest factor values.  
The following table shows the crest factor values obtained with a 20Hz and 25Hz ring frequency  
and with 1REN. These value are valid either with European or USA specification:  
Table 9.  
CREV  
CREST FACTOR @20Hz  
CREST FACTOR @25Hz  
22nF  
1.2  
1.26  
1.32  
27nF  
33nF  
1.25  
1.33  
Not significant (1)  
(1) Distorsion already less than 10%.  
The ring trip detection is performed sensing the variation of the AC line impedance from on  
hook (relatively high) to off-hook (low). This particular ring trip method allows to operate  
without DC offset superimposed on the ring signal and therefore obtaining the maximum  
possible ring level on the load starting from a given negative battery.  
It should be noted that such a method is optimised for operation on short loop applications and  
may not operate properly in presence of long loop applications (> 500).  
Once ring trip is detected, the DET output is activated (logic level low), at this point the card  
controller or a simple logic circuit should stop the D2 toggling in order to effectively disconnect  
the ring signal and then set the STLC3085 in the proper operating mode (normally ACTIVE).  
3.2.4.1 Ring level in presence of more telephone in parallel  
As already mentioned above the maximum current that can be drawn from the Vpos supply is  
controlled and limited via the external RSENSE.  
This will limit also the power available at the self generated negative battery.  
If for any reason the ringer load is too low the self generated battery will drop in order to keep  
the power consumption to the fixed limit and therefore also the ring voltage level will be  
reduced.  
In the typical Buck Boost configuration with RSENSE = 130mthe peak current from Vpos is  
limited to about 770mA, which correspond to an average current of 600mA max. In this  
condition the STLC3085 can drive up to 2REN with a ring frequency fr=25Hz (1REN = 1800+  
1.0µF, European standard).  
In Fly-Back configuration the value of R  
USA standards.  
= 220mguarantees match both European and  
SENSE  
15/28  
Functional description  
STLC3085  
3.2.5 Layout recommendation  
A properly designed PCB layout is a basic issue to guarantee a correct behaviour and good  
noise performances.  
Particular care must be taken on the ground connection and in this case the star configuration  
allows surely to avoid possible problems (see Application Diagram Figure 7 and Figure 8).  
The ground of the power supply (VPOS) has to be connected to the center of the star, let’s call  
this point SYSTEM-GND. This point should show a resistance as low as possible, that means it  
should be a ground plane.  
In particular to avoid noise problems the layout should prevent any coupling between the DC/  
DC converter components and analog pins that are referred to AGND (ex: RD, IREF, RTH,  
RLIM, VF). As a first reccomendation the components CV, L, T1, D1, CVPOS, RSENSE should  
be kept as close as possible to each other and isolated from the other components.  
Additional improvements can be obtained:  
decoupling the center of the star from the analog ground of STLC3085 using small chokes.  
adding a capacitor in the range of 100nF between VPOS and AGND in order to filter the  
switch frequency on VPOS.  
3.2.6 External components list  
In order to properly define the external components value the following system parameters  
have to be defined:  
The AC input impedance shown by the SLIC at the line terminals "Zs" to which the return  
loss measurement is referred. It can be real (typ. 600) or complex.  
The AC balance impedance, it is the equivalent impedance of the line "Zl" used for  
evaluation of the trans-hybrid loss performances (2/4 wire conversion). It is usually a  
complex impedance.  
The value of the two protection resistors Rp in series with the line termination.  
The slope of the ringing waveform "VTR/T ".  
The value of the constant current limit current "Ilim".  
The value of the off-hook current threshold "ITH".  
The value of the ring trip rectified average threshold current "IRTH".  
The value of the required self generated negative battery "VBATR" in ring mode (max value  
is 64V). This value can be obtained from the desired ring peak level + 5V.  
The value of the maximum current peak drawn from Vpos "IPK".  
Table 10. External Components  
Name Function  
Formula  
Typ. Value  
BUCKBOOST CONFIGURATION  
RREF = 1.3/Ibias  
RREF Bias setting current  
26k1%  
Ibias = 50µA  
CSVR = 1/(2π ⋅ fp 1.8M)  
fp = 50Hz  
1.5nF 10%  
100V  
CSVR Negative Battery Filter  
16/28  
STLC3085  
Functional description  
Table 10. External Components (continued)  
Name  
Function  
Formula  
Typ. Value  
RD = 100/IRTH  
4.12k1%  
@ IRTH = 24mA  
Ring Trip threshold setting  
resistor  
RD  
2K< RD < 5KΩ  
Rp > 30Ω  
22µF 20% 15V  
@ RD = 4.12kΩ  
CAC  
RP  
AC/DC split capacitance  
Line protection resistor  
501%  
RLIM = 1300/Ilim  
52.3k1%  
@ Ilim = 25mA  
RLIM  
Current limiting programming  
32.5k< RLIM < 65kΩ  
RTH = 290/ITH  
32.4k1%  
@ITH = 9mA  
Off-hook threshold programming  
(ACTIVE mode)  
RTH  
27k< RTH < 52kΩ  
22nF 10% 10V  
@ 12V/ms  
Reverse polarity transition time  
programming  
CREV = ((1/3750) · T/VTR  
)
CREV  
RDD  
Pull up resistors  
100kΩ  
CVCC Internally supply filter capacitor  
Positive supply filter capacitor  
100nF 20% 10V  
CVpos(1)  
with low impedance for switch  
mode power supply  
100µF  
Battery supply filter capacitor  
with low impedance for switch  
mode power supply  
CV(2)  
100µF 20% 100V  
CVB  
High frequency noise filter  
High frequency noise filter  
470nF 20% 100V  
100nF 10% 15V  
CRD(3)  
RDS(ON)1.2,VDS = -100V  
Total gate charge=20nC max.  
with VGS=4.5V and VDS=1V  
ID>500mA  
Possible choiches:  
IRF9510 or IRF9520 or  
IRF9120 or equivalent  
DC/DC converter switch P ch.  
MOS transistor  
Q1  
SMBYW01-200  
or equivalent  
Vr > 100V, tRR 50ns  
D1  
DC/DC converter series diode  
130mΩ  
@IPK = 770mA  
DC/DC converter peak current  
limiting  
RSENSE = 100mV/IPK  
RSENSE  
270k1%  
@ VBATR = -64V  
Negative battery programming  
level  
RF1  
RF2  
L(4)  
250K<RF1<270KΩ  
Negative battery programming  
level  
9.1k1%  
L=100µH  
SUMIDA CDRH125 or equivalent  
DC/DC converter inductor  
DC resistance 0.1Ω  
FLY-BACK CONFIGURATION  
RREF Bias setting current  
RREF = 1.3/Ibias; Ibias = 50µA  
26k1%  
17/28  
Functional description  
STLC3085  
Table 10. External Components (continued)  
Name  
Function  
Formula  
Typ. Value  
CSVR = 1/(2π ⋅ fp 1.8M)  
fp = 50Hz  
1.5nF 10%  
100V  
CSVR Negative Battery Filter  
RD = 100/IRTH  
4.12k1%  
@ IRTH = 24mA  
Ring Trip threshold setting  
resistor  
RD  
2K< RD < 5KΩ  
22µF 20% 15V  
@ RD = 4.12kΩ  
CAC  
RP  
AC/DC split capacitance  
Line protection resistor  
Rp > 30Ω  
501%  
RLIM = 1300/Ilim  
52.3k1%  
@ Ilim = 25mA  
RLIM  
Current limiting programming  
52.3k< RLIM < 65kΩ  
RTH = 290/ITH  
32.4k1%  
@ITH = 9mA  
Off-hook threshold programming  
(ACTIVE mode)  
RTH  
27k< RTH < 52kΩ  
22nF 10% 10V  
@ 12V/ms  
Reverse polarity transition time  
programming  
CREV = ((1/3750) · T/VTR  
)
CREV  
RDD  
Pull up resistors  
100kΩ  
CVCC Internally supply filter capacitor  
100nF 20% 10V  
Positive supply filter capacitor  
with low impedance for switch  
mode power supply  
CVpos(1)  
CV(2)  
100µF  
Battery supply filter capacitor  
with low impedance for switch  
mode power supply  
100µF 20% 100V  
CVB  
High frequency noise filter  
High frequency noise filter  
470nF 20% 100V  
100nF 10% 15V  
CRD(3)  
Fly-Back compensation  
capacitor  
CZ  
2.2nF, 20%  
CSF  
RSF  
Sense Filter capacitor  
Sense Filter resistor  
120pF, 20%  
1kΩ  
DC/DC converter peak current  
limiting  
R
SENSE = 375mV/IPK  
220m@IPK = 1.7A  
RSENSE  
Q1  
RDS(ON)0.05,VDSS = 30V  
VDG=30V, ID = 6.5A  
DC/DC converter switch Nchan  
MOS transistor  
STN4NF03L  
or equivalent  
Low threshold drive  
SMBYTW01-400  
or equivalent  
Vr > 350V, tRR 80ns  
D1  
DC/DC converter series diode  
Fly-Back transformer 4W, Turns  
Ratio 1:16 fro VPOS range from  
4.5V to 8.5V  
Tyco COEV MAGNETICS  
MGPWG-00007  
T1  
DC/DC Converter transformer  
Name  
Function  
Formula  
Typ. Value  
18/28  
STLC3085  
Functional description  
Table 10. External Components (continued)  
Fly-Back transformer 4W, Turns  
Ratio 1:8 fro VPOS range from  
8.5V to 12V  
Tyco COEV MAGNETICS  
MGPWG-00008  
T1  
DC/DC Converter transformer  
Negative battery programming  
level  
270k1% @ VBATR = -64V  
9.1k1%  
RF1  
RF2  
250K<RF1<270KΩ  
Negative battery programming  
level  
@Gain Set = 0  
RS  
Protection resistance image  
RS = 50 (2Rp)  
5k@ Rp = 50Ω  
ZAC  
Two wire AC impedance  
ZAC = 50 (Zs - 2Rp)  
25k1% @ Zs = 600Ω  
SLIC impedance balancing  
network  
ZA(5)  
ZB(5)  
ZA = 50 Zs  
ZB = 50 Zl  
30k1% @ Zs = 600Ω  
30k1% @ Zl = 600Ω  
Line impedance balancing  
network  
fo = 250kHz  
CCOMP AC feedback loop compensation  
CCOMP = 1/(2π⋅fo100(RP))  
120pF 10% 10V @ Rp = 50Ω  
Trans-Hybrid Loss frequency  
compensation  
CH  
CH = CCOMP  
120pF 10% 10V  
@Gain Set = 1  
RS  
Protection resistance image  
Two wire AC impedance  
RS = 25 (2Rp)  
2.55k@ Rp = 50Ω  
ZAC  
ZAC = 25 (Zs - 2Rp)  
12.5k1% @ Zs = 600Ω  
SLIC impedance balancing  
network  
ZA(5)  
ZB(5)  
ZA = 25 Zs  
ZB = 25 Zl  
15k1% @ Zs = 600Ω  
15k1% @ ZI = 600Ω  
220pF 10% 10VL @ Rp = 50Ω  
220pF 10% 10V  
Line impedance balancing  
network  
fo = 250kHz  
CCOMP AC feedback loop compensation  
CCOMP = 2/(2π⋅fo100(RP))  
Trans-Hybrid Loss frequency  
compensation  
CH  
CH = CCOMP  
(1) CVpos should be defined depending on the power supply current capability and maximum allowable ripple.  
(2) For low ripple application use 2x47 µF in parallel.  
(3) Can be saved if proper PCB layout avoid noise coupling on RD pin (high impedance input).  
(4) For high efficiency in HI-Z mode coil resistance @125kHz must be < 3.  
(5) In case Zs=Zl, ZA and ZB can be replaced by two resistors of same value: RA=RB=|Zs|.  
19/28  
Applications diagram  
STLC3085  
4
Applications diagram  
Figure 7. Application Diagram with N-Channel  
VPOS  
CVPOS  
CVCC  
RX TX  
T1  
RX TX AGND BGND  
RS  
CVCC  
VPOS  
GATE  
RS  
Q1  
ZAC  
N-ch  
RSF  
CCOMP  
ZAC1  
RSENSE  
ZAC  
R
CSF  
CVB  
CZ  
SENSE  
D1  
ZA  
ZB  
VBAT  
CH  
VDD  
RDD  
ZB  
RF1  
RF2  
VF  
CZ  
CV  
GAIN SET  
STLC3085  
CLK  
TIP  
CLK  
TIP  
RP  
DET  
D0  
DET  
D0  
CONTROL  
INTERFACE  
RP  
RING  
CSVR  
CREV  
RING  
D1  
D1  
D2  
D2  
PD  
PD  
CREV  
CSVR  
8RES  
RTH  
RLIM  
IREF  
9RES  
10RES  
12RES  
RREF  
RLIM  
RTH  
11RES  
CAC  
ILTF  
RD  
RD  
CRD  
D04TL626  
AGND  
BGND  
CAC  
SYSTEM GND  
SUGGESTED GROUND LAY-OUT  
PGND  
Figure 8. Application Diagram with P-Channel  
VPOS  
CVCC  
CVPOS  
RSENSE  
RX TX  
RX TX AGND BGND  
RS  
CVCC  
VPOS  
RS  
RSENSE  
GATE  
Q1  
ZAC  
P-ch  
CCOMP  
D1  
ZAC1  
VBAT  
ZAC  
ZA  
CVB  
RF1  
ZB  
L
VF  
CV  
CH  
VDD  
RDD  
ZB  
RF2  
CLK  
TIP  
CLK  
GAIN SET  
RP  
RP  
TIP  
STLC3085  
RING  
RING  
DET  
D0  
DET  
D0  
CONTROL  
INTERFACE  
CSVR  
CREV  
D1  
D1  
D2  
D2  
CREV  
CSVR  
PD  
PD  
8RES  
RTH  
RLIM  
IREF  
9RES  
10RES  
12RES  
RREF  
RLIM  
RTH  
11RES  
CAC  
ILTF  
RD  
RD  
CRD  
D01TL494A  
AGND  
BGND  
CAC  
SYSTEM GND  
SUGGESTED GROUND LAY-OUT  
PGND  
20/28  
STLC3085  
STLC3085 test circuits  
Appendix A STLC3085 test circuits  
Referring to the application diagram shown in Figure 11 and using as external components the  
Typ. Values specified in the "External Components" Table 10 find below the proper  
configuration for each measurement.  
All measurements requiring DC current termination should be performed using "Wandel &  
Goltermann DC Loop Holding Circuit GH-1" or equivalent.  
Figure 9. 2W Return Loss  
2WRL = 20Log(|Zref + Zs|/|Zref-Zs|) = 20Log(E/2Vs)  
W&G GH1  
Zref  
TX  
TIP  
600ohm  
100  
F
Vs  
STLC3085  
application  
circuit  
100mA  
DC max  
1Kohm  
E
Zin = 100K  
200 to 6kHz  
100  
F
1Kohm  
RX  
RING  
Figure 10. THL Trans Hybrid Loss  
THL = 20Log|Vrx/Vtx|  
W&G GH1  
TIP  
TX  
100 F  
100mA  
Vtx  
STLC3085  
application  
circuit  
DC max  
600ohm  
Zin = 100K  
200 to 6kHz  
100 F  
RX  
RING  
Vrx  
21/28  
STLC3085 test circuits  
STLC3085  
Figure 11. G24 Transmit Gain  
G24 = 20Log|2Vtx/E|  
W&G GH1  
TIP  
TX  
100  
F
Vtx  
STLC3085  
application  
circuit  
100mA  
DC max  
600ohm  
E
Zin = 100K  
200 to 6kHz  
100  
F
RX  
RING  
Figure 12. G42 Receive Gain  
G42 = 20Log|VI/Vrx|  
W&G GH1  
TIP  
TX  
100  
F
STLC3085  
application  
circuit  
100mA  
Vl  
DC max  
600ohm  
Zin = 100K  
200 to 6kHz  
100  
F
RX  
RING  
Vrx  
Figure 13. PSRRC Power supply rejection Vpos to 2W port  
PSSRC = 20Log|Vn/Vl|  
W&G GH1  
TIP  
TX  
100  
F
STLC3085  
application  
circuit  
100mA  
DC max  
Vl  
600ohm  
Zin = 100K  
200 to 6kHz  
100  
F
RX  
RING  
VPOS  
Vn  
~
22/28  
STLC3085  
STLC3085 test circuits  
Figure 14. L/T Longitudinal to Transversal Conversion  
L/T = 20Log|Vcm/Vl|  
W&G GH1  
300ohm  
100  
F
TIP  
TX  
100  
F
STLC3085  
application  
circuit  
100mA  
DC max  
Vl  
Impedance matching  
better than 0.1%  
Zin = 100K  
200 to 6kHz  
Vcm  
100  
F
RX  
RING  
300ohm  
100  
F
Figure 15. T/L Transversal to Longitudinal Conversion  
T/L = 20Log|Vrx/Vcm|  
W&G GH1  
100  
F
300ohm  
TIP  
TX  
100  
F
STLC3085  
application  
circuit  
100mA  
DC max  
Impedance matching  
better than 0.1%  
Zin = 100K  
200 to 6kHz  
Vcm  
600ohm  
100  
F
RX  
RING  
Vrx  
300ohm  
100  
F
Figure 16. V2Wp and W4Wp: Idle channel psophometric noise at line and TX.  
V2Wp = 20Log|Vl/0.774l|; V4Wp = 20Log|Vtx/0.774l|  
W&G GH1  
TIP  
TX  
100  
F
Vtx  
psophometric  
filtered  
STLC3085  
application  
circuit  
100mA  
DC max  
600ohm  
Zin = 100K  
200 to 6kHz  
Vl  
psophometric  
filtered  
100 F  
RX  
RING  
23/28  
STLC3085 overvoltage protection  
STLC3085  
Appendix B STLC3085 overvoltage protection  
Figure 17. Simplified configuration for indoor overvoltage protection  
STPR120A  
BGND  
STLC3085N  
RP1  
RP1  
RP2  
RP2  
TIP  
TIP  
RING  
RING  
VBAT  
STPR120A  
RP1 = 30ohm:  
RP2 =Fuse or PTC > 20ohm  
Figure 18. Standard overvoltage protection configuration for K20 compliance  
BGND  
STLC3085N  
RP2  
RP2  
RP1  
RP1  
TIP  
TIP  
LCP1521S  
RING  
RING  
VBAT  
RP1 = 30ohm:  
RP2 =Fuse or PTC > 20ohm  
24/28  
STLC3085  
Typical state diagram for STLC3085 operation  
Appendix C Typical state diagram for STLC3085 operation  
Figure 19. Typical state diagram for STLC3085 operation  
Normally used for  
On Hook  
Transmission  
Tj>Tth  
PD=0, D0=D1=0  
Active  
On Hook  
Power  
Down  
Ring Pause  
Ring Burst  
D0=0, D1=1,  
D2=0  
Ring Burst  
Ringing  
D0=1, D1=0,  
D2=0/1  
PD=1, D0=D1=0  
On Hook Detection for T>Tref  
HI-Z  
Feeding  
Ring Trip  
Detection  
Active  
On Hook Condition  
Off Hook  
D0=0, D1=1,  
D2=0  
Off Hook Detection  
Off Hook Detection  
Note: all state transitions are under the microprocessor control.  
25/28  
Package information  
STLC3085  
5
Package information  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a Lead-free second level interconnect . The category of  
second Level Interconnect is marked on the package and on the inner box label, in compliance  
with JEDEC Standard JESD97.  
The maximum ratings related to soldering conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
Figure 20. TQFP44 (10x10x1.4mm) Mechanical Data & Package Dimensions  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN.  
TYP. MAX.  
0.063  
A
A1  
A2  
B
1.60  
0.05  
1.35  
0.30  
0.09  
0.15 0.002  
0.006  
1.40  
0.37  
1.45 0.053 0.055 0.057  
0.45 0.012 0.015 0.018  
C
0.20 0.004  
0.008  
D
11.80 12.00 12.20 0.464 0.472 0.480  
9.80 10.00 10.20 0.386 0.394 0.401  
D1  
D3  
E
8.00  
0.315  
11.80 12.00 12.20 0.464 0.472 0.480  
9.80 10.00 10.20 0.386 0.394 0.401  
E1  
E3  
e
8.00  
0.80  
0.60  
1.00  
0.315  
0.031  
0.75 0.018 0.024 0.030  
0.039  
L
0.45  
TQFP44 (10 x 10 x 1.4mm)  
L1  
k
0˚(min.), 3.5˚(typ.), 7˚(max.)  
D
D1  
A
A2  
A1  
33  
23  
34  
22  
0.10mm  
.004  
Seating Plane  
12  
44  
11  
1
C
e
K
TQFP4410  
0076922 D  
26/28  
STLC3085  
Revision history  
6
Revision history  
Table 11.Document revision history  
Date  
Revision  
Changes  
15-Feb-2006  
1
Initial release.  
27/28  
STLC3085  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,  
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,  
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR  
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
28/28  

相关型号:

E-STLC4370A

Single Chip 802.11b/g WLAN Radio for Mobile Applications
STMICROELECTR

E-STLC5046

A/MU-LAW, PROGRAMMABLE CODEC, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, LQFP-64
STMICROELECTR

E-STLC5048

A/MU-LAW, PROGRAMMABLE CODEC, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, TQFP-64
STMICROELECTR

E-STLC5048TR

A/MU-LAW, PROGRAMMABLE CODEC, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, TQFP-64
STMICROELECTR

E-STLC60243

SPECIALTY TELECOM CIRCUIT, PDSO28, LEAD FREE, HTSSOP-28
STMICROELECTR

E-STLC60454

SPECIALTY TELECOM CIRCUIT, PBGA144, 13 X 13 MM, LEAD FREE, LBGA-144
STMICROELECTR

E-STLC61265

SPECIALTY TELECOM CIRCUIT, PBGA676, 27 X 27 MM, LEAD FREE, PLASTIC, BGA-676
STMICROELECTR

E-STLC61266

SPECIALTY TELECOM CIRCUIT, PBGA676, 27 X 27 MM, LEAD FREE, PLASTIC, BGA-676
STMICROELECTR

E-STLC7550TQF7

56kbps DATA, MODEM-SUPPORT CIRCUIT, PQFP48, 7 X 7 MM, 1.4 MM HEIGHT, LEAD FREE, TQFP-48
STMICROELECTR

E-STV8172A

VERTICAL DEFLECTION IC, PZFM7, HEPTAWATT-7
STMICROELECTR

E-STV9302A

VERTICAL DEFLECTION IC, PZFM7, HEPTAWATT-7
STMICROELECTR

E-STV9325

VERTICAL DEFLECTION IC, PZFM7, ROHS COMPLIANT, PLASTIC, HEPTAWATT-7
STMICROELECTR