E-L8150 [STMICROELECTRONICS]

Brushless motor predriver; 无刷电机预驱动器
E-L8150
型号: E-L8150
厂家: ST    ST
描述:

Brushless motor predriver
无刷电机预驱动器

驱动器 运动控制电子器件 信号电路 光电二极管 电动机控制 电机 CD
文件: 总37页 (文件大小:734K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L8150  
Brushless motor predriver  
Feature  
Integrated Predriver IC for 3 phase BL motor.  
Integrated Smooth driving concept with  
sinusoidal driving waveforms.  
BCD5 technology 0.6mm.  
Package: SO28.  
SO28  
Three Hall effects, differential input  
comparators.  
External HVIC bootstrap capacitor refresh  
function during 120 degree drive (rectangular  
drive).  
Integrated Undervoltage lockout (VCC).  
PWM output duty (voltage) control / Torque  
optimizer / protection functions  
This means both upper and lower chopping  
and low side current recirculation for  
rectangular drive.  
PWM carrier 17kHz min / integrated dead time  
Functions  
Current limiter circuit  
VCC lower voltage protection / VDC over  
voltage protection circuit / Hall sensor fail  
protection  
C-MOS level predriver output (high active)  
Free Run function  
Dead time (3 values selectable)  
Sinusoidal waveform PWM logic  
Detected rotation speed (FG) output terminal  
FAULT signal output  
Description  
PWM duty control by analog input (KVAL  
The L8150 device is a motor predriver intended to  
drive brushless fan motors with Hall effect  
sensors. The device, realized in BCD5 0.6mm  
mixed technology, is characterized by a mostly  
digital architecture assuring high integration  
density and high test coverage.  
control)  
Forward/backward rotation input terminal (FR)  
/ rotation direction detection output terminal  
(DM)  
Thermistor connection terminal (thermal  
protection)  
The L8150 with few external components forms a  
complete control circuit, since the smooth driver  
logic is fully integrated: its peculiar driving solution  
(smooth driving) allows a very low current ripple  
and speed control even at low rotation speeds.  
Torque optimizer terminal controlled by analog  
voltage input  
V regulator output terminalExternal HVIC  
bootstrap capacitor pre-charge function  
Order codes  
Part number  
Temp range, °C  
Package  
Packing  
E-L8150  
-20 to 95  
-20 to 95  
SO28  
SO28  
TUBE  
E-L8150TR  
Tape & Reel  
March 2006  
Rev 1  
1/37  
www.st.com  
1
Contents  
L8150  
Contents  
1
Block diagram & pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
1.2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Operating condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3
4
Electrical characteristcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Drive stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Hall Sensor Input Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
System Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
External HVIC Bootstrap Capacitor Initialization . . . . . . . . . . . . . . . . . . . 14  
Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.10 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5
6
Operating description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.1  
5.2  
5.3  
Free-Run (FS) and Reset (SD) functions . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Smooth Drive and Control logic description . . . . . . . . . . . . . . . . . . . . . . . 16  
Speed Control Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Precharge and hall effects filtering time description . . . . . . . . . . . . . . 24  
6.1  
6.2  
Startup sequence with FS signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Startup sequence with SD signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7
Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
2/37  
L8150  
8
Contents  
Input Output Pins Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9
10  
3/37  
List of tables  
L8150  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Operating condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Supply Voltage Terminal VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Regulator Output Terminal Vreg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Driver Output Terminal UH,VH,WH,UL,VL,WL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Dead Time Select Terminal SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Hall Sensor Input Terminal HUP,HUN,HVP,HVN,HWP,HWN . . . . . . . . . . . . . . . . . . . . . . . 9  
Torque Optimizer Input Terminal T.O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Over Current Sense Input Terminal R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Forward Backward Select Terminal FR (note 7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Thermal Sense Input Terminal TSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
FG Output Terminal FG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
OSC Terminal OSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
OP Amp Input Output Terminal INTin+, INTin-, INTout (note 3, note 4). . . . . . . . . . . . . . . 10  
Over Voltage Protection Terminal OV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Low Voltage Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
FAULTS Output Terminal FAULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Rotation Direction Detection Terminal DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
KVAL Contro. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Phase Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7 different values of the signal Pos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
4/37  
L8150  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pins connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Kval control by VSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
External circuit for Vsp control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
16 bit counter operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Smooth drive pattern (forward) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Phase shift vs input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Smooth Drive Pattern (Reverse). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Rectangular drive pattern (forward) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 10. Rectangular Drive Pattern (Reverse) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11. Filtering circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 12. Filter Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 13. Duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 14. Startup sequence forced by FS comparator, assuming the motor is not rotating. . . . . . . . 24  
Figure 15. Startup sequence forced by FS comparator, supposing the motor rotating quickly  
in the direction imposed by the FR signal: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 16. Startup sequence forced by FS comparator, supposing the motor rotating quickly  
in the direction opposite to that imposed by the FR signal . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 17. Startup sequence forced by FS comparator, supposing the motor rotating too quickly . . . 27  
Figure 18. Startup sequence forced by SD, supposing the motor stopped . . . . . . . . . . . . . . . . . . . . . 28  
Figure 19. Startup sequence forced by SD, supposing the motor rotating quickly  
in the direction imposed by the FR signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 20. Startup sequence forced by SD, supposing the motor rotating quickly  
in the direction not imposed by the FR signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 21. Startup sequence forced by SD signal, supposing the motor rotating too quickly . . . . . . . 30  
Figure 22. Basic motor control circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 23. 3 phases motor control circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 24. Pins: TSD, OV, SDT, INTinN, INTinP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 25. Pins: TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 26. Pins: RF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 27. Pins: INTout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 28. Pins: OSC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 29. Pins: FG, DM, FAULT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 30. ESD clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 31. Recirculation diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 32. Pins: FR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 33. Pins: HWN, HWP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 34. Pins: HUN, HUVP, HVN, HVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 35. Pins: UH, UL, VH, VL, WH, WL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 36. SO-28 Mechanical data & package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5/37  
Block diagram & pins description  
L8150  
1
Block diagram & pins description  
1.1  
Block diagram  
Figure 1.  
Block diagram  
1.2  
Pins description  
Figure 2.  
Pins connection (top view)  
RF  
WH  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
GND  
VCC  
VREG  
TO  
2
WL  
3
VH  
4
VL  
5
INTOUT  
INTINN  
INTINP  
FAULT  
OSC  
FR  
UH  
6
UL  
7
SDT  
HUP  
UHN  
HVP  
HVN  
HWP  
HWN  
8
9
10  
11  
12  
13  
14  
TSD  
OV  
DM  
FG  
D01IN1259  
6/37  
L8150  
Block diagram & pins description  
Table 1.  
N°  
Pins description  
Pin  
Function  
1
RF  
WH  
External sense resistance pin  
2
W bridge high-side MOS output command  
W bridge low-side MOS output command  
V bridge high-side MOS output command  
V bridge low-side MOS output command  
U bridge high-side MOS output command  
U bridge low-side MOS output command  
Dead time selection input pin  
Hall sensor differential input  
3
WL  
4
VH  
5
VL  
6
UH  
7
UL  
8
SDT  
HUP  
HUN  
HVP  
HVN  
HWP  
HWN  
FG  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Hall sensor differential input  
Hall sensor differential input  
Hall sensor differential input  
Hall sensor differential input  
Hall sensor differential input  
Multiplexed Hall effects output  
Motor direction detected output  
Over-voltage comparator input  
External thermal shutdown input  
Forward/backward rotation input  
External 20.5kpolarization resistance pin  
Fault signal output  
DM  
OV  
TSD  
FR  
OSC  
FAULT  
INTinP  
INTinN  
INTout  
TO  
Error amplifier reference input pin  
Error amplifier negative input pin  
Error amplifier output  
Torque optimizer analog input  
Internal 5V regulator output  
VREG  
VCC  
GND  
External 15V supply  
Ground pin  
7/37  
Electrical specifications  
L8150  
2
Electrical specifications  
2.1  
Absolute maximum ratings  
Table 2.  
No.  
Absolute maximum ratings  
Item  
Symbol  
Terminal  
Value  
Unit  
Remark  
1
2
3
4
5
6
VCC supply voltage  
FG terminal voltage  
FAULT terminal voltage  
DM terminal voltage  
FG, FAULT, DM currents  
RF voltage  
VCC  
VFG  
VCC  
FG  
20  
-0.3/20  
-0.3/20  
-0.3/20  
15  
V
V
VFAULT FAULT  
VDM DM  
Iod  
V
V
FG, FAULT, DM  
RF  
mA  
V
Maximum current  
VRF  
-5 to VREG  
SDT,HUP,HUN,HVP  
7
Other pin voltage  
Inject current  
HVN,HWP,HWN,OV,TSD  
FR,INTinN,INTinP,TO  
-0.3 / 6  
V
SDT,HUP,HUN,HVP  
8
9
HVN,HWP,HWN,OV,TSD  
FR,INTinN,INTinP,TO  
5
mA  
°C  
Operating ambient  
temp.  
Topg  
-20/+95  
10  
11  
12  
Junction temp.  
Storage temp.  
Tj  
150  
-55/+150  
200  
°C  
°C  
mA  
V
Tstg  
Latch up tolerance  
all pin  
all pin  
200  
Machine model  
13  
ESD tolerance  
2000  
V
Human body model  
2.2  
Operating condition  
Table 3.  
No.  
Operating condition  
item  
symbol  
terminal  
MIN  
TYPE  
MAX  
unit  
remark  
1
supply voltage  
VCC  
VCC  
12.75  
15  
17.25  
V
8/37  
L8150  
Electrical characteristcs  
3
Electrical characteristcs  
T
= 25 °C, V =15V, V  
= 5V unless otherwise specified  
REG  
amb  
CC  
Table 4.  
No.  
Supply Voltage Terminal VCC  
Item  
current consumption 1-1  
Symbol  
Terminal  
Min  
Typ  
Max  
Unit  
Remark  
1
ICC1-1  
VCC  
10.0  
20.0  
mA  
Table 5.  
NO.  
Regulator Output Terminal Vreg  
Item  
Symbol  
Terminal  
Min  
Typ  
Max  
Unit  
Remark  
1
2
3
4
output voltage  
VREG  
VREG  
VREG  
VREG  
VREG  
4.7  
5.0  
40  
5
5.3  
100  
30  
V
mV  
voltage variation  
load variation  
VREG1  
VREG2  
VREG3  
VCC1=12.75 to 17.25V  
IO=5 TO 20mA (note 1)  
mV  
thermal coefficient  
0
mV/°C  
Table 6.  
No.  
Driver Output Terminal UH,VH,WH,UL,VL,WL  
Item  
Symbol  
Terminal  
Min  
Typ  
Max  
Unit  
Remark  
IOH=-2.5mA  
IOL=2.5mA  
2
4
H level output voltage 2  
VOH  
VOL  
UH,…  
UH,…  
3.70  
V
V
L level output voltage 2  
0.40  
T
Table 7.  
No.  
Dead Time Select Terminal SD  
Item Symbol Terminal  
Min  
Typ  
Max  
Unit  
Remark  
1
2
H level input voltage  
M level input voltage  
VSDTH  
VSDTM  
SDT  
SDT  
9/10 Vreg  
4/10 Vreg  
Vreg  
V
dead time =0 usec  
dead time=1.5usec  
(Tdeadtime=15xTck)  
6/10 Vreg  
1/10 Vreg  
V
V
dead time=1.0usec  
(Tdeadtime=10xTck)  
3
L level input voltage  
VSDTL  
SDT  
0
Table 8.  
No.  
Hall Sensor Input Terminal HUP,HUN,HVP,HVN,HWP,HWN  
Item  
Symbol  
Terminal Min  
Typ  
Max  
Unit  
uA  
Remark  
1
2
input bias current  
IHB(HA)  
HUP,…  
HUP,…  
-2  
common mode input  
range  
VICM  
VI  
0.50  
3.00  
5.00  
V
for hall device  
3
4
5
6
7
input voltage range  
hall input sensitivity  
hysteresis width  
HUP,…  
HUP,…  
HUP,…  
HUP,…  
HUP,…  
0.00  
50  
V
mVp-p  
mV  
for hall IC, note 2  
VIN(HA)  
VSLH(HA)  
VSHL(HA)  
20  
30  
15  
50  
25  
-5  
hysteresis L -> H  
hysteresis H -> L  
5
mV  
-25  
-15  
mV  
9/37  
Electrical characteristcs  
L8150  
Table 9.  
No.  
Torque Optimizer Input Terminal T.O.  
Item  
Symbol Terminal Min  
Typ  
Max  
Unit  
Remark  
1
2
3
max analog conversion input  
min analog conversion input  
hysteresis  
T.O.  
T.O.  
T.O.  
15/25Vreg  
0
100  
mV  
Table 10. Over Current Sense Input Terminal R  
No.  
Item  
Symbol  
Terminal  
Min  
0.45  
Typ  
Max  
Unit  
Remark  
Remark  
1
over current sense level  
VRF  
RF  
0.50  
0.55  
V
Table 11. Forward Backward Select Terminal FR (note 7)  
No.  
Item  
Symbol  
Terminal  
Min  
Typ  
Max  
Unit  
1
2
3
4
H level input voltage  
L level input voltage  
pull-up resistor to VREG  
hysteresis width  
VIH (FR)  
VIL (FR)  
Ru (FR)  
VIS (FR)  
FR  
FR  
FR  
FR  
2.0  
0.0  
VREG  
1.0  
V
V
-20%  
0.2  
50.0  
0.3  
+20%  
0.4  
kOhm  
V
Table 12. Thermal Sense Input Terminal TSD  
No.  
Item  
Symbol  
Terminal  
Min  
Typ  
Max  
Unit  
Remark  
1
2
TSD Threshold  
Hysteresis  
VIH (TSD)  
Vhy (TSD)  
TSD  
TSD  
2.60  
0.20  
3.00  
0.30  
V
V
Table 13. FG Output Terminal FG  
No.  
Item  
Symbol Terminal Min  
Typ  
Max  
Unit  
Remark  
1
2
Output saturation voltage  
Output leak current  
VFGL  
FG  
FG  
0.50  
10  
V
Io=15mA, open drain  
Vo=16.5V  
IFGleak  
uA  
Table 14. OSC Terminal OSC  
No.  
Item  
Symbol Terminal Min  
Typ  
Max Unit  
Remark  
R=20.5kohm (Class E96),  
Fsys=512*Fpwm  
1
2
Current setting  
PWM frequency  
Vosc  
OSC  
1.235  
V
Fpwm  
18k  
20.4k Hz 17kHz - 21kHz for Tj=0 to 125 deg  
Table 15. OP Amp Input Output Terminal INTin+, INTin-, INTout (note 3, note 4)  
No.  
Item  
Symbol  
Terminal  
Min  
Typ  
Max  
Unit  
Remark  
1
2
3
4
H level output voltage  
L level output voltage  
input bias current  
offset  
VoH (INT)  
VoL (INT)  
IB (INT)  
INTout  
INTout  
4.0  
Vreg2-0.2  
Vreg  
1.0  
V
V
Io=1mA  
Io=1mA  
INTin+, -  
-0.2  
0.2  
uA  
V
10/37  
L8150  
Electrical characteristcs  
Table 16. Over Voltage Protection Terminal OV  
No.  
Item  
Symbol  
Terminal Min  
Typ  
Max  
Unit  
Remark  
Remark  
1
2
H level input voltage (operative)  
Hysteresis width  
VIH (OV)  
VIS (OV)  
OV  
OV  
-6%  
0.3  
3.0  
+6%  
0.4  
V
V
Table 17. Low Voltage Protection  
No.  
Item  
Symbol  
Terminal  
Min  
Typ  
Max  
Unit  
1
2
3
operation voltage  
release voltage  
hysteresis width  
VIL (LV)  
VIH (LV)  
VIS (LV)  
LV  
LV  
LV  
10  
11  
12  
V
V
V
10.35  
0.35  
11.50  
0.50  
12.65  
0.65  
Table 18. FAULTS Output Terminal FAULTS  
No.  
item  
symbol  
terminal  
MIN TYP MAX unit  
remark  
Io=15mA, open drain  
uA Vo=17.25V  
1
2
output saturation voltage  
output leak current  
VFaultsL  
FAULTS  
FAULTS  
0.50  
10  
V
IFaultsleak  
Table 19. Rotation Direction Detection Terminal DM  
No.  
Item  
Symbol Terminal Min  
Typ  
Max Unit  
Remark  
1
2
output saturation voltage  
VDML  
DM  
DM  
0.50  
10  
V
Io=15mA, open drain  
output leak current  
IDMleak  
uA Vo=17.25V  
l
Table 20. KVAL Contro  
No.  
Item  
Symbol  
Terminal  
Min  
Typ  
Max  
Unit  
Remark  
Note 3  
1
2
3
4
FS threshold voltage  
KVAL Min voltage  
KVAL max voltage  
FS Hysteresis  
INTout  
INTout  
INTout  
INTout  
-3%  
-3%  
-7%  
4.5Vreg/5  
3.7Vreg/5  
0.7Vreg/5  
70.0  
+3%  
+3%  
+7%  
V
V
Note 3  
Note 3  
V
mV  
Note:  
1
2
3
If 20mA is a problem for design because of power dissipation etc., it can be reduced to  
something like 5mA  
one input is set at 2.5V by means of a resistor divider. The other input moves from 0V to  
Vreg. The Hall comparator must operate correctly for all its input range.  
Opamp need to be designed to meet with Kval control by VSP.  
External circuit for Vsp control (example) is shown in following Figure 4.  
The tolerance at Vsp including external resistor (E96) is as follows:  
mini  
0.85  
1.7  
typ  
max  
1.6  
2.5  
6.1  
V1(V)  
V2(V)  
V3(V)  
1.23  
2.1  
5.4  
4.9  
4
FR and INTin+ are used to set test mode as follows:  
Test mode is set by 8 events (clock rising edges) on FR during INTin+>4.5  
(Power is kept as high-impedance for INTin+ > 4.5 until 7th event occur)  
(counter for FR is reset by INTin+ < 4.5)  
11/37  
Electrical characteristcs  
Figure 3.  
L8150  
Kval control by VSP  
Figure 4.  
External circuit for Vsp control  
INT amp network (suggested)  
90.9K  
Vsp  
53.6K  
22.1K  
46.4K  
Vo  
Vreg  
31.6K  
12/37  
L8150  
General description  
4
General description  
4.1  
Drive stage  
Voltage-controlled PWM drive.  
Smooth drive architecture (see following dedicated paragraph).  
External sense resistor as current limiter.  
FR terminal: Low = Forward, High or Open = Backward.  
4.2  
4.3  
Output  
U, V, W upper and lower arm power transistors control output (6 outputs)  
CMOS level (Low: 0V, High: 5V, need output buffer)  
dead time (0, 1usec, 1.5usec selectable).  
I/O  
FG output: multiplexed by Hall signal (open drain)  
(Hall signal after digital filter are used)  
Forward/backward control  
FAULT output: monitor signal for protection operation (low active, open drain), active if one  
of over voltage, lower voltage, thermal protection, Hall sensor fail protection is operative  
Torque optimizer: controlled by analog input  
DM output is the monitor signal of Hall input sequence:  
IF UVW hall signal sequence is as the direction set by FR, DM=H  
IF UVW hall signal sequence is opposite for the direction set by FR, DM=L  
Reset or some case in which UVW sequence can not be monitored, DM=H (Hall  
signals after digital filter are used for this control).  
4.4  
Hall Sensor Input Terminals  
There are 2 types of application, Hall device and Hall IC  
Hall Device application: differential inputs with some bias  
Hall IC application: one input is fixed around VREG/2 by resistor divider between VREG and  
GND the other input comes from Hall IC whose span is between 0 and 5V.  
13/37  
General description  
L8150  
4.5  
Protection Functions  
Over-current protection: Low side current recirculation for both smooth and  
rectangular drive in normal working condition.  
Over-voltage protection: compare motor supply VDC (140V, 280V) and IC internal  
reference. All power transistor OFF (all 6 outputs = GND) during over-voltage.  
Return to normal operation if VDC is recovered from over-voltage condition. An  
hysteresis is present.  
Lower voltage protection: all power TR OFF (all 6 outputs = GND), if VCC is lower than a  
defined voltage threshold (All power Transistors OFF if VCC is between 0 to the defined  
voltage threshold). Return to normal operation if VCC is recovered from lower voltage  
condition. An hysteresis is present.  
Thermal protection: all power transistors OFF by external thermal sense signal. If signal is  
high (exceeds Vth), the power is OFF (all 6 output = GND).  
Hall sensor fail protection: all power transistor OFF (all output = GND) if Hall signals are  
HHH or LLL (Hall signals after digital filter are used).  
Power ON reset (SD): internal logic reset when power ON or recovery from short time Power  
OFF. All power transistor OFF (all 6 outputs = GND) during reset.  
4.6  
4.7  
PWM  
carrier frequency: 17-21kHz for Tj = 0 to 125 deg, 18kHz - 20.4kHz for Tj = 25 °C.  
System Clock  
Internal oscillator: Fsys =1/Tck= 9.8 MHz typical value.  
One pin for external resistor sets the clock frequency (OSC pin).  
4.8  
External HVIC Bootstrap Capacitor Initialization  
Lower arm ALL ON (3 outputs for low side are High, 3 outputs for High side are GND) when  
VSP becoming ON (free run release), (while this initialization should not be done when VSP  
becoming OFF) initializing time is 0.333 - 0.5 msec.  
4.9  
Package  
28 pins SO28. It is suitable for both reflow and flow soldering.  
4.10  
Others  
Upper and lower arm PWM during rectangular drive; it means both side (upper and lower)  
chopping, not one side chopping, during rectangular drive).  
14/37  
L8150  
General description  
A maximum current of 5mA can be injected into OV protection terminal in case VCC = OFF  
and VDC = ON without damaging the device. Moreover the output does not cause  
malfunctioning (all power Transistors are OFF).  
A maximum current of 5mA can be injected into TO terminal from external circuit during  
VCC OFF without damaging the device. The output does not cause malfunctioning (all  
power Transistors are OFF).  
A maximum current of 5mA can be injected into INTinN terminal by VSP abnormal operation  
without damaging the device. The output does not cause malfunctioning (in particular it is  
needed to avoid VDC short-circuit by Power Transistor cross-conduction).  
OSC pin sets the main bias currents for the whole device, including system clock.  
15/37  
Operating description  
L8150  
5
Operating description  
5.1  
Free-Run (FS) and Reset (SD) functions  
This device does not have an actual startup signal, the working or standby condition  
depends on two internally-generated signals:  
FS signal;  
SD (shut down) signal.  
The first one (FS) is related to the Vsp external signal in the following way. Given the transfer  
function of the INTAMP network shown below, which is obtained from the suggested INTamp  
feedback network (see note 6 on Electrical characteristics section):  
Vo[V] = 5.617V - 0.909 · Vsp[V]  
we have that when Vsp=1.23V, Vo equals to 4.5V; this signal (amplifier output) is fed to a  
comparator (FScomp) whose threshold is set at 4.5V (plus some hysteresis). When Vo is  
greater than 4.5V the device is in the so called "free running" mode, that is all the power  
outputs are in high impedance; when the threshold is crossed the logic signal FS  
commutates from High to Low, thus enabling normal device operation.  
The second one (SD) switches from High to Low, thus enabling normal device operation.  
When SD is High it acts as a reset signal for the whole logic block and as a stand-by signal  
for the system oscillator and the speed amplifier. SD = High is generated by a low voltage  
condition on VREG.  
5.2  
Smooth Drive and Control logic description  
Two basic driving techniques are applied according to different conditions:  
rectangular driving  
sinusoidal driving (Smooth Drive)  
The first one is used during startup phase or when the motor is rotating in the opposite  
direction with respect to FR signal or T>TMAX, while Smooth Drive is used in normal  
operation.  
If a DC brushless motor has BEMF voltage with a sinusoidal-like shape, also the currents in  
the windings are sinusoidal-like, if the applied voltage is sinusoidal. This means that the  
torque is almost constant and the ripple is very small, allowing acoustic noise reduction and  
lower EMI.  
Smooth Drive basically applies three voltage patterns to the motor windings, each 120  
electrical degrees out of phase with respect to the other, taking as reference the period  
measured during the last electrical period. In order to do this, an internal 16-bit counter  
(Period counter) is provided which is triggered (current value is stored in a register and the  
counter is reset) at every rising edge of signal coming from U phase Hall sensor (HallU).  
This kind of behavior is sketched in the picture (Figure 5), where the synchronization control  
is represented by HallU rising edge.  
The clock of the counter is the system clock (Fsys) divided by 36: this results in a maximum  
value of the electrical period that the device can measure and consequently a minimum  
speed at which Smooth Drive can work; this maximum period is:  
TMAX = 36*38656*Tck " 141.5 msec, with Tck = 101.7ns (Typical target value)  
16/37  
L8150  
Operating description  
Figure 5.  
16 bit counter operation  
Smooth Drive basic functionality is to apply to the motor the voltage waveforms represented  
in the following pictures (Figure 6) in case of forward rotation (CW).  
Figure 6.  
Smooth drive pattern (forward)  
This kind of profile, which realizes waveforms that are differentially sinusoids, is digitally  
described by a table of 36 8-bit samples stored in a decoding circuit. The final amplitude of  
the voltage applied on the outputs is obtained by multiplying each sample by a value  
generated through an 8-bit ADC, whose input is coming from the speed control.  
The motor is controlled in voltage mode, so no current control compensation network is  
required. Actuation is done on motor windings through a fixed frequency PWM conversion.  
Since Smooth Drive is basically a voltage mode driving there can be the need of shifting the  
applied profile with respect to the BEMF (here sensed through the Hall sensors). This  
applied phase shift is called Torque Optimizer.  
The value (expressed in electrical degrees, hereafter referred to as degrees) can be chosen  
applying an analog voltage to TO pin, that will be internally converted using a 4-bit A/D.  
The phase shift range is from 2.5 to 40 degrees with a 2.5-degrees step. As a reference the  
correspondence between phase shift values and analog voltages is reported in Table 21.  
17/37  
Operating description  
L8150  
Table 21. Phase Shift  
Phase Shift [°C]  
Analog low threshold [V]  
Analog high threshold [V]  
2.5  
<0.20  
0.20  
0.40  
0.60  
0.80  
0.99  
1.19  
1.39  
1.59  
1.78  
1.98  
2.17  
2.37  
2.57  
2.76  
2.96  
<0.30  
0.30  
0.50  
0.70  
0.89  
1.09  
1.29  
1.49  
1.68  
1.88  
2.08  
2.27  
2.47  
2.66  
2.86  
3.05  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
20.0  
22.5  
25.0  
27.5  
30.0  
32.5  
35.0  
37.5  
40.0  
Figure 7.  
Phase shift vs input voltage  
The 4-bit A/D has an internal hysteresis so that "Analog high thresholds" are the A/D  
thresholds applying a rising edge on TO pin, the "Analog low thresholds" are the A/D  
thresholds applying a falling edge on TO pin.  
The applied phase shift "moves" the voltage profile with respect to the Hall effect sensor in  
the direction indicated by the arrows in the picture.  
18/37  
L8150  
Operating description  
In case of reverse rotation (CCW), Smooth Drive applies the voltage profiles represented in  
the following pictures (Figure 8).  
Figure 8.  
Smooth Drive Pattern (Reverse)  
HallU  
OutU  
Phase shift  
OutV  
OutW  
In case sinusoidal mode cannot be applied, a rectangular pattern will be applied, that is  
driving one phase fixed to GND, one phase in tri-state while the other is switching from low  
to high with a duty cycle depending on the ADC conversion , max. duty cycle about 95%,  
according to the following diagram:  
Figure 9.  
Rectangular drive pattern (forward)  
HallU  
HallV  
HallW  
OutU  
OutV  
OutW  
The diagram (Figure 9) is showing the applied driving pattern in case of applied torque in  
forward (continuous blue line) direction, while in case of reverse (continuous red line)  
direction, the applied pattern can be found in the following picture (Figure 10); in both  
pictures the meaning of the pattern line is the following: when the line is low, the  
correspondent winding is driven continuously low; when the line is high, the winding is  
driven with a duty cycle defined from the ADC conversion at a frequency 512 times slower  
than the clock. On the other hand, when the line is at middle height the correspondent  
phase will be left tri-stated.  
19/37  
Operating description  
Figure 10. Rectangular Drive Pattern (Reverse)  
L8150  
HallU  
HallV  
HallW  
OutU  
OutV  
OutW  
Smooth Drive mode is activated when three consecutive periods shorter than TMAX are  
detected and device will keep driving in Smooth mode until an external command is applied  
(through FR pin) or motor electrical period becomes longer than the maximum period the  
device is able to follow.  
Startup phase (rectangular driving) is activated in one of the following conditions:  
when the Period Counter saturates;  
when the desired rotation direction (coming from FR command) is different from the  
detected rotation direction;  
SD = High Low  
During all working conditions a current limitation circuit is active. It is composed of a  
current comparator sensing current flowing in the sense resistor (usually a sense resistor is  
connected between the sources of all power low side driver transistors and ground) and of  
some control logic.  
Current limitation is achieved in three possible ways according to the different motor  
situations.  
The current limiter control method is a consequence of the rotation speed and the detected  
direction of the motor.  
Let's divide the possible situations in two different cases:  
1. The motor is rotating and its frequency is lower than the one used to switch between  
rectangular and sinusoidal driving pattern  
2. The motor is rotating and its frequency is bigger than the one used to switch between  
rectangular and sinusoidal driving pattern  
In case 1) even if the detected rotation direction is different from the desired direction, the  
current limiter control method is to force two phases to GND and one phase is left in high  
impedance state.  
In case 2) the possible situations can be the following:  
2a) The desired direction is equal to the detected direction and sinusoidal mode is applied,  
the current limiter control method is forcing all the phases to GND  
20/37  
L8150  
Operating description  
2b) The desired direction is not equal to the detected direction so that rectangular mode is  
used, the current limiter control method is forcing all the phases in high impedance state.  
In any case, current control method is updated every PWM cycle period.  
The amplitude of the voltage waveform applied to the motor windings allows the control to  
modulate the rotation speed; this is achieved through an 8-bit analog-to-digital converter  
(ADC) transforming the output voltage of the control amplifier (INTAMP) into an 8-bit digital  
word that is used to scale the voltage waveform applied to the motor windings. A digital  
multiplier, whose inputs are the 8-bit samples of the voltage waveform (that is the output of  
the 8-bit ADC), gives an 8-bit word that represents the voltage to be applied to the motor  
winding.  
Furthermore, control signal actuation is performed through a fixed frequency digital PWM  
converter, that is converting the 8-bit word coming from the comparator into a digital signal,  
whose duty cycle is proportional to the resulting voltage to be applied to the motor windings.  
The period of the PWM output signal is:  
T
= 512 Tck  
PWM  
resulting in a frequency that is 19.2 kHz in the typical case.  
Motor position is detected through a set of three Hall sensor, whose output is differentially  
fed into the device; after processing the signal by means of a comparator (whose  
characteristics are explained in the Electrical Characteristics section) the signal is  
furtherly filtered through a digital circuit to prevent noise from causing any device  
malfunctioning.  
The filtering circuit processes signals coming from Hall sensors comparators (HallU, HallV,  
HallW) and generates a set of three internal signals used inside the digital part of the circuit  
(PosFil).  
Figure 11. Filtering circuit  
HallU  
From input  
comparator  
Hall sensor  
filtering  
block  
To control  
logic  
PosFil  
HallV  
3
HallW  
In order to simplify the explanation of the filtering circuit a signal Pos will be defined that can  
assume 7 different values according to the following table:  
Table 22. 7 different values of the signal Pos  
HallU  
HallV  
HallW  
Pos  
1
1
1
0
0
0
0
0
0
1
1
1
0
0
1
0
0
0
1
1
0
p1  
p2  
p3  
p4  
p5  
p6  
pErr  
The filtering action takes place according to the following picture (Fig. 7).  
21/37  
Operating description  
Figure 12. Filter Block Diagram  
L8150  
Pos  
12  
12  
12 BIT  
COUNTER  
ck  
>=  
Filter  
Length  
Reset  
Latch  
Enable  
DELAY  
1 Tclk  
¹
PosFil  
POS FIL  
REGISTER  
3
=
PosFil  
The filter working principle is explained in the previous diagram (Figure 12): the main  
component of the filter circuit is a 12-bit counter that is reset (to the value 0) whenever the  
PosFil signal is equal to the Pos one. When the two signals are different (meaning that a  
transition is happening), the counter will start counting as long as one of the following  
conditions will occur:  
Pos signal is again equal to former PosFil: in this case a noise is generating some Hall  
comparator commutation,  
the counter has reached or overcome the value set by Filter Length signal: in this case  
the internal Hall signals will be latched into the PosFil register; immediately after this  
event, PosFil will become equal to Pos and the counter will be reset.  
At the same time (at the end of the filtering time), a flip-flop detecting the direction is  
updated with the right direction information according to the former Hall decoding PosFil and  
the new one Pos, immediately before latching it into the register.  
12-bit Filter Length is set to two values according to different possibilities:  
maximum filtering time, corresponding to 4096 clock periods (420us in the typical  
case, same used for pre-charge function) when an hall effect commutation is detected  
just after a startup signal edge (SD or FS) and before TMAX/6 is elapsed. This filtering  
time is also used when the motor accelerate starting from a stopped condition (no hall  
effect commutation is detected from FS or SD edge to TMAX/6)  
the filter length is a fraction of the elapsed time between two Zero Crossing signal (ZC).  
During normal working (in case motor period is shorter than TMAX) it is equivalent to  
0.625 electrical degrees.  
A ZC signal is produced every time one of these situations happens:  
a falling edge of the FS signal is detected  
a rising edge of the HallU signal is detected  
any hall effect commutations when the high impedance condition is forced by the IC  
and the motor is in free-run condition  
22/37  
L8150  
Operating description  
5.3  
Speed Control Circuitry  
The rotation speed control signal (VSP) is an external signal, whose range is 2.1V÷5.4V.  
This signal is amplified by an inverting amplifier which takes as reference a voltage derived  
from VREG through a voltage divider.  
The amplifier output is the input signal of an 8-bit ADC which generates the digital word  
KVAL, used to determine the duty cycle value according to the following Figure 13:  
Speed control:  
Intout 0-0.7V: duty =100% for smooth drive  
(max duty is limited at about 95% for rectangular as shown in the following figure)  
Intout 0.7-3.7V: duty control 100-0%  
Intout 3.7-4.5: duty = 0 %  
Intout 4.5V - 5V (VREG): all power off (all 6 output = GND)  
(Each Vth depends linearly on VREG, being obtained by means of voltage dividers).  
Figure 13. Duty cycle  
23/37  
Precharge and hall effects filtering time description  
L8150  
6
Precharge and hall effects filtering time description  
6.1  
Startup sequence with FS signal  
Let’s startup sequence forced by FS comparator, assuming the motor is not rotating:  
Figure 14. Startup sequence forced by FS comparator, assuming the motor is not  
rotating  
TelMax/6  
FS  
PRECHARGE  
ZC  
400 us  
Tzc  
Tel  
U
HALL BUS  
FILTER TIME  
PHASES  
400 us  
400 us  
400 us  
400 us  
Tzc/576  
PHASES EXCITED  
MOTOR ACCELERATING  
When the signal coming from the FS comparator has a falling edge (corresponding to a Vsp  
signal crossing the 1.23V threshold), the logic starts counting, to verify if the motor is  
rotating or not. If the motor is stopped and no Hall effect commutation is detected, the  
counter has reached its saturation time, given by the following equation:  
Tel  
1  
MAX  
--------------------  
Tel  
= (7MHz) ≅ 141.5msec ⇒  
24msec  
MAX  
6
N.B. TelMAX is equal to TMAX used in the previous sections of this document.  
After this saturation time the logic has decided to do a precharge function, and for a period  
of time given by the following equation all the output logic signals UL,VL,WL become high  
while the signals UH, VH, WH are low.  
T
= 4096 T 400µsec  
ck  
CHARGE  
When the precharge is over, the logic outputs start applying the right rectangular pattern to  
accelerate the motor.  
During this sequence the Hall filtering time is 400usec until the first rising edge on signal  
HallU is detected. Then a filter given by the following equation is used:  
1
576  
---------  
T
=
T∆  
FILTER  
ZC  
TZC is the elapsed time between two consecutive zero-crossing signals. By default a zero-  
crossing signal is generated when a falling edge of the FS comparator is detected, and after  
that a zero-crossing signal is generated when a rising edge on signal HallU is detected.  
24/37  
L8150  
Precharge and hall effects filtering time description  
Assumed this operation mode, it is easy to understand that as soon as the startup sequence  
is over, Hall effects commutations are filtered using a fraction of the electrical period given  
by the following equation, since TZC is equal to TEL when two consecutive zero-crossing  
signals generated by a rising edge on signal HallU are detected:  
1
576  
1
576  
---------  
---------  
T
=
T∆  
=
T  
EL  
FILTER ROATING  
ZC  
Let's consider a startup sequence forced by FS comparator, supposing the motor  
rotating quickly in the direction imposed by the FR signal:  
Figure 15. Startup sequence forced by FS comparator, supposing the motor rotating  
quickly in the direction imposed by the FR signal:  
FS  
Tzc’  
Tzc’’  
Tel  
ZC  
U
HALL BUS  
FILTER TIME  
PHASES  
Tzc’/576  
Tzc’/576  
400 us  
400 us  
Tzc’/576  
Tzc’’/576 Tzc’’/576  
PHASES EXCITED  
MOTOR ACCELERATING  
When the signal coming from the FS comparator has a falling edge, by default a zero-  
crossing signal is generated and the logic waits for a Hall effect commutation and applies to  
it a filtering time of T  
generated.  
=400µsec. The first significant zero-crossing signal is  
PRECHARGE  
Also the second Hall effect commutation is filtered using T  
zero-crossing signal is generated.  
, after that the second  
PRECHARGE  
Starting from the second Hall effect commutation, after the acquisition of the filtered Hall  
commutation, the logic outputs start applying the right pattern, and the motor is able to  
accelerate again.  
The next filtering time used for the Hall commutation is a fraction of the elapsed time  
between the first two Hall effect commutations, according to the previous T  
equation.  
FILTER  
This filtering time is used until the first rising edge on signal HallU is detected and a zero-  
crossing signal is generated. After that the filtering time used is a fraction of the elapsed  
time between the last two detected zero-crossing signals, in other words between the  
second Hall effect commutation and the rising edge on signal HallU. Finally, when the  
second rising edge on signal HallU is detected, the filtering time used is a fraction of the  
electrical period, as described in previous T  
equation.  
FILTER-ROTATING  
Let's consider a startup sequence forced by FS comparator, supposing the motor  
rotating quickly in the direction opposite to that imposed by the FR signal:  
25/37  
Precharge and hall effects filtering time description  
L8150  
Figure 16. Startup sequence forced by FS comparator, supposing the motor rotating  
quickly in the direction opposite to that imposed by the FR signal  
FS  
DM  
Tzc’  
ZC  
HALL BUS  
400 us  
Tzc’/576  
400 us  
Tzc’/576  
Tzc’/576  
Tzc’/576  
FILTER TIME  
PHASES  
PHASES EXCITED  
MOTOR DECELERATING  
MOTOR ACCELERATING  
This situation is similar to the one described before, except DM behaviour. Let's suppose the  
FS signal high, which means all phases in high impedance state. Even if the signal FS is  
high, the logic is able to detect if the motor is rotating in the desired direction or not. So  
when the signal coming from the FS comparator has a falling edge, by default a zero-  
crossing signal is generated and the DM signal is already low, indicating that the detected  
direction is not equal to desired direction.  
From now on the logic waits for a Hall effect commutation and applies to it a filtering time of  
T
=400µsec. The first significant zero-crossing signal is generated.  
PRECHARGE  
Also the second Hall effect commutation is filtered using T  
crossing signal is generated.  
, and the second zero-  
PRECHARGE  
Starting form the second Hall effect commutation, after the acquisition of the filtered Hall  
commutation, the logic outputs start applying the rectangular pattern, and the motor is able  
to decelerate until the rotation direction changes becoming equal to the desired one.  
After the first two Hall commutations, the filtering time used is a fraction of the elapsed time  
between the first two Hall effect commutations, according to the previous T  
equation.  
FILTER  
This filtering time is used until the first rising edge on signal HallU is detected and a zero-  
crossing signal is generated. After that the filtering time used is a fraction of the elapsed  
time between the last two detected zero-crossing signals, in other words between the  
second Hall effect commutation and the rising edge on signal HallU. Finally, when the  
second rising edge on signal HallU is detected, the filtering time used is a fraction of the  
electrical period, as described in previous T  
equation.  
FILTER-ROTATING  
Only when a Hall effect commutation consistent with the desired direction is detected the  
DM signal becomes high, indicating the right direction detection.  
Let's consider a startup sequence forced by FS comparator, supposing the motor  
rotating too quickly:  
26/37  
L8150  
Precharge and hall effects filtering time description  
Figure 17. Startup sequence forced by FS comparator, supposing the motor rotating  
too quickly  
FS  
Tzc’’  
Tzc’  
Tzc’  
Tel  
ZC  
U
HALL BUS  
FILTER TIME  
PHASES  
400 us  
400 us  
400 us Tzc’/576 Tzc’’/576  
PHASES EXCITED  
MOTOR ROTATING TOO FAST  
When the signal coming from the FS comparator has a falling edge, by default a zero-  
crossing signal is generated and the logic waits for a Hall effect commutation and applies to  
it a filtering time of T  
= 400µsec. If the motor is rotating too quickly the next Hall  
PRECHARGE  
effect commutation happens before the filtering time is elapsed: this causes the reset of the  
filter and, in consequence, a new count for the filter time of 400µsec. Until the motor is  
rotating too quickly no Hall effect commutation is acquired by the logic, thus the logic outputs  
force high impedance condition.  
Only when the motor speed becomes lower than the speed necessary to obtain a  
Tel/6>400µsec the Hall effect commutations are filtered and acquired.  
If no Hall effect commutation is acquired during a period of TelMax/6, a precharge function  
will be done.  
Depending on the last filtered Hall effect codification present in the logic and, also, on the  
Hall effect codification having a duration longer than 400µsec (because the Hall effect  
codifications filtered have to be consecutive), the Hall effect commutations filtered using a  
filter time of 400usec could be two or, more probably, three.  
After this Hall effect commutations the logic outputs start applying the right pattern to the  
motor windings.  
The motor rotation direction is irrelevant, in fact this can influence only the kind of pattern  
applied after the two or three filtered Hall effect commutation.  
Let's consider a startup sequence forced by FS-Comparator, supposing the motor  
rotating slowly.  
When the signal coming from the FS comparator has a falling edge, the logic waits for a Hall  
effect commutation for a period of time equal to TelMAX/6. If no Hall effect commutation  
happens during this time, the behaviour is the one described in the previous section, when a  
startup sequence with motor stopped is described.  
Let's suppose that during the counting period of TelMAX/6 a Hall effect commutation is  
detected. This commutation is filtered using 400usec. Considering the hypothesis done,  
starting from the Hall effect commutation detection, no more commutation will be detected  
27/37  
Precharge and hall effects filtering time description  
L8150  
for the successive TelMAX/6 and the behaviour is the one described in the startup sequence  
with motor stopped.  
6.2  
Startup sequence with SD signal  
Let's consider a startup sequence forced by SD, supposing the motor stopped:  
Figure 18. Startup sequence forced by SD, supposing the motor stopped  
TelMax/6  
SD  
400 us  
PRECHARGE  
Tzc  
Tel  
ZC  
U
HALL BUS  
400 us  
400 us  
400 us  
400 us  
Tzc/576  
FILTER  
TIME  
PHASES EXCITED  
PHASES  
MOTOR ACCELERATING  
When the SD signal has a falling edge (corresponding to a VREG signal that's crossing the  
lower voltage protection), the logic can produce a ZC signal, depending on FS signal  
behaviour induced by Vsp voltage value. In any case, even if no ZC signal is produced, if the  
motor is stopped and no Hall effect commutation is detected, the counter reaches its  
saturation time TelMAX/6 and the system evolves like in the situation described in previous  
startup sequence with motor stopped.  
Let's consider a startup sequence forced by SD, supposing the motor rotating quickly in  
the direction imposed by the FR signal:  
Figure 19. Startup sequence forced by SD, supposing the motor rotating quickly in  
the direction imposed by the FR signal  
SD  
Tzc  
Tel  
ZC  
HALL BUS  
FILTER TIME  
PHASES  
400 us  
Tzc/576  
Tzc/576  
400 us  
Tzc/576  
Tzc/576  
PHASES EXCITED  
28/37  
L8150  
Precharge and hall effects filtering time description  
When the SD signal has a falling edge the logic acquires the Hall codification and waits for  
next Hall effect commutation, which is filtered using a filtering time of T  
=
PRECHARGE  
400µsec. The first significant zero-crossing signal is generated.  
Also the second Hall effect commutation is filtered using T  
zero-crossing signal is generated.  
, after that the second  
PRECHARGE  
Starting form the second Hall effect commutation, after the acquisition of the filtered Hall  
commutation, the logic outputs start applying the right pattern, and the motor is able to  
accelerate again.  
Next filtering time used for the Hall commutation is a fraction of the elapsed time between  
the last two zero-crossing signals TDzc. This filtering time is used until the first rising edge  
on signal HallU is detected and a new zero-crossing signal is generated.  
Let's consider a startup sequence forced by SD, supposing the motor rotating quickly in  
the direction not imposed by the FR signal:  
Figure 20. Startup sequence forced by SD, supposing the motor rotating quickly in  
the direction not imposed by the FR signal  
SD  
DM  
Tzc  
ZC  
HALL BUS  
400 us  
400 us  
Tzc/576 Tzc/576  
Tzc/576  
Tzc/576  
FILTER TIME  
PHASES  
PHASES EXCITED  
MOTOR FREE RUN  
MOTOR DECELERATING  
MOTOR ACCELERATING  
This situation is similar to that described before, except DM behaviour. Let's suppose the SD  
signal high, which means all phases in high impedance state. Since the signal SD is high  
and considering that this is the reset signal for the whole logic part, the system is not able to  
detect if the motor is rotating in the desired direction or not and by default the DM signal will  
be high. So when the signal SD has a falling edge, the DM signal remains high, indicating  
that the detected direction is equal to desired direction.  
Only after the first filtered Hall effect commutation the system is able to determines if the  
rotation direction is equal to the desired one. At this moment the DM signal becomes low.  
Starting from the second Hall effect commutation, after the acquisition of the filtered Hall  
commutation, the logic outputs starts applying the right pattern, and the motor starts to  
decelerate.  
29/37  
Precharge and hall effects filtering time description  
L8150  
Only when an Hall effect commutation consistent with the desired direction is detected, the  
DM signal becomes high, indicating the right direction detection.  
Let's consider a startup sequence forced by SD signal, supposing the motor rotating  
too quickly:  
Figure 21. Startup sequence forced by SD signal, supposing the motor rotating too  
quickly  
SD  
Tzc’’  
Tzc’  
Tel  
ZC  
U
HALL BUS  
FILTER TIME  
PHASES  
400 us  
400 us Tzc’/576 Tzc’’/576  
PHASES EXCITED  
MOTOR ROTATING TOO FAST  
When the SD signal has a falling edge the logic waits for an Hall effect commutation. If the  
motor is rotating too quickly the next Hall effect commutation occurs before the filtering time  
has elapsed.  
This means that a new Hall filter count is performed and no Hall effect codification is  
acquired until T  
has elapsed while the Hall bus is not changed.  
PRECHARGE  
Until the motor rotates too quickly no Hall effect commutation is acquired by the logic, thus  
the logic outputs force high impedance condition.  
Only when the motor speed becomes lower than the speed necessary to obtain a  
Tel/6>400µsec the Hall effect commutation are filtered and acquired.  
After the first two or three filtered Hall effect commutations (because they have to be  
consecutive), the logic outputs start applying the right pattern to the motor windings.  
The motor rotation direction is not important, in fact this can influence only the kind of  
pattern applied after the two or three filtered Hall effect commutation. In the picture is  
reported the less likely situation.  
Let's consider a startup sequence forced by SD, supposing the motor rotating slowly.  
When the signal coming from the SD-Comparator has a falling edge, the logic waits for an  
Hall effect commutation for a period of time equal to TelMAX/6. If no Hall effect commutation  
occurs during this time, the behaviour is that described in the previous section, when a  
startup sequence with motor stopped is described.  
Let's suppose that during the counting period of TelMAX/6 an Hall effect commutation is  
detected. This commutation is filtered using 400µsec. Considering the hypothesis done,  
starting from the Hall effect commutation detection, no more commutation will be detected  
for the following TelMAX/6 and the behaviour is the one described in the startup sequence  
with motor stopped.  
30/37  
L8150  
Application example  
7
Application example  
Figure 22. Basic motor control circuit  
31/37  
Application example  
L8150  
Figure 23. 3 phases motor control circuit  
32/37  
L8150  
Input Output Pins Interface  
8
Input Output Pins Interface  
In the following the simplified schematics of all the device pins.  
Figure 24. Pins: TSD, OV, SDT, INTinN, INTinP Figure 25. Pins: TO  
VREG  
VREG  
TO  
TSD,OV,SDT,  
INTinN,INTinP  
ALWAYS OFF  
D01IN1267  
D01IN1268  
Figure 26. Pins: RF  
Figure 27. Pins: INTout  
VREG  
VREG  
INTout  
RF  
ACTIVE DURING  
ADCS SAMPLING  
D01IN1269  
D01IN1270  
Figure 28. Pins: OSC  
Figure 29. Pins: FG, DM, FAULT  
VREG  
VREG  
FG,DM  
FAULT  
OSC  
D01IN1271  
D01IN1272  
33/37  
Input Output Pins Interface  
Figure 30. ESD clamping  
L8150  
Figure 31. Recirculation diode  
VCC  
VREG  
ESD  
CLAMP  
DEVICE  
DEVICE  
GND  
GND  
D01IN1273  
D01IN1274  
Figure 32. Pins: FR  
Figure 33. Pins: HWN, HWP  
VREG  
VREG  
FR  
HWN,HWP  
On in Test Mode  
D01IN1276  
D01IN1275  
Figure 34. Pins: HUN, HUVP, HVN, HVP  
Figure 35. Pins: UH, UL, VH, VL, WH, WL  
VREG  
VREG  
UH,UL  
VH,VL  
HUN,HUP  
HVN,HVP  
WH,WL  
ON DURING  
POWER UP  
D01IN1277  
On in Test Mode  
D01IN1278  
34/37  
L8150  
Package information  
9
Package information  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a Lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: http://www.st.com.  
Figure 36. SO-28 Mechanical data & package dimensions  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN. TYP. MAX.  
A
a1  
b
2.65  
0.3  
0.104  
0.012  
0.019  
0.013  
0.1  
0.004  
0.35  
0.23  
0.49 0.014  
0.32 0.009  
b1  
C
0.5  
0.020  
c1  
D
45° (typ.)  
17.7  
10  
18.1 0.697  
10.65 0.394  
0.713  
0.419  
E
e
1.27  
0.050  
0.65  
e3  
F
16.51  
7.4  
0.4  
7.6  
0.291  
0.299  
0.050  
L
1.27 0.016  
SO-28  
S
8 ° (max.)  
35/37  
Revision history  
L8150  
10  
Revision history  
Table 23. Document revision history  
Date  
Revision  
Changes  
20-Mar-2006  
1
Initial release.  
36/37  
L8150  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,  
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,  
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR  
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
37/37  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY