S71WS512NC0BAWA33 [SPANSION]

Stacked Multi-Chip Product (MCP); 堆叠式多芯片产品( MCP )
S71WS512NC0BAWA33
型号: S71WS512NC0BAWA33
厂家: SPANSION    SPANSION
描述:

Stacked Multi-Chip Product (MCP)
堆叠式多芯片产品( MCP )

文件: 总188页 (文件大小:3789K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S71WS-Nx0 Based MCPs  
Stacked Multi-Chip Product (MCP)  
128/256/512 Megabit (32M/16M x 16 bit) CMOS  
1.8 Volt-only Simultaneous Read/Write,  
Burst-mode Flash Memory with  
pSRAM Type 4  
ADVANCE  
INFORMATION  
Data Sheet  
Notice to Readers: This document states the current technical specifications  
regarding the Spansion product(s) described herein. Each product described  
herein may be designated as Advance Information, Preliminary, or Full  
Production. See Notice On Data Sheet Designations for definitions.  
Publication Number S71WS-N_01 Revision A Amendment 4 Issue Date September 15, 2005  
This document contains information on one or more products under development at Spansion LLC. The information is intended to help you evaluate this product. Do not  
design in this product without contacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed product without notice.  
A d v a n c e I n f o r m a t i o n  
Notice On Data Sheet Designations  
Spansion LLC issues data sheets with Advance Information or Preliminary designations to advise  
readers of product information or intended specifications throughout the product life cycle, includ-  
ing development, qualification, initial production, and full production. In all cases, however,  
readers are encouraged to verify that they have the latest information before finalizing their de-  
sign. The following descriptions of Spansion data sheet designations are presented here to  
highlight their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion LLC is developing one or more spe-  
cific products, but has not committed any design to production. Information presented in a  
document with this designation is likely to change, and in some cases, development on the prod-  
uct may discontinue. Spansion LLC therefore places the following conditions upon Advance  
Information content:  
“This document contains information on one or more products under development at Spansion LLC. The  
information is intended to help you evaluate this product. Do not design in this product without con-  
tacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed  
product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a  
commitment to production has taken place. This designation covers several aspects of the product  
life cycle, including product qualification, initial production, and the subsequent phases in the  
manufacturing process that occur before full production is achieved. Changes to the technical  
specifications presented in a Preliminary document should be expected while keeping these as-  
pects of production under consideration. Spansion places the following conditions upon  
Preliminary content:  
“This document states the current technical specifications regarding the Spansion product(s) described  
herein. The Preliminary status of this document indicates that product qualification has been completed,  
and that initial production has begun. Due to the phases of the manufacturing process that require  
maintaining efficiency and quality, this document may be revised by subsequent versions or modifica-  
tions due to changes in technical specifications.”  
Combination  
Some data sheets will contain a combination of products with different designations (Advance In-  
formation, Preliminary, or Full Production). This type of document will distinguish these products  
and their designations wherever necessary, typically on the first page, the ordering information  
page, and pages with the DC Characteristics table and the AC Erase and Program table (in the  
table notes). The disclaimer on the first page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal  
changes are expected, the Preliminary designation is removed from the data sheet. Nominal  
changes may include those affecting the number of ordering part numbers available, such as the  
addition or deletion of a speed option, temperature range, package type, or VIO range. Changes  
may also include those needed to clarify a description or to correct a typographical error or incor-  
rect specification. Spansion LLC applies the following conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s) described  
herein. Spansion LLC deems the products to have been in sufficient production volume such that sub-  
sequent versions of this document are not expected to change. However, typographical or specification  
corrections, or modifications to the valid combinations offered may occur.”  
Questions regarding these document designations may be directed to your local AMD or Fujitsu  
sales office.  
ii  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
S71WS-Nx0 Based MCPs  
Stacked Multi-Chip Product (MCP)  
128/256/512 Megabit (32M/16M x 16 bit) CMOS  
1.8 Volt-only Simultaneous Read/Write,  
Burst-mode Flash Memory with  
pSRAM Type 4  
ADVANCE  
INFORMATION  
General Description  
The S71WS-N Series is a product line of stacked Multi-Chip Product (MCP) packages and consists  
of the following items:  
„ One or more flash memory die  
„ pSRAM Type 4—Compatible pSRAM  
The products covered by this document are listed in the table below. For details about their spec-  
ifications, please refer to the individual constituent datasheet for further details.  
Flash Density  
pSRAM Density  
64 Mb 32 Mb  
Device  
512 Mb  
256 Mb  
128 Mb  
64 Mb  
128 Mb  
16 Mb  
S71WS512ND0  
S71WS256ND0  
S71WS256NC0  
S71WS128NC0  
„
„
„
„
„
„
„
„
„
Distinctive Characteristics  
MCP Features  
„ Power supply voltage of 1.7 V to 1.95 V  
„ Burst Speed: 54 MHz, 66 MHz  
„ Package  
— 8 x 11.6 mm, 9 x 12 mm  
„ Operating Temperature  
— Wireless, –25° C to +85° C  
Publication Number S71WS-N_01 Revision A Amendment 4 Issue Date September 15, 2005  
This document contains information on one or more products under development at Spansion LLC. The information is intended to help you evaluate this product. Do not  
design in this product without contacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed product without notice.  
A d v a n c e I n f o r m a t i o n  
Contents  
S71WS-Nx0 Based MCPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input/Output Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
MCP Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Connection Diagrams/Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1 Special Handling Instructions for FBGA Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
5.2 Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2
3
4
5
5.2.1  
1.8 V RAM Type 4 – Based Pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
5.2.2 Look-Ahead Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5.3 Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5.3.1  
TLA084—84-ball Fine-Pitch Ball Grid Array (FBGA) 11.6 x 8.0 x 1.2 mm. . . . . . . . . . . . . . . . . . . . . . . . .17  
5.3.2 TSD084—84-ball Fine-Pitch Ball Grid Array (FBGA) 12.0 x 9.0 x 1.2 mm . . . . . . . . . . . . . . . . . . . . . . . .18  
5.3.3 FEA084—84-ball Fine-Pitch Ball Grid Array (FBGA) 12.0 x 9.0 x 1.4 mm . . . . . . . . . . . . . . . . . . . . . . . .19  
S29WS-N MirrorBitTM Flash Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
6
7
8
9
Input/Output Descriptions & Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Product Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
9.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
10 Device Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.1 Device Operation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.2 Asynchronous Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.3 Synchronous (Burst) Read Mode & Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
10.3.4 Continuous Burst Read Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
10.3.5 8-, 16-, 32-Word Linear Burst Read with Wrap Around . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
10.3.6 8-, 16-, 32-Word Linear Burst without Wrap Around. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
10.3.7 Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
10.4 Autoselect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
10.5 Program/Erase Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.5.1 Single Word Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.5.2 Write Buffer Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10.5.3 Sector Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
10.5.4 Chip Erase Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
10.5.5 Erase Suspend/Erase Resume Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
10.5.6 Program Suspend/Program Resume Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10.5.7 Accelerated Program/Chip Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
10.5.8 Unlock Bypass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
10.5.9 Write Operation Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.6 Simultaneous Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.7 Writing Commands/Command Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.8 Handshaking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.9 Hardware Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.10 Software Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
11 Advanced Sector Protection/Unprotection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
11.1 Lock Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
11.2 Persistent Protection Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
11.3 Dynamic Protection Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
11.4 Persistent Protection Bit Lock Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
11.5 Password Protection Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
11.6 Hardware Data Protection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
11.6.1 WP# Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
2
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
11.6.2 ACC Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
11.6.3 Low VCC Write Inhibit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
11.6.4 Write Pulse “Glitch Protection” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
11.6.5 Power-Up Write Inhibit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
12 Power Conservation Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
12.1 Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
12.2 Automatic Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
12.3 Hardware RESET# Input Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
12.4 Output Disable (OE#). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
13 Secured Silicon Sector Flash Memory Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
13.1 Factory Secured SiliconSector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
13.2 Customer Secured Silicon Sector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
13.3 Secured Silicon Sector Entry/Exit Command Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
14 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
14.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
14.2 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
14.3 Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
14.4 Key to Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
14.5 Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
14.6  
VCC Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
14.7 DC Characteristics (CMOS Compatible) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
14.8 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
14.8.1 CLK Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
14.8.2 Synchronous/Burst Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
14.8.3 Timing Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
14.8.4 AC Characteristics—Asynchronous Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
14.8.5 Hardware Reset (RESET#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
14.8.6 Erase/Program Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
14.8.7 Erase and Programming Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
14.8.8 BGA Ball Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
15 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
15.1 Common Flash Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
16 Commonly Used Terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
1.8V pSRAM Type 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
17 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
18 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
19 Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
20 Power Up and Standby Mode Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
20.1 Power Up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
20.2 Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
21 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
22 Mode Register Setting Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
22.1 Mode Register Set (MRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
22.2 Mode Register Setting Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
23 Asynchronous Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
23.1 Asynchronous 4 Page Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
23.2 Asynchronous Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
23.3 Asynchronous Write Operation in Synchronous Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
24 Synchronous Burst Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
24.1 Synchronous Burst Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
24.2 Synchronous Burst Write Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
25 Synchronous Burst Operation Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
25.1 Clock (CLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
25.2 Latency Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
25.3 Burst Length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
3
A d v a n c e I n f o r m a t i o n  
25.4 Burst Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
25.5 Wait Control (WAIT#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
25.6 Burst Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
26 Low Power Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
26.7 Partial Array Refresh (PAR) mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
26.8 Driver Strength Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
26.1 Internal TCSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
27 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
28 DC Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
29 Capacitance (Ta = 25°C, f = 1 MHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
30 DC and Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
30.1 Common . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
31 AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
31.1 Test Conditions (Test Load and Test Input/Output Reference) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
31.2 Asynchronous AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
31.3 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
31.3.1 Asynchronous Read Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
31.3.2 Asynchronous Write Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
31.3.3 Asynchronous Write Timing Waveform in Synchronous Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124  
31.3.4 Asynchronous Write Timing Waveform in Synchronous Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
32 AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
32.1 Test Conditions (Test Load and Test Input/Output Reference) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128  
32.2 Synchronous AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
32.3 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
32.3.1 Synchronous Burst Operation Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
32.3.2 Synchronous Burst Read Timing Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
32.3.3 Synchronous Burst Read Stop Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
32.3.4 Synchronous Burst Write Stop Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
32.3.5 Synchronous Burst Read Suspend Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
33 Transition Timing Waveform Between Read And Write . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
1.8V pSRAM Type 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
34 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
35 Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
36 Power Up and Standby Mode Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
36.1 Power Up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
36.2 Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
37 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
38 Mode Register Setting Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
38.1 Mode Register Set (MRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
38.2 MRS Pin Control Type Mode Register Setting Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
39 Asynchronous Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
39.1 Asynchronous 4 Page Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
39.2 Asynchronous Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
39.3 Asynchronous Write Operation in Synchronous Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
40 Synchronous Burst Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
40.1 Synchronous Burst Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
40.2 Synchronous Burst Write Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
41 Synchronous Burst Operation Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
41.1 Clock (CLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
41.2 Latency Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
41.3 Burst Length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
41.4 Burst Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
41.5 Wait Control (WAIT#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
41.6 Burst Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
4
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
42 Low Power Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
42.1 Internal TCSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
42.2 Driver Strength Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
42.3 Partial Array Refresh (PAR) mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
43 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
44 DC Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
45 Capacitance (Ta = 25°C, f = 1 MHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
46 DC and Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
46.1 Common . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
47 AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
47.1 Test Conditions (Test Load and Test Input/Output Reference) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
47.2 Asynchronous AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
47.3 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
47.3.1 Asynchronous Read Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
47.3.2 Asynchronous Write Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
47.3.1 Asynchronous Write Timing Waveform in Synchronous Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
48 AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
48.1 Test Conditions (Test Load and Test Input/Output Reference) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
48.2 Synchronous AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
48.3 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
48.3.1 Synchronous Burst Operation Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
48.3.2 Synchronous Burst Read Timing Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
48.3.3 Synchronous Burst Read Stop Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
48.3.4 Synchronous Burst Write Stop Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178  
48.3.5 Synchronous Burst Read Suspend Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
49 Transition Timing Waveform Between Read And Write . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
50 Revisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
5
A d v a n c e I n f o r m a t i o n  
Tables  
Table 3.1  
Table 6.1  
Table 9.1  
Table 9.2  
Input/Output Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input/Output Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
S29WS256N Sector & Memory Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
S29WS128N Sector & Memory Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 10.1 Device Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 10.2 Address Latency (S29WS256N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 10.3 Address Latency (S29WS128N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 10.4 Address/Boundary Crossing Latency (S29WS256N @ 80MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 10.5 Address/Boundary Crossing Latency (S29WS256N @ 66 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 10.6 Address/Boundary Crossing Latency (S29WS256N @ 54MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 10.7 Address/Boundary Crossing Latency (S29WS128N). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 10.8 Burst Address Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 10.9 Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 10.10 Autoselect Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 10.11 Autoselect Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 10.12 Autoselect Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 10.13 Software Functions and Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 10.14 Software Functions and Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 10.15 Software Functions and Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 10.16 Software Functions and Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 10.17 Software Functions and Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 10.18 Software Functions and Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 10.19 Software Functions and Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 10.20 Write Operation Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 10.21 Reset LLD Function = lld_ResetCmd). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 11.1 Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 11.2 Advanced Sector Protection Software Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 13.1  
Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 13.2 Secured Silicon Sector Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 13.3 Secured Silicon Sector Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 13.4 Secured Silicon Sector Exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 14.1 Test Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 14.2 Synchronous Wait State Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Table 15.1  
Memory Array Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Table 15.2 Sector Protection Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Table 15.3 CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Table 15.4 System Interface String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Table 15.5 Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Table 15.6 Primary Vendor-Specific Extended Query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Table 21.1 Asynchronous 4 Page Read & Asynchronous Write Mode (A15/A14=0/0). . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Table 21.2 Synchronous Burst Read & Asynchronous Write Mode (A15/A14=0/1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Table 21.3 Synchronous Burst Read & Synchronous Burst Write Mode(A15/A14 = 1/0). . . . . . . . . . . . . . . . . . . . . . . . 106  
Table 22.1 Mode Register Setting According to Field of Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Table 22.2 Mode Register Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Table 22.3 MRS AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Table 25.1 Latency Count Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Table 25.2 Number of CLocks for 1st Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Table 25.3 Burst Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Table 26.1 PAR Mode Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Table 31.1 Asynchronous Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Table 31.2 Asynchronous Page Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Table 31.3 Asynchronous Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Table 31.4 Asynchronous Write AC Characteristics (UB# & LB# Controlled). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
6
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Table 31.5 Asynchronous Write in Synchronous Mode AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Table 31.6 Asynchronous Write in Synchronous Mode AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Table 31.7 Asynchronous Write in Synchronous Mode AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Table 31.8 Asynchronous Write in Synchronous Mode AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Table 31.9 Asynchronous Write in Synchronous Mode AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Table 32.1 Burst Operation AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Table 32.2 Burst Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Table 32.3 Burst Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Table 32.4 Burst Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Table 32.5 Burst Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Table 32.6 Burst Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Table 32.7 Burst Read Stop AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Table 32.8 Burst Write Stop AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Table 32.9 Burst Read Suspend AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Table 33.1 Burst Read to Asynchronous Write (Address Latch Type) AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 139  
Table 33.2 Burst Read to Asynchronous Write (Low ADV# Type) AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Table 33.3 Asynchronous Write (Address Latch Type) to Burst Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 141  
Table 33.4 Asynchronous Write (Low ADV# Type) to Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Table 33.5 Asynchronous Write (Low ADV# Type) to Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Table 33.6 Asynchronous Write (Low ADV# Type) to Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Table 37.1 Asynchronous 4 Page Read & Asynchronous Write Mode (A15/A14=0/0). . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Table 37.2 Synchronous Burst Read & Asynchronous Write Mode (A15/A14=0/1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Table 37.3 Synchronous Burst Read & Synchronous Burst Write Mode(A15/A14 = 1/0). . . . . . . . . . . . . . . . . . . . . . . . 149  
Table 38.1 Mode Register Setting According to Field of Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Table 38.2 Mode Register Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Table 38.3 MRS AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Table 41.1 Latency Count Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Table 41.2 Number of CLocks for 1st Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Table 41.3 Burst Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Table 42.1 PAR Mode Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Table 47.1 Asynchronous Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Table 47.2 Asynchronous Page Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Table 47.3 Asynchronous Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Table 47.4 Asynchronous Write AC Characteristics (UB# & LB# Controlled). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Table 47.5 Asynchronous Write in Synchronous Mode AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Table 47.6 Asynchronous Write in Synchronous Mode AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Table 47.7 Asynchronous Write in Synchronous Mode AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Table 47.8 Asynchronous Write in Synchronous Mode AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Table 48.1 Burst Operation AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Table 48.2 Burst Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Table 48.3 Burst Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Table 48.4 Burst Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Table 48.5 Burst Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Table 48.6 Burst Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Table 48.7 Burst Read Stop AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Table 48.8 Burst Write Stop AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Table 48.9 Burst Read Suspend AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Table 49.1 Burst Read to Asynchronous Write (Address Latch Type) AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 180  
Table 49.2 Burst Read to Asynchronous Write (Low ADV# Type) AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Table 49.3 Asynchronous Write (Address Latch Type) to Burst Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 182  
Table 49.4 Asynchronous Write (Low ADV# Type) to Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Table 49.5 Asynchronous Write (Low ADV# Type) to Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Table 49.6 Asynchronous Write (Low ADV# Type) to Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
7
A d v a n c e I n f o r m a t i o n  
Figures  
Figure 7.1  
S29WS-N Block Diagram....................................................................................................................22  
Synchronous/Asynchronous State Diagram...........................................................................................27  
Synchronous Read ............................................................................................................................29  
Single Word Program.........................................................................................................................35  
Write Buffer Programming Operation ...................................................................................................39  
Sector Erase Operation ......................................................................................................................41  
Write Operation Status Flowchart ........................................................................................................48  
Advanced Sector Protection/Unprotection .............................................................................................55  
PPB Program/Erase Algorithm.............................................................................................................58  
Lock Register Program Algorithm.........................................................................................................61  
Maximum Negative Overshoot Waveform .............................................................................................68  
Maximum Positive Overshoot Waveform...............................................................................................68  
Test Setup .......................................................................................................................................69  
Input Waveforms and Measurement Levels...........................................................................................70  
VCC Power-up Diagram ......................................................................................................................70  
CLK Characterization .........................................................................................................................72  
CLK Synchronous Burst Mode Read......................................................................................................74  
8-word Linear Burst with Wrap Around.................................................................................................75  
8-word Linear Burst without Wrap Around ............................................................................................75  
Figure 10.1  
Figure 10.2  
Figure 10.3  
Figure 10.4  
Figure 10.5  
Figure 10.6  
Figure 11.1  
Figure 11.2  
Figure 11.3  
Figure 14.1  
Figure 14.2  
Figure 14.3  
Figure 14.4  
Figure 14.5  
Figure 14.6  
Figure 14.7  
Figure 14.8  
Figure 14.9  
Figure 14.10 Linear Burst with RDY Set One Cycle Before Data..................................................................................76  
Figure 14.11 Asynchronous Mode Read...................................................................................................................77  
Figure 14.12 Reset Timings...................................................................................................................................78  
Figure 14.13 Chip/Sector Erase Operation Timings...................................................................................................80  
Figure 14.14 Program Operation Timing Using AVD#................................................................................................81  
Figure 14.15 Program Operation Timing Using CLK in Relationship to AVD#.................................................................82  
Figure 14.16 Accelerated Unlock Bypass Programming Timing ...................................................................................83  
Figure 14.17 Data# Polling Timings (During Embedded Algorithm).............................................................................83  
Figure 14.18 Toggle Bit Timings (During Embedded Algorithm)..................................................................................84  
Figure 14.19 Synchronous Data Polling Timings/Toggle Bit Timings ............................................................................84  
Figure 14.20 DQ2 vs. DQ6....................................................................................................................................85  
Figure 14.21 Latency with Boundary Crossing when Frequency > 66 MHz....................................................................85  
Figure 14.22 Latency with Boundary Crossing into Program/Erase Bank......................................................................86  
Figure 14.23 Example of Wait States Insertion ........................................................................................................87  
Figure 14.24 Back-to-Back Read/Write Cycle Timings ...............................................................................................88  
Figure 20.1  
Figure 20.2  
Power Up Timing.............................................................................................................................104  
Standby Mode State Machines ..........................................................................................................104  
Figure 22.1  
Figure 22.2  
Pin MRS Timing Waveform (OE# = VIH) .............................................................................................108  
Software MRS Timing Waveform .......................................................................................................109  
Figure 23.1  
Figure 23.2  
Figure 24.1  
Figure 24.2  
Figure 25.1  
Figure 25.2  
Figure 26.1  
Figure 31.1  
Figure 31.2  
Figure 31.3  
Figure 31.4  
Figure 31.5  
Figure 31.6  
Figure 31.7  
Figure 31.8  
Figure 31.9  
Asynchronous 4-Page Read ..............................................................................................................110  
Asynchronous Write.........................................................................................................................110  
Synchronous Burst Read ..................................................................................................................111  
Synchronous Burst Write..................................................................................................................111  
Latency Configuration (Read)............................................................................................................112  
WAIT# and Read/Write Latency Control .............................................................................................113  
PAR Mode Execution and Exit............................................................................................................115  
PAR Mode Execution and Exit............................................................................................................117  
Timing Waveform Of Asynchronous Read Cycle ...................................................................................119  
Timing Waveform Of Page Read Cycle................................................................................................120  
Timing Waveform Of Write Cycle.......................................................................................................121  
Timing Waveform of Write Cycle(2) ...................................................................................................122  
Timing Waveform Of Write Cycle (Address Latch Type) ........................................................................123  
Timing Waveform Of Write Cycle (Low ADV# Type) .............................................................................124  
Timing Waveform Of Write Cycle (Low ADV# Type) .............................................................................125  
Timing Waveform Of Write Cycle (Low ADV# Type) .............................................................................126  
8
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Figure 31.10 Timing Waveform Of Multiple Write Cycle (Low ADV# Type)..................................................................127  
Figure 32.1  
Figure 32.2  
Figure 32.3  
Figure 32.4  
Figure 32.5  
Figure 32.6  
Figure 32.7  
Figure 32.8  
Figure 32.9  
AC Output Load Circuit.....................................................................................................................128  
Timing Waveform Of Basic Burst Operation.........................................................................................130  
Timing Waveform of Burst Read Cycle (1) ..........................................................................................131  
Timing Waveform of Burst Read Cycle (2) ..........................................................................................132  
Timing Waveform of Burst Read Cycle (3) ..........................................................................................133  
Timing Waveform of Burst Write Cycle (1)..........................................................................................134  
Timing Waveform of Burst Write Cycle (2)..........................................................................................135  
Timing Waveform of Burst Read Stop by CS# .....................................................................................136  
Timing Waveform of Burst Write Stop by CS#.....................................................................................137  
Figure 32.10 Timing Waveform of Burst Read Suspend Cycle (1)..............................................................................138  
Figure 33.1  
Figure 33.2  
Figure 33.3  
Figure 33.4  
Figure 33.5  
Figure 33.6  
Figure 36.1  
Figure 36.2  
Figure 38.1  
Figure 39.1  
Figure 39.2  
Synchronous Burst Read to Asynchronous Write (Address Latch Type) ...................................................139  
Synchronous Burst Read to Asynchronous Write (Low ADV# Type) ........................................................140  
Asynchronous Write (Address Latch Type) to Synchronous Burst Read Timing .........................................141  
Asynchronous Write (Low ADV# Type) to Synchronous Burst Read Timing..............................................142  
Synchronous Burst Read to Synchronous Burst Write Timing.................................................................143  
Synchronous Burst Write to Synchronous Burst Read Timing.................................................................144  
Power Up Timing.............................................................................................................................147  
Standby Mode State Machines ..........................................................................................................147  
Mode Register Setting Timing (OE# = VIH) .........................................................................................151  
Asynchronous 4-Page Read ..............................................................................................................152  
Asynchronous Write.........................................................................................................................152  
Figure 40.1  
Figure 40.2  
Figure 41.1  
Figure 41.2  
Figure 42.1  
Figure 47.1  
Figure 47.2  
Figure 47.3  
Figure 47.4  
Figure 47.5  
Figure 47.6  
Figure 47.7  
Figure 47.8  
Figure 47.9  
Figure 48.1  
Figure 48.2  
Figure 48.3  
Figure 48.4  
Figure 48.5  
Figure 48.6  
Figure 48.7  
Figure 48.8  
Figure 48.9  
Synchronous Burst Read ..................................................................................................................153  
Synchronous Burst Write..................................................................................................................153  
Latency Configuration (Read)............................................................................................................154  
WAIT# and Read/Write Latency Control .............................................................................................155  
PAR Mode Execution and Exit............................................................................................................157  
PAR Mode Execution and Exit............................................................................................................159  
Timing Waveform Of Asynchronous Read Cycle ...................................................................................161  
Timing Waveform Of Page Read Cycle................................................................................................162  
Timing Waveform Of Write Cycle.......................................................................................................163  
Timing Waveform of Write Cycle(2) ...................................................................................................164  
Timing Waveform Of Write Cycle (Address Latch Type) ........................................................................165  
Timing Waveform Of Write Cycle (Low ADV# Type) .............................................................................166  
Timing Waveform Of Write Cycle (Low ADV# Type) .............................................................................167  
Timing Waveform Of Multiple Write Cycle (Low ADV# Type)..................................................................168  
AC Output Load Circuit.....................................................................................................................169  
Timing Waveform Of Basic Burst Operation.........................................................................................171  
Timing Waveform of Burst Read Cycle (1) ..........................................................................................172  
Timing Waveform of Burst Read Cycle (2) ..........................................................................................173  
Timing Waveform of Burst Read Cycle (3) ..........................................................................................174  
Timing Waveform of Burst Write Cycle (1)..........................................................................................175  
Timing Waveform of Burst Write Cycle (2)..........................................................................................176  
Timing Waveform of Burst Read Stop by CS# .....................................................................................177  
Timing Waveform of Burst Write Stop by CS#.....................................................................................178  
Figure 48.10 Timing Waveform of Burst Read Suspend Cycle (1)..............................................................................179  
Figure 49.1  
Figure 49.2  
Figure 49.3  
Figure 49.4  
Figure 49.5  
Figure 49.6  
Synchronous Burst Read to Asynchronous Write (Address Latch Type) ...................................................180  
Synchronous Burst Read to Asynchronous Write (Low ADV# Type) ........................................................181  
Asynchronous Write (Address Latch Type) to Synchronous Burst Read Timing .........................................182  
Asynchronous Write (Low ADV# Type) to Synchronous Burst Read Timing..............................................183  
Synchronous Burst Read to Synchronous Burst Write Timing.................................................................184  
Synchronous Burst Write to Synchronous Burst Read Timing.................................................................185  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
9
A d v a n c e I n f o r m a t i o n  
1 Product Selector Guide  
DYB  
Power-Up  
State  
pSRAM  
Density Speed  
(Mb)  
Flash  
pSRAM  
Speed  
(MHz)  
Model  
Numbers  
pSRAM  
Supplier  
Package  
(mm)  
Device  
Flash  
(MHz)  
(See Note)  
A3  
A7  
A2  
A6  
Y3  
Y7  
Y2  
Y6  
E3  
E7  
E2  
E6  
A3  
A7  
A2  
A6  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
54  
54  
66  
54  
66  
54  
66  
54  
66  
S71WS256NC0  
64  
11.6x8.0x1.2  
9x12x1.2  
66  
54  
66  
54  
66  
54  
66  
WS256N  
S71WS256ND0  
S71WS512ND0  
S71WS128NC0  
128  
128  
64  
1.8V RAM Type 4  
WS512N  
WS128N  
9x12x1.4  
11.6x8.0x1.2  
Note: 0 (Protected), 1 (Unprotected [Default State])  
10  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
2 Ordering Information  
The ordering part number is formed by a valid combination of the following:  
S71WS 256  
N
C
0
BA  
W
A
3
0
Packing Type  
0
2
3
=
=
=
Tray  
7” Tape and Reel  
13” Tape and Reel  
RAM Supplier, DYB Power Up, Speed Combinations  
3
7
2
6
=
=
=
=
RAM Type 4, 0, 54 MHz  
RAM Type 4, 1, 54 MHz  
RAM Type 4, 0, 66 MHz  
RAM Type 4, 1, 66 MHz  
Package Modifier  
A
E
Y
=
=
=
1.2 mm, 8 x 11.6, 84-ball FBGA  
1.2 mm, 9 x 12, 84-ball FBGA  
1.4 mm, 9 x 12, 84-ball FBGA  
Temperature Range  
Wireless (-25°C to +85°C)  
W
=
Package Type  
BA  
=
Very Thin Fine-Pitch BGA  
Lead (Pb)-free Compliant Package  
Very Thin Fine-Pitch BGA  
Lead (Pb)-free Package  
BF  
=
Chip Contents—2  
No content  
pSRAM Density  
C = 64 Mb  
D = 128 Mb  
Process Technology  
N
=
110nm MirrorBit™ Technology  
Flash Density  
512  
256  
=
=
512Mb (2x256Mb)  
256Mb  
Device Family  
S71WS= Multi-Chip Product  
1.8 Volt-only Simultaneous Read/Write Burst Mode  
Flash Memory + xRAM  
Valid Combinations  
S71WS128N  
S71WS256N  
C
A
E
2, 6, 3, 7  
3, 7  
D
C
0
BA, BF  
W
A
Y
E
2, 6, 3, 7  
2, 6  
S71WS512N  
D
2, 6, 3, 7  
Package Marking Note:  
The package marking omits the leading S from the ordering part number.  
Valid Combinations  
Valid Combinations list configurations planned to be supported in volume for this device. Consult  
your local sales office to confirm availability of specific valid combinations and to check on newly  
released combinations.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
11  
A d v a n c e I n f o r m a t i o n  
3 Input/Output Descriptions  
Table 3.1 identifies the input and output package connections provided on the device.  
Table 3.1 Input/Output Descriptions  
Symbol  
A23-A0  
Description  
Address inputs  
DQ15-DQ0  
OE#  
Data input/output  
Output Enable input. Asynchronous relative to CLK for the Burst mode.  
WE#  
Write Enable input.  
V
Ground  
SS  
NC  
No Connect; not connected internally  
RDY  
Ready output. Indicates the status of the Burst read. The WAIT# pin of the pSRAM is tied to RDY.  
Clock input. In burst mode, after the initial word is output, subsequent active edges of CLK increment  
CLK  
the internal address counter. Should be at V or V while in asynchronous mode  
IL  
IH  
Address Valid input. Indicates to device that the valid address is present on the address inputs.  
Low = for asynchronous mode, indicates valid address; for burst mode, causes starting address to be  
latched.  
AVD#  
High = device ignores address inputs  
F-RST#  
F-WP#  
Hardware reset input. Low = device resets and returns to reading array data  
Hardware write protect input. At V , disables program and erase functions in the four outermost  
IL  
sectors. Should be at V for all other conditions.  
IH  
Accelerated input. At V , accelerates programming; automatically places device in unlock bypass  
HH  
F-ACC  
mode. At V , disables all program and erase functions. Should be at V for all other conditions.  
IL  
IH  
R-CE1#  
F1-CE#  
Chip-enable input for pSRAM.  
Chip-enable input for Flash 1. Asynchronous relative to CLK for Burst Mode.  
Chip-enable input for Flash 2. Asynchronous relative to CLK for Burst Mode. This applies to the 512Mb  
MCP only.  
F2-CE#  
R-MRS  
F-VCC  
R-VCC  
R-UB#  
R-LB#  
DNU  
Mode register select for Type 4.  
Flash 1.8 Volt-only single power supply.  
pSRAM Power Supply.  
Upper Byte Control (pSRAM).  
Lower Byte Control (pSRAM)  
Do Not Use  
12  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
4 MCP Block Diagram  
F-VCC  
Flash-only Address  
Shared Address  
V
V
ID  
CC  
DQ15 to DQ0  
CLK  
WP#  
22  
16  
DQ15 to DQ0  
CLK  
WP#  
ACC  
F1-CE#  
OE#  
ACC  
CE#  
OE#  
(Note 1)  
Flash 1  
(Note 3)  
Flash 2  
WE#  
F-RST#  
AVD#  
WE#  
RESET#  
AVD#  
RDY  
RDY  
VSS  
F2-CE#  
R-VCC  
22  
VCCQ  
VCC  
16  
(Note 1)  
I/O15 to I/O0  
CLK  
R-CE1#  
CE#  
WE#  
pSRAM  
WAIT#  
OE#  
UB#  
LB#  
CE2  
R-UB#  
R-LB#  
R-CE2  
V
SSQ  
AVD#  
Notes:  
1. For 1 Flash + pSRAM, F1-CE# = CE#. For 2 Flash + pSRAM, CE# = F1-CE# and F2-CE# is the chip-enable pin for the  
second Flash.  
2. Only needed for S71WS512N.  
3. For the 128M pSRAM devices, there are 23 shared addresses.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
13  
A d v a n c e I n f o r m a t i o n  
5 Connection Diagrams/Physical Dimensions  
This section contains the I/O designations and package specifications for the S71WS-N.  
5.1  
Special Handling Instructions for FBGA Packages  
Special handling is required for Flash Memory products in FBGA packages.  
Flash memory devices in FBGA packages may be damaged if exposed to ultrasonic cleaning meth-  
ods. The package and/or data integrity may be compromised if the package body is exposed to  
temperatures above 150° C for prolonged periods of time.  
14  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
5.2 Connection Diagrams  
5.2.1  
1.8 V RAM Type 4 – Based Pinout  
84-ball Fine-Pitch Ball Grid Array  
Type 4-based Pinout (Top View, Balls Facing Down)  
A10  
A1  
DNU  
DNU  
B2  
B3  
RFU  
C3  
A7  
D3  
A6  
E3  
B4  
CLK  
C4  
B5  
F2-CE#  
C5  
B6  
RFU  
C6  
B7  
RFU  
C7  
B8  
RFU  
C8  
B9  
RFU  
C9  
AVD#  
C2  
F-WP#  
D2  
Legend  
RFU  
D9  
R-LB#  
D4  
F-ACC  
D5  
WE#  
D6  
A8  
A11  
D8  
D7  
Shared  
A3  
R-UB# F-RST#  
RFU  
E6  
A19  
E7  
A12  
E8  
A15  
E9  
E2  
E4  
A18  
F4  
E5  
RDY  
F5  
Flash XIP only  
A2  
F2  
A1  
G2  
A0  
A5  
F3  
A20  
F6  
A9  
A13  
F8  
A21  
F9  
F7  
RAM only  
A4  
A17  
G4  
A10  
G7  
A14  
G8  
A22  
G9  
RFU  
G5  
A23  
G6  
G3  
1st Flash  
Only  
VSS  
DQ1  
RFU  
RFU  
DQ6  
RFU  
A16  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
F1-CE#  
OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
R-MRS  
2nd Flash  
Only  
J9  
J2  
J3  
J4  
DQ10  
K4  
J5  
J6  
J7  
J8  
R-CE1#  
DQ0  
F-VCC  
R-VCC  
DQ12  
DQ7  
VSS  
K2  
K8  
K3  
K5  
K7  
K6  
RFU  
L6  
K9  
RFU  
L9  
Reserved for  
Future Use  
DQ14  
DQ8  
DQ2  
DQ5  
DQ11  
RFU  
L3  
L4  
L5  
L7  
L8  
L2  
RFU  
RFU  
RFU  
F-VCC  
RFU  
RFU  
RFU  
RFU  
M10  
DNU  
M1  
DNU  
Notes:  
1. In MCPs based on a single S29WS256N (S71WS256N), ball B5 is RFU. In MCPs based on two S29WS256N (S71WS512),  
ball B5 is or F2-CE#.  
2. Addresses are shared between Flash and RAM depending on the density of the pSRAM.  
MCP  
Flash-only Addresses  
Shared Addresses  
A21-A0  
S71WS128NC0  
S71WS256NC0  
S71WS512ND0  
A22  
A23-A22  
A23  
A21-A0  
A22-A0  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
15  
A d v a n c e I n f o r m a t i o n  
5.2.2  
Look-Ahead Connection Diagram  
A2  
RFU  
B2  
A10  
RFU  
B10  
RFU  
A9  
RFU  
B9  
A1  
RFU  
B1  
Legend:  
X
RFU  
(Reserved for  
Future Use)  
RFU  
RFU  
C2  
RFU  
C9  
C8  
C3  
VSS  
D3  
A7  
C4  
CLK  
D4  
C5  
F2-CE#  
D5  
C6  
F-VCC  
D6  
C7  
X
AVD#  
D2  
F-CLK# R-OE# F2-OE#  
Code Flash Only  
D7  
A8  
D8  
A11  
E8  
D9  
F3-CE#  
E9  
WP#  
E2  
R-LB#  
D4  
ACC  
WE#  
E6  
X
E3  
E7  
C7  
MirrorBit Data  
Only  
A3  
A6  
R-UB# F-RST# R1-CE2  
F4 F5 F6  
A18 RDY/WAIT# A20  
A19  
A12  
A15  
F2  
F3  
F7  
F8  
F9  
X
A2  
A5  
A9  
A13  
A21  
Flash/Data  
Shared  
G2  
A1  
G3  
A4  
G4  
A17  
H4  
G5  
G6  
A23  
H6  
G7  
A10  
H7  
G8  
A14  
H8  
G9  
A22  
H9  
R2-CE1  
X
H2  
H3  
H5  
Flash/xRAM  
Shared  
A0  
VSS  
DQ1  
R2-VCC R2-CE2  
DQ6  
A24  
A16  
J9  
J3  
J4  
J5  
J6  
J7  
J8  
J2  
X
F1-CE#  
OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15 R-CRE or  
R-MRS  
pSRAM Only  
K2  
R1-CE1#  
L2  
K3  
DQ0  
L3  
K4  
DQ10  
L4  
E6  
R1-VCC  
L6  
K7  
K8  
DQ7  
L8  
K9  
K5  
F-VCC  
L5  
DQ12  
VSS  
X
L7  
DQ5  
M7  
L9  
WP#  
M9  
xRAM Shared  
R-VCC  
M2  
DQ8  
M3  
DQ2  
M4  
DQ11  
M5  
A25  
DQ14  
M8  
M6  
A27  
A26  
VSS  
F-VCC  
F4-CE# R-VCCQ F-VCCQ R-CLK#  
N2  
N1  
N10  
F-DQS1  
P10  
N9  
RFU  
P9  
RFU  
P2  
F-DQS0  
P1  
RFU  
RFU  
RFU  
RFU  
Notes:  
Ball  
3.0 V V  
1.8 V V  
CC  
CC  
1. In a 3.0V system, the GL device used as Data has to have WP tied to V  
2. F1 and F2 denote XIP/Flash, F3 and F4 denote Data/Companion Flash  
D2  
D5  
F5  
NC  
F-WP#  
ACC  
CC  
WP#/ACC  
RY/BY  
F-RDY/R-WAIT#  
16  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
5.3  
Physical Dimensions  
5.3.1  
TLA084—84-ball Fine-Pitch Ball Grid Array (FBGA) 11.6 x 8.0 x 1.2 mm  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
SE  
7
7
6
E
B
E1  
5
4
3
2
1
eE  
J
H
G
F
E
D
C
B
A
M
L K  
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
BOTTOM VIEW  
0.20  
C
C
A2  
A
0.08  
C
A1  
SIDE VIEW  
6
84X  
b
0.15  
0.08  
M
C
C
A
B
M
NOTES:  
PACKAGE  
JEDEC  
TLA 084  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
11.60 mm x 8.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
1.20  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.17  
0.81  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
0.97  
BODY THICKNESS  
BODY SIZE  
D
11.60 BSC.  
8.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
E1  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
84  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
Ø b  
eE  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SD / SE  
SOLDER BALL PLACEMENT  
A2,A3,A4,A5,A6,A7,A8,A9  
B1,B10,C1,C10,D1,D10,  
E1,E10,F1,F10,G1,G10,  
H1,H10,J1,J10,K1,K10,L1,L10,  
M2,M3,M4,M5,M6,M7,M8,M9  
DEPOPULATED SOLDER BALLS  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3372-2 \ 16-038.22a  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
17  
A d v a n c e I n f o r m a t i o n  
5.3.2  
TSD084—84-ball Fine-Pitch Ball Grid Array (FBGA) 12.0 x 9.0 x 1.2 mm  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
SE  
7
7
6
E
B
E1  
5
4
3
2
1
eE  
J
H
G
F
E
D
C
B
A
M
L K  
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
BOTTOM VIEW  
0.20  
0.08  
C
C
A2  
A
C
A1  
SIDE VIEW  
6
84X  
b
0.15  
0.08  
M
C
C
A
B
M
NOTES:  
PACKAGE  
JEDEC  
TSD 084  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
12.00 mm x 9.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
NOM  
---  
MAX  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
---  
1.20  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.17  
0.81  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
0.94  
BODY THICKNESS  
BODY SIZE  
D
12.00 BSC.  
9.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
84  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
φb  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
eE  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
SD / SE  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
A2,A3,A4,A5,A6,7,A8,A9  
B1,B10,C1,C10,D1,D10  
E1,E10,F1,F10,G1,G10  
H1,H10,J1,J10,K1,K10,L1,L10  
M2,M3,M4,M5,M6,M7,M8,M9  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3426\ 16-038.22  
18  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
5.3.3  
FEA084—84-ball Fine-Pitch Ball Grid Array (FBGA) 12.0 x 9.0 x 1.4 mm  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
SE  
7
7
6
E
B
E1  
5
4
3
2
1
eE  
J
H
G
F
E
D
C
B
A
M
L K  
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
BOTTOM VIEW  
0.20  
C
C
A2  
A
0.08  
C
A1  
SIDE VIEW  
6
84X  
0.15  
b
M
C
C
A B  
0.08  
M
NOTES:  
PACKAGE  
JEDEC  
FEA 084  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
12.00 mm x 9.00 mm  
PACKAGE  
NOTE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
1.40  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.10  
1.11  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
1.26  
BODY THICKNESS  
BODY SIZE  
D
12.00 BSC.  
9.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
E1  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
84  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
Ø b  
eE  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SD / SE  
SOLDER BALL PLACEMENT  
A2,A3,A4,A5,A6,A7,A8,A9  
B1,B10,C1,C10,D1,D10  
E1,E10,F1,F10,G1,G10  
H1,H10,J1,J10,K1,K10,L1,L10  
M2,M3,M4,M5,M6,M7,M8,M9  
DEPOPULATED SOLDER BALLS  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3423 \ 16-038.21a  
BSC is an ANSI standard for Basic Space Centering  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
19  
S29WS-N MirrorBitTM Flash Family  
S29WS256N, S29WS128N  
256/128 Megabit (16/8 M x 16 bit) CMOS 1.8 Volt-only  
Simultaneous Read/Write, Burst-mode Flash Memory  
ADVANCE  
INFORMATION  
General Description  
The Spansion S29WS256/128 are MirrorbitTM Flash products fabricated on 110-nm process technology.  
These burst mode Flash devices are capable of performing simultaneous read and write operations with  
zero latency on two separate banks using separate data and address pins. These products can operate up  
to 80 MHz and use a single VCC of 1.7 V to 1.95 V that makes them ideal for today’s demanding wireless  
applications requiring higher density, better performance and lowered power consumption.  
Distinctive Characteristics  
„
„
„
Single 1.8 V read/program/erase (1.70–1.95 V)  
110 nm MirrorBit™ Technology  
„
„
Command set compatible with JEDEC (42.4)  
standard  
Hardware (WP#) protection of top and bottom  
sectors  
Simultaneous Read/Write operation with zero  
latency  
„
„
32-word Write Buffer  
„
Dual boot sector configuration (top and bottom)  
Low VCC write inhibit  
Sixteen-bank architecture consisting of 16/8  
Mwords for WS256N/128N, respectively  
„
„
Persistent and Password methods of Advanced  
Sector Protection  
„
Four 16 Kword sectors at both top and bottom of  
memory array  
„
Write operation status bits indicate program and  
erase operation completion  
„
„
254/126 64 Kword sectors (WS256N/128N)  
Programmable linear (8/16/32) with or without  
wrap around and continuous burst read modes  
„
„
„
Suspend and Resume commands for Program and  
Erase operations  
„
Secured Silicon Sector region consisting of 128  
words each for factory and customer  
Unlock Bypass program command to reduce  
programming time  
„
„
20-year data retention (typical)  
Synchronous or Asynchronous program operation,  
independent of burst control register settings  
Cycling Endurance: 100,000 cycles per sector  
(typical)  
„
„
ACC input pin to reduce factory programming time  
Support for Common Flash Interface (CFI)  
„
RDY output indicates data available to system  
Performance Characteristics  
Read Access Times  
Current Consumption (typical values)  
Speed Option (MHz)  
Max. Synch. Latency, ns (t  
80  
80  
66  
80  
54  
80  
Continuous Burst Read @ 80 MHz  
38 mA  
50 mA  
19 mA  
19 mA  
20 µA  
)
Simultaneous Operation (asynchronous)  
Program (asynchronous)  
IACC  
Max. Synch. Burst Access, ns (t  
)
9
11.2  
80  
13.5  
80  
BACC  
Max. Asynch. Access Time, ns (t  
)
80  
Erase (asynchronous)  
ACC  
Max CE# Access Time, ns (t  
)
80  
80  
80  
Standby Mode (asynchronous)  
CE  
Max OE# Access Time, ns (t  
)
13.5  
13.5  
13.5  
OE  
Typical Program & Erase Times  
Single Word Programming  
Effective Write Buffer Programming (V ) Per Word  
40 µs  
9.4 µs  
6 µs  
CC  
Effective Write Buffer Programming (V  
Sector Erase (16 Kword Sector)  
Sector Erase (64 Kword Sector)  
) Per Word  
ACC  
150 ms  
600 ms  
Publication Number S71WS-N_01 Revision A Amendment 4 Issue Date September 15, 2005  
This document contains information on one or more products under development at Spansion LLC. The information is intended to help you evaluate this product. Do not  
design in this product without contacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed product without notice.  
A d v a n c e I n f o r m a t i o n  
6 Input/Output Descriptions & Logic Symbol  
Table 6.1 identifies the input and output package connections provided on the device.  
Table 6.1 Input/Output Descriptions  
Symbol  
A23–A0  
DQ15–DQ0  
CE#  
Type  
Input  
Description  
Address lines for WS256N (A22-A0 for WS128).  
Data input/output.  
I/O  
Input  
Chip Enable. Asynchronous relative to CLK.  
Output Enable. Asynchronous relative to CLK.  
Write Enable.  
OE#  
Input  
WE#  
Input  
V
Supply  
I/O  
Device Power Supply.  
CC  
SS  
V
Ground.  
NC  
No Connect  
Output  
Not connected internally.  
RDY  
Ready. Indicates when valid burst data is ready to be read.  
Clock Input. In burst mode, after the initial word is output, subsequent active edges of CLK  
CLK  
Input  
increment the internal address counter. Should be at V or V while in asynchronous  
IL IH  
mode.  
Address Valid. Indicates to device that the valid address is present on the address inputs.  
When low during asynchronous mode, indicates valid address; when low during burst  
mode, causes starting address to be latched at the next active clock edge.  
AVD#  
Input  
When high, device ignores address inputs.  
RESET#  
WP#  
Input  
Input  
Hardware Reset. Low = device resets and returns to reading array data.  
Write Protect. At V , disables program and erase functions in the four outermost sectors.  
IL  
Should be at V for all other conditions.  
IH  
Acceleration Input. At V , accelerates programming; automatically places device in  
HH  
ACC  
RFU  
Input  
unlock bypass mode. At V , disables all program and erase functions. Should be at V for  
I
L
I
H
all other conditions.  
Reserved  
Reserved for future use (see MCP look-ahead pinout for use with MCP).  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
21  
A d v a n c e I n f o r m a t i o n  
7 Block Diagram  
DQ15DQ0  
V
V
CC  
SS  
RDY  
Buffer  
RDY  
Input/Output  
Buffers  
Erase Voltage  
Generator  
WE#  
RESET#  
WP#  
State  
Control  
ACC  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
CE#  
OE#  
Y-Decoder  
Y-Gating  
VCC  
Detector  
Timer  
Cell Matrix  
X-Decoder  
Burst  
State  
Control  
Burst  
Address  
Counter  
AVD#  
CLK  
Amax–A0*  
*
WS256N: A23-A0  
WS128N: A22-A0  
Figure 7.1 S29WS-N Block Diagram  
22  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
8 Additional Resources  
Visit www.amd.com and www.fujitsu.com to obtain the following related documents:  
Application Notes  
„ Using the Operation Status Bits in AMD Devices  
„ Understanding Burst Mode Flash Memory Devices  
„ Simultaneous Read/Write vs. Erase Suspend/Resume  
„ MirrorBit™ Flash Memory Write Buffer Programming and Page Buffer Read  
„ Design-In Scalable Wireless Solutions with Spansion Products  
„ Common Flash Interface Version 1.4 Vendor Specific Extensions  
Specification Bulletins  
Contact your local sales office for details.  
Drivers and Software Support  
„ Spansion low-level drivers  
„ Enhanced Flash drivers  
„ Flash file system  
CAD Modeling Support  
„ VHDL and Verilog  
„ IBIS  
„ ORCAD  
Technical Support  
Contact your local sales office or contact Spansion LLC directly for additional technical support:  
Email  
US and Canada: HW.support@amd.com  
Asia Pacific: asia.support@amd.com  
Europe, Middle East, and Africa  
Japan: http://edevice.fujitsu.com/jp/support/tech/#b7  
Frequently Asked Questions (FAQ)  
http://ask.amd.com/  
http://edevice.fujitsu.com/jp/support/tech/#b7  
Phone  
US: (408) 749-5703  
Japan (03) 5322-3324  
Spansion LLC Locations  
915 DeGuigne Drive, P.O. Box 3453  
Sunnyvale, CA 94088-3453, USA  
Telephone: 408-962-2500 or  
1-866-SPANSION  
Spansion Japan Limited  
4-33-4 Nishi Shinjuku, Shinjuku-ku  
Tokyo, 160-0023  
Telephone: +81-3-5302-2200  
Facsimile: +81-3-5302-2674  
http://www.spansion.com  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
23  
A d v a n c e I n f o r m a t i o n  
9 Product Overview  
The S29WS-N family consists of 256, 128 Mbit, 1.8 volts-only, simultaneous read/write burst  
mode Flash device optimized for today’s wireless designs that demand a large storage array, rich  
functionality, and low power consumption.  
These devices are organized in 16 or 8 Mwords of 16 bits each and are capable of continuous,  
synchronous (burst) read or linear read (8-, 16-, or 32-word aligned group) with or without wrap  
around. These products also offer single word programming or a 32-word buffer for programming  
with program/erase and suspend functionality. Additional features include:  
„ Advanced Sector Protection methods for protecting sectors as required  
„ 256 words of Secured Silicon area for storing customer and factory secured information. The  
Secured Silicon Sector is One Time Programmable.  
9.1  
Memory Map  
The S29WS256/128N Mbit devices consist of 16 banks organized as shown in Table 9.1Table 9.2.  
Table 9.1 S29WS256N Sector & Memory Address Map  
Bank  
Size  
Sector  
Count  
Sector Size  
(KB)  
Sector/  
Sector Range  
Bank  
Address Range  
Notes  
SA000  
000000h–003FFFh  
SA001  
004000h–007FFFh  
Contains four smaller sectors at  
bottom of addressable memory.  
4
32  
2 MB  
0
SA002  
008000h–00BFFFh  
SA003  
00C000h–00FFFFh  
15  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
15  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
SA004 to SA018  
SA019 to SA034  
SA035 to SA050  
SA051 to SA066  
SA067 to SA082  
SA083 to SA098  
SA099 to SA114  
SA115 to SA130  
SA131 to SA146  
SA147 to SA162  
SA163 to SA178  
SA179 to SA194  
SA195 to SA210  
SA211 to SA226  
SA227 to SA242  
SA243 to SA257  
SA258  
010000h–01FFFFh to 0F0000h–0FFFFFh  
100000h–10FFFFh to 1F0000h–1FFFFFh  
200000h–20FFFFh to 2F0000h–2FFFFFh  
300000h–30FFFFh to 3F0000h–3FFFFFh  
400000h–40FFFFh to 4F0000h–4FFFFFh  
500000h–50FFFFh to 5F0000h–5FFFFFh  
600000h–60FFFFh to 6F0000h–6FFFFFh  
700000h–70FFFFh to 7F0000h–7FFFFFh  
800000h–80FFFFh to 8F0000h–8FFFFFh  
900000h–90FFFFh to 9F0000h–9FFFFFh  
A00000h–A0FFFFh to AF0000h–AFFFFFh  
B00000h–B0FFFFh to BF0000h–BFFFFFh  
C00000h–C0FFFFh to CF0000h–CFFFFFh  
D00000h–D0FFFFh to DF0000h–DFFFFFh  
E00000h–E0FFFFh to EF0000h–EFFFFFh  
F00000h–F0FFFFh to FE0000h–FEFFFFh  
FF0000h–FF3FFFh  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
1
2
3
4
5
6
All 128 KB sectors.  
Pattern for sector address range  
is xx0000h–xxFFFFh.  
(see note)  
7
8
9
10  
11  
12  
13  
14  
2 MB  
15  
SA259  
FF4000h–FF7FFFh  
Contains four smaller sectors at  
top of addressable memory.  
4
32  
SA260  
FF8000h–FFBFFFh  
SA261  
FFC000h–FFFFFFh  
Note: This table has been condensed to show sector-related information for an entire device on a single page. Sectors and their  
address ranges that are not explicitly listed (such as SA005–SA017) have sector starting and ending addresses that form the same  
pattern as all other sectors of that size. For example, all 128 KB sectors have the pattern xx00000h–xxFFFFh.  
24  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Table 9.2 S29WS128N Sector & Memory Address Map  
Sector  
Count  
Sector Size  
(KB)  
Sector/  
Sector Range  
Bank Size  
Bank  
Address Range  
Notes  
32  
32  
SA000  
000000h–003FFFh  
SA001  
004000h–007FFFh  
Contains four smaller sectors at  
bottom of addressable memory.  
4
1 MB  
32  
0
SA002  
008000h–00BFFFh  
32  
SA003  
00C000h–00FFFFh  
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
7
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
32  
SA004 to SA010  
SA011 to SA018  
SA019 to SA026  
SA027 to SA034  
SA035 to SA042  
SA043 to SA050  
SA051 to SA058  
SA059 to SA066  
SA067 to SA074  
SA075 to SA082  
SA083 to SA090  
SA091 to SA098  
SA099 to SA106  
SA107 to SA114  
SA115 to SA122  
SA123 to SA129  
SA130  
010000h–01FFFFh to 070000h–07FFFFh  
080000h–08FFFFh to 0F0000h–0FFFFFh  
100000h–10FFFFh to 170000h–17FFFFh  
180000h–18FFFFh to 1F0000h–1FFFFFh  
200000h–20FFFFh to 270000h–27FFFFh  
280000h–28FFFFh to 2F0000h–2FFFFFh  
300000h–30FFFFh to 370000h–37FFFFh  
380000h–38FFFFh to 3F0000h–3FFFFFh  
400000h–40FFFFh to 470000h–47FFFFh  
480000h–48FFFFh to 4F0000h–4FFFFFh  
500000h–50FFFFh to 570000h–57FFFFh  
580000h–58FFFFh to 5F0000h–5FFFFFh  
600000h–60FFFFh to 670000h–67FFFFh  
680000h–68FFFFh to 6F0000h–6FFFFFh  
700000h–70FFFFh to 770000h–77FFFFh  
780000h–78FFFFh to 7E0000h–7EFFFFh  
7F0000h–7F3FFFh  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1
2
3
4
5
6
All 128 KB sectors.  
Pattern for sector address range  
is xx0000h–xxFFFFh.  
(see note)  
7
8
9
10  
11  
12  
13  
14  
1 MB  
32  
15  
SA131  
7F4000h–7F7FFFh  
Contains four smaller sectors at  
top of addressable memory.  
4
32  
SA132  
7F8000h–7FBFFFh  
32  
SA133  
7FC000h–7FFFFFh  
Note: This table has been condensed to show sector-related information for an entire device on a single page. Sectors and their  
address ranges that are not explicitly listed (such as SA005–SA009) have sector starting and ending addresses that form the same  
pattern as all other sectors of that size. For example, all 128 KB sectors have the pattern xx00000h–xxFFFFh.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
25  
A d v a n c e I n f o r m a t i o n  
10 Device Operations  
This section describes the read, program, erase, simultaneous read/write operations, handshak-  
ing, and reset features of the Flash devices.  
Operations are initiated by writing specific commands or a sequence with specific address and  
data patterns into the command registers (see Tables 15.1 and 15.2). The command register itself  
does not occupy any addressable memory location; rather, it is composed of latches that store  
the commands, along with the address and data information needed to execute the command.  
The contents of the register serve as input to the internal state machine and the state machine  
outputs dictate the function of the device. Writing incorrect address and data values or writing  
them in an improper sequence may place the device in an unknown state, in which case the sys-  
tem must write the reset command to return the device to the reading array data mode.  
10.1 Device Operation Table  
The device must be setup appropriately for each operation. Table 10.1 describes the required  
state of each control pin for any particular operation.  
Table 10.1 Device Operations  
Operation  
CE#  
L
OE#  
L
WE#  
Addresses  
Addr In  
Addr In  
Addr In  
Addr In  
X
DQ15–0  
Data Out  
Data Out  
I/O  
RESET#  
CLK  
X
AVD#  
Asynchronous Read - Addresses Latched  
Asynchronous Read - Addresses Steady State  
Asynchronous Write  
H
H
L
H
H
H
H
H
L
L
L
X
L
L
L
H
X
Synchronous Write  
L
H
L
I/O  
Standby (CE#)  
H
X
X
X
X
HIGH Z  
HIGH Z  
X
X
X
X
Hardware Reset  
X
X
Burst Read Operations (Synchronous)  
Load Starting Burst Address  
L
L
X
L
H
H
Addr In  
X
X
H
H
Advance Burst to next address with appropriate  
Data presented on the Data Bus  
Burst  
Data Out  
H
Terminate current Burst read cycle  
H
X
X
X
H
H
X
X
HIGH Z  
HIGH Z  
H
L
X
X
Terminate current Burst read cycle via RESET#  
X
Terminate current Burst read cycle and start new  
Burst read cycle  
L
X
H
Addr In  
I/O  
H
Legend: L = Logic 0, H = Logic 1, X = Don’t Care, I/O = Input/Output.  
10.2 Asynchronous Read  
All memories require access time to output array data. In an asynchronous read operation, data  
is read from one memory location at a time. Addresses are presented to the device in random  
order, and the propagation delay through the device causes the data on its outputs to arrive asyn-  
chronously with the address on its inputs.  
The device defaults to reading array data asynchronously after device power-up or hardware re-  
set. To read data from the memory array, the system must first assert a valid address on Amax  
A0, while driving AVD# and CE# to VIL. WE# must remain at VIH. The rising edge of AVD# latches  
the address. The OE# signal must be driven to VIL, once AVD# has been driven to VIH. Data is  
output on A/DQ15-A/DQ0 pins after the access time (tOE) has elapsed from the falling edge of  
OE#.  
26  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
10.3 Synchronous (Burst) Read Mode & Configuration Register  
When a series of adjacent addresses needs to be read from the device (in order from lowest to  
highest address), the synchronous (or burst read) mode can be used to significantly reduce the  
overall time needed for the device to output array data. After an initial access time required for  
the data from the first address location, subsequent data is output synchronized to a clock input  
provided by the system.  
The device offers both continuous and linear methods of burst read operation, which are dis-  
cussed in subsections 10.3.4 and 10.3.5, and 10.3.6.  
Since the device defaults to asynchronous read mode after power-up or a hardware reset, the  
configuration register must be set to enable the burst read mode. Other Configuration Register  
settings include the number of wait states to insert before the initial word (tIACC) of each burst  
access, the burst mode in which to operate, and when RDY indicates data is ready to be read.  
Prior to entering the burst mode, the system should first determine the configuration register set-  
tings (and read the current register settings if desired via the Read Configuration Register  
command sequence), and then write the configuration register command sequence. See Section  
10.3.7, Configuration Register, and Table 15.1, Memory Array Commands for further details.  
Power-up/  
Hardware Reset  
Asynchronous Read  
Mode Only  
Set Burst Mode  
Configuration Register  
Command for  
Set Burst Mode  
Configuration Register  
Command for  
Synchronous Mode  
(CR15 = 0)  
Asynchronous Mode  
(CR15 = 1)  
Synchronous Read  
Mode Only  
Figure 10.1 Synchronous/Asynchronous State Diagram  
The device outputs the initial word subject to the following operational conditions:  
„ tIACC specification: the time from the rising edge of the first clock cycle after addresses are  
latched to valid data on the device outputs.  
„ configuration register setting CR13–CR11: the total number of clock cycles (wait states)  
that occur before valid data appears on the device outputs. The effect is that tIACC is  
lengthened.  
The device outputs subsequent words tBACC after the active edge of each successive clock cycle,  
which also increments the internal address counter. The device outputs burst data at this rate sub-  
ject to the following operational conditions:  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
27  
A d v a n c e I n f o r m a t i o n  
„ starting address: whether the address is divisible by four (where A[1:0] is 00). A divisible-  
by-four address incurs the least number of additional wait states that occur after the initial  
word. The number of additional wait states required increases for burst operations in which  
the starting address is one, two, or three locations above the divisible-by-four address (i.e.,  
where A[1:0] is 01, 10, or 11).  
„ boundary crossing: There is a boundary at every 128 words due to the internal architecture  
of the device. One additional wait state must be inserted when crossing this boundary if the  
memory bus is operating at a high clock frequency. Please refer to the tables below.  
„ clock frequency: the speed at which the device is expected to burst data. Higher speeds  
require additional wait states after the initial word for proper operation.  
In all cases, with or without latency, the RDY output indicates when the next data is available to  
be read.  
Tables 10.2-10.7 reflect wait states required for S29WS256/128N devices. Refer to the “Config-  
uration Register” table (CR11 - CR14) and timing diagrams for more details.  
Table 10.2 Address Latency (S29WS256N)  
Word  
Wait States  
Cycle  
0
1
2
3
x ws  
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D3  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
D8  
D8  
D8  
D8  
x ws  
1 ws  
1 ws  
1 ws  
D4  
x ws  
D3  
1 ws  
1 ws  
D4  
x ws  
1 ws  
D4  
Table 10.3 Address Latency (S29WS128N)  
Word  
Wait States  
5, 6, 7 ws  
5, 6, 7 ws  
5, 6, 7 ws  
5, 6, 7 ws  
Cycle  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
D8  
D8  
D8  
D8  
1 ws  
1 ws  
1 ws  
D3  
1 ws  
1 ws  
1 ws  
Table 10.4 Address/Boundary Crossing Latency (S29WS256N @ 80MHz)  
Word  
Wait States  
Cycle  
1 ws  
1 ws  
1 ws  
1 ws  
0
1
2
3
7 ws  
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D3  
1 ws  
1 ws  
1 ws  
1 ws  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
7 ws  
1 ws  
1 ws  
1 ws  
7 ws  
D3  
1 ws  
1 ws  
7 ws  
1 ws  
Table 10.5 Address/Boundary Crossing Latency (S29WS256N @ 66 MHz)  
Word  
Wait States  
Cycle  
1 ws  
1 ws  
1 ws  
1 ws  
0
1
2
3
6 ws  
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
6 ws  
1 ws  
1 ws  
1 ws  
6 ws  
D3  
1 ws  
1 ws  
6 ws  
1 ws  
28  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Table 10.6 Address/Boundary Crossing Latency (S29WS256N @ 54MHz)  
Word  
Wait States  
Cycle  
0
1
2
3
5 ws  
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D3  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
D8  
D8  
D8  
D8  
5 ws  
1 ws  
1 ws  
1 ws  
D4  
5 ws  
D3  
1 ws  
1 ws  
D4  
5 ws  
1 ws  
D4  
Table 10.7 Address/Boundary Crossing Latency (S29WS128N)  
Word  
Wait States  
5, 6, 7 ws  
5, 6, 7 ws  
5, 6, 7 ws  
5, 6, 7 ws  
Cycle  
1 ws  
1 ws  
1 ws  
1 ws  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
1 ws  
1 ws  
1 ws  
D3  
1 ws  
1 ws  
1 ws  
Note: Setup Configuration Register parameters  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Write Set Configuration Register  
Command and Settings:  
Address 555h, Data D0h  
Address X00h, Data CR  
Command Cycle  
CR = Configuration Register Bits CR15-CR0  
Load Initial Address  
Address = RA  
RA = Read Address  
Read Initial Data  
RD = DQ[15:0]  
RD = Read Data  
Wait X Clocks:  
Refer to the Latency tables.  
Additional Latency Due to Starting  
Address, Clock Frequency, and  
Boundary Crossing  
Read Next Data  
RD = DQ[15:0]  
No  
Delay X Clocks  
Crossing  
Boundary?  
No  
End of Data?  
Yes  
Yes  
Completed  
Figure 10.2 Synchronous Read  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
29  
A d v a n c e I n f o r m a t i o n  
10.3.4 Continuous Burst Read Mode  
In the continuous burst read mode, the device outputs sequential burst data from the starting  
address given and then wrap around to address 000000h when it reaches the highest addressable  
memory location. The burst read mode continues until the system drives CE# high, or RESET=  
VIL. Continuous burst mode can also be aborted by asserting AVD# low and providing a new ad-  
dress to the device.  
If the address being read crosses a 128-word line boundary (as mentioned above) and the sub-  
sequent word line is not being programmed or erased, additional latency cycles are required as  
reflected by the configuration register table (Table 10.9).  
If the address crosses a bank boundary while the subsequent bank is programming or erasing,  
the device provides read status information and the clock is ignored. Upon completion of status  
read or program or erase operation, the host can restart a burst read operation using a new ad-  
dress and AVD# pulse.  
10.3.5 8-, 16-, 32-Word Linear Burst Read with Wrap Around  
In a linear burst read operation, a fixed number of words (8, 16, or 32 words) are read from con-  
secutive addresses that are determined by the group within which the starting address falls. The  
groups are sized according to the number of words read in a single burst sequence for a given  
mode (see Table 10.8).  
For example, if the starting address in the 8-word mode is 3Ch, the address range to be read  
would be 38-3Fh, and the burst sequence would be 3C-3D-3E-3F-38-39-3A-3Bh. Thus, the device  
outputs all words in that burst address group until all word are read, regardless of where the start-  
ing address occurs in the address group, and then terminates the burst read.  
In a similar fashion, the 16-word and 32-word Linear Wrap modes begin their burst sequence on  
the starting address provided to the device, then wrap back to the first address in the selected  
address group.  
Note that in this mode the address pointer does not cross the boundary that occurs every 128  
words; thus, no additional wait states are inserted due to boundary crossing.  
Table 10.8 Burst Address Groups  
Mode  
Group Size  
8 words  
Group Address Ranges  
0-7h, 8-Fh, 10-17h,...  
0-Fh, 10-1Fh, 20-2Fh,...  
00-1Fh, 20-3Fh, 40-5Fh,...  
8-word  
16-word  
32-word  
16 words  
32 words  
10.3.6 8-, 16-, 32-Word Linear Burst without Wrap Around  
If wrap around is not enabled for linear burst read operations, the 8-word, 16-word, or 32-word  
burst executes up to the maximum memory address of the selected number of words. The burst  
stops after 8, 16, or 32 addresses and does not wrap around to the first address of the selected  
group.  
For example, if the starting address in the 8- word mode is 3Ch, the address range to be read  
would be 39-40h, and the burst sequence would be 3C-3D-3E-3F-40-41-42-43h if wrap around  
is not enabled. The next address to be read requires a new address and AVD# pulse. Note that  
in this burst read mode, the address pointer may cross the boundary that occurs every 128 words,  
which will incur the additional boundary crossing wait state.  
30  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
10.3.7 Configuration Register  
The configuration register sets various operational parameters associated with burst mode. Upon  
power-up or hardware reset, the device defaults to the asynchronous read mode, and the config-  
uration register settings are in their default state. The host system should determine the proper  
settings for the entire configuration register, and then execute the Set Configuration Register  
command sequence, before attempting burst operations. The configuration register is not reset  
after deasserting CE#. The Configuration Register can also be read using a command sequence  
(see Table 15.1). The following list describes the register settings.  
Table 10.9 Configuration Register  
CR Bit  
Function  
Settings (Binary)  
Set Device Read  
Mode  
0 = Synchronous Read (Burst Mode) Enabled  
1 = Asynchronous Read Mode (default) Enabled  
CR15  
1 = S29WS256N at 6 or 7 Wait State setting  
0 = All others  
CR14  
Reserved  
54 MHz  
66 Mhz  
80 MHz  
S29WS128N  
S29WS256N  
S29WS128N  
S29WS256N  
S29WS128N  
011 = Data valid on 5th active CLK edge after addresses  
CR13  
CR12  
0
1
1
latched  
100 = Data valid on 6th active CLK edge after addresses  
latched  
101 = Data valid on 7th active CLK edge after addresses  
latched (default)  
110 = Reserved  
111 = Reserved  
1
1
0
0
0
1
Programmable  
Wait State  
Inserts wait states before initial data is available. Setting  
greater number of wait states before initial data reduces  
latency after initial data.  
CR11  
S29WS256N  
(Notes 1, 2)  
0 = RDY signal active low  
CR10  
CR9  
RDY Polarity  
Reserved  
1 = RDY signal active high (default)  
1 = default  
0 = RDY active one clock cycle before data  
1 = RDY active with data (default)  
When CR13-CR11 are set to 000, RDY is active with data  
regardless of CR8 setting.  
CR8  
RDY  
CR7  
CR6  
CR5  
CR4  
Reserved  
Reserved  
Reserved  
Reserved  
1 = default  
1 = default  
0 = default  
0 = default  
0 = No Wrap Around Burst  
1 = Wrap Around Burst (default)  
CR3  
Burst Wrap Around  
000 = Continuous (default)  
010 = 8-Word Linear Burst  
011 = 16-Word Linear Burst  
100 = 32-Word Linear Burst  
(All other bit settings are reserved)  
CR2  
CR1  
CR0  
Burst Length  
Notes:  
1. Refer to Tables 10.2 - 10.7 for wait states requirements.  
2. Refer to Synchronous Burst Read timing diagrams  
3. Configuration Register is in the default state upon power-up or hardware reset.  
Reading the Configuration Table. The configuration register can be read with a four-cycle com-  
mand sequence. See Table 15.1 for sequence details. Once the data has been read from the  
configuration register, a software reset command is required to set the device into the correct  
state.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
31  
A d v a n c e I n f o r m a t i o n  
10.4 Autoselect  
The Autoselect is used for manufacturer ID, Device identification, and sector protection informa-  
tion. This mode is primarily intended for programming equipment to automatically match a device  
with its corresponding programming algorithm. The Autoselect codes can also be accessed in-sys-  
tem. When verifying sector protection, the sector address must appear on the appropriate highest  
order address bits (see Table 10.10). The remaining address bits are don't care. The most signif-  
icant four bits of the address during the third write cycle selects the bank from which the  
Autoselect codes are read by the host. All other banks can be accessed normally for data read  
without exiting the Autoselect mode.  
„ To access the Autoselect codes, the host system must issue the Autoselect command.  
„ The Autoselect command sequence may be written to an address within a bank that is either  
in the read or erase-suspend-read mode.  
„ The Autoselect command may not be written while the device is actively programming or  
erasing. Autoselect does not support simultaneous operations or burst mode.  
„ The system must write the reset command to return to the read mode (or erase-suspend-  
read mode if the bank was previously in Erase Suspend).  
See Table 15.1 for command sequence details.  
Table 10.10 Autoselect Addresses  
Description  
Manufacturer ID  
Device ID, Word 1  
Address  
Read Data  
(BA) + 00h 0001h  
(BA) + 01h 227Eh  
2230 (WS256N)  
2231 (WS128N)  
(BA) + 0Fh 2200  
DQ15 - DQ8 = Reserved  
Device ID, Word 2  
Device ID, Word 3  
(BA) + 0Eh  
DQ7 (Factory Lock Bit): 1 = Locked, 0 = Not Locked  
DQ6 (Customer Lock Bit): 1 = Locked, 0 = Not Locked  
DQ5 (Handshake Bit): 1 = Reserved, 0 = Standard Handshake  
DQ4, DQ3 (WP# Protection Boot Code): 00 = WP# Protects both Top Boot and  
Bottom Boot Sectors. 01, 10, 11 = Reserved  
Indicator Bits  
(See Note)  
(BA) + 03h  
DQ2 = Reserved  
DQ1 (DYB Power up State [Lock Register DQ4]): 1 = Unlocked (user option),  
0 = Locked (default)  
DQ0 (PPB Eraseability [Lock Register DQ3]): 1 = Erase allowed,  
0 = Erase disabled  
Sector Block Lock/  
Unlock  
(SA) + 02h 0001h = Locked, 0000h = Unlocked  
Note: For WS128N and WS064, DQ1 and DQ0 are reserved.  
Table 10.11 Autoselect Entry  
(LLD Function = lld_AutoselectEntryCmd)  
Cycle  
Operation  
Write  
Byte Address  
BAxAAAh  
BAx555h  
Word Address  
BAx555h  
Data  
Unlock Cycle 1  
Unlock Cycle 2  
Autoselect Command  
0x00AAh  
0x0055h  
0x0090h  
Write  
BAx2AAh  
Write  
BAxAAAh  
BAx555h  
32  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Table 10.12 Autoselect Exit  
(LLD Function = lld_AutoselectExitCmd)  
Cycle  
Operation  
Write  
Byte Address  
Word Address  
base + XXXh  
Data  
Unlock Cycle 1  
base + XXXh  
0x00F0h  
Notes:  
1. Any offset within the device works.  
2. BA = Bank Address. The bank address is required.  
3. base = base address.  
The following is a C source code example of using the autoselect function to read the manufac-  
turer ID. Refer to the Spansion Low Level Driver User’s Guide (available on www.amd.com and  
www.fujitsu.com) for general information on Spansion Flash memory software development  
guidelines.  
/* Here is an example of Autoselect mode (getting manufacturer ID) */  
/* Define UINT16 example: typedef unsigned short UINT16; */  
UINT16 manuf_id;  
/* Auto Select Entry */  
*( (UINT16 *)bank_addr + 0x555 ) = 0x00AA; /* write unlock cycle 1 */  
*( (UINT16 *)bank_addr + 0x2AA ) = 0x0055; /* write unlock cycle 2 */  
*( (UINT16 *)bank_addr + 0x555 ) = 0x0090; /* write autoselect command */  
/* multiple reads can be performed after entry */  
manuf_id = *( (UINT16 *)bank_addr + 0x000 ); /* read manuf. id */  
/* Autoselect exit */  
*( (UINT16 *)base_addr + 0x000 ) = 0x00F0; /* exit autoselect (write reset command) */  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
33  
A d v a n c e I n f o r m a t i o n  
10.5 Program/Erase Operations  
These devices are capable of several modes of programming and or erase operations which are  
described in detail in the following sections. However, prior to any programming and or erase op-  
eration, devices must be setup appropriately as outlined in the configuration register (Table 10.8).  
For any program and or erase operations, including writing command sequences, the system  
must drive AVD# and CE# to VIL, and OE# to VIH when providing an address to the device, and  
drive WE# and CE# to VIL, and OE# to VIH when writing commands or programming data.  
Addresses are latched on the last falling edge of WE# or CE#, while data is latched on the 1st  
rising edge of WE# or CE#.  
Note the following:  
„ When the Embedded Program algorithm is complete, the device returns to the read mode.  
„ The system can determine the status of the program operation by using DQ7 or DQ6. Refer  
to the Write Operation Status section for information on these status bits.  
„ A “0” cannot be programmed back to a “1.Attempting to do so causes the device to set DQ5  
= 1 (halting any further operation and requiring a reset command). A succeeding read shows  
that the data is still “0.Only erase operations can convert a “0” to a “1.”  
„ Any commands written to the device during the Embedded Program Algorithm are ignored  
except the Program Suspend command.  
„ Secured Silicon Sector, Autoselect, and CFI functions are unavailable when a program oper-  
ation is in progress.  
„ A hardware reset immediately terminates the program operation and the program command  
sequence should be reinitiated once the device has returned to the read mode, to ensure data  
integrity.  
„ Programming is allowed in any sequence and across sector boundaries for single word pro-  
gramming operation.  
10.5.1 Single Word Programming  
Single word programming mode is the simplest method of programming. In this mode, four Flash  
command write cycles are used to program an individual Flash address. The data for this pro-  
gramming operation could be 8-, 16- or 32-bits wide. While this method is supported by all  
Spansion devices, in general it is not recommended for devices that support Write Buffer Pro-  
gramming. See Table 15.1 for the required bus cycles and Figure 10.3 for the flowchart.  
When the Embedded Program algorithm is complete, the device then returns to the read mode  
and addresses are no longer latched. The system can determine the status of the program oper-  
ation by using DQ7 or DQ6. Refer to the Write Operation Status section for information on these  
status bits.  
„ During programming, any command (except the Suspend Program command) is ignored.  
„ The Secured Silicon Sector, Autoselect, and CFI functions are unavailable when a program op-  
eration is in progress.  
34  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
„ A hardware reset immediately terminates the program operation. The program command se-  
quence should be reinitiated once the device has returned to the read mode, to ensure data  
integrity.  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Write Program Command:  
Address 555h, Data A0h  
Setup Command  
Program Address (PA),  
Program Data (PD)  
Program Data to Address:  
PA, PD  
Perform Polling Algorithm  
(see Write Operation Status  
flowchart)  
Yes  
Polling Status  
= Busy?  
No  
Yes  
Polling Status  
= Done?  
Error condition  
No  
(Exceeded Timing Limits)  
PASS. Device is in  
read mode.  
FAIL. Issue reset command  
to return to read array mode.  
Figure 10.3 Single Word Program  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
35  
A d v a n c e I n f o r m a t i o n  
Table 10.13 Software Functions and Sample Code  
Cycle  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Word Address  
Data  
00AAh  
Unlock Cycle 1  
Unlock Cycle 2  
Program Setup  
Program  
Write  
0055h  
Write  
00A0h  
Write  
Data Word  
Note: Base = Base Address.  
The following is a C source code example of using the single word program function. Refer to  
the Spansion Low Level Driver User’s Guide (available on www.amd.com and  
www.fujitsu.com) for general information on Spansion Flash memory software development  
guidelines.  
/* Example: Program Command  
*/  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x555 ) = 0x00A0;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write program setup command  
/* write data to be programmed  
*/  
*/  
*/  
*/  
*( (UINT16 *)pa )  
= data;  
/* Poll for program completion */  
10.5.2 Write Buffer Programming  
Write Buffer Programming allows the system to write a maximum of 32 words in one program-  
ming operation. This results in a faster effective word programming time than the standard  
“word” programming algorithms. The Write Buffer Programming command sequence is initiated  
by first writing two unlock cycles. This is followed by a third write cycle containing the Write Buffer  
Load command written at the Sector Address in which programming occurs. At this point, the sys-  
tem writes the number of “word locations minus 1” that are loaded into the page buffer at the  
Sector Address in which programming occurs. This tells the device how many write buffer ad-  
dresses are loaded with data and therefore when to expect the “Program Buffer to Flash” confirm  
command. The number of locations to program cannot exceed the size of the write buffer or the  
operation aborts. (Number loaded = the number of locations to program minus 1. For example,  
if the system programs 6 address locations, then 05h should be written to the device.)  
The system then writes the starting address/data combination. This starting address is the first  
address/data pair to be programmed, and selects the “write-buffer-page” address. All subsequent  
address/data pairs must fall within the elected-write-buffer-page.  
The “write-buffer-page” is selected by using the addresses AMAX - A5.  
The “write-buffer-page” addresses must be the same for all address/data pairs loaded into the  
write buffer. (This means Write Buffer Programming cannot be performed across multiple “write-  
buffer-pages.This also means that Write Buffer Programming cannot be performed across mul-  
tiple sectors. If the system attempts to load programming data outside of the selected “write-  
buffer-page, the operation ABORTs.)  
After writing the Starting Address/Data pair, the system then writes the remaining address/data  
pairs into the write buffer.  
Note that if a Write Buffer address location is loaded multiple times, the “address/data pair”  
counter is decremented for every data load operation. Also, the last data loaded at a location be-  
fore the “Program Buffer to Flash” confirm command is programmed into the device. It is the  
software's responsibility to comprehend ramifications of loading a write-buffer location more than  
once. The counter decrements for each data load operation, NOT for each unique write-buffer-  
address location. Once the specified number of write buffer locations have been loaded, the sys-  
tem must then write the “Program Buffer to Flash” command at the Sector Address. Any other  
36  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
address/data write combinations abort the Write Buffer Programming operation. The device goes  
“busy.” The Data Bar polling techniques should be used while monitoring the last address location  
loaded into the write buffer. This eliminates the need to store an address in memory because the  
system can load the last address location, issue the program confirm command at the last loaded  
address location, and then data bar poll at that same address. DQ7, DQ6, DQ5, DQ2, and DQ1  
should be monitored to determine the device status during Write Buffer Programming.  
The write-buffer “embedded” programming operation can be suspended using the standard sus-  
pend/resume commands. Upon successful completion of the Write Buffer Programming operation,  
the device returns to READ mode.  
The Write Buffer Programming Sequence is ABORTED under any of the following conditions:  
„ Load a value that is greater than the page buffer size during the “Number of Locations to Pro-  
gram” step.  
„ Write to an address in a sector different than the one specified during the Write-Buffer-Load  
command.  
„ Write an Address/Data pair to a different write-buffer-page than the one selected by the  
“Starting Address” during the “write buffer data loading” stage of the operation.  
„ Write data other than the “Confirm Command” after the specified number of “data load” cy-  
cles.  
The ABORT condition is indicated by DQ1 = 1, DQ7 = DATA# (for the “last address location  
loaded”), DQ6 = TOGGLE, DQ5 = 0. This indicates that the Write Buffer Programming Operation  
was ABORTED. A “Write-to-Buffer-Abort reset” command sequence is required when using the  
write buffer Programming features in Unlock Bypass mode. Note that the Secured Silicon sector,  
autoselect, and CFI functions are unavailable when a program operation is in progress.  
Write buffer programming is allowed in any sequence of memory (or address) locations. These  
flash devices are capable of handling multiple write buffer programming operations on the same  
write buffer address range without intervening erases.  
Use of the write buffer is strongly recommended for programming when multiple words are to be  
programmed. Write buffer programming is approximately eight times faster than programming  
one word at a time.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
37  
A d v a n c e I n f o r m a t i o n  
Table 10.14 Software Functions and Sample Code  
Cycle  
Description  
Unlock  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Word Address  
Base + 555h  
Base + 2AAh  
Data  
00AAh  
1
2
3
4
Unlock  
Write  
0055h  
Write Buffer Load Command  
Write Word Count  
Write  
Program Address  
Program Address  
0025h  
Write  
Word Count (N–1)h  
Number of words (N) loaded into the write buffer can be from 1 to 32 words.  
5 to 36  
Last  
Load Buffer Word N  
Write Buffer to Flash  
Write  
Write  
Program Address, Word N  
Sector Address  
Word N  
0029h  
Notes:  
1. Base = Base Address.  
2. Last = Last cycle of write buffer program operation; depending on number of words written, the total  
number of cycles may be from 6 to 37.  
3. For maximum efficiency, it is recommended that the write buffer be loaded with  
the highest number of words (N words) possible.  
The following is a C source code example of using the write buffer program function. Refer to  
the Spansion Low Level Driver User’s Guide (available on www.amd.com and  
www.fujitsu.com) for general information on Spansion Flash memory software development  
guidelines.  
/* Example: Write Buffer Programming Command  
*/  
/* NOTES: Write buffer programming limited to 16 words. */  
/*  
/*  
/*  
/*  
All addresses to be written to the flash in  
one operation must be within the same flash  
page. A flash page begins at addresses  
evenly divisible by 0x20.  
*/  
*/  
*/  
*/  
UINT16 *src = source_of_data;  
UINT16 *dst = destination_of_data;  
/* address of source data  
/* flash destination address  
/* word count (minus 1)  
/* write unlock cycle 1  
/* write unlock cycle 2  
*/  
*/  
*/  
*/  
*/  
UINT16 wc  
= words_to_program -1;  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)sector_address )  
*( (UINT16 *)sector_address )  
= 0x0025;  
= wc;  
/* write write buffer load command */  
/* write word count (minus 1) */  
loop:  
*dst = *src; /* ALL dst MUST BE SAME PAGE */ /* write source data to destination */  
dst++;  
src++;  
/* increment destination pointer  
/* increment source pointer  
*/  
*/  
if (wc == 0) goto confirm  
wc--;  
goto loop;  
/* done when word count equals zero */  
/* decrement word count  
/* do it again  
*/  
*/  
confirm:  
*( (UINT16 *)sector_address )  
/* poll for completion */  
= 0x0029;  
/* write confirm command  
*/  
/* Example: Write Buffer Abort Reset */  
*( (UINT16 *)addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)addr + 0x555 ) = 0x00F0;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write buffer abort reset  
*/  
*/  
*/  
38  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Issue  
Write Buffer Load Command:  
Address 555h, Data 25h  
Load Word Count to Program  
Program Data to Address:  
SA = wc  
wc = number of words – 1  
Yes  
Confirm command:  
wc = 0?  
No  
SA = 0x29h  
Wait 4 µs  
(Recommended)  
Write Next Word,  
Decrement wc:  
PA data , wc = wc – 1  
No  
Write Buffer  
Abort Desired?  
Perform Polling Algorithm  
(see Write Operation Status  
flowchart)  
Yes  
Write to a Different  
Sector Address to Cause  
Write Buffer Abort  
Yes  
Polling Status  
= Done?  
No  
Error?  
Yes  
No  
Yes  
Write Buffer  
Abort?  
No  
RESET. Issue Write Buffer  
Abort Reset Command  
PASS. Device is in  
read mode.  
FAIL. Issue reset command  
to return to read array mode.  
Figure 10.4 Write Buffer Programming Operation  
10.5.3 Sector Erase  
The sector erase function erases one or more sectors in the memory array. (See Table 15.1,  
Memory Array Commands; and Figure 10.5, Sector Erase Operation.) The device does not re-  
quire the system to preprogram prior to erase. The Embedded Erase algorithm automatically  
programs and verifies the entire memory for an all zero data pattern prior to electrical erase. After  
a successful sector erase, all locations within the erased sector contain FFFFh. The system is not  
required to provide any controls or timings during these operations.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
39  
A d v a n c e I n f o r m a t i o n  
After the command sequence is written, a sector erase time-out of no less than tSEA occurs. Dur-  
ing the time-out period, additional sector addresses and sector erase commands may be written.  
Loading the sector erase buffer may be done in any sequence, and the number of sectors may be  
from one sector to all sectors. The time between these additional cycles must be less than tSEA  
.
Any sector erase address and command following the exceeded time-out (tSEA) may or may not  
be accepted. Any command other than Sector Erase or Erase Suspend during the time-out period  
resets that bank to the read mode. The system can monitor DQ3 to determine if the sector erase  
timer has timed out (See the DQ3: Sector Erase Timeout State Indicator section.) The time-out  
begins from the rising edge of the final WE# pulse in the command sequence.  
When the Embedded Erase algorithm is complete, the bank returns to reading array data and ad-  
dresses are no longer latched. Note that while the Embedded Erase operation is in progress, the  
system can read data from the non-erasing banks. The system can determine the status of the  
erase operation by reading DQ7 or DQ6/DQ2 in the erasing bank. Refer to Write Operation Status  
for information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is valid. All other  
commands are ignored. However, note that a hardware reset immediately terminates the erase  
operation. If that occurs, the sector erase command sequence should be reinitiated once that  
bank has returned to reading array data, to ensure data integrity.  
Figure 10.5 illustrates the algorithm for the erase operation. Refer to the Erase and Programming  
Performance section for parameters and timing diagrams.  
Table 10.15 Software Functions and Sample Code  
Cycle  
Description  
Unlock  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Base + AAAh  
Base + 554h  
Sector Address  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Base + 555h  
Base + 2AAh  
Sector Address  
Data  
1
2
3
4
5
6
00AAh  
0055h  
0080h  
00AAh  
0055h  
0030h  
Unlock  
Write  
Setup Command  
Unlock  
Write  
Write  
Unlock  
Write  
Sector Erase Command  
Write  
Unlimited additional sectors may be selected for erase; command(s) must be written within tSEA  
.
The following is a C source code example of using the sector erase function. Refer to the  
Spansion Low Level Driver User’s Guide (available on www.amd.com and www.fujitsu.com)  
for general information on Spansion Flash memory software development guidelines.  
/* Example: Sector Erase Command */  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x555 ) = 0x0080;  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write setup command  
/* write additional unlock cycle 1 */  
/* write additional unlock cycle 2 */  
*/  
*/  
*/  
*( (UINT16 *)sector_address )  
= 0x0030;  
/* write sector erase command  
*/  
40  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Write Sector Erase Cycles:  
Address 555h, Data 80h  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Sector Address, Data 30h  
Command Cycle 1  
Command Cycle 2  
Command Cycle 3  
Specify first sector for erasure  
Select  
Additional  
Sectors?  
No  
Yes  
Write Additional  
Sector Addresses  
• Each additional cycle must be written within tSEA timeout  
• Timeout resets after each additional cycle is written  
• The host system may monitor DQ3 or wait tSEA to ensure  
acceptance of erase commands  
Yes  
Last Sector  
Selected?  
No  
• No limit on number of sectors  
Poll DQ3.  
DQ3 = 1?  
• Commands other than Erase Suspend or selecting  
additional sectors for erasure during timeout reset device  
to reading array data  
No  
Yes  
Wait 4 µs  
(Recommended)  
Perform Write Operation  
Status Algorithm  
Status may be obtained by reading DQ7, DQ6 and/or DQ2.  
(see Figure 10.6)  
Yes  
Done?  
No  
No  
Error condition (Exceeded Timing Limits)  
DQ5 = 1?  
Yes  
PASS. Device returns  
to reading array.  
FAIL. Write reset command  
to return to reading array.  
Notes:  
1. See Table 15.1 for erase command sequence.  
2. See the section on DQ3 for information on the sector erase timeout.  
Figure 10.5 Sector Erase Operation  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
41  
A d v a n c e I n f o r m a t i o n  
10.5.4 Chip Erase Command Sequence  
Chip erase is a six-bus cycle operation as indicated by Table 15.1. These commands invoke the  
Embedded Erase algorithm, which does not require the system to preprogram prior to erase. The  
Embedded Erase algorithm automatically preprograms and verifies the entire memory for an all  
zero data pattern prior to electrical erase. After a successful chip erase, all locations of the chip  
contain FFFFh. The system is not required to provide any controls or timings during these oper-  
ations. The “Command Definition” section in the appendix shows the address and data  
requirements for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, that bank returns to the read mode and ad-  
dresses are no longer latched. The system can determine the status of the erase operation by  
using DQ7 or DQ6/DQ2. Refer to “Write Operation Status” for information on these status bits.  
Any commands written during the chip erase operation are ignored. However, note that a hard-  
ware reset immediately terminates the erase operation. If that occurs, the chip erase command  
sequence should be reinitiated once that bank has returned to reading array data, to ensure data  
integrity.  
Table 10.16 Software Functions and Sample Code  
Cycle  
Description  
Unlock  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Base + 555h  
Base + 2AAh  
Base + 555h  
Data  
1
2
3
4
5
6
00AAh  
0055h  
0080h  
00AAh  
0055h  
0010h  
Unlock  
Write  
Setup Command  
Unlock  
Write  
Write  
Unlock  
Write  
Chip Erase Command  
Write  
The following is a C source code example of using the chip erase function. Refer to the Span-  
sion Low Level Driver User’s Guide (available on www.amd.com and www.fujitsu.com) for  
general information on Spansion Flash memory software development guidelines.  
/* Example: Chip Erase Command */  
/* Note: Cannot be suspended  
*/  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x555 ) = 0x0080;  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x000 ) = 0x0010;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write setup command  
/* write additional unlock cycle 1 */  
/* write additional unlock cycle 2 */  
*/  
*/  
*/  
/* write chip erase command  
*/  
10.5.5 Erase Suspend/Erase Resume Commands  
When the Erase Suspend command is written during the sector erase time-out, the device imme-  
diately terminates the time-out period and suspends the erase operation. The Erase Suspend  
command allows the system to interrupt a sector erase operation and then read data from, or  
program data to, any sector not selected for erasure. The bank address is required when writing  
this command. This command is valid only during the sector erase operation, including the min-  
imum tSEA time-out period during the sector erase command sequence. The Erase Suspend  
command is ignored if written during the chip erase operation.  
When the Erase Suspend command is written after the tSEA time-out period has expired and dur-  
ing the sector erase operation, the device requires a maximum of tESL (erase suspend latency) to  
suspend the erase operation. Additionaly, when an Erase Suspend command is written during an  
active erase operation, status information is unavailable during the transition from the sector  
erase operation to the erase suspended state.  
42  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
After the erase operation has been suspended, the bank enters the erase-suspend-read mode.  
The system can read data from or program data to any sector not selected for erasure. (The de-  
vice “erase suspends” all sectors selected for erasure.) Reading at any address within erase-  
suspended sectors produces status information on DQ7-DQ0. The system can use DQ7, or DQ6,  
and DQ2 together, to determine if a sector is actively erasing or is erase-suspended. Refer to  
Table 10.20 for information on these status bits.  
After an erase-suspended program operation is complete, the bank returns to the erase-suspend-  
read mode. The system can determine the status of the program operation using the DQ7 or DQ6  
status bits, just as in the standard program operation.  
In the erase-suspend-read mode, the system can also issue the Autoselect command sequence.  
Refer to the “Write Buffer Programming Operation” section and the “Autoselect Command Se-  
quence” section for details.  
To resume the sector erase operation, the system must write the Erase Resume command. The  
bank address of the erase-suspended bank is required when writing this command. Further writes  
of the Resume command are ignored. Another Erase Suspend command can be written after the  
chip has resumed erasing.  
Table 10.17 Software Functions and Sample Code  
Cycle  
Operation  
Byte Address  
Word Address  
Data  
1
Write  
Bank Address  
Bank Address  
00B0h  
The following is a C source code example of using the erase suspend function. Refer to the  
Spansion Low Level Driver User’s Guide (available on www.amd.com and www.fujitsu.com)  
for general information on Spansion Flash memory software development guidelines.  
/* Example: Erase suspend command */  
*( (UINT16 *)bank_addr + 0x000 ) = 0x00B0;  
/* write suspend command  
*/  
Cycle  
Operation  
Byte Address  
Word Address  
Data  
1
Write  
Bank Address  
Bank Address  
0030h  
The following is a C source code example of using the erase resume function. Refer to the  
Spansion Low Level Driver User’s Guide (available on www.amd.com and www.fujitsu.com)  
for general information on Spansion Flash memory software development guidelines.  
/* Example: Erase resume command */  
*( (UINT16 *)bank_addr + 0x000 ) = 0x0030;  
/* write resume command  
*/  
/* The flash needs adequate time in the resume state */  
10.5.6 Program Suspend/Program Resume Commands  
The Program Suspend command allows the system to interrupt an embedded programming op-  
eration or a “Write to Buffer” programming operation so that data can read from any non-  
suspended sector. When the Program Suspend command is written during a programming pro-  
cess, the device halts the programming operation within tPSL (program suspend latency) and  
updates the status bits. Addresses are “don't-cares” when writing the Program Suspend  
command.  
After the programming operation has been suspended, the system can read array data from any  
non-suspended sector. The Program Suspend command may also be issued during a program-  
ming operation while an erase is suspended. In this case, data may be read from any addresses  
not in Erase Suspend or Program Suspend. If a read is needed from the Secured Silicon Sector  
area, then user must use the proper command sequences to enter and exit this region.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
43  
A d v a n c e I n f o r m a t i o n  
The system may also write the Autoselect command sequence when the device is in Program Sus-  
pend mode. The device allows reading Autoselect codes in the suspended sectors, since the codes  
are not stored in the memory array. When the device exits the Autoselect mode, the device re-  
verts to Program Suspend mode, and is ready for another valid operation. See “Autoselect  
Command Sequence” for more information.  
After the Program Resume command is written, the device reverts to programming. The system  
can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in  
the standard program operation. See “Write Operation Status” for more information.  
The system must write the Program Resume command (address bits are “don't care”) to exit the  
Program Suspend mode and continue the programming operation. Further writes of the Program  
Resume command are ignored. Another Program Suspend command can be written after the de-  
vice has resumed programming.  
Table 10.18 Software Functions and Sample Code  
Cycle  
Operation  
Byte Address  
Word Address  
Data  
1
Write  
Bank Address  
Bank Address  
00B0h  
The following is a C source code example of using the program suspend function. Refer to the  
Spansion Low Level Driver User’s Guide (available on www.amd.com and www.fujitsu.com)  
for general information on Spansion Flash memory software development guidelines.  
/* Example: Program suspend command */  
*( (UINT16 *)base_addr + 0x000 ) = 0x00B0;  
/* write suspend command  
*/  
Cycle  
Operation  
Byte Address  
Word Address  
Data  
1
Write  
Bank Address  
Bank Address  
0030h  
The following is a C source code example of using the program resume function. Refer to the  
Spansion Low Level Driver User’s Guide (available on www.amd.com and www.fujitsu.com)  
for general information on Spansion Flash memory software development guidelines.  
/* Example: Program resume command */  
*( (UINT16 *)base_addr + 0x000 ) = 0x0030;  
/* write resume command  
*/  
10.5.7 Accelerated Program/Chip Erase  
Accelerated single word programming, write buffer programming, sector erase, and chip erase  
operations are enabled through the ACC function. This method is faster than the standard chip  
program and erase command sequences.  
The accelerated chip program and erase functions must not be used more than 10 times  
per sector. In addition, accelerated chip program and erase should be performed at room tem-  
perature (25  
°C  
±
10 C).  
°
If the system asserts VHH on this input, the device automatically enters the aforementioned Un-  
lock Bypass mode and uses the higher voltage on the input to reduce the time required for  
program and erase operations. The system can then use the Write Buffer Load command se-  
quence provided by the Unlock Bypass mode. Note that if a “Write-to-Buffer-Abort Reset” is  
required while in Unlock Bypass mode, the full 3-cycle RESET command sequence must be used  
to reset the device. Removing VHH from the ACC input, upon completion of the embedded pro-  
gram or erase operation, returns the device to normal operation.  
„ Sectors must be unlocked prior to raising ACC to VHH  
.
„ The ACC pin must not be at VHH for operations other than accelerated programming and ac-  
celerated chip erase, or device damage may result.  
44  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
„ The ACC pin must not be left floating or unconnected; inconsistent behavior of the device may  
result.  
„ ACC locks all sector if set to VIL; ACC should be set to VIH for all other conditions.  
10.5.8 Unlock Bypass  
The device features an Unlock Bypass mode to facilitate faster word programming. Once the de-  
vice enters the Unlock Bypass mode, only two write cycles are required to program data, instead  
of the normal four cycles.  
This mode dispenses with the initial two unlock cycles required in the standard program command  
sequence, resulting in faster total programming time. The “Command Definition Summary” sec-  
tion shows the requirements for the unlock bypass command sequences.  
During the unlock bypass mode, only the Read, Unlock Bypass Program and Unlock Bypass Reset  
commands are valid. To exit the unlock bypass mode, the system must issue the two-cycle unlock  
bypass reset command sequence. The first cycle must contain the bank address and the data 90h.  
The second cycle need only contain the data 00h. The bank then returns to the read mode.  
The following are C source code examples of using the unlock bypass entry, program, and exit  
functions. Refer to the Spansion Low Level Driver User’s Guide (available soon on www.amd.com  
and www.fujitsu.com) for general information on Spansion Flash memory software development  
guidelines.  
Table 10.19 Software Functions and Sample Code  
Cycle  
Description  
Unlock  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Data  
1
2
3
00AAh  
0055h  
0020h  
Unlock  
Write  
Entry Command  
Write  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
45  
A d v a n c e I n f o r m a t i o n  
/* Example: Unlock Bypass Entry Command  
*/  
*( (UINT16 *)bank_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)bank_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)bank_addr + 0x555 ) = 0x0020;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write unlock bypass command  
*/  
*/  
*/  
/* At this point, programming only takes two write cycles.  
/* Once you enter Unlock Bypass Mode, do a series of like  
/* operations (programming or sector erase) and then exit  
/* Unlock Bypass Mode before beginning a different type of  
/* operations.  
*/  
*/  
*/  
*/  
*/  
Cycle  
Description  
Operation  
Write  
Byte Address  
Base + xxxh  
Word Address  
Base +xxxh  
Data  
00A0h  
1
2
Program Setup Command  
Program Command  
Write  
Program Address  
Program Address  
Program Data  
/* Example: Unlock Bypass Program Command */  
/* Do while in Unlock Bypass Entry Mode! */  
*( (UINT16 *)bank_addr + 0x555 ) = 0x00A0;  
/* write program setup command  
/* write data to be programmed  
*/  
*/  
*( (UINT16 *)pa )  
= data;  
*/  
/* Poll until done or error.  
/* If done and more to program, */  
/* do above two cycles again. */  
Cycle  
Description  
Reset Cycle 1  
Reset Cycle 2  
Operation  
Write  
Byte Address  
Word Address  
Base +xxxh  
Base +xxxh  
Data  
1
2
Base + xxxh  
Base + xxxh  
0090h  
0000h  
Write  
/* Example: Unlock Bypass Exit Command */  
*( (UINT16 *)base_addr + 0x000 ) = 0x0090;  
*( (UINT16 *)base_addr + 0x000 ) = 0x0000;  
10.5.9 Write Operation Status  
The device provides several bits to determine the status of a program or erase operation. The  
following subsections describe the function of DQ1, DQ2, DQ3, DQ5, DQ6, and DQ7.  
DQ7: Data# Polling. The Data# Polling bit, DQ7, indicates to the host system whether an Em-  
bedded Program or Erase algorithm is in progress or completed, or whether a bank is in Erase  
Suspend. Data# Polling is valid after the rising edge of the final WE# pulse in the command se-  
quence. Note that the Data# Polling is valid only for the last word being programmed in the write-  
buffer-page during Write Buffer Programming. Reading Data# Polling status on any word other  
than the last word to be programmed in the write-buffer-page returns false status information.  
During the Embedded Program algorithm, the device outputs on DQ7 the complement of the  
datum programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend.  
When the Embedded Program algorithm is complete, the device outputs the datum programmed  
to DQ7. The system must provide the program address to read valid status information on DQ7.  
If a program address falls within a protected sector, Data# polling on DQ7 is active for approxi-  
mately tPSP, then that bank returns to the read mode.  
During the Embedded Erase Algorithm, Data# polling produces a “0” on DQ7. When the Embed-  
ded Erase algorithm is complete, or if the bank enters the Erase Suspend mode, Data# Polling  
produces a “1” on DQ7. The system must provide an address within any of the sectors selected  
for erasure to read valid status information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing are protected,  
Data# Polling on DQ7 is active for approximately tASP, then the bank returns to the read mode.  
If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected  
sectors, and ignores the selected sectors that are protected. However, if the system reads DQ7  
at an address within a protected sector, the status may not be valid.  
46  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Just prior to the completion of an Embedded Program or Erase operation, DQ7 may change asyn-  
chronously with DQ6-DQ0 while Output Enable (OE#) is asserted low. That is, the device may  
change from providing status information to valid data on DQ7. Depending on when the system  
samples the DQ7 output, it may read the status or valid data. Even if the device has completed  
the program or erase operation and DQ7 has valid data, the data outputs on DQ6-DQ0 may be  
still invalid. Valid data on DQ7-D00 appears on successive read cycles.  
See the following for more information: Table 10.20, Write Operation Status, shows the outputs  
for Data# Polling on DQ7. Figure 10.6, Write Operation Status Flowchart, shows the Data# Polling  
algorithm; and Figure 14.17, Data# Polling Timings (During Embedded Algorithm), shows the  
Data# Polling timing diagram.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
47  
A d v a n c e I n f o r m a t i o n  
START  
Read 1  
(Note 6)  
YES  
Erase  
Operation  
Complete  
DQ7=valid  
data?  
NO  
YES  
YES  
Read 2  
Read 1  
DQ5=1?  
Read3=  
valid data?  
NO  
NO  
Read 3  
Read 2  
Read 3  
Program  
Operation  
Failed  
YES  
Write Buffer  
Programming?  
YES  
Programming  
NO  
Operation?  
NO  
Device BUSY,  
Re-Poll  
(Note 3)  
(Note 5)  
(Note 1)  
YES  
(Note 1)  
(Note 2)  
YES  
YES  
DQ6  
toggling?  
DQ6  
DEVICE  
ERROR  
TIMEOUT  
toggling?  
NO  
(Note 4)  
NO  
YES  
Read3  
DQ1=1?  
NO  
Device BUSY,  
Re-Poll  
DQ2  
toggling?  
NO  
Read 2  
Read 3  
Device BUSY,  
Re-Poll  
Erase  
Device in  
Erase/Suspend  
Mode  
Operation  
Complete  
Read3  
DQ1=1  
YES  
Write Buffer  
AND DQ7 ≠  
Valid Data?  
Operation  
Failed  
NO  
Notes:  
1) DQ6 is toggling if Read2 DQ6 does not equal Read3 DQ6.  
2) DQ2 is toggling if Read2 DQ2 does not equal Read3 DQ2.  
3) May be due to an attempt to program a 0 to 1. Use the RESET  
command to exit operation.  
Device BUSY,  
Re-Poll  
4) Write buffer error if DQ1 of last read =1.  
5) Invalid state, use RESET command to exit operation.  
6) Valid data is the data that is intended to be programmed or all 1's for  
an erase operation.  
7) Data polling algorithm valid for all operations except advanced sector  
protection.  
Figure 10.6 Write Operation Status Flowchart  
48  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
DQ6: Toggle Bit I . Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algo-  
rithm is in progress or complete, or whether the device has entered the Erase Suspend mode.  
Toggle Bit I may be read at any address in the same bank, and is valid after the rising edge of  
the final WE# pulse in the command sequence (prior to the program or erase operation), and dur-  
ing the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cycles to any ad-  
dress cause DQ6 to toggle. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6  
toggles for approximately tASP [all sectors protected toggle time], then returns to reading array  
data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unpro-  
tected sectors, and ignores the selected sectors that are protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or  
is erase-suspended. When the device is actively erasing (that is, the Embedded Erase algorithm  
is in progress), DQ6 toggles. When the device enters the Erase Suspend mode, DQ6 stops tog-  
gling. However, the system must also use DQ2 to determine which sectors are erasing or erase-  
suspended. Alternatively, the system can use DQ7 (see the subsection on DQ7: Data# Polling).  
If a program address falls within a protected sector, DQ6 toggles for approximately tPAP after the  
program command sequence is written, then returns to reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embed-  
ded Program Algorithm is complete.  
See the following for additional information: Figure 10.6, Write Operation Status Flowchart;  
Figure 14.18, Toggle Bit Timings (During Embedded Algorithm), and Table 10.20.  
Toggle Bit I on DQ6 requires either OE# or CE# to be de-asserted and reasserted to show the  
change in state.  
DQ2: Toggle Bit II. The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a par-  
ticular sector is actively erasing (that is, the Embedded Erase algorithm is in progress), or whether  
that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE# pulse  
in the command sequence. DQ2 toggles when the system reads at addresses within those sectors  
that have been selected for erasure. But DQ2 cannot distinguish whether the sector is actively  
erasing or is erase-suspended. DQ6, by comparison, indicates whether the device is actively eras-  
ing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus,  
both status bits are required for sector and mode information. Refer to Table 14.10 to compare  
outputs for DQ2 and DQ6. See the following for additional information: Figure 10.6, the “DQ6:  
Toggle Bit I” section, and Figures 14.1714.20.  
Reading Toggle Bits DQ6/DQ2. Whenever the system initially begins reading toggle bit status,  
it must read DQ7–DQ0 at least twice in a row to determine whether a toggle bit is toggling. Typ-  
ically, the system would note and store the value of the toggle bit after the first read. After the  
second read, the system would compare the new value of the toggle bit with the first. If the toggle  
bit is not toggling, the device has completed the program or erases operation. The system can  
read array data on DQ7–DQ0 on the following read cycle. However, if after the initial two read  
cycles, the system determines that the toggle bit is still toggling, the system also should note  
whether the value of DQ5 is high (see the section on DQ5). If it is, the system should then deter-  
mine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just  
as DQ5 went high. If the toggle bit is no longer toggling, the device has successfully completed  
the program or erases operation. If it is still toggling, the device did not complete the operation  
successfully, and the system must write the reset command to return to reading array data. The  
remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5  
has not gone high. The system may continue to monitor the toggle bit and DQ5 through succes-  
sive read cycles, determining the status as described in the previous paragraph. Alternatively, it  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
49  
A d v a n c e I n f o r m a t i o n  
may choose to perform other system tasks. In this case, the system must start at the beginning  
of the algorithm when it returns to determine the status of the operation. Refer to Figure 10.6 for  
more details.  
Note:  
„ When verifying the status of a write operation (embedded program/erase) of a memory bank,  
DQ6 and DQ2 toggle between high and low states in a series of consecutive and con-tiguous  
status read cycles. In order for this toggling behavior to be properly observed, the consecu-  
tive status bit reads must not be interleaved with read accesses to other memory banks. If it  
is not possible to temporarily prevent reads to other memory banks, then it is recommended  
to use the DQ7 status bit as the alternative method of determining the active or inactive sta-  
tus of the write operation.  
DQ5: Exceeded Timing Limits. DQ5 indicates whether the program or erase time has exceeded  
a specified internal pulse count limit. Under these conditions DQ5 produces a “1,indicating that  
the program or erase cycle was not successfully completed. The device may output a “1” on DQ5  
if the system tries to program a “1” to a location that was previously programmed to “0.Only an  
erase operation can change a “0” back to a “1.Under this condition, the device halts the opera-  
tion, and when the timing limit has been exceeded, DQ5 produces a “1.Under both these  
conditions, the system must write the reset command to return to the read mode (or to the erase-  
suspend-read mode if a bank was previously in the erase-suspend-program mode).  
DQ3: Sector Erase Timeout State Indicator. After writing a sector erase command sequence,  
the system may read DQ3 to determine whether or not erasure has begun. (The sector erase  
timer does not apply to the chip erase command.) If additional sectors are selected for erasure,  
the entire time-out also applies after each additional sector erase command. When the time-out  
period is complete, DQ3 switches from a “0” to a “1.If the time between additional sector erase  
commands from the system can be assumed to be less than tSEA, the system need not monitor  
DQ3. See Sector Erase Command Sequence for more details.  
After the sector erase command is written, the system should read the status of DQ7 (Data# Poll-  
ing) or DQ6 (Toggle Bit I) to ensure that the device has accepted the command sequence, and  
then read DQ3. If DQ3 is “1,the Embedded Erase algorithm has begun; all further commands  
(except Erase Suspend) are ignored until the erase operation is complete. If DQ3 is “0,the device  
accepts additional sector erase commands. To ensure the command has been accepted, the sys-  
tem software should check the status of DQ3 prior to and following each sub-sequent sector erase  
command. If DQ3 is high on the second status check, the last command might not have been  
accepted. Table 10.20 shows the status of DQ3 relative to the other status bits.  
DQ1: Write to Buffer Abort. DQ1 indicates whether a Write to Buffer operation was aborted.  
Under these conditions DQ1 produces a “1. The system must issue the Write to Buffer Abort  
Reset command sequence to return the device to reading array data. See Write Buffer Program-  
ming Operation for more details.  
50  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Table 10.20 Write Operation Status  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
Program  
Suspend  
Mode  
Reading within Program Suspended Sector  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
Reading within Non-Program Suspended  
Sector  
(Note 3)  
Data  
Data  
Data  
Data  
Data  
Data  
BUSY State  
DQ7#  
DQ7#  
DQ7#  
Toggle  
Toggle  
Toggle  
0
1
0
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
0
1
Write to  
Buffer  
(Note 5)  
Exceeded Timing Limits  
ABORT State  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits. Refer to the  
section on DQ5 for more information.  
2. DQ7 a valid address when reading status information. Refer to the appropriate subsection for further details.  
3. Data are invalid for addresses in a Program Suspended sector.  
4. DQ1 indicates the Write to Buffer ABORT status during Write Buffer Programming operations.  
5. The data-bar polling algorithm should be used for Write Buffer Programming operations. Note that DQ7# during Write Buffer Programming  
indicates the data-bar for DQ7 data for the LAST LOADED WRITE-BUFFER ADDRESS location.  
6. For any address changes after CE# assertion, re-assertion of CE# might be required after the addresses become stable for data polling  
during the erase suspend operation using DQ2/DQ6.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
51  
A d v a n c e I n f o r m a t i o n  
10.6 Simultaneous Read/Write  
The simultaneous read/write feature allows the host system to read data from one bank of mem-  
ory while programming or erasing another bank of memory. An erase operation may also be  
suspended to read from or program another location within the same bank (except the sector  
being erased). Figure 14.24, Back-to-Back Read/Write Cycle Timings, shows how read and write  
cycles may be initiated for simultaneous operation with zero latency. Refer to the DC Character-  
istics (CMOS Compatible) table for read-while-program and read-while-erase current  
specification.  
10.7 Writing Commands/Command Sequences  
When the device is configured for Asynchronous read, only Asynchronous write operations are  
allowed, and CLK is ignored. When in the Synchronous read mode configuration, the device is able  
to perform both Asynchronous and Synchronous write operations. CLK and AVD# induced address  
latches are supported in the Synchronous programming mode. During a synchronous write oper-  
ation, to write a command or command sequence (which includes programming data to the  
device and erasing sectors of memory), the system must drive AVD# and CE# to VIL, and OE#  
to VIH when providing an address to the device, and drive WE# and CE# to VIL, and OE# to VIH  
when writing commands or data. During an asynchronous write operation, the system must drive  
CE# and WE# to VIL and OE# to VIH when providing an address, command, and data. Addresses  
are latched on the last falling edge of WE# or CE#, while data is latched on the 1st rising edge of  
WE# or CE#. An erase operation can erase one sector, multiple sectors, or the entire device.  
Tables 9.19.2 indicate the address space that each sector occupies. The device address space is  
divided into sixteen banks: Banks 1 through 14 contain only 64 Kword sectors, while Banks 0 and  
15 contain both 16 Kword boot sectors in addition to 64 Kword sectors. A “bank address” is the  
set of address bits required to uniquely select a bank. Similarly, a “sector address” is the address  
bits required to uniquely select a sector. ICC2 in “DC Characteristics” represents the active current  
specification for the write mode. “AC Characteristics-Synchronous” and “AC Characteristics-Asyn-  
chronous” contain timing specification tables and timing diagrams for write operations.  
10.8 Handshaking  
The handshaking feature allows the host system to detect when data is ready to be read by simply  
monitoring the RDY (Ready) pin, which is a dedicated output and controlled by CE#.  
When the device is configured to operate in synchronous mode, and OE# is low (active), the initial  
word of burst data becomes available after either the falling or rising edge of the RDY pin (de-  
pending on the setting for bit 10 in the Configuration Register). It is recommended that the host  
system set CR13–CR11 in the Configuration Register to the appropriate number of wait states to  
ensure optimal burst mode operation (see Table 10.9, Configuration Register).  
Bit 8 in the Configuration Register allows the host to specify whether RDY is active at the same  
time that data is ready, or one cycle before data is ready.  
52  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
10.9 Hardware Reset  
The RESET# input provides a hardware method of resetting the device to reading array data.  
When RESET# is driven low for at least a period of tRP, the device immediately terminates any  
operation in progress, tristates all outputs, resets the configuration register, and ignores all read/  
write commands for the duration of the RESET# pulse. The device also resets the internal state  
machine to reading array data.  
To ensure data integrity the operation that was interrupted should be reinitiated once the device  
is ready to accept another command sequence.  
When RESET# is held at VSS, the device draws CMOS standby current (ICC4). If RESET# is held  
at VIL, but not at VSS, the standby current is greater.  
RESET# may be tied to the system reset circuitry which enables the system to read the boot-up  
firmware from the Flash memory upon a system reset.  
See Figures 14.5 and 14.12 for timing diagrams.  
10.10 Software Reset  
Software reset is part of the command set (see Table 15.1) that also returns the device to array  
read mode and must be used for the following conditions:  
1. to exit Autoselect mode  
2. when DQ5 goes high during write status operation that indicates program or erase cycle was  
not successfully completed  
3. exit sector lock/unlock operation.  
4. to return to erase-suspend-read mode if the device was previously in Erase Suspend mode.  
5. after any aborted operations  
Table 10.21 Reset LLD Function = lld_ResetCmd)  
Cycle  
Operation  
Byte Address  
Word Address  
Data  
Reset Command  
Write  
Base + xxxh  
Base + xxxh  
00F0h  
Note: Base = Base Address.  
The following is a C source code example of using the reset function. Refer to the Spansion  
Low Level Driver User’s Guide (available on www.amd.com and www.fujitsu.com) for general  
information on Spansion Flash memory software development guidelines.  
/* Example: Reset (software reset of Flash state machine) */  
*( (UINT16 *)base_addr + 0x000 ) = 0x00F0;  
The following are additional points to consider when using the reset command:  
„ This command resets the banks to the read and address bits are ignored.  
„ Reset commands are ignored once erasure has begun until the operation is complete.  
„ Once programming begins, the device ignores reset commands until the operation is com-  
plete  
„ The reset command may be written between the cycles in a program command sequence be-  
fore programming begins (prior to the third cycle). This resets the bank to which the system  
was writing to the read mode.  
„ If the program command sequence is written to a bank that is in the Erase Suspend mode,  
writing the reset command returns that bank to the erase-suspend-read mode.  
„ The reset command may be also written during an Autoselect command sequence.  
„ If a bank has entered the Autoselect mode while in the Erase Suspend mode, writing the reset  
command returns that bank to the erase-suspend-read mode.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
53  
A d v a n c e I n f o r m a t i o n  
„ If DQ1 goes high during a Write Buffer Programming operation, the system must write the  
"Write to Buffer Abort Reset" command sequence to RESET the device to reading array data.  
The standard RESET command does not work during this condition.  
„ To exit the unlock bypass mode, the system must issue a two-cycle unlock bypass reset com-  
mand sequence [see the command table for details].  
54  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
11 Advanced Sector Protection/Unprotection  
The Advanced Sector Protection/Unprotection feature disables or enables programming or erase  
operations in any or all sectors and can be implemented through software and/or hardware meth-  
ods, which are independent of each other. This section describes the various methods of  
protecting data stored in the memory array. An overview of these methods in shown in Figure  
11.1.  
Hardware Methods  
Software Methods  
Lock Register  
(One Time Programmable)  
ACC = V  
IL  
All sectors locked)  
Persistent Method  
Password Method  
(
(DQ1)  
(DQ2)  
WP# = V  
IL  
(All boot  
sectors locked)  
64-bit Password  
(One Time Protect)  
1. Bit is volatile, and defaults to “1” on  
reset.  
PPB Lock Bit1,2,3  
2. Programming to “0” locks all PPBs to  
their current state.  
0 = PPBs Locked  
1 = PPBs Unlocked  
3. Once programmed to “0, requires  
hardware reset to unlock.  
Persistent  
Protection Bit  
(PPB)4,5  
Dynamic  
Protection Bit  
(DYB)6,7,8  
Memory Array  
Sector 0  
Sector 1  
Sector 2  
PPB 0  
PPB 1  
PPB 2  
DYB 0  
DYB 1  
DYB 2  
Sector N-2  
Sector N-1  
PPB N-2  
PPB N-1  
PPB N  
DYB N-2  
DYB N-1  
DYB N  
Sector N3  
3. N = Highest Address Sector.  
4. 0 = Sector Protected,  
1 = Sector Unprotected.  
6. 0 = Sector Protected,  
1 = Sector Unprotected.  
5. PPBs programmed individually,  
but cleared collectively  
7. Protect effective only if PPB Lock Bit  
is unlocked and corresponding PPB  
is “1” (unprotected).  
8. Volatile Bits: defaults to user choice  
upon power-up (see ordering  
options).  
Figure 11.1 Advanced Sector Protection/Unprotection  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
55  
A d v a n c e I n f o r m a t i o n  
11.1 Lock Register  
As shipped from the factory, all devices default to the persistent mode when power is applied, and  
all sectors are unprotected, unless otherwise chosen through the DYB ordering option. The device  
programmer or host system must then choose which sector protection method to use. Program-  
ming (setting to “0”) any one of the following two one-time programmable, non-volatile bits locks  
the part permanently in that mode:  
„ Lock Register Persistent Protection Mode Lock Bit (DQ1)  
„ Lock Register Password Protection Mode Lock Bit (DQ2)  
Table 11.1 Lock Register  
Device  
DQ15-05  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
Password  
Protection  
Mode Lock Bit  
Persistent  
Protection  
Mode Lock Bit  
Customer  
SecSi Sector  
Protection Bit  
S29WS256N  
1
1
1
DYB Lock Boot Bit  
PPB One-Time  
0 = sectors  
power up  
protected  
Programmable Bit  
Password  
Protection  
Mode Lock Bit  
Persistent  
Protection  
Mode Lock Bit  
0 = All PPB erase  
command disabled  
SecSi Sector  
Protection Bit  
S29WS128N Undefined  
1 = sectors  
power up  
unprotected  
1 = All PPB Erase  
command enabled  
For programming lock register bits refer to Table 15.2.  
Notes  
1. If the password mode is chosen, the password must be programmed before setting the cor-  
responding lock register bit.  
2. After the Lock Register Bits Command Set Entry command sequence is written, reads and  
writes for Bank 0 are disabled, while reads from other banks are allowed until exiting this  
mode.  
3. If both lock bits are selected to be programmed (to zeros) at the same time, the operation  
aborts.  
4. Once the Password Mode Lock Bit is programmed, the Persistent Mode Lock Bit is permanently  
disabled, and no changes to the protection scheme are allowed. Similarly, if the Persistent  
Mode Lock Bit is programmed, the Password Mode is permanently disabled.  
After selecting a sector protection method, each sector can operate in any of the following three  
states:  
1. Constantly locked. The selected sectors are protected and can not be reprogrammed unless  
PPB lock bit is cleared via a password, hardware reset, or power cycle.  
2. Dynamically locked. The selected sectors are protected and can be altered via software  
commands.  
3. Unlocked. The sectors are unprotected and can be erased and/or programmed.  
These states are controlled by the bit types described in Sections 11.2–.  
11.2 Persistent Protection Bits  
The Persistent Protection Bits are unique and nonvolatile for each sector and have the same en-  
durances as the Flash memory. Preprogramming and verification prior to erasure are handled by  
the device, and therefore do not require system monitoring.  
56  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Notes  
1. Each PPB is individually programmed and all are erased in parallel.  
2. While programming PPB for a sector, array data can be read from any other bank, except  
Bank 0 (used for Data# Polling) and the bank in which sector PPB is being programmed.  
3. Entry command disables reads and writes for the bank selected.  
4. Reads within that bank return the PPB status for that sector.  
5. Reads from other banks are allowed while writes are not allowed.  
6. All Reads must be performed using the Asynchronous mode.  
7. The specific sector address (A23-A14 WS256N, A22-A14 WS128N) are written at the same  
time as the program command.  
8. If the PPB Lock Bit is set, the PPB Program or erase command does not execute and times-  
out without programming or erasing the PPB.  
9. There are no means for individually erasing a specific PPB and no specific sector address is  
required for this operation.  
10. Exit command must be issued after the execution which resets the device to read mode and  
re-enables reads and writes for Bank 0  
11. The programming state of the PPB for a given sector can be verified by writing a PPB  
Status Read Command to the device as described by the flow chart shown in Figure 11.2.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
57  
A d v a n c e I n f o r m a t i o n  
Enter PPB  
Command Set.  
Addr = BA  
Program PPB Bit.  
Addr = SA  
Read Byte Twice  
Addr = SA0  
No  
DQ6 =  
Toggle?  
Yes  
No  
DQ5 = 1?  
Wait 500 µs  
Yes  
Read Byte Twice  
Addr = SA0  
No  
Read Byte.  
Addr = SA  
DQ6 =  
Toggle?  
Yes  
DQ0 =  
No  
'1' (Erase)  
'0' (Pgm.)?  
FAIL  
Yes  
Issue Reset  
Command  
PASS  
Exit PPB  
Command Set  
Figure 11.2 PPB Program/Erase Algorithm  
11.3 Dynamic Protection Bits  
Dynamic Protection Bits are volatile and unique for each sector and can be individually modified.  
DYBs only control the protection scheme for unprotected sectors that have their PPBs cleared  
(erased to “1”). By issuing the DYB Set or Clear command sequences, the DYBs are set (pro-  
grammed to “0”) or cleared (erased to “1”), thus placing each sector in the protected or  
unprotected state respectively. This feature allows software to easily protect sectors against in-  
advertent changes yet does not prevent the easy removal of protection when changes are  
needed.  
58  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Notes  
1. The DYBs can be set (programmed to “0”) or cleared (erased to “1”) as often as needed.  
When the parts are first shipped, the PPBs are cleared (erased to “1”) and upon power up or reset,  
the DYBs can be set or cleared depending upon the ordering option chosen.  
2. If the option to clear the DYBs after power up is chosen, (erased to “1”), then the sectors  
may be modified depending upon the PPB state of that sector (see Table 11.2).  
3. The sectors would be in the protected state If the option to set the DYBs after power up is  
chosen (programmed to “0”).  
4. It is possible to have sectors that are persistently locked with sectors that are left in the  
dynamic state.  
5. The DYB Set or Clear commands for the dynamic sectors signify protected or unprotected  
state of the sectors respectively. However, if there is a need to change the status of the per-  
sistently locked sectors, a few more steps are required. First, the PPB Lock Bit must be  
cleared by either putting the device through a power-cycle, or hardware reset. The PPBs can  
then be changed to reflect the desired settings. Setting the PPB Lock Bit once again locks  
the PPBs, and the device operates normally again.  
6. To achieve the best protection, it is recommended to execute the PPB Lock Bit Set command  
early in the boot code and protect the boot code by holding WP# = VIL. Note that the PPB  
and DYB bits have the same function when ACC = VHH as they do when ACC =VIH.  
11.4 Persistent Protection Bit Lock Bit  
The Persistent Protection Bit Lock Bit is a global volatile bit for all sectors. When set (programmed  
to “0”), it locks all PPBs and when cleared (programmed to “1”), allows the PPBs to be changed.  
There is only one PPB Lock Bit per device.  
Notes  
1. No software command sequence unlocks this bit unless the device is in the password pro-  
tection mode; only a hardware reset or a power-up clears this bit.  
2. The PPB Lock Bit must be set (programmed to “0”) only after all PPBs are configured to the  
desired settings.  
11.5 Password Protection Method  
The Password Protection Method allows an even higher level of security than the Persistent Sector  
Protection Mode by requiring a 64 bit password for unlocking the device PPB Lock Bit. In addition  
to this password requirement, after power up and reset, the PPB Lock Bit is set “0” to maintain  
the password mode of operation. Successful execution of the Password Unlock command by en-  
tering the entire password clears the PPB Lock Bit, allowing for sector PPBs modifications.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
59  
A d v a n c e I n f o r m a t i o n  
Notes  
1. There is no special addressing order required for programming the password. Once the  
Password is written and verified, the Password Mode Locking Bit must be set in order to pre-  
vent access.  
2. The Password Program Command is only capable of programming “0”s. Programming a “1”  
after a cell is programmed as a “0” results in a time-out with the cell as a “0.  
3. The password is all “1”s when shipped from the factory.  
4. All 64-bit password combinations are valid as a password.  
5. There is no means to verify what the password is after it is set.  
6. The Password Mode Lock Bit, once set, prevents reading the 64-bit password on the data  
bus and further password programming.  
7. The Password Mode Lock Bit is not erasable.  
8. The lower two address bits (A1–A0) are valid during the Password Read, Password Program,  
and Password Unlock.  
9. The exact password must be entered in order for the unlocking function to occur.  
10. The Password Unlock command cannot be issued any faster than 1 µs at a time to prevent  
a hacker from running through all the 64-bit combinations in an attempt to correctly match  
a password.  
11. Approximately 1 µs is required for unlocking the device after the valid 64-bit password is  
given to the device.  
12. Password verification is only allowed during the password programming operation.  
13. All further commands to the password region are disabled and all operations are ignored.  
14. If the password is lost after setting the Password Mode Lock Bit, there is no way to clear the  
PPB Lock Bit.  
15. Entry command sequence must be issued prior to any of any operation and it disables reads  
and writes for Bank 0. Reads and writes for other banks excluding Bank 0 are allowed.  
16. If the user attempts to program or erase a protected sector, the device ignores the com-  
mand and returns to read mode.  
17. A program or erase command to a protected sector enables status polling and returns to  
read mode without having modified the contents of the protected sector.  
18. The programming of the DYB, PPB, and PPB Lock for a given sector can be verified by writing  
individual status read commands DYB Status, PPB Status, and PPB Lock Status to the  
device.  
60  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Write  
Enter Lock Register Command:  
Address 555h, Data 40h  
XXXh = Address don’t care  
* Not on future devices  
Program Lock Register Data  
Address XXXh, Data A0h  
Address 77h*, Data PD  
Program Data (PD): See text for Lock Register  
definitions  
Caution: Lock register can only be progammed  
once.  
Wait 4 µs  
(Recommended)  
Perform Polling Algorithm  
(see Write Operation Status  
flowchart)  
Yes  
Done?  
No  
No  
DQ5 = 1?  
Yes  
Error condition (Exceeded Timing Limits)  
PASS. Write Lock Register  
Exit Command:  
FAIL. Write rest command  
to return to reading array.  
Address XXXh, Data 90h  
Address XXXh, Data 00h  
Device returns to reading array.  
Figure 11.3 Lock Register Program Algorithm  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
61  
A d v a n c e I n f o r m a t i o n  
Table 11.2 Advanced Sector Protection Software Examples  
Unique Device PPB Lock Bit  
0 = locked  
Sector PPB  
0 = protected  
1 = unprotected  
Sector DYB  
0 = protected  
1 = unprotected  
1 = unlocked  
Sector Protection Status  
Protected through PPB  
Protected through PPB  
Unprotected  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
x
x
1
0
x
x
0
1
Protected through DYB  
Protected through PPB  
Protected through PPB  
Protected through DYB  
Unprotected  
Figure 11.2 contains all possible combinations of the DYB, PPB, and PPB Lock Bit relating to the  
status of the sector. In summary, if the PPB Lock Bit is locked (set to “0”), no changes to the PPBs  
are allowed. The PPB Lock Bit can only be unlocked (reset to “1”) through a hardware reset or  
power cycle. See also Figure 11.1 for an overview of the Advanced Sector Protection feature.  
11.6 Hardware Data Protection Methods  
The device offers two main types of data protection at the sector level via hardware control:  
„ When WP# is at VIL, the four outermost sectors are locked (device specific).  
„ When ACC is at VIL, all sectors are locked.  
There are additional methods by which intended or accidental erasure of any sectors can be pre-  
vented via hardware means. The following subsections describes these methods:  
11.6.1 WP# Method  
The Write Protect feature provides a hardware method of protecting the four outermost sectors.  
This function is provided by the WP# pin and overrides the previously discussed Sector Protec-  
tion/Unprotection method.  
If the system asserts VIL on the WP# pin, the device disables program and erase functions in the  
“outermost” boot sectors. The outermost boot sectors are the sectors containing both the lower  
and upper set of sectors in a dual-boot-configured device.  
If the system asserts VIH on the WP# pin, the device reverts to whether the boot sectors were  
last set to be protected or unprotected. That is, sector protection or unprotection for these sectors  
depends on whether they were last protected or unprotected.  
Note that the WP# pin must not be left floating or unconnected as inconsistent behavior of the  
device may result.  
The WP# pin must be held stable during a command sequence execution  
11.6.2 ACC Method  
This method is similar to above, except it protects all sectors. Once ACC input is set to VIL, all  
program and erase functions are disabled and hence all sectors are protected.  
11.6.3 Low V  
Write Inhibit  
CC  
When VCC is less than VLKO, the device does not accept any write cycles. This protects data during  
VCC power-up and power-down.  
62  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
The command register and all internal program/erase circuits are disabled, and the device resets  
to reading array data. Subsequent writes are ignored until VCC is greater than VLKO. The system  
must provide the proper signals to the control inputs to prevent unintentional writes when VCC is  
greater than VLKO  
.
11.6.4 Write Pulse “Glitch Protection”  
Noise pulses of less than 3 ns (typical) on OE#, CE# or WE# do not initiate a write cycle.  
11.6.5 Power-Up Write Inhibit  
If WE# = CE# = RESET# = VIL and OE# = VIH during power up, the device does not accept com-  
mands on the rising edge of WE#. The internal state machine is automatically reset to the read  
mode on power-up.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
63  
A d v a n c e I n f o r m a t i o n  
12 Power Conservation Modes  
12.1 Standby Mode  
When the system is not reading or writing to the device, it can place the device in the standby  
mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the  
high impedance state, independent of the OE# input. The device enters the CMOS standby mode  
when the CE# and RESET# inputs are both held at VCC ± 0.2 V. The device requires standard  
access time (tCE) for read access, before it is ready to read data. If the device is deselected during  
erasure or programming, the device draws active current until the operation is completed. ICC3 in  
“DC Characteristics” represents the standby current specification  
12.2 Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption while in asynchronous  
mode. the device automatically enables this mode when addresses remain stable for tACC + 20  
ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals. Stan-  
dard address access timings provide new data when addresses are changed. While in sleep mode,  
output data is latched and always available to the system. While in synchronous mode, the auto-  
matic sleep mode is disabled. Note that a new burst operation is required to provide new data.  
ICC6 in DC Characteristics (CMOS Compatible) represents the automatic sleep mode current  
specification.  
12.3 Hardware RESET# Input Operation  
The RESET# input provides a hardware method of resetting the device to reading array data.  
When RESET# is driven low for at least a period of tRP, the device immediately terminates any  
operation in progress, tristates all outputs, resets the configuration register, and ignores all read/  
write commands for the duration of the RESET# pulse. The device also resets the internal state  
machine to reading array data. The operation that was interrupted should be reinitiated once the  
device is ready to accept another command sequence to ensure data integrity.  
When RESET# is held at VSS ± 0.2 V, the device draws CMOS standby current (ICC4). If RESET#  
is held at VIL but not within VSS ± 0.2 V, the standby current is greater.  
RESET# may be tied to the system reset circuitry and thus, a system reset would also reset the  
Flash memory, enabling the system to read the boot-up firmware from the Flash memory.  
12.4 Output Disable (OE#)  
When the OE# input is at VIH, output from the device is disabled. The outputs are placed in the  
high impedance state.  
64  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
13 Secured Silicon Sector Flash Memory Region  
The Secured Silicon Sector provides an extra Flash memory region that enables permanent part  
identification through an Electronic Serial Number (ESN). The Secured Silicon Sector is 256 words  
in length that consists of 128 words for factory data and 128 words for customer-secured areas.  
All Secured Silicon reads outside of the 256-word address range returns invalid data. The Factory  
Indicator Bit, DQ7, (at Autoselect address 03h) is used to indicate whether or not the Factory Se-  
cured Silicon Sector is locked when shipped from the factory. The Customer Indicator Bit (DQ6)  
is used to indicate whether or not the Customer Secured Silicon Sector is locked when shipped  
from the factory.  
Please note the following general conditions:  
„ While Secured Silicon Sector access is enabled, simultaneous operations are allowed except  
for Bank 0.  
„ On power-up, or following a hardware reset, the device reverts to sending commands to the  
normal address space.  
„ Reads can be performed in the Asynchronous or Synchronous mode.  
„ Burst mode reads within Secured Silicon Sector wrap from address FFh back to address 00h.  
„ Reads outside of sector 0 return memory array data.  
„ Continuous burst read past the maximum address is undefined.  
„ Sector 0 is remapped from memory array to Secured Silicon Sector array.  
„ Once the Secured Silicon Sector Entry Command is issued, the Secured Silicon Sector Exit  
command must be issued to exit Secured Silicon Sector Mode.  
„ The Secured Silicon Sector is not accessible when the device is executing an Embedded Pro-  
gram or Embedded Erase algorithm.  
Table 13.1  
Addresses  
Sector  
Customer  
Factory  
Sector Size  
128 words  
128 words  
Address Range  
000080h-0000FFh  
000000h-00007Fh  
13.1 Factory Secured SiliconSector  
The Factory Secured Silicon Sector is always protected when shipped from the factory and has  
the Factory Indicator Bit (DQ7) permanently set to a “1. This prevents cloning of a factory locked  
part and ensures the security of the ESN and customer code once the product is shipped to the  
field.  
These devices are available pre programmed with one of the following:  
„ A random, 8 Word secure ESN only within the Factory Secured Silicon Sector  
„ Customer code within the Customer Secured Silicon Sector through the SpansionTM program-  
ming service.  
„ Both a random, secure ESN and customer code through the Spansion programming service.  
Customers may opt to have their code programmed through the Spansion programming services.  
Spansion programs the customer's code, with or without the random ESN. The devices are then  
shipped from the Spansion factory with the Factory Secured Silicon Sector and Customer Secured  
Silicon Sector permanently locked. Contact your local representative for details on using Spansion  
programming services.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
65  
A d v a n c e I n f o r m a t i o n  
13.2 Customer Secured Silicon Sector  
The Customer Secured Silicon Sector is typically shipped unprotected (DQ6 set to “0”), allowing  
customers to utilize that sector in any manner they choose. If the security feature is not required,  
the Customer Secured Silicon Sector can be treated as an additional Flash memory space.  
Please note the following:  
„ Once the Customer Secured Silicon Sector area is protected, the Customer Indicator Bit is  
permanently set to “1.”  
„ The Customer Secured Silicon Sector can be read any number of times, but can be pro-  
grammed and locked only once. The Customer Secured Silicon Sector lock must be used with  
caution as once locked, there is no procedure available for unlocking the Customer Secured  
Silicon Sector area and none of the bits in the Customer Secured Silicon Sector memory space  
can be modified in any way.  
„ The accelerated programming (ACC) and unlock bypass functions are not available when pro-  
gramming the Customer Secured Silicon Sector, but reading in Banks 1 through 15 is avail-  
able.  
„ Once the Customer Secured Silicon Sector is locked and verified, the system must write the  
Exit Secured Silicon Sector Region command sequence which return the device to the mem-  
ory array at sector 0.  
13.3 Secured Silicon Sector Entry/Exit Command Sequences  
The system can access the Secured Silicon Sector region by issuing the three-cycle Enter Secured  
Silicon Sector command sequence. The device continues to access the Secured Silicon Sector re-  
gion until the system issues the four-cycle Exit Secured Silicon Sector command sequence.  
See Command Definition Table [Secured Silicon Sector Command Table, Appendix  
Table 15.1 for address and data requirements for both command sequences.  
The Secured Silicon Sector Entry Command allows the following commands to be executed  
„ Read customer and factory Secured Silicon areas  
„ Program the customer Secured Silicon Sector  
After the system has written the Enter Secured Silicon Sector command sequence, it may read  
the Secured Silicon Sector by using the addresses normally occupied by sector SA0 within the  
memory array. This mode of operation continues until the system issues the Exit Secured Silicon  
Sector command sequence, or until power is removed from the device.  
Software Functions and Sample Code  
The following are C functions and source code examples of using the Secured Silicon Sector  
Entry, Program, and exit commands. Refer to the Spansion Low Level Driver User’s Guide  
(available soon on www.amd.com and www.fujitsu.com) for general information on Spansion  
Flash memory software development guidelines.  
66  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Table 13.2 Secured Silicon Sector Entry  
(LLD Function = lld_SecSiSectorEntryCmd)  
Cycle  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Data  
Unlock Cycle 1  
Unlock Cycle 2  
00AAh  
0055h  
0088h  
Write  
Entry Cycle  
Write  
Note: Base = Base Address.  
/* Example: SecSi Sector Entry Command */  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x555 ) = 0x0088;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write Secsi Sector Entry Cmd  
*/  
*/  
*/  
Table 13.3 Secured Silicon Sector Program  
(LLD Function = lld_ProgramCmd)  
Cycle  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Word Address  
Data  
00AAh  
Unlock Cycle 1  
Unlock Cycle 2  
Program Setup  
Write  
0055h  
Write  
00A0h  
Program  
Write  
Data Word  
Note: Base = Base Address.  
/* Once in the SecSi Sector mode, you program */  
/* words using the programming algorithm. */  
Table 13.4 Secured Silicon Sector Exit  
(LLD Function = lld_SecSiSectorExitCmd)  
Cycle  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Data  
Unlock Cycle 1  
Unlock Cycle 2  
00AAh  
0055h  
0090h  
Write  
Exit Cycle  
Write  
Note: Base = Base Address.  
/* Example: SecSi Sector Exit Command */  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x555 ) = 0x0090;  
*( (UINT16 *)base_addr + 0x000 ) = 0x0000;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write SecSi Sector Exit cycle 3 */  
/* write SecSi Sector Exit cycle 4 */  
*/  
*/  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
67  
A d v a n c e I n f o r m a t i o n  
14 Electrical Specifications  
14.1 Absolute Maximum Ratings  
Storage Temperature  
Plastic Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Voltage with Respect to Ground:  
All Inputs and I/Os except  
as noted below (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
VCC (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to +2.5 V  
ACC (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to +9.5 V  
Output Short Circuit Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
Notes:  
1. Minimum DC voltage on input or I/Os is –0.5 V. During voltage transitions, inputs or  
I/Os may undershoot VSS to –2.0 V for periods of up to 20 ns. See Figure 14.1.  
Maximum DC voltage on input or I/Os is VCC + 0.5 V. During voltage transitions  
outputs may overshoot to VCC + 2.0 V for periods up to 20 ns. See Figure 14.2.  
2. Minimum DC input voltage on pin ACC is -0.5V. During voltage transitions, ACC may  
overshoot VSS to –2.0 V for periods of up to 20 ns. See Figure 14.1. Maximum DC  
voltage on pin ACC is +9.5 V, which may overshoot to 10.5 V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the short  
circuit should not be greater than one second.  
4. Stresses above those listed under “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only; functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
data sheet is not implied. Exposure of the device to absolute maximum rating conditions  
for extended periods may affect device reliability.  
20 ns  
20 ns  
20 ns  
VCC  
+0.8 V  
+2.0 V  
VCC  
+0.5 V  
–0.5 V  
–2.0 V  
1.0 V  
20 ns  
20 ns  
20 ns  
Figure 14.1 Maximum Negative  
Overshoot Waveform  
Figure 14.2 Maximum Positive  
Overshoot Waveform  
Note:The content in this document is Advance information for the S29WS128N. Con-  
tent in this document is Preliminary for the S29W256N.  
68  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
14.2 Operating Ranges  
Wireless (W) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –25°C to +85°C  
Supply Voltages  
VCC Supply Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+1.70 V to +1.95 V  
Notes: Operating ranges define those limits between which the functionality of the device  
is guaranteed.  
14.3 Test Conditions  
Device  
Under  
Test  
C
L
Figure 14.3 Test Setup  
Table 14.1 Test Specifications  
Test Condition  
All Speed Options  
Unit  
Output Load Capacitance, CL  
(including jig capacitance)  
30  
pF  
3.0 @ 54, 66 MHz  
2.5 @ 80 MHz  
Input Rise and Fall Times  
Input Pulse Levels  
ns  
0.0–VCC  
VCC/2  
V
V
Input timing measurement  
reference levels  
Output timing measurement  
reference levels  
VCC/2  
V
Note: The content in this document is Advance information for the S29WS128N. Con-  
tent in this document is Preliminary for the S29W256N.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
69  
A d v a n c e I n f o r m a t i o n  
14.4 Key to Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
Notes:  
1. The content in this document is Advance information for the S29WS128N. Content in this document is Preliminary for the S29W256N.  
14.5 Switching Waveforms  
VCC  
All Inputs and Outputs  
VCC/2  
VCC/2  
Input  
Measurement Level  
Output  
0.0 V  
Figure 14.4 Input Waveforms and Measurement Levels  
14.6 V  
Power-up  
CC  
Parameter  
Description  
Test Setup  
Speed  
Unit  
tVCS  
VCC Setup Time  
Min  
1
ms  
Notes:  
1. The content in this document is Advance information for the S29WS128N. Content in this document is  
Preliminary for the S29W256N.  
2. S29WS128N: VCC ramp rate is > 1V/ 100 µs and for VCC ramp rate of < 1 V  
/ 100 µs a hardware reset is required.  
tVCS  
VCC  
RESET#  
Figure 14.5  
V
Power-up Diagram  
CC  
70  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
14.7 DC Characteristics (CMOS Compatible)  
Parameter  
Description (Notes)  
Input Load Current  
Output Leakage Current (2)  
Test Conditions (Notes 1, 8)  
= V to V , V = V max  
Min  
Typ  
Max  
±1  
±1  
54  
60  
66  
48  
54  
60  
42  
48  
54  
36  
42  
48  
45  
26  
7
Unit  
µA  
I
V
V
LI  
IN  
SS  
CC  
CC  
CC  
I
= V to V , V = V max  
µA  
LO  
OUT  
SS  
CC  
CC  
CC  
54 MHz  
27  
28  
30  
28  
30  
32  
29  
32  
34  
32  
35  
38  
34  
17  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
CE# = V , OE# = V  
,
IH  
IL  
WE# = V , burst length  
66 MHz  
80 MHz  
54 MHz  
66 MHz  
80 MHz  
54 MHz  
66 MHz  
80 MHz  
54 MHz  
66 MHz  
80 MHz  
10 MHz  
5 MHz  
IH  
= 8  
CE# = V , OE# = V  
,
IH  
IL  
WE# = V , burst length  
IH  
= 16  
I
V
Active burst Read Current  
CC  
CCB  
CE# = V , OE# = V  
,
IH  
IL  
WE# = V , burst length  
IH  
= 32  
CE# = V , OE# = V  
,
IH  
IL  
WE# = V , burst length  
IH  
= Continuous  
V
Active Asynchronous  
CE# = V , OE# = V  
IL  
,
,
CC  
IH  
IH  
I
CC1  
WE# = V  
Read Current (3)  
IH  
1 MHz  
V
1
5
ACC  
CE# = V , OE# = V  
IL  
IH  
I
I
V
V
Active Write Current (4)  
Standby Current (5, 6)  
CC2  
CC3  
CC  
CC  
ACC = V  
V
24  
1
52.5  
5
mA  
µA  
CC  
V
ACC  
CE# = RESET# =  
± 0.2 V  
V
CC  
V
20  
70  
70  
250  
µA  
CC  
I
I
I
V
V
Reset Current (6)  
Active Current  
RESET# = V CLK = V  
IL  
µA  
CC4  
CC5  
CC6  
CC  
CC  
IL,  
CE# = V , OE# = V , ACC = V @  
IH  
IL  
IH  
50  
60  
mA  
5 MHz  
(Read While Write) (6)  
V
Sleep Current (6)  
CE# = V , OE# = V  
IL  
2
6
70  
20  
µA  
mA  
mA  
V
CC  
IH  
V
CE# = V , OE# = V  
IL  
ACC  
Accelerated Program Current  
(7)  
IH,  
I
ACC  
V
= 9.5 V  
ACC  
V
14  
20  
CC  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
V
V
= 1.8 V  
= 1.8 V  
–0.5  
0.4  
IL  
CC  
CC  
OL  
V
V
– 0.4  
V
+ 0.4  
V
IH  
CC  
CC  
V
I
I
= 100 µA, V = V  
= V  
CC  
0.1  
V
OL  
OH  
CC  
CC min  
V
V
= –100 µA, V = V  
= V  
V
CC  
V
OH  
CC  
CC min  
CC  
Voltage for Accelerated  
Program  
8.5  
9.5  
1.4  
V
V
HH  
V
Low V Lock-out Voltage  
CC  
LKO  
Notes:  
1. Maximum ICC specifications are tested with VCC = VCCmax.  
2. CE# must be set high when measuring the RDY pin.  
3. The ICC current listed is typically less than 3.5 mA/MHz, with OE# at VIH  
4. ICC active while Embedded Erase or Embedded Program is in progress.  
.
5. Device enters automatic sleep mode when addresses are stable for tACC + 20 ns. Typical sleep mode  
current is equal to ICC3  
.
6. VIH = VCC ± 0.2 V and VIL > –0.1 V.  
7. Total current during accelerated programming is the sum of VACC and VCC currents.  
8. VACC = VHH on ACC input.  
9. The content in this document is Advance information for the S29WS128N. Content in this document is  
Preliminary for the S29W256N.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
71  
A d v a n c e I n f o r m a t i o n  
14.8 AC Characteristics  
14.8.1 CLK Characterization  
Parameter  
fCLK  
Description  
CLK Frequency  
54 MHz  
54  
66 MHz  
66  
80 MHz  
80  
Unit  
MHz  
ns  
Max  
Min  
tCLK  
tCH  
CLK Period  
18.5  
15.1  
12.5  
CLK High Time  
CLK Low Time  
CLK Rise Time  
CLK Fall Time  
Min  
7.4  
3
6.1  
3
5.0  
2.5  
ns  
ns  
tCL  
tCR  
Max  
tCF  
Notes:  
1. The content in this document is Advance information for the S29WS128N.  
Content in this document is Preliminary for the S29W256N.  
2. Not 100% tested.  
t
CLK  
t
t
CL  
CH  
CLK  
t
t
CF  
CR  
Figure 14.6 CLK Characterization  
72  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
14.8.2 Synchronous/Burst Read  
Parameter  
JEDEC  
Standard  
Description  
54 MHz  
66 MHz  
80  
80 MHz  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
tIACC  
tBACC  
tACS  
tACH  
tBDH  
tCR  
Latency  
Max  
Burst Access Time Valid Clock to Output Delay Max  
13.5  
5
11.2  
9
Address Setup Time to CLK (Note 1)  
Address Hold Time from CLK (Note 1)  
Data Hold Time from Next Clock Cycle  
Chip Enable to RDY Valid  
Min  
Min  
Min  
Max  
Max  
Max  
Max  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
4
6
3
7
4
13.5  
13.5  
11.2  
9
tOE  
Output Enable to Output Valid  
Chip Enable to High Z (Note 2)  
Output Enable to High Z (Note 2)  
CE# Setup Time to CLK  
11.2  
tCEZ  
tOEZ  
tCES  
tRDYS  
tRACC  
tCAS  
tAVC  
tAVD  
fCLK  
10  
10  
4
RDY Setup Time to CLK  
5
4
3.5  
9
Ready Access Time from CLK  
CE# Setup Time to AVD#  
AVD# Low to CLK  
13.5  
11.2  
0
4
AVD# Pulse  
8
1
1
1
Minimum clock frequency  
Notes:  
1. Addresses are latched on the first rising edge of CLK.  
2. Not 100% tested.  
3. The content in this document is Advance information for the S29WS128N. Content in this document is  
Preliminary for the S29W256N.  
Table 14.2 Synchronous Wait State Requirements  
Max Frequency  
Wait State Requirement  
01 MHz < Freq. 14 MHz  
14 MHz < Freq. 27 MHz  
27 MHz < Freq. 40 MHz  
40 MHz < Freq. 54 MHz  
54 MHz < Freq. 67 MHz  
67 MHz < Freq. 80 MHz  
2
3
4
5
6
7
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
73  
A d v a n c e I n f o r m a t i o n  
14.8.3 Timing Diagrams  
5 cycles for initial access shown.  
18.5 ns typ. (54 MHz)  
tCEZ  
tCES  
CE#  
1
2
3
4
5
6
7
CLK  
tAVC  
AVD#  
tAVD  
tACS  
Addresses  
Data (n)  
Aa  
tBACC  
tACH  
Hi-Z  
tIACC  
Da  
Da + 1  
Da + 2  
Da + n  
tOEZ  
Da + 3  
tBDH  
OE#  
tRACC  
tOE  
Hi-Z  
Hi-Z  
RDY (n)  
tCR  
tRDYS  
Hi-Z  
Hi-Z  
Data (n + 1)  
RDY (n + 1)  
Da  
Da + 1  
Da + 2  
Da + n  
Da + 2  
Hi-Z  
Hi-Z  
Hi-Z  
Data (n + 2)  
RDY (n + 2)  
Da  
Da + 1  
Da + 1  
Da + n  
Da + 1  
Hi-Z  
Hi-Z  
Hi-Z  
Data (n + 3)  
RDY (n + 3)  
Da  
Da  
Da  
Da + n  
Da  
Hi-Z  
Notes:  
1. Figure shows total number of wait states set to five cycles. The total number of  
wait states can be programmed from two cycles to seven cycles.  
2. If any burst address occurs at “address + 1”, “address + 2”, or “address + 3”,  
additional clock delay cycles are inserted, and are indicated by RDY.  
3. The device is in synchronous mode.  
Figure 14.7 CLK Synchronous Burst Mode Read  
74  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
7 cycles for initial access shown.  
tCES  
CE#  
CLK  
1
2
3
4
5
6
7
tAVC  
AVD#  
tAVD  
tACS  
Ac  
Addresses  
Data  
tBACC  
tACH  
tIACC  
DC  
DD  
DE  
DF  
D8  
DB  
tBDH  
OE#  
RDY  
tCR  
tRACC  
tRACC  
tOE  
Hi-Z  
tRDYS  
Notes:  
1. Figure shows total number of wait states set to seven cycles. The total number of wait states can be programmed from two cycles to seven  
cycles.  
2. If any burst address occurs at “address + 1”, “address + 2”, or “address + 3”, additional clock delay cycles are inserted, and are indicated  
by RDY.  
3. The device is in synchronous mode with wrap around.  
4. D8–DF in data waveform indicate the order of data within a given 8-word address range, from lowest to highest. Starting address in figure  
is the 4th address in range (0-F).  
Figure 14.8 8-word Linear Burst with Wrap Around  
7
cycles for initial access shown.  
tCES  
CE#  
CLK  
1
2
3
4
5
6
7
tAVC  
AVD#  
tAVD  
tACS  
Ac  
Addresses  
Data  
tBACC  
tACH  
tIACC  
DC  
DD  
DE  
DF  
D8  
DB  
tBDH  
OE#  
RDY  
tCR  
tRACC  
tOE  
tRACC  
Hi-Z  
tRDYS  
Notes:  
1. Figure shows total number of wait states set to seven cycles. The total number of wait states can be programmed from two cycles to seven  
cycles. Clock is set for active rising edge.  
2. If any burst address occurs at “address + 1”, “address + 2”, or “address + 3”, additional clock delay cycles are inserted, and are indicated  
by RDY.  
3. The device is in asynchronous mode with out wrap around.  
4. DC–D13 in data waveform indicate the order of data within a given 8-word address range, from lowest to highest. Starting address in figure  
is the 1st address in range (c-13).  
Figure 14.9 8-word Linear Burst without Wrap Around  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
75  
A d v a n c e I n f o r m a t i o n  
tCEZ  
6 wait cycles for initial access shown.  
tCES  
CE#  
CLK  
1
5
6
7
tAVC  
AVD#  
tAVD  
tACS  
Aa  
Addresses  
Data  
tBACC  
tACH  
Hi-Z  
tIACC  
Da  
Da+1  
Da+2  
Da+3  
Da + n  
tBDH  
tOEZ  
tRACC  
OE#  
RDY  
tCR  
tOE  
Hi-Z  
Hi-Z  
tRDYS  
Notes:  
1. Figure assumes 6 wait states for initial access and synchronous read.  
2. The Set Configuration Register command sequence has been written with CR8=0; device outputs RDY one cycle before valid data.  
Figure 14.10 Linear Burst with RDY Set One Cycle Before Data  
14.8.4 AC Characteristics—Asynchronous Read  
Parameter  
80  
MHz  
JEDEC Standard  
Description  
Access Time from CE# Low  
54 MHz  
66 MHz  
Unit  
tCE  
tACC  
Max  
Max  
Min  
Min  
Min  
Max  
Min  
Min  
Max  
Min  
80  
80  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Asynchronous Access Time  
tAVDP  
tAAVDS  
tAAVDH  
tOE  
AVD# Low Time  
Address Setup Time to Rising Edge of AVD#  
Address Hold Time from Rising Edge of AVD#  
Output Enable to Output Valid  
4
7
6
13.5  
0
Read  
Output Enable Hold Time  
Data# Polling  
tOEH  
10  
10  
0
tOEZ  
tCAS  
Output Enable to High Z (see Note)  
CE# Setup Time to AVD#  
Notes:  
1. Not 100% tested.  
2. The content in this document is Advance information for the S29WS128N.  
76  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
CE#  
OE#  
tOE  
tOEH  
WE#  
Data  
tCE  
tOEZ  
Valid RD  
tACC  
RA  
Addresses  
AVD#  
tAAVDH  
tCAS  
tAVDP  
tAAVDS  
Note: RA = Read Address, RD = Read Data.  
Figure 14.11 Asynchronous Mode Read  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
77  
A d v a n c e I n f o r m a t i o n  
14.8.5 Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std.  
Description  
All Speed Options  
Unit  
µs  
tRP  
tRH  
RESET# Pulse Width  
Reset High Time Before Read (See Note)  
Min  
Min  
30  
200  
ns  
Notes:  
1. Not 100% tested.  
2. The content in this document is Advance information for the S29WS128N. Content  
in this document is Preliminary for the S29W256N.  
CE#, OE#  
tRH  
RESET#  
tRP  
Figure 14.12 Reset Timings  
78  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
14.8.6 Erase/Program Timing  
Parameter  
JEDEC Standard  
Description  
54 MHz  
66 MHz  
80 MHz  
Unit  
ns  
t
t
Write Cycle Time (Note 1)  
Min  
Min  
80  
5
AVAV  
WC  
Synchronous  
Asynchronous  
Synchronous  
Asynchronous  
ns  
t
t
Address Setup Time (Notes 2, 3)  
Address Hold Time (Notes 2, 3)  
AVWL  
AS  
0
ns  
9
t
t
Min  
ns  
WLAX  
AH  
20  
8
t
AVD# Low Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Max  
Max  
Max  
Typ  
Typ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
AVDP  
t
t
t
Data Setup Time  
45  
20  
DVWH  
DS  
t
Data Hold Time  
0
0
WHDX  
DH  
t
t
Read Recovery Time Before Write  
CE# Setup Time to AVD#  
CE# Hold Time  
GHWL  
GHWL  
t
0
CAS  
t
t
0
WHEH  
WLWH  
WHWL  
CH  
t
t
t
Write Pulse Width  
30  
20  
0
WP  
t
Write Pulse Width High  
WPH  
t
Latency Between Read and Write Operations  
SR/W  
t
V
V
Rise and Fall Time  
500  
1
VID  
ACC  
ACC  
t
Setup Time (During Accelerated Programming)  
VIDS  
t
t
CE# Setup Time to WE#  
5
ELWL  
CS  
t
AVD# Setup Time to WE#  
5
AVSW  
AVHW  
t
AVD# Hold Time to WE#  
5
t
AVD# Setup Time to CLK  
5
AVSC  
t
AVD# Hold Time to CLK  
5
AVHC  
t
Clock Setup Time to WE#  
5
CSW  
t
Noise Pulse Margin on WE#  
3
WEP  
t
Sector Erase Accept Time-out  
Erase Suspend Latency  
50  
20  
20  
0
SEA  
t
ESL  
PSL  
ASP  
t
Program Suspend Latency  
t
Toggle Time During Erase within a Protected Sector  
Toggle Time During Programming Within a Protected Sector  
t
0
PSP  
Notes:  
1. Not 100% tested.  
2. Asynchronous read mode allows Asynchronous program operation only. Synchronous read mode allows both Asynchronous and  
Synchronous program operation.  
3. In asynchronous program operation timing, addresses are latched on the falling edge of WE#. In synchronous program operation timing,  
addresses are latched on the rising edge of CLK.  
4. See the Erase and Programming Performance section for more information.  
5. Does not include the preprogramming time.  
6. The content in this document is Advance information for the S29WS128N. Content in this document is Preliminary for the S29W256N.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
79  
A d v a n c e I n f o r m a t i o n  
Erase Command Sequence (last two cycles)  
Read Status Data  
V
IH  
CLK  
V
IL  
tAVDP  
AVD#  
tAH  
tAS  
SA  
VA  
VA  
Addresses  
Data  
2AAh  
555h for  
chip erase  
10h for  
chip erase  
In  
Complete  
55h  
30h  
Progress  
tDS  
tDH  
CE#  
tCH  
OE#  
WE#  
tWP  
tWHWH2  
tCS  
tWPH  
tWC  
tVCS  
VCC  
Figure 14.13 Chip/Sector Erase Operation Timings  
80  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Program Command Sequence (last two cycles)  
Read Status Data  
V
IH  
CLK  
V
IL  
tAVSW  
tAVHW  
tAVDP  
AVD#  
tAS  
tAH  
Addresses  
Data  
555h  
VA  
VA  
PA  
In  
A0h  
tDS  
Complete  
PD  
Progress  
tCAS  
tDH  
CE#  
tCH  
OE#  
WE#  
tWP  
tWHWH1  
tCS  
tWPH  
tWC  
tVCS  
VCC  
Notes:  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. “In progress” and “complete” refer to status of program operation.  
3. A23–A14 for the WS256N (A22–A14 for the WS128N) are don’t care during command sequence unlock cycles.  
4. CLK can be either VIL or VIH  
.
5. The Asynchronous programming operation is independent of the Set Device Read Mode bit in the  
Configuration Register.  
Figure 14.14 Program Operation Timing Using AVD#  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
81  
A d v a n c e I n f o r m a t i o n  
Program Command Sequence (last two cycles)  
Read Status Data  
tAVCH  
CLK  
tAS  
tAH  
tAVSC  
AVD#  
tAVDP  
Addresses  
Data  
PA  
VA  
VA  
555h  
In  
Complete  
A0h  
PD  
tDS  
tDH  
Progress  
tCAS  
CE#  
tCH  
OE#  
WE#  
tCSW  
tWP  
tWHWH1  
tWPH  
tWC  
tVCS  
VCC  
Notes:  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. “In progress” and “complete” refer to status of program operation.  
3. A23–A14 for the WS256N (A22–A14 for the WS128N) are don’t care during command sequence unlock cycles.  
4. Addresses are latched on the first rising edge of CLK.  
5. Either CE# or AVD# is required to go from low to high in between programming command sequences.  
6. The Synchronous programming operation is dependent of the Set Device Read Mode bit in the Configuration  
Register. The Configuration Register must be set to the Synchronous Read Mode.  
Figure 14.15 Program Operation Timing Using CLK in Relationship to AVD#  
82  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
CE#  
AVD#  
WE#  
Addresses  
Data  
PA  
Don't Care  
Don't Care  
A0h  
PD  
Don't Care  
OE#  
ACC  
tVIDS  
V
V
ID  
tVID  
or V  
IL  
IH  
Note: Use setup and hold times from conventional program operation.  
Figure 14.16 Accelerated Unlock Bypass Programming Timing  
AVD#  
CE#  
tCEZ  
tCE  
tOEZ  
tCH  
tOE  
OE#  
WE#  
tOEH  
tACC  
High Z  
Addresses  
VA  
VA  
High Z  
Status Data  
Status Data  
Data  
Notes:  
1. Status reads in figure are shown as asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is completeData# Polling  
outputs true data.  
Figure 14.17 Data# Polling Timings (During Embedded Algorithm)  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
83  
A d v a n c e I n f o r m a t i o n  
AVD#  
CE#  
tCEZ  
tCE  
tOEZ  
tCH  
tOE  
OE#  
WE#  
tOEH  
tACC  
VA  
High Z  
High Z  
Addresses  
Data  
VA  
Status Data  
Status Data  
Notes:  
1. Status reads in figure are shown as asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is complete, .  
Figure 14.18 Toggle Bit Timings (During Embedded Algorithm)  
CE#  
CLK  
AVD#  
Addresses  
OE#  
VA  
VA  
tIACC  
tIACC  
Data  
Status Data  
Status Data  
RDY  
Notes:  
1. The timings are similar to synchronous read timings.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is complete, .  
3. RDY is active with data (D8 = 1 in the Configuration Register). When D8 = 0 in the Configuration Register, RDY is active one clock cycle before  
data.  
Figure 14.19 Synchronous Data Polling Timings/Toggle Bit Timings  
84  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE#  
to toggle DQ2 and DQ6.  
Figure 14.20 DQ2 vs. DQ6  
Address boundary occurs every 128 words, beginning at address  
00007Fh: (0000FFh, 00017Fh, etc.) Address 000000h is also a boundary crossing.  
C124  
C125  
7D  
C126  
7E  
C127  
7F  
C127  
7F  
C128  
80  
C129  
81  
C130  
82  
C131  
83  
CLK  
7C  
Address (hex)  
(stays high)  
AVD#  
tRACC  
tRACC  
RDY(1)  
latency  
tRACC  
tRACC  
RDY(2)  
Data  
latency  
D124  
D125  
D126  
D127  
D128  
D129  
D130  
OE#,  
CE#  
(stays low)  
Notes:  
1. RDY(1) active with data (D8 = 1 in the Configuration Register).  
2. RDY(2) active one clock cycle before data (D8 = 0 in the Configuration Register).  
3. Cxx indicates the clock that triggers Dxx on the outputs; for example, C60 triggers D60.  
4. Figure shows the device not crossing a bank in the process of performing an erase or program.  
5. RDY does not go low and no additional wait states are required for WS 5.  
Figure 14.21 Latency with Boundary Crossing when Frequency > 66 MHz  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
85  
A d v a n c e I n f o r m a t i o n  
Address boundary occurs every 128 words, beginning at address  
00007Fh: (0000FFh, 00017Fh, etc.) Address 000000h is also a boundary crossing.  
C124  
C125  
7D  
C126  
7E  
C127  
7F  
C127  
7F  
CLK  
7C  
Address (hex)  
(stays high)  
AVD#  
tRACC  
tRACC  
RDY(1)  
latency  
tRACC  
tRACC  
RDY(2)  
Data  
latency  
D124  
D125  
D126  
D127  
Read Status  
OE#,  
CE#  
(stays low)  
Notes:  
1. RDY(1) active with data (D8 = 1 in the Configuration Register).  
2. RDY(2) active one clock cycle before data (D8 = 0 in the Configuration Register).  
3. Cxx indicates the clock that triggers Dxx on the outputs; for example, C60 triggers D60.  
4. Figure shows the device crossing a bank in the process of performing an erase or program.  
5. RDY does not go low and no additional wait states are required for WS 5.  
Figure 14.22 Latency with Boundary Crossing into Program/Erase Bank  
86  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Data  
D0  
D1  
Rising edge of next clock cycle  
following last wait state triggers  
next burst data  
AVD#  
OE#  
total number of clock cycles  
following addresses being latched  
1
2
0
3
1
4
5
6
4
7
5
CLK  
2
3
number of clock cycles  
programmed  
Wait State Configuration Register Setup:  
D13, D12, D11 = “111” Reserved  
D13, D12, D11 = “110” Reserved  
D13, D12, D11 = “101” 5 programmed, 7 total  
D13, D12, D11 = “100” 4 programmed, 6 total  
D13, D12, D11 = “011” 3 programmed, 5 total  
Note: Figure assumes address D0 is not at an address boundary, and wait state is set to “101”.  
Figure 14.23 Example of Wait States Insertion  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
87  
A d v a n c e I n f o r m a t i o n  
Last Cycle in  
Program or  
Sector Erase  
Read status (at least two cycles) in same bank  
and/or array data from other bank  
Begin another  
write or program  
command sequence  
Command Sequence  
tWrite Cycle  
tWrite Cycle  
tRead Cycle  
tRead Cycle  
CE#  
OE#  
tOE  
tGHWL  
tOEH  
WE#  
Data  
tWPH  
tOEZ  
tWP  
tDS  
tACC  
tOEH  
tDH  
PD/30h  
RD  
RD  
AAh  
tSR/W  
RA  
Addresses  
PA/SA  
tAS  
RA  
555h  
AVD#  
tAH  
Note: Breakpoints in waveforms indicate that system may alternately read array data from the “non-busy bank” while  
checking the status of the program or erase operation in the “busy” bank. The system should read status twice to ensure  
valid information.  
Figure 14.24 Back-to-Back Read/Write Cycle Timings  
88  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
14.8.7 Erase and Programming Performance  
Parameter  
Typ (Note 1)  
0.6  
Max (Note 2)  
Unit  
Comments  
64 Kword  
16 Kword  
VCC  
VCC  
3.5  
2
Sector Erase Time  
s
<0.15  
Excludes 00h  
programming prior  
to erasure (Note 4)  
153.6 (WS256N)  
77.4 (WS128N)  
308 (WS256N)  
154 (WS128N)  
VCC  
Chip Erase Time  
s
130.6 (WS256N)  
65.8 (WS128N)  
262 (WS256N)  
132 (WS128N)  
ACC  
VCC  
ACC  
VCC  
ACC  
VCC  
ACC  
40  
24  
400  
240  
94  
Single Word Programming Time  
(Note 8)  
µs  
µs  
µs  
9.4  
6
Effective Word Programming Time  
utilizing Program Write Buffer  
60  
300  
192  
3000  
1920  
Total 32-Word Buffer Programming  
Time  
157.3 (WS256N)  
78.6 (WS128N)  
314.6 (WS256N)  
157.3 (WS128N)  
VCC  
Excludes system  
level overhead  
(Note 5)  
Chip Programming Time (Note 3)  
s
100.7 (WS256N)  
50.3 (WS128N)  
201.3 (WS256N)  
100.7 (WS128N)  
ACC  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 1.8 V VCC, 10,000  
cycles; checkerboard data pattern.  
2. Under worst case conditions of 90°C, VCC = 1.70 V, 100,000 cycles.  
3. Typical chip programming time is considerably less than the maximum chip programming time listed, and is  
based on utilizing the Write Buffer.  
4. In the pre-programming step of the Embedded Erase algorithm, all words are programmed to 00h before  
erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program  
command. See the Appendix for further information on command definitions.  
6. Contact the local sales office for minimum cycling endurance values in specific applications and operating  
conditions.  
7. Refer to Application Note “Erase Suspend/Resume Timing” for more details.  
8. Word programming specification is based upon a single word programming operation not utilizing the write  
buffer.  
9. The content in this document is Advance information for the S29WS128N. Content in this document is  
Preliminary for the S29W256N.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
89  
A d v a n c e I n f o r m a t i o n  
14.8.8 BGA Ball Capacitance  
Parameter  
Symbol  
Parameter Description  
Te st S e tup  
VIN = 0  
Typ.  
5.3  
5.8  
6.3  
Max  
6.3  
6.8  
7.3  
Unit  
pF  
CIN  
Input Capacitance  
Output Capacitance  
Control Pin Capacitance  
COUT  
CIN2  
VOUT = 0  
VIN = 0  
pF  
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions TA = 25 C; f = 1.0 MHz.  
°
3. The content in this document is Advance information for the S29WS128N. Content in this document is  
Preliminary for the S29W256N.  
90  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
15 Appendix  
This section contains information relating to software control or interfacing with the Flash device.  
For additional information and assistance regarding software, see the Additional Resources sec-  
tion on page 23, or explore the Web at www.amd.com and www.fujitsu.com.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
91  
A d v a n c e I n f o r m a t i o n  
Table 15.1 Memory Array Commands  
Bus Cycles (Notes 1–5)  
First  
Addr  
Second  
Third  
Addr  
Fourth  
Addr Data  
Fifth  
Addr  
Sixth  
Addr Data  
Command Sequence  
(Notes)  
Data  
RD  
Addr  
Data  
Data  
Data  
Asynchronous Read (6)  
Reset (7)  
Manufacturer ID  
1
1
4
6
RA  
XXX  
555  
555  
F0  
AA  
2AA  
2AA  
55  
55  
[BA]555  
[BA]555  
90  
90  
[BA]X00 0001  
[BA]X01 227E  
Device ID (9)  
AA  
BA+X0E  
PA  
Data  
PD  
BA+X0F 2200  
Indicator Bits (10)  
4
555  
AA  
2AA  
55  
[BA]555  
90  
[BA]X03  
Data  
Program  
4
6
1
3
6
6
1
1
4
4
1
3
2
1
555  
555  
SA  
555  
555  
555  
BA  
AA  
AA  
29  
AA  
AA  
AA  
B0  
30  
AA  
AA  
98  
AA  
A0  
98  
2AA  
2AA  
55  
55  
555  
PA  
A0  
25  
PA  
PA  
PD  
Write to Buffer (11)  
Program Buffer to Flash  
Write to Buffer Abort Reset (12)  
Chip Erase  
WC  
WBL  
PD  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
F0  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
Erase/Program Suspend (13)  
Erase/Program Resume (14)  
Set Configuration Register (18)  
Read Configuration Register  
CFI Query (15)  
BA  
555  
555  
[BA]555  
555  
XXX  
XXX  
2AA  
2AA  
55  
55  
555  
555  
D0  
C6  
X00  
X00  
CR  
CR  
Entry  
Program (16)  
2AA  
PA  
55  
PD  
555  
20  
CFI (16)  
Reset  
2
XXX  
90  
XXX  
00  
Entry  
3
4
1
555  
555  
00  
AA  
AA  
Data  
2AA  
2AA  
55  
55  
555  
555  
88  
A0  
Program (17)  
Read (17)  
PA  
PD  
00  
Exit (17)  
4
555  
AA  
2AA  
55  
555  
90  
XXX  
Legend:  
X = Don’t care.  
RA = Read Address.  
RD = Read Data.  
SA = Sector Address. WS256N = A23–A14; WS128N = A22–A14.  
BA = Bank Address. WS256N = A23–A20; WS128N = A22–A20.  
CR = Configuration Register data bits D15–D0.  
PA = Program Address. Addresses latch on the rising edge of the  
AVD# pulse or active edge of CLK, whichever occurs first.  
WBL = Write Buffer Location. Address must be within the same write  
buffer page as PA.  
PD = Program Data. Data latches on the rising edge of WE# or CE#  
pulse, whichever occurs first.  
WC = Word Count. Number of write buffer locations to load minus 1.  
Notes:  
1. See Table 10.1 for description of bus operations.  
2. All values are in hexadecimal.  
3. Shaded cells indicate read cycles.  
4. Address and data bits not specified in table, legend, or notes are  
don’t cares (each hex digit implies 4 bits of data).  
5. Writing incorrect address and data values or writing them in the  
improper sequence may place the device in an unknown state.  
The system must write the reset command to return the device  
to reading array data.  
6. No unlock or command cycles required when bank is reading  
array data.  
7. Reset command is required to return to reading array data (or to  
the erase-suspend-read mode if previously in Erase Suspend)  
when a bank is in the autoselect mode, or if DQ5 goes high  
(while the bank is providing status information) or performing  
sector lock/unlock.  
13. System may read and program in non-erasing sectors, or enter  
the autoselect mode, when in the Erase Suspend mode. The  
Erase Suspend command is valid only during a sector erase  
operation, and requires the bank address.  
14. Erase Resume command is valid only during the Erase Suspend  
mode, and requires the bank address.  
15. Command is valid when device is ready to read array data or  
when device is in autoselect mode. Address equals 55h on all  
future devices, but 555h for WS256N/128N.  
16. Requires Entry command sequence prior to execution. Unlock  
Bypass Reset command is required to return to reading array  
data.  
17. Requires Entry command sequence prior to execution. Secured  
Silicon Sector Exit Reset command is required to exit this mode;  
device may otherwise be placed in an unknown state.  
18. Requires reset command to configure the Configuration Register.  
8. The system must provide the bank address. See Autoselect  
section for more information.  
9. Data in cycle 5 is 2230 (WS256N) or 2231 (WS128N).  
10. See Table 10.9 for indicator bit values.  
11. Total number of cycles in the command sequence is determined  
by the number of words written to the write buffer.  
12. Command sequence resets device for next command after write-  
to-buffer operation.  
92  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Table 15.2 Sector Protection Commands  
Bus Cycles (Notes 1–4)  
First  
Second  
Third  
Fourth  
Fifth  
Sixth  
Seventh  
Command Sequence  
(Notes)  
Addr  
555  
XX  
Data  
AA  
Addr  
2AA  
Data  
55  
Addr  
Data  
Addr Data Addr Data Addr Data Addr Data  
Command Set Entry (5)  
3
2
1
2
3
2
4
7
2
3
2
2
1
2
3
2
1
555  
40  
Lock  
Register  
Bits  
Program (6, 12)  
A0  
77/00  
data  
Read (6)  
77  
XX  
data  
90  
Command Set Exit (7)  
Command Set Entry (5)  
Program [0-3] (8)  
Read (9)  
XX  
2AA  
00  
00  
55  
555  
XX  
AA  
555  
60  
A0  
PWD[0-3]  
PWD1  
03  
Password  
Protection  
0...00 PWD0 0...01  
0...02  
00  
PWD2 0...03 PWD3  
Unlock  
00  
XX  
555  
XX  
XX  
SA  
XX  
555  
XX  
BA  
25  
90  
AA  
00  
XX  
PWD0  
01  
PWD1  
02  
PWD2  
03  
PWD3  
00  
29  
Command Set Exit (7)  
Command Set Entry (5)  
PPB Program (10)  
All PPB Erase (10, 11)  
PPB Status Read  
00  
2AA  
SA  
55  
[BA]555  
C0  
A0  
00  
Non-Volatile  
Sector  
Protection (PPB)  
80  
00  
30  
RD(0)  
90  
Command Set Exit (7)  
Command Set Entry (5)  
PPB Lock Bit Set  
XX  
2AA  
XX  
00  
55  
00  
Global  
Volatile Sector  
Protection  
Freeze  
AA  
A0  
[BA]555  
[BA]555  
50  
E0  
PPB Lock Bit Status Read  
RD(0)  
Command Set Exit (7)  
2
XX  
90  
XX  
00  
(PPB Lock)  
Command Set Entry (5)  
DYB Set  
3
2
2
1
2
555  
XX  
XX  
SA  
XX  
AA  
A0  
2AA  
SA  
55  
00  
01  
Volatile Sector  
Protection  
(DYB)  
DYB Clear  
A0  
SA  
DYB Status Read  
Command Set Exit (7)  
RD(0)  
90  
XX  
00  
Legend:  
X = Don’t care.  
BA = Bank Address. WS256N = A23–A20; WS128N = A22–A20.  
RA = Address of the memory location to be read.  
PD(0) = Secured Silicon Sector Lock Bit. PD(0), or bit[0].  
PD(1) = Persistent Protection Mode Lock Bit. PD(1), or bit[1], must  
be set to ‘0’ for protection while PD(2), bit[2] must be left as ‘1’.  
PD(2) = Password Protection Mode Lock Bit. PD(2), or bit[2], must  
be set to ‘0’ for protection while PD(1), bit[1] must be left as ‘1’.  
PD(3) = Protection Mode OTP Bit. PD(3) or bit[3].  
PWD3–PWD0 = Password Data. PD3–PD0 present four 16 bit  
combinations that represent the 64-bit Password  
PWA = Password Address. Address bits A1 and A0 are used to select  
each 16-bit portion of the 64-bit entity.  
PWD = Password Data.  
RD(0), RD(1), RD(2) = DQ0, DQ1, or DQ2 protection indicator bit. If  
protected, DQ0, DQ1, or DQ2 = 0. If unprotected, DQ0, DQ1,  
DQ2 = 1.  
SA = Sector Address. WS256N = A23–A14; WS128N = A22–A14.  
Notes:  
1. All values are in hexadecimal.  
2. Shaded cells indicate read cycles.  
8. Entire two bus-cycle sequence must be entered for each portion  
of the password.  
9. Full address range is required for reading password.  
10. See Figure 11.2 for details.  
3. Address and data bits not specified in table, legend, or notes are  
don’t cares (each hex digit implies 4 bits of data).  
4. Writing incorrect address and data values or writing them in the  
improper sequence may place the device in an unknown state.  
The system must write the reset command to return the device  
to reading array data.  
5. Entry commands are required to enter a specific mode to enable  
instructions only available within that mode.  
11. “All PPB Erase” command pre-programs all PPBs before erasure  
to prevent over-erasure.  
12. The second cycle address for the lock register program operation  
is 77 for S29WS256N; however, for WS128N this address is 00.  
6. If both the Persistent Protection Mode Locking Bit and the  
Password Protection Mode Locking Bit are set at the same time,  
the command operation aborts and returns the device to the  
default Persistent Sector Protection Mode during 2nd bus cycle.  
Note that on all future devices, addresses equal 00h, but is  
currently 77h for the WS256N only. See Tables 11.1 and 11.2 for  
explanation of lock bits.  
7. Exit command must be issued to reset the device into read  
mode; device may otherwise be placed in an unknown state.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
93  
A d v a n c e I n f o r m a t i o n  
15.1 Common Flash Memory Interface  
The Common Flash Interface (CFI) specification outlines device and host system software inter-  
rogation handshake, which allows specific vendor-specified soft-ware algorithms to be used for  
entire families of devices. Software support can then be device-independent, JEDEC ID-indepen-  
dent, and forward- and back-ward-compatible for the specified flash device families. Flash  
vendors can standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to  
address (BA)555h any time the device is ready to read array data. The system can read CFI in-  
formation at the addresses given in Tables 15.3–15.6) within that bank. All reads outside of the  
CFI address range, within the bank, returns non-valid data. Reads from other banks are allowed,  
writes are not. To terminate reading CFI data, the system must write the reset command.  
The following is a C source code example of using the CFI Entry and Exit functions. Refer to  
the Spansion Low Level Driver User’s Guide (available on www.amd.com and  
www.fujitsu.com) for general information on Spansion Flash memory software development  
guidelines.  
/* Example: CFI Entry command */  
*( (UINT16 *)bank_addr + 0x555 ) = 0x0098;  
/* write CFI entry command  
/* write cfi exit command  
*/  
*/  
/* Example: CFI Exit command */  
*( (UINT16 *)bank_addr + 0x000 ) = 0x00F0;  
For further information, please refer to the CFI Specification (see JEDEC publications JEP137-A  
and JESD68.01and CFI Publication 100). Please contact your sales office for copies of these  
documents.  
Table 15.3 CFI Query Identification String  
Addresses  
Data  
Description  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
Table 15.4 System Interface String  
Addresses  
Data  
Description  
V
Min. (write/erase)  
CC  
1Bh  
1Ch  
0017h  
D7–D4: volt, D3–D0: 100 millivolt  
V
Max. (write/erase)  
CC  
0019h  
D7–D4: volt, D3–D0: 100 millivolt  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0006h  
0009h  
000Ah  
0000h  
0004h  
0004h  
0003h  
0000h  
V
Min. voltage (00h = no V pin present)  
PP  
PP  
V
Max. voltage (00h = no V pin present)  
PP  
PP  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
94  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Table 15.5 Device Geometry Definition  
Addresses  
Data  
Description  
0019h (WS256N)  
0018h (WS128N)  
Device Size = 2N byte  
27h  
28h  
29h  
0001h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
Max. number of bytes in multi-byte write = 2N  
(00h = not supported)  
2Ah  
2Bh  
0006h  
0000h  
2Ch  
0003h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
0003h  
0000h  
0080h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
00FDh (WS256N)  
007Dh (WS128N)  
31h  
Erase Block Region 2 Information  
32h  
33h  
34h  
0000h  
0000h  
0002h  
35h  
36h  
37h  
38h  
0003h  
0000h  
0080h  
0000h  
Erase Block Region 3 Information  
Erase Block Region 4 Information  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
95  
A d v a n c e I n f o r m a t i o n  
Table 15.6 Primary Vendor-Specific Extended Query  
Addresses  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
0031h  
0034h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
0100h  
Silicon Technology (Bits 5-2) 0100 = 0.11 µm  
Erase Suspend  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
0002h  
0001h  
0000h  
0008h  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
08 = Advanced Sector Protection  
Simultaneous Operation  
Number of Sectors in all banks except boot bank  
00F3h (WS256N)  
007Bh (WS128N)  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
0001h  
0000h  
Page Mode Type  
4Ch  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page, 04 = 16 Word  
Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
0085h  
0095h  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
0001h = Dual Boot Device  
4Fh  
50h  
51h  
0001h  
0001h  
0001h  
Program Suspend. 00h = not supported  
Unlock Bypass  
00 = Not Supported, 01=Supported  
52h  
53h  
0007h  
0014h  
Secured Silicon Sector (Customer OTP Area) Size 2N bytes  
Hardware Reset Low Time-out during an embedded algorithm to read  
mode Maximum 2N ns  
Hardware Reset Low Time-out not during an embedded algorithm to read  
mode Maximum 2N ns  
54h  
0014h  
Erase Suspend Time-out Maximum 2N ns  
Program Suspend Time-out Maximum 2N ns  
Bank Organization: X = Number of banks  
55h  
56h  
57h  
0005h  
0005h  
0010h  
0013h (WS256N)  
000Bh (WS128N)  
58h  
59h  
Bank 0 Region Information. X = Number of sectors in bank  
Bank 1 Region Information. X = Number of sectors in bank  
0010h (WS256N)  
0008h (WS128N)  
96  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Table 15.6 Primary Vendor-Specific Extended Query (Continued)  
Addresses  
Data  
Description  
0010h (WS256N)  
0008h (WS128N)  
5Ah  
Bank 2 Region Information. X = Number of sectors in bank  
0010h (WS256N)  
0008h (WS128N)  
5Bh  
5Ch  
5Dh  
5Eh  
5Fh  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
67h  
Bank 3 Region Information. X = Number of sectors in bank  
Bank 4 Region Information. X = Number of sectors in bank  
Bank 5 Region Information. X = Number of sectors in bank  
Bank 6 Region Information. X = Number of sectors in bank  
Bank 7 Region Information. X = Number of sectors in bank  
Bank 8 Region Information. X = Number of sectors in bank  
Bank 9 Region Information. X = Number of sectors in bank  
Bank 10 Region Information. X = Number of sectors in bank  
Bank 11 Region Information. X = Number of sectors in bank  
Bank 12 Region Information. X = Number of sectors in bank  
Bank 13 Region Information. X = Number of sectors in bank  
Bank 14 Region Information. X = Number of sectors in bank  
Bank 15 Region Information. X = Number of sectors in bank  
0010h (WS256N)  
0008h (WS128N)  
0010h (WS256N)  
0008h (WS128N)  
0010h (WS256N)  
0008h (WS128N)  
0010h (WS256N)  
0008h (WS128N)  
0010h (WS256N)  
0008h (WS128N)  
0010h (WS256N)  
0008h (WS128N)  
0010h (WS256N)  
0008h (WS128N)  
0010h (WS256N)  
0008h (WS128N)  
0010h (WS256N)  
0008h (WS128N)  
0010h (WS256N)  
0008h (WS128N)  
0010h (WS256N)  
0008h (WS128N)  
0013h (WS256N)  
000Bh (WS128N)  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
97  
A d v a n c e I n f o r m a t i o n  
16 Commonly Used Terms  
Ter m  
D efi niti on  
ACCelerate. A special purpose input signal which allows for faster programming or  
erase operation when raised to a specified voltage above VCC. In some devices ACC  
may protect all sectors when at a low voltage.  
ACC  
Most significant bit of the address input [A23 for 256Mbit, A22 for128Mbit, A21 for  
64Mbit]  
Amax  
Amin  
Least significant bit of the address input signals (A0 for all devices in this document).  
Operation where signal relationships are based only on propagation delays and are  
unrelated to synchronous control (clock) signal.  
Asynchronous  
Read mode for obtaining manufacturer and device information as well as sector  
protection status.  
Autoselect  
Bank  
Section of the memory array consisting of multiple consecutive sectors. A read  
operation in one bank, can be independent of a program or erase operation in a  
different bank for devices that offer simultaneous read and write feature.  
Smaller size sectors located at the top and or bottom of Flash device address space.  
The smaller sector size allows for finer granularity control of erase and protection for  
code or parameters used to initiate system operation after power-on or reset.  
Boot sector  
Boundary  
Burst Read  
Byte  
Location at the beginning or end of series of memory locations.  
See synchronous read.  
8 bits  
Common Flash Interface. A Flash memory industry standard specification [JEDEC 137-  
A and JESD68.01] designed to allow a system to interrogate the Flash to determine its  
size, type and other performance parameters.  
CFI  
Clear  
Zero (Logic Low Level)  
Special purpose register which must be programmed to enable synchronous read  
mode  
Configuration Register  
Synchronous method of burst read whereby the device reads continuously until it is  
stopped by the host, or it has reached the highest address of the memory array, after  
which the read address wraps around to the lowest memory array address  
Continuous Read  
Erase  
Returns bits of a Flash memory array to their default state of a logical One (High Level).  
Halts an erase operation to allow reading or programming in any sector that is not  
selected for erasure  
Erase Suspend/Erase Resume  
Ball Grid Array package. Spansion LLC offers two variations: Fortified Ball Grid Array  
and Fine-pitch Ball Grid Array. See the specific package drawing or connection diagram  
for further details.  
BGA  
Synchronous (burst) read operation in which 8, 16, or 32 words of sequential data with  
Linear Read  
or without wraparound before requiring a new initial address  
.
Multi-Chip Package. A method of combining integrated circuits in a single package by  
stacking multiple die of the same or different devices.  
MCP  
Memory Array  
MirrorBit™ Technology  
The programmable area of the product available for data storage.  
Spansion™ trademarked technology for storing multiple bits of data in the same  
transistor.  
98  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Ter m  
D efi niti on  
Group of words that may be accessed more rapidly as a group than if the words were  
accessed individually.  
Page  
Asynchronous read operation of several words in which the first word of the group  
takes a longer initial access time and subsequent words in the group take less page  
access time to be read. Different words in the group are accessed by changing only the  
least significant address lines.  
Page Read  
Sector protection method which uses a programmable password, in addition to the  
Password Protection  
Persistent Protection  
Program  
Persistent Protection method, for protection of sectors in the Flash memory device  
.
Sector protection method that uses commands and only the standard core voltage  
supply to control protection of sectors in the Flash memory device. This method  
replaces a prior technique of requiring a 12V supply to control the protection method.  
Stores data into a Flash memory by selectively clearing bits of the memory array in  
order to leave a data pattern of ones and zeros.  
Program Suspend/Program  
Resume  
Halts a programming operation to read data from any location that is not selected for  
programming or erase.  
Read  
Host bus cycle that causes the Flash to output data onto the data bus.  
Dynamic storage bits for holding device control information or tracking the status of  
an operation.  
Registers  
Secured Silicon. An area consisting of 256 bytes in which any word may be  
programmed once, and the entire area may be protected once from any future  
programming. Information in this area may be programmed at the factory or by the  
user. Once programmed and protected there is no way to change the secured  
information. This area is often used to store a software readable identification such as  
a serial number.  
Secured Silicon  
Use of one or more control bits per sector to indicate whether each sector may be  
programmed or erased. If the Protection bit for a sector is set the embedded  
algorithms for program or erase ignores program or erase commands related to that  
sector.  
Sector Protection  
Sector  
An Area of the memory array in which all bits must be erased together by an erase  
operation.  
Mode of operation in which a host system may issue a program or erase command to  
one bank, that embedded algorithm operation may then proceed while the host  
immediately follows the embedded algorithm command with reading from another  
bank. Reading may continue concurrently in any bank other than the one executing  
the embedded algorithm operation.  
Simultaneous Operation  
Synchronous Operation  
Operation that progresses only when a timing signal, known as a clock, transitions  
between logic levels (that is, at a clock edge).  
Separate power supply or voltage reference signal that allows the host system to set  
the voltage levels that the device generates at its data outputs and the voltages  
tolerated at its data inputs.  
VersatileIO™ (VIO  
Unlock Bypass  
Word  
)
Mode that facilitates faster program times by reducing the number of command bus  
cycles required to issue a write operation command. In this mode the initial two Unlock  
write cycles, of the usual 4 cycle Program command, are not required – reducing all  
Program commands to two bus cycles while in this mode.  
Two contiguous bytes (16 bits) located at an even byte boundary. A double word is two  
contiguous words located on a two word boundary. A quad word is four contiguous  
words located on a four word boundary.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
99  
A d v a n c e I n f o r m a t i o n  
Ter m  
D efi niti on  
Special burst read mode where the read address wraps or returns back to the lowest  
address boundary in the selected range of words, after reading the last Byte or Word  
in the range, e.g. for a 4 word range of 0 to 3, a read beginning at word 2 would read  
words in the sequence 2, 3, 0, 1.  
Wraparound  
Interchangeable term for a program/erase operation where the content of a register  
and or memory location is being altered. The term write is often associated with writing  
command cycles to enter or exit a particular mode of operation.  
Write  
Multi-word area in which multiple words may be programmed as a single operation. A  
Write Buffer  
Write Buffer may be 16 to 32 words long and is located on a 16 or 32 word boundary  
respectively.  
Method of writing multiple words, up to the maximum size of the Write Buffer, in one  
Write Buffer Programming  
Write Operation Status  
operation. Using Write Buffer Programming results in  
time than by using single word at a time programming commands.  
8 times faster programming  
Allows the host system to determine the status of a program or erase operation by  
reading several special purpose register bits  
.
100  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
1.8V pSRAM Type 4  
4M x 16-bit Synchronous Burst pSRAM  
ADVANCE  
INFORMATION  
Features  
„ Process Technology: CMOS  
„ Organization: 4M x16 bit  
„ Power Supply Voltage: 1.7~2.0V  
„ Three State Outputs  
„ Supports MRS (Mode Register Set)  
„ MRS control - MRS Pin Control  
„ Supports Power Saving modes - Partial Array Refresh mode Internal TCSR  
„ Supports Driver Strength Optimization for system environment power saving  
„ Supports Asynchronous 4-Page Read and Asynchronous Write Operation  
„ Supports Synchronous Burst Read and Asynchronous Write Operation (Address Latch Type  
and Low ADV# Type)  
„ Supports Synchronous Burst Read and Synchronous Burst Write Operation  
„ Synchronous Burst (Read/Write) Operation  
— Supports 4 word / 8 word / 16 word and Full Page(256 word) burst  
— Supports Linear Burst type & Interleave Burst type  
— Latency support:  
Latency 5 @ 66 MHz(tCD 10ns)  
Latency 4 @ 54 MHz(tCD 10ns)  
— Supports Burst Read Suspend in No Clock toggling  
— Supports Burst Write Data Masking by /UB & /LB pin control  
— Supports WAIT# pin function for indicating data availability.  
„ Max. Burst Clock Frequency: 66 MHz  
Publication Number S71WS-N_01 Revision A Amendment 4 Issue Date September 15, 2005  
A d v a n c e I n f o r m a t i o n  
17 Pin Description  
Pin Name  
CLK  
Function  
Clock  
Type  
Description  
Commands, Data are referenced to CLK  
ADV#  
Address Valid  
Address valid from ADV# falling edge to ADV# rising edge  
MRS# enables Mode Register to be set.  
Addresses are loaded as Mode setting is Low  
MRS#  
Mode Register set  
CS# enables the chip to start operating when Low  
CS#  
Chip Select  
CS# disables the chip and puts it into standby mode when High  
CS# stops burst operating.during burst operation when High  
Input  
OE#  
WE#  
Output Enable  
Write Enable  
OE# enables the chip to output the data when Low  
WE# enables the chip to start writing the data when Low  
LB#  
UB#  
Lower Byte (I/O  
)
0~7  
UB# (or LB#) enables upper byte (or lower byte) to be  
operated when Low  
Upper Byte (I/O  
)
8~15  
Valid addresses input when ADV# is low.  
Mode setting inputs during MRS# Low.  
A0-A21  
Address 0 ~ Address 21  
Data Inputs / Outputs  
Depending on UB# or LB# status, word (16-bit,  
UB#, and LB# low) data, upper byte (8-bit, UB#  
low & LB# high) data or lower byte (8-bit, LB# low,  
and UB# high) data is loaded  
I/O0-I/O15  
Input/Output  
V
Core Voltage Source  
I/O Voltage Source  
Core Ground Source  
I/O Ground Source  
Valid Data Indicator  
Do Not Use  
Power  
Power  
GND  
Power supply for cells and circuits except for I/O buffer circuits  
Power supply for I/O buffer circuits  
CC  
V
CCQ  
V
Ground for cells and circuits except for I/O buffer circuits  
Ground for I/O buffer circuits  
SS  
V
GND  
SSQ  
WAIT#  
DNU  
Output  
WAIT# indicates that output data is invalid when Low  
102  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
18 Functional Block Diagram  
Precharge circuit.  
CLK generator  
Vcc  
Vss  
Row  
Addresses  
Row  
select  
Memory array  
Data  
controller  
I/O Circuit  
I/O0~I/O7  
Column select  
Data  
controller  
I/O8~I/O15  
Data  
controller  
Column Addresses  
CLK  
ADV#  
MRS#  
CS#  
Control Logic  
OE#  
WE#  
UB#  
LB#  
WAIT#  
19 Power Up Sequence  
After applying VCC up to minimum operating voltage (1.7 V), drive CS# high first and then drive  
MRS# high. This gets the device into power up mode. Wait for a minimum of 200 µs to get into  
the normal operation mode. During power up mode, the standby current cannot be guaranteed.  
To obtain stable standby current levels, at least one cycle of active operation should be imple-  
mented regardless of wait time duration. To obtain appropriate device operation, be sure to follow  
the power up sequence.  
1. Apply power.  
2. Maintain stable power (VCC min.=1.7 V) for a minimum 200 µs with CS# and MRS# high.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
103  
A d v a n c e I n f o r m a t i o n  
20 Power Up and Standby Mode Timing Diagrams  
20.1 Power Up  
200 µs  
VCC(Min)  
V
CC  
Min. 0ns  
Min. 0ns  
MRS#  
CS#  
Min. 200 µs  
PowerUp Mode  
Normal Operation  
Note: After V reaches V (Min.), wait 200 µs with CS# and MRS# high. This puts the device into normal operation.  
CC  
CC  
Figure 20.1 Power Up Timing  
20.2 Standby Mode  
CS# = V  
CS# = UB# = LB# = V  
CS# = V , UB# or LB# = V  
IL IL  
IH  
IL  
MRS# = V  
IH  
WE# = V , MRS# = V  
IL  
MRS# = V  
CS# = V  
IH  
IH  
IH  
MRS# = V  
IH  
Initial State  
(wait 200µs)  
Standby  
Mode  
PAR  
Mode  
Power On  
MRS Setting  
Active  
MRS# = V  
IL  
MRS Setting  
CS# = V  
IL  
WE# = V , MRS#=V  
IL IL  
Figure 20.2 Standby Mode State Machines  
The default mode after power up is Asynchronous mode (4 Page Read and Asynchronous Write).  
But this default mode is not 100% guaranteed, so the MRS# setting sequence is highly recom-  
mended after power up.  
For entry to PAR mode, drive the MRS# pin into VIL for over 0.5µs (suspend period) during  
standby mode after the MRS# setting has been completed (A4=1, A3=0). If the MRS# pin is  
driven into VIH during PAR mode, the device reverts to standby mode without the wake up  
sequence.  
104  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
21 Functional Description  
Table 21.1 Asynchronous 4 Page Read & Asynchronous Write Mode (A15/A14=0/0)  
Mode  
Deselected  
CS#  
H
H
L
MRS#  
H
OE#  
X
WE#  
X
LB#  
X
X
X
H
L
UB#  
X
I/O  
I/O  
Power  
Standby  
PAR  
0-7  
8-15  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Deselected  
L
X
X
X
Output Disabled  
Outputs Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
H
H
X
H
X
X
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
L
H
H
H
L
L
H
L
H
H
H
L
D
OUT  
L
H
L
H
L
High-Z  
D
D
OUT  
OUT  
L
H
L
L
D
OUT  
Lower Byte Write  
Upper Byte Write  
Word Write  
L
H
H
H
H
H
L
H
L
D
High-Z  
IN  
L
H
L
H
L
High-Z  
D
D
IN  
IN  
L
H
L
L
D
IN  
Mode Register Set  
L
L
L
L
L
High-Z  
High-Z  
Legend: X = Don’t care (must be low or high state).  
Notes:  
1. In asynchronous mode, Clock and ADV# are ignored.  
2. The WAIT# pin is High-Z in asynchronous mode.  
Table 21.2 Synchronous Burst Read & Asynchronous Write Mode (A15/A14=0/1)  
Mode  
CS# MRS#  
OE#  
WE#  
LB#  
UB#  
I/O  
I/O  
CLK  
ADV#  
Power  
0-7  
8-15  
X
X
X
X
High- High-  
X
X
Deselected  
H
H
L
H
L
Standby  
(Note 1) (Note 1) (Note 1) (Note 1)  
Z
Z
(note 2)  
(note 2)  
X
X
X
X
High- High-  
X
X
Deselected  
PAR  
(Note 1) (Note 1) (Note 1) (Note 1)  
Z
Z
(note 2)  
(note 2)  
Output  
Disabled  
X
X
High- High-  
X
H
H
H
H
H
H
Active  
Active  
(Note 1) (Note 1)  
Z
Z
(note 2)  
Outputs  
Disabled  
X
X
High- High-  
X
L
H
H
(Note 1) (Note 1)  
Z
Z
(note 2)  
Read  
X
X
X
High- High-  
L
L
L
H
H
H
H
Active  
Active  
Active  
Command  
(Note 1)  
(Note 1) (Note 1)  
Z
Z
Lower Byte  
Read  
High-  
Z
L
L
H
H
L
H
L
D
H
H
OUT  
Upper Byte  
Read  
High-  
Z
H
D
D
OUT  
OUT  
Word Read  
L
H
L
H
L
L
D
H
Active  
OUT  
Lower Byte  
Write  
High-  
Z
X
L
L
L
H
H
H
H
H
H
L
L
L
L
H
L
H
L
D
Active  
Active  
Active  
IN  
or  
or  
or  
(note 2)  
Upper Byte  
Write  
High-  
Z
X
D
D
IN  
IN  
(note 2)  
X
Word Write  
L
D
IN  
(note 2)  
Mode  
Register  
Set  
High- High-  
X
L
L
H
L
L
L
Active  
or  
Z
Z
(note 2)  
Notes:  
1. X must be low or high state.  
2. X means Don’t care (can be low, high or toggling).  
3. WAIT# is the device output signal and does not have any affect on the mode definition. Please refer to each timing  
diagram for Wait# pin function.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
105  
A d v a n c e I n f o r m a t i o n  
Table 21.3 Synchronous Burst Read & Synchronous Burst Write Mode(A15/A14 = 1/0)  
Mode  
CS# MRS#  
OE#  
WE#  
LB#  
UB#  
I/O  
I/O  
CLK  
ADV#  
Power  
0-7  
8-15  
X
X
X
X
X
X
Deselected  
H
H
L
H
L
High-Z High-Z  
High-Z High-Z  
High-Z High-Z  
High-Z High-Z  
Standby  
(Note 1)  
(Note 1)  
(Note 1) (Note 1)  
(Note 2) (Note 2)  
X
X
X
X
X
X
Deselected  
PAR  
(Note 1)  
(Note 1)  
(Note 1) (Note 1)  
(Note 2) (Note 2)  
Output  
Disabled  
X
H
H
H
H
X
H
X
H
H
H
Active  
Active  
(Note 2)  
Outputs  
Disabled  
X
X
X
L
(Note 1)  
(Note 1)  
(Note 2)  
Read  
X
L
L
L
H
H
H
H
H
H
X
L
X
H
L
High-Z High-Z  
Active  
Active  
Active  
Command  
(Note 1)  
Lower Byte  
Read  
L
L
D
High-Z  
H
H
OUT  
Upper Byte  
Read  
H
High-Z  
D
OUT  
OUT  
Word Read  
L
H
L
H
L
L
D
D
H
Active  
OUT  
Write  
X
L
L
L
H
H
H
High-Z High-Z  
Active  
Active  
Active  
L
or  
Command  
(Note 1)  
Lower Byte  
Write  
X
H
H
L
H
L
D
High-Z  
H
H
IN  
(Note 1)  
Upper Byte  
Write  
X
H
High-Z  
D
IN  
IN  
(Note 1)  
X
Word Write  
L
L
H
L
H
H
L
L
L
L
D
D
H
Active  
Active  
IN  
(Note 1)  
Mode  
Register  
Set  
High-Z High-Z  
L
or  
Notes:  
1. X must be low or high state.  
2. X means “Don’t care” (can be low, high or toggling).  
3. WAIT# is the device output signal and does not have any affect on the mode definition. Please refer to each timing  
diagram for WAIT# pin function.  
4. The last data written in the previous Asynchronous write mode is not valid. To make the lastly written data valid,  
implement at least one dummy write cycle before change mode into synchronous burst read and synchronous burst  
write mode.  
5. The data written in Synchronous burst write operation can be corrupted by the next Asynchronous write operation. So  
the transition from Synchronous burst write operation to Asynchronous write operation is prohibited.  
106  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
22 Mode Register Setting Operation  
The device has several modes:  
„ Asynchronous Page Read mode  
„ Asynchronous Write mode  
„ Synchronous Burst Read mode  
„ Synchronous Burst Write mode  
„ Standby mode  
„ Partial Array Refresh (PAR) mode.  
Partial Array Refresh (PAR) mode is defined through the Mode Register Set (MRS) option. The MRS  
option also defines burst length, burst type, wait polarity and latency count at synchronous burst  
read/write mode.  
22.1 Mode Register Set (MRS)  
The mode register stores the data for controlling the various operation modes of this device. It  
programs Partial Array Refresh (PAR), burst length, burst type, latency count and various vendor  
specific options to make pSRAM Type 4 useful for a variety of different applications. The default  
values of mode register are defined, therefore when the reserved address is input, the device runs  
at default modes.  
The mode register is written by driving CS#, ADV#, WE#, UB#, LB# and MRS# to VIL and driving  
OE# to VIH during valid addressing. The mode register is divided into various fields depending on  
the fields of functions. The PAR field uses A0~A4, Burst Length field uses A5~A7, Burst Type uses  
A8, Latency Count uses A9~A11, Wait Polarity uses A13, Operation Mode uses A14~A15 and  
Driver Strength uses A16~A17.  
Refer to Table 22.1 for detailed Mode Register Settings. A18~A22 addresses are Don’t care in the  
Mode Register Setting.  
Table 22.1 Mode Register Setting According to Field of Function  
Address  
Function  
A17 – A16  
A15 – A14  
A13  
A12  
A11 – A9  
A8  
A7 – A5  
A4 – A3  
A2  
A1 – A0  
DS  
MS  
WP  
RFU  
Latency  
BT  
BL  
PAR  
PARA  
PARS  
Note: DS (Driver Strength), MS (Mode Select), WP (Wait Polarity), Latency (Latency Count), BT (Burst Type), BL (Burst  
Length), PAR (Partial Array Refresh), PARA (Partial Array Refresh Array), PARS (Partial Array Refresh Size), RFU (Reserved  
for Future Use).  
Table 22.2 Mode Register Set  
Driver Strength  
DS  
Mode Select  
MS  
A17  
0
A16  
0
A15  
0
A14  
0
Full Drive (default)  
1/2 Drive  
Async. 4 Page Read / Async. Write (default)  
Sync. Burst Read / Async. Write  
0
1
0
1
1
0
1/4 Drive  
1
0
Sync. Burst Read / Sync. Burst Write  
WAIT# Polarity  
WP  
RFU  
RFU  
Latency Count  
Burst Type  
BT  
Burst Length  
A7 A6 A5 BL  
A13  
A12  
0
A11 A10 A9 Latency A8  
Must  
(default)  
0
1
Low Enable (default)  
High Enable  
0
0
0
0
0
0
1
1
0
1
0
1
3
4
0
1
Linear (default)  
Interleave  
0
0
1
1
1
1
0
1
0
1
0
1
4 word  
8 word  
1
5
16 word  
(default)  
(default)  
6
Full (256 word)  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
107  
A d v a n c e I n f o r m a t i o n  
Partial Array Refresh  
PAR  
PAR Array  
PAR Size  
PARS  
A4  
1
A3  
0
A2  
0
PARA  
Bottom Array (default)  
Top Array  
A1  
0
A0  
0
PAR Enable  
Full Array (default)  
3/4 Array  
1
1
PAR Disable (default)  
1
0
1
1
0
1/2 Array  
1
1
1/4 Array  
Note: The address bits other than those listed in the table above are reserved. For example, Burst Length address  
bits(A7:A6:A5) have 4 sets of reserved bits like 0:0:0, 0:0:1, 1:0:1 and 1:1:0. If the reserved address bits are input, then  
the mode will be set to the default mode. Each field has its own default mode as indicated. A12 is a reserved bit for future  
use. A12 must be set as 0. Not all the mode settings are tested. Per the mode settings to be tested, please contact Spansion.  
The 256 word Full page burst mode needs to meet t (Burst Cycle time) parameter as max. 2500 ns.  
BC  
The last data written in the previous Asynchronous write mode is not valid. To make the lastly written data valid, implement  
at least one dummy write cycle before change mode into synchronous burst read and synchronous burst write mode.  
The data written in Synchronous burst write operation can be corrupted by the next Asynchronous write operation. So the  
transition from Synchronous burst write operation to Asynchronous write operation is prohibited.  
22.2 Mode Register Setting Timing  
In this device, the MRS# pin is used for two purposes. One is to get into the mode register setting  
and the other one is to execute Partial Array Refresh mode. To get into the Mode Register Setting,  
the system must drive MRS# pin to VIL and immediately (within 0.5µs) issue a write command  
(drive CS#, ADV#, UB#, LB# and WE# to VIL and drive OE# to VIH during valid address). If the  
subsequent write command (WE# signal input) is not issued within 0.5µs, then the device might  
get into the PAR mode. This device supports software access control type mode register setting  
timing. This timing consists of 5 cycles of Read operation. Each cycle of Read Operation is normal  
asynchronous read operation. Clock and ADV# are don’t care and WAIT# signal is High-Z. CS#  
should be toggling between cycles. The address for 1st, 2nd and 3rd cycle should be 3FFFFF(h)  
and the address for 4th cycle should be 3FFEFF. The address for 5th cycle should be MRS code  
(Register setting values).  
ADV#  
tWC  
Address  
tCW  
CS#  
tAW  
tBW  
UB#, LB#  
tWP  
WE#  
tAS  
Register Write Complete  
Register Update Complete  
Register Write Start  
tWU  
tMW  
MRS#  
Figure 22.1 Pin MRS Timing Waveform (OE# = V  
)
IH  
108  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Address  
3FFFFF  
3FFEFF  
MRS CODE  
3FFFFF  
tRCM  
3FFFFF  
tCLM  
CS#  
OE#  
tCHM  
WE#  
Notes:  
1. MRS#= VIH, CLK = ADV# = UB# = LB# = Don’t care, WAIT# = High-Z.  
2. Do not allow this timing to occur during normal operation.  
Figure 22.2 Software MRS Timing Waveform  
Table 22.3 MRS AC Characteristics  
Speed  
Parameter List  
MRS# Enable to Register Write Start  
End of Write to MRS# Disable  
Symbol  
tMW  
Min  
Max  
500  
Units  
ns  
0
tWU  
0
ns  
MRS Read Cycle time  
tRCM  
tCHM  
tCLM  
70  
10  
60  
ns  
CS# High pulse width  
CS# Low pulse width  
ns  
ns  
Note:  
V
=1.7~2.0V, T =-40 to 85°C, Maximum Main Clock Frequency=66MHz.  
CC  
A
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
109  
A d v a n c e I n f o r m a t i o n  
23 Asynchronous Operation  
23.1 Asynchronous 4 Page Read Operation  
Asynchronous normal read operation starts when CS#, OE# and UB# or LB# are driven to VIL  
under the valid address without toggling page addresses (A0, A1). If the page addresses (A0, A1)  
are toggled under the other valid address, the first data will be out with the normal read cycle  
time (tRC) and the second, the third and the fourth data will be out with the page cycle time (tPC).  
(MRS# and WE# should be driven to VIH during the asynchronous (page) read operation) Clock,  
ADV#, WAIT# signals are ignored during the asynchronous (page) read operation.  
23.2 Asynchronous Write Operation  
Asynchronous write operation starts when CS#, WE# and UB# or LB# are driven to VIL under the  
valid address. MRS# and OE# should be driven to VIH during the asynchronous write operation.  
Clock, ADV#, WAIT# signals are ignored during the asynchronous (page) read operation.  
23.3 Asynchronous Write Operation in Synchronous Mode  
A write operation starts when CS#, WE# and UB# or LB# are driven to VIL under the valid ad-  
dress. Clock input does not have any affect to the write operation (MRS# and OE# should be  
driven to VIH during write operation. ADV# can be either toggling for address latch or held in VIL).  
Clock, ADV#, and WAIT# signals are ignored during the asynchronous (page) read operation.  
A22~A2  
A1~A0  
CS#  
UB#, LB#  
OE#  
Data Out  
Figure 23.1 Asynchronous 4-Page Read  
Address  
CS#  
UB#, LB#  
WE#  
High-Z  
Data in  
High-Z  
High-Z  
Data out  
Figure 23.2 Asynchronous Write  
110  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
24 Synchronous Burst Operation  
Burst mode operations enable the system to get high performance read and write operation. The  
address to be accessed is latched on the rising edge of clock or ADV# (whichever occurs first).  
CS# should be setup before the address latch. During this first clock rising edge, WE# indicates  
whether the operation is going to be a Read (WE# High) or a Write (WE# Low).  
For the optimized Burst Mode of each system, the system should determine how many clock cy-  
cles are required for the first data of each burst access (Latency Count), how many words the  
device outputs during an access (Burst Length) and which type of burst operation (Burst Type:  
Linear or Interleave) is needed. The Wait Polarity should also be determined (See Table 22.2).  
24.1 Synchronous Burst Read Operation  
The Synchronous Burst Read command is implemented when the clock rising is detected during  
the ADV# low pulse. ADV# and CS# should be set up before the clock rising. During the Read  
command, WE# should be held in VIH. The multiple clock risings (during the low ADV# period)  
are allowed, but the burst operation starts from the first clock rising. The first data will be out  
with Latency count and tCD  
.
24.2 Synchronous Burst Write Operation  
The Synchronous Burst Write command is implemented when the clock rising is detected during  
the ADV# and WE# low pulse. ADV#, WE# and CS# should be set up before the clock rising. The  
multiple clock risings (during the low ADV# period) are allowed but, the burst operation starts  
from the first clock rising. The first data will be written in the Latency clock with tDS  
.
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
CLK  
ADV#  
Addr.  
CS#  
UB#, LB#  
OE#  
Data Out  
WAIT#  
Note: Latency 5, BL 4, WP: Low Enable  
Figure 24.1 Synchronous Burst Read  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
CLK  
ADV#  
Addr.  
CS#  
UB#, LB#  
WE#  
Data in  
WAIT#  
Note: Latency 5, BL 4, WP: Low Enable  
Figure 24.2 Synchronous Burst Write  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
111  
A d v a n c e I n f o r m a t i o n  
25 Synchronous Burst Operation Terminology  
25.1 Clock (CLK)  
The clock input is used as the reference for synchronous burst read and write operation of the  
pSRAM Type 4. The synchronous burst read and write operations are synchronized to the rising  
edge of the clock. The clock transitions must swing between VIL and VIH.  
25.2 Latency Count  
The Latency Count configuration tells the device how many clocks must elapse from the burst  
command before the first data should be available on its data pins. This value depends on the  
input clock frequency. Table 25.1 shows the supported Latency Count.  
Table 25.1 Latency Count Support  
Clock Frequency  
Latency Count  
Up to 66 MHz  
Up to 54 MHz  
Up to 40 MHz  
5
4
3
Table 25.2 Number of CLocks for 1st Data  
Set Latency  
Latency 3  
Latency 4  
Latency 5  
# of Clocks for 1st data (Read)  
# of Clocks for 1st data (Write)  
4
2
5
3
6
4
T
Clock  
ADV#  
Address  
Latency 3  
DQ1  
DQ2  
DQ3  
DQ2  
DQ1  
DQ4  
DQ3  
DQ2  
DQ1  
DQ5  
DQ4  
DQ3  
DQ2  
DQ6  
DQ5  
DQ4  
DQ3  
DQ7  
DQ6  
DQ5  
DQ4  
DQ8  
DQ7  
DQ6  
DQ5  
DQ9  
DQ8  
DQ7  
DQ6  
Data out  
Data out  
Data out  
Data out  
Latency 4  
Latency 5  
Latency 6  
DQ1  
Note: The first data will always keep the Latency. From the second data on, some period of wait time may be caused by  
WAIT# pin.  
Figure 25.1 Latency Configuration (Read)  
25.3 Burst Length  
Burst Length identifies how many data the device outputs during an access. The device supports  
4 word, 8 word, 16 word and 256 word burst read or write. 256 word Full page burst mode needs  
to meet tBC (Burst Cycle time) parameter as 2500 ns max.  
The first data will be output with the set Latency + tCD. From the second data on, the data will be  
output with tCD from each clock.  
112  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
25.4 Burst Stop  
Burst stop is used when the system wants to stop burst operation on purpose. If driving CS# to  
VIH during the burst read operation, then the burst operation is stopped. During the burst read  
operation, the new burst operation cannot be issued. The new burst operation can be issued only  
after the previous burst operation is finished.  
The burst stop feature is very useful because it enables the user to utilize the unsupported burst  
length such as 1 burst or 2 burst, used mostly in the mobile handset application environment.  
25.5 Wait Control (WAIT#)  
The WAIT# signal indicates to the host system when it’s data-out or data-in is valid.  
To be compatible with the Flash interfaces of various microprocessor types, the WAIT# polarity  
(WP) can be configured. The polarity can be programmed to be either low enable or high enable.  
For the timing of the WAIT# signal, it should be set active one clock prior to the data regardless  
of Read or Write cycle.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
CLK  
ADV#  
CS#  
Latency 5  
Read  
Data out  
DQ0 DQ1  
DQ2  
DQ3  
High-Z  
High-Z  
WAIT#  
Latency 5  
Write  
Data in  
D0  
D1  
D2  
D3  
WAIT#  
Note: LATENCY: 5, Burst Length: 4, WP: Low Enable  
Figure 25.2 WAIT# and Read/Write Latency Control  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
113  
A d v a n c e I n f o r m a t i o n  
25.6 Burst Type  
The device supports Linear type burst sequence and Interleave type burst sequence. Linear type  
burst sequentially increments the burst address from the starting address. The detailed Linear  
and Interleave type burst address sequence is shown in Table 25.3.  
Table 25.3 Burst Sequence  
Burst Address Sequence (Decimal)  
Wrap (Note 1)  
16 word Burst  
Interleave  
Start  
Address  
4 word Burst  
8 word Burst  
Linear Interleave  
Full Page(256 word)  
Linear  
Linear Interleave  
Linear  
0
1
0-1-2-3 0-1-2-3 0-1-...-5-6-7 0-1-2-...-6-7 0-1-2-...-14-15 0-1-2-3-4...14-15  
0-1-2-...-254-255  
1-2-3-...-255-0  
2-3-4-...-255-0-1  
3-4-5-...-255-0-1-2  
1-2-3-0 1-0-3-2 1-2-...-6-7-0 1-0-3-...-7-6  
2-3-0-1 2-3-0-1 2-3-...-7-0-1 2-3-0-...-4-5  
3-0-1-2 3-2-1-0 3-4-...-0-1-2 3-2-1-...-5-4  
4-5-...-1-2-3 4-5-6-...-2-3  
1-2-3-...-15-0  
2-3-4-...-0-1  
3-4-5-...-1-2  
4-5-6-...-2-3  
5-6-7-...-3-4  
6-7-8-...-4-5  
7-8-9-...-5-6  
~
1-0-3-2-5...15-14  
2-3-0-1-6...12-13  
3-2-1-0-7...13-12  
2
3
4
4-5-6-7-0...10-11 4-5-6-...-255-0-1-2-3  
5
5-6-...-2-3-4 5-4-7-...-3-2  
5-4-7-6-1...11-10  
6-7-4-5-2...8-9  
7-6-5-4-3...9-8  
~
5-6-7-...-255-...-3-4  
6-7-8-...-255-...-4-5  
7-8-9-...-255-...-5-6  
~
6
6-7-...-3-4-5 6-7-4-...-0-1  
7
7-0-...-4-5-6 7-6-5-...-1-0  
~
14  
15  
~
14-15-0-...-12-13 14-15-12-...-0-1 14-15-...-255-...-12-13  
15-0-1-...-13-14 15-14-13-...-1-0 15-16-...-255-...-13-14  
~
255  
255-0-1-...-253-254  
Notes:  
1. Wrap: Burst Address wraps within word boundary and ends after fulfilled the burst length.  
2. 256 word Full page burst mode needs to meet t (Burst Cycle time) parameter as max. 2500 ns.  
BC  
114  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
26 Low Power Features  
26.7 Partial Array Refresh (PAR) mode  
The PAR mode enables the user to specify the active memory array size. This device consists of  
4 blocks and the user can select 1 block, 2 blocks, 3 blocks or all blocks as active memory arrays  
through the Mode Register Setting. The active memory array is periodically refreshed whereas  
the disabled array is not refreshed, so the previously stored data is lost. Even though PAR mode  
is enabled through the Mode Register Setting, PAR mode execution by the MRS# pin is still  
needed.  
The normal operation can be executed even in refresh-disabled array as long as the MRS# pin is  
not driven to the Low condition for over 0.5 µs. Driving the MRS# pin to the High condition puts  
the device back to the normal operation mode from the PAR executed mode. Refer to Figure 26.1  
and Table 26.1 for PAR operation and PAR address mapping.  
0.5 µs  
MRS#  
Normal  
Operation  
Normal  
Operation  
Suspend  
PAR mode  
MODE  
CS#  
Figure 26.1 PAR Mode Execution and Exit  
Table 26.1 PAR Mode Characteristics  
Address  
(Bottom Array)  
(Note 2)  
Address  
(Top Array)  
(Note 2)  
Memory Cell  
Data  
Standby Current Wait Time  
Power Mode  
(µA, Max)  
(µs)  
Standby (Full Array)  
Partial Refresh(3/4 Block)  
Partial Refresh(1/2 Block)  
Partial Refresh(1/4 Block)  
000000h ~ 3FFFFFh  
000000h ~ 2FFFFFh  
000000h ~ 1FFFFFh  
000000h ~ 0FFFFFh  
000000h ~ 3FFFFFh  
100000h ~ 3FFFFFh  
200000h ~ 3FFFFFh  
300000h ~ 3FFFFFh  
TBD  
TBD  
TBD  
TBD  
Valid (Note 1)  
0
Notes:  
1. Only the data in the refreshed block are valid.  
2. The PAR Array can be selected through Mode Register Set (see Mode Register Setting Operation).  
26.8 Driver Strength Optimization  
The optimization of output driver strength is possible through the mode register setting to adjust  
for the different data loadings. Through this driver strength optimization, the device can minimize  
the noise generated on the data bus during read operation. The device supports full drive, 1/2  
drive and 1/4 drive.  
26.1 Internal TCSR  
The internal Temperature Compensated Self Refresh (TCSR) feature is a very useful tool for re-  
ducing standby current at room temperature (below 40°C). DRAM cells have weak refresh  
characteristics in higher temperatures. High temperatures require more refresh cycles, which can  
lead to standby current increase.  
Without the internal TCSR, the refresh cycle should be set at worst condition so as to cover the  
high temperature (85°C) refresh characteristics. But with internal TCSR, a refresh cycle below  
40°C can be optimized, so the standby current at room temperature can be greatly reduced. This  
feature is beneficial since most mobile phones are used at or below 40°C in the phone standby  
mode.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
115  
A d v a n c e I n f o r m a t i o n  
27 Absolute Maximum Ratings  
Item  
Voltage on any pin relative to VSS  
Power supply voltage relative to VSS  
Power Dissipation  
Symbol  
VIN , VOUT  
VCC  
Ratings  
-0.2 V to VCC+0.3 V  
-0.2 V to 2.5V  
1.0  
Unit  
V
V
PD  
W
Storage temperature  
TSTG  
-65 to 150  
°C  
°C  
Operating Temperature  
TA  
-40 to 85  
Note: Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
Functional operation should be restricted to use under recommended operating conditions only. Exposure to absolute maxi-  
mum rating conditions longer than one second may affect reliability.  
28 DC Recommended Operating Conditions  
Symbol  
VCC  
Parameter  
Power Supply Voltage  
Ground  
Min  
1.7  
Typ  
1.85  
0
Max  
Unit  
2.0  
VSS  
0
0
V
VIH  
Input High Voltage  
0.8 x VCC  
VCC + 0.2 (note 2)  
-0.2 (note  
3)  
VIL  
Input Low Voltage  
0.4  
Notes:  
1. TA=-40 to 85°C, unless otherwise specified.  
2. Overshoot: V +1.0V in case of pulse width 20ns.  
CC  
3. Undershoot: -1.0V in case of pulse width 20ns.  
4. Overshoot and undershoot are sampled, not 100% tested.  
29 Capacitance (Ta = 25°C, f = 1 MHz)  
Symbol  
CIN  
Parameter  
Test Condition  
VIN = 0V  
VOUT = 0V  
Min  
Max  
8
Unit  
Input Capacitance  
pF  
pF  
CIO  
Input/Output Capacitance  
10  
Note: Capacitance is sampled, not 100% tested.  
116  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
30 DC and Operating Characteristics  
30.1 Common  
Item  
Symbol  
Test Conditions  
Min Typ Max Unit  
Input Leakage Current  
I
V
=V to V  
CC  
-1  
1
µA  
LI  
IN  
SS  
CS#=V , MRS#=V , OE#=V or  
IH  
IH  
IH  
Output Leakage Current  
I
LO  
-1  
1
µA  
WE#=V , V =V to V  
IL  
IO  
SS  
CC  
Average Operating  
Current  
Cycle time=t +3t , I =0mA, 100% duty,  
RC  
PC IO  
I
I
40  
40  
mA  
mA  
CC2  
CC3  
CS#=V , MRS#=V , V =V or V  
IL  
IH  
IN  
IL  
IH  
Average Operating  
Current (Sync)  
Burst Length 4, Latency 5, 66MHz, IIO=0mA, Address  
transition 1 time, CS#=V , MRS#=V , V =V or V  
IH  
IL  
IH  
IN  
IL  
Output Low Voltage  
Output High Voltage  
V
I
I
=0.1mA  
1.4  
0.2  
V
V
OL  
OL  
V
=-0.1mA  
OH  
OH  
< 40°C  
< 85°C  
120 µA  
180 µA  
120  
I
CS# V -0.2V, MRS# V -0.2V,  
Other inputs = V to V  
SB1  
CC  
CC  
Standby Current (CMOS)  
(Note 2)  
SS  
CC  
3/4 Block  
< 40°C 1/2 Block  
1/4 Block  
115 µA  
115  
MRS# 0.2V, CS# V -0.2V  
Other inputs = V to V  
CC  
CC  
Partial Refresh Current  
I
(Note 1)  
SBP  
SS  
3/4 Block  
180  
< 85°C 1/2 Block  
1/4 Block  
165 µA  
165  
Notes:  
1. Full Array Partial Refresh Current (I  
) is the same as Standby Current (I  
).  
SBP  
SB1  
2. Standby mode is supposed to be set up after at least one active operation after  
power up. ISB1 is measured 60 ms from the time when standby mode is set up.  
31 AC Operating Conditions  
31.1 Test Conditions (Test Load and Test Input/Output Reference)  
„ Input pulse level: 0.2 to VCC -0.2V  
„ Input rising and falling time: 3ns  
„ Input and output reference voltage: 0.5 x VCC  
„ Output load (See Figure 31.1): CL=30pF  
Vtt = 0.5 x V  
DDQ  
50  
Dout  
Z0=50  
30pF  
Figure 31.1 PAR Mode Execution and Exit  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
117  
A d v a n c e I n f o r m a t i o n  
31.2 Asynchronous AC Characteristics  
(VCC=1.7~2.0V, TA=–40 to 85 °C)  
Speed  
Symbol  
Parameter  
Unit  
Min  
Max  
t
Read Cycle Time  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RC  
t
Page Read Cycle Time  
25  
PC  
t
Address Access Time  
70  
20  
70  
35  
35  
AA  
t
Page Access Time  
PA  
t
Chip Select to Output  
CO  
t
t
Output Enable to Valid Output  
UB#, LB# Access Time  
OE  
BA  
t
Chip Select to Low-Z Output  
UB#, LB# Enable to Low-Z Output  
Output Enable to Low-Z Output  
Chip Disable to High-Z Output  
UB#, LB# Disable to High-Z Output  
Output Disable to High-Z Output  
Output Hold  
10  
LZ  
t
5
BLZ  
OLZ  
CHZ  
BHZ  
OHZ  
t
5
t
t
0
12  
12  
12  
0
t
0
t
3
OH  
WC  
CW  
t
Write Cycle Time  
70  
t
Chip Select to End of Write  
ADV# Minimum Low Pulse Width  
Address Set-up Time to Beginning of Write  
Address Set-up Time to ADV# Falling  
Address Hold Time from ADV# Rising  
CS# Setup Time to ADV# Rising  
Address Valid to End of Write  
UB#, LB# Valid to End of Write  
Write Pulse Width  
60  
t
7
ADV  
t
0
AS  
t
0
AS(A)  
AH(A)  
t
7
t
10  
CSS(A)  
t
t
60  
AW  
BW  
60  
t
55 (Note 1)  
WP  
t
WE# High Pulse Width  
5 ns  
0
Latency-1 clock  
WHP  
t
Write Recovery Time  
ns  
clock  
ns  
ns  
WR  
t
WE# Low to Read Latency  
Data to Write Time Overlap  
Data Hold from Write Time  
1
WLRL  
t
30  
0
DW  
t
DH  
Note:  
t
(min)=70ns for continuous write operation over 50 times.  
WP  
118  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
31.3 Timing Diagrams  
31.3.1 Asynchronous Read Timing Waveform  
MRS# = VIH, WE# = VIH, WAIT# = High-Z  
tRC  
Address  
tAA  
tOH  
tCO  
CS#  
tCHZ  
tBHZ  
tBA  
UB#, LB#  
tOE  
OE#  
tOLZ  
tBLZ  
tLZ  
tOHZ  
Data out  
High-Z  
Data Valid  
Notes:  
1.  
t
and t  
are defined as the time at which the outputs achieve the open circuit conditions and are not referenced  
OHZ  
CHZ  
to output voltage levels.  
2. At any given temperature and voltage condition, t  
to device interconnection.  
is less than t  
both for a given device and from device  
LZ(Min.)  
CHZ(Max.)  
3. In asynchronous read cycle, Clock, ADV# and WAIT# signals are ignored.  
Figure 31.2 Timing Waveform Of Asynchronous Read Cycle  
Table 31.1 Asynchronous Read AC Characteristics  
Speed  
Speed  
Symbol  
tRC  
Min  
70  
3
Max  
Units  
Symbol  
tOLZ  
tBLZ  
Min  
5
Max  
7
Units  
tAA  
70  
70  
35  
35  
5
tCO  
tLZ  
10  
0
ns  
ns  
tBA  
tCHZ  
tBHZ  
tOHZ  
tOE  
0
7
tOH  
0
7
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
119  
A d v a n c e I n f o r m a t i o n  
31.3.1.1 Page Read  
MRS# = VIH, WE# = VIH, WAIT# = High-Z  
t
RC  
Valid  
Address  
A22~A2  
tOH  
tAA  
Valid  
Valid  
Valid  
Valid  
A1~A0  
CS#  
Address  
Address Address Address  
tPC  
tCO  
tBA  
UB#, LB#  
OE#  
t
BHZ  
t
OE  
tCHZ  
tBOLZLZ  
t
OHZ  
t
t
PA  
t
LZ  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data out  
High Z  
Notes:  
1.  
t
and t  
are defined as the time at which the outputs achieve the open circuit conditions and are not referenced  
OHZ  
CHZ  
to output voltage levels.  
2. At any given temperature and voltage condition, t  
to device interconnection.  
is less than t  
both for a given device and from device  
LZ(Min.)  
CHZ(Max.)  
3. In asynchronous 4 page read cycle, Clock, ADV# and WAIT# signals are ignored.  
Figure 31.3 Timing Waveform Of Page Read Cycle  
Table 31.2 Asynchronous Page Read AC Characteristics  
Speed  
Speed  
Symbol  
tRC  
Min  
70  
Max  
Units  
Symbol  
tOH  
Min  
3
Max  
7
Units  
tAA  
70  
tOLZ  
tBLZ  
tLZ  
5
tPC  
25  
5
tPA  
20  
70  
35  
35  
ns  
10  
0
ns  
tCO  
tBA  
tCHZ  
tBHZ  
tOHZ  
0
7
tOE  
0
7
120  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
31.3.2 Asynchronous Write Timing Waveform  
Asynchronous Write Cycle - WE# Controlled  
tWC  
tWC  
Address  
tCSHP  
tWR  
tAW  
tAW  
tCW  
tWR  
tCW  
CS#  
tBW  
tBW  
UB#, LB#  
tWHP  
tAS  
tWP  
tWP  
WE#  
tAS  
tDH  
tDH  
tDW  
tDW  
Data in  
Data Valid  
Data Valid  
Data out  
High-Z  
High-Z  
Notes:  
1. A write occurs during the overlap (t ) of low CS# and low WE#. A write begins when CS# goes low and WE# goes  
WP  
low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte  
operation. A write ends at the earliest transition when CS# goes high or WE# goes high. The t  
beginning of write to the end of write.  
is measured from the  
WP  
2.  
3.  
4.  
t
t
t
is measured from the CS# going low to the end of write.  
is measured from the address valid to the beginning of write.  
CW  
AS  
is measured from the end of write to the address change. t  
is applied in case a write ends with CS# or WE#  
WR  
WR  
going high.  
5. In asynchronous write cycle, Clock, ADV# and WAIT# signals are ignored.  
6. Condition for continuous write operation over 50 times: t =70ns.  
WP(min)  
Figure 31.4 Timing Waveform Of Write Cycle  
Table 31.3 Asynchronous Write AC Characteristics  
Speed  
Speed  
Symbol  
tWC  
Min  
70  
60  
60  
60  
Max  
Units  
Symbol  
tAS  
Min  
0
Max  
Units  
tCW  
tWR  
0
tAW  
ns  
tDW  
30  
0
ns  
tBW  
tDH  
tWP  
55 (note 1)  
tCHSP  
10  
Note:  
t
= 70ns for continuous write operation over 50 times.  
WP(min)  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
121  
A d v a n c e I n f o r m a t i o n  
31.3.2.1 Write Cycle 2  
MRS# = VIH, OE# = VIH, WAIT# = High-Z, UB# & LB# Controlled  
tWC  
Address  
tWR  
tCW  
CS#  
tAW  
tBW  
UB#, LB#  
tAS  
tWP  
WE#  
tDH  
tDW  
Data Valid  
Data in  
High-Z  
Data out  
High-Z  
Notes:  
1. A write occurs during the overlap (t ) of low CS# and low WE#. A write begins when CS# goes low and WE# goes  
WP  
low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte  
operation. A write ends at the earliest transition when CS# goes high or WE# goes high. The t  
beginning of write to the end of write.  
is measured from the  
WP  
2.  
3.  
4.  
t
t
t
is measured from the CS# going low to the end of write.  
is measured from the address valid to the beginning of write.  
CW  
AS  
is measured from the end of write to the address change. t  
is applied in case a write ends with CS# or WE#  
WR  
WR  
going high.  
5. In asynchronous write cycle, Clock, ADV# and WAIT# signals are ignored.  
Figure 31.5 Timing Waveform of Write Cycle(2)  
Table 31.4 Asynchronous Write AC Characteristics (UB# & LB# Controlled)  
Speed  
Speed  
Max  
Symbol  
tWC  
Min  
70  
60  
60  
60  
Max  
Units  
Symbol  
tAS  
Min  
0
Units  
tCW  
tWR  
0
ns  
tAW  
ns  
tDW  
30  
0
tBW  
tDH  
tWP  
55 (note 1)  
Note:  
t
= 70ns for continuous write operation over 50 times.  
WP(min)  
122  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
31.3.2.1 Write Cycle (Address Latch Type)  
MRS# = VIH, OE# = VIH, WAIT# = High-Z, WE# Controlled  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
CLK  
tADV  
ADV#  
tAS(A)  
tAH(A)  
Address  
Valid  
tCSS(A)  
tCW  
CS#  
tAW  
tBW  
UB#, LB#  
tWLRL  
tWP  
WE#  
tAS  
tDW  
tDH  
Data in  
Data Valid  
Read Latency5  
High-Z  
High-Z  
Data out  
Notes:  
1. A write occurs during the overlap (t ) of low CS# and low WE#. A write begins when CS# goes low and WE# goes  
WP  
low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for word operation.  
A write ends at the earliest transition when CS# goes high or WE# goes high. The t  
of write to the end of write.  
is measured from the beginning  
WP  
2.  
3.  
4.  
t
t
t
is measured from the address valid to the end of write. In this address latch type write timing, t  
is measured from the CS# going low to the end of write.  
is measured from the UB# and LB# going low to the end of write.  
is same as t  
.
AW  
AW  
CW  
BW  
WC  
5. Clock input does not have any affect to the write operation if the parameter t  
is met.  
WLRL  
Figure 31.6 Timing Waveform Of Write Cycle (Address Latch Type)  
Table 31.5 Asynchronous Write in Synchronous Mode AC Characteristics  
Speed  
Max  
Speed  
Symbol  
tADV  
Min  
7
Units  
Symbol  
tBW  
Min  
Max  
Units  
ns  
60  
tAS(A)  
tAH(A)  
tCSS(A)  
tCW  
0
tWP  
55 (note 2)  
7
tWLRL  
tAS  
1
0
clock  
ns  
10  
60  
60  
tDW  
30  
0
ns  
tAW  
tDH  
Notes:  
1. Address Latch Type, WE# Controlled.  
2.  
t
= 70ns for continuous write operation over 50 times.  
WP(min)  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
123  
A d v a n c e I n f o r m a t i o n  
31.3.3 Asynchronous Write Timing Waveform in Synchronous Mode  
31.3.3.1 Write Cycle (Address Latch Type)  
MRS# = VIH, OE# = VIH, WAIT# = High-Z, UB# and LB# Controlled  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
CLK  
tADV  
ADV#  
tAS(A)  
tAH(A)  
Address  
Valid  
tAS  
tCSS(A)  
tCW  
CS#  
tAW  
tBW  
UB#, LB#  
WE#  
tWLRL  
tWP  
tDW  
tDH  
Data in  
Data Valid  
Read Latency 5  
High-Z  
High-Z  
Data out  
Notes:  
1. A write occurs during the overlap (t ) of low CS# and low WE#. A write begins when CS# goes low and WE# goes  
WP  
low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for word operation.  
A write ends at the earliest transition when CS# goes or and WE# goes high. The t  
of write to the end of write.  
is measured from the beginning  
WP  
2.  
3.  
4.  
t
t
t
is measured from the address valid to the end of write. In this address latch type write timing, t  
is measured from the CS# going low to the end of write.  
is measured from the UB# and LB# going low to the end of write.  
is same as t  
.
AW  
AW  
CW  
BW  
WC  
5. Clock input does not have any affect to the write operation if the parameter t  
is met.  
WLRL  
Figure 31.7 Timing Waveform Of Write Cycle (Low ADV# Type)  
Table 31.6 Asynchronous Write in Synchronous Mode AC Characteristics  
Speed  
Speed  
Symbol  
tADV  
Min  
7
Max  
Units  
Symbol  
tBW  
Min  
Max  
Units  
ns  
60  
tAS(A)  
tAH(A)  
tCSS(A)  
tCW  
0
tWP  
55 (Note 2)  
ns  
7
tWLRL  
tAS  
1
0
clock  
ns  
10  
60  
60  
tDW  
30  
0
ns  
tAW  
tDH  
Notes:  
1. Address Latch Type, UB#, LB# Controlled.  
2.  
t
= 70ns for continuous write operation over 50 times.  
WP(min)  
124  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
31.3.4 Asynchronous Write Timing Waveform in Synchronous Mode  
31.3.4.1 Write Cycle (Low ADV# Type)  
MRS# = VIH, OE# = VIH, WAIT# = High-Z, WE# Controlled  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
CLK  
ADV#  
tWC  
Address  
tWR  
tCW  
tAW  
CS#  
tBW  
UB#, LB#  
tWLRL  
tWP  
WE#  
tAS  
tDH  
tDW  
Data in  
Data Valid  
Read Latency 5  
High-Z  
Data out  
High-Z  
Notes:  
1. A write occurs during the overlap (t ) of low CS# and low WE#. A write begins when CS# goes low and WE# goes low  
WP  
with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte operation.  
A write ends at the earliest transition when CS# goes high or WE# goes high. The t  
of write to the end of write.  
is measured from the beginning  
WP  
2.  
3.  
4.  
t
t
t
is measured from the CS# going low to the end of write.  
is measured from the address valid to the beginning of write.  
CW  
AS  
is measured from the end of write to the address change. t  
is applied in case a write ends with CS# or WE#  
WR  
WR  
going high.  
5. Clock input does not have any affect to the write operation if the parameter t  
is met.  
WLRL  
Figure 31.8 Timing Waveform Of Write Cycle (Low ADV# Type)  
Table 31.7 Asynchronous Write in Synchronous Mode AC Characteristics  
Speed  
Speed  
Max  
Symbol  
tWC  
Min  
70  
60  
60  
60  
Max  
Units  
Symbol  
tWLRL  
tAS  
Min  
1
Units  
clock  
tCW  
0
tAW  
ns  
tWR  
0
ns  
tBW  
tDW  
30  
0
tWP  
55 (note 2)  
tDH  
Notes:  
1. Low ADV# Type, WE# Controlled.  
2. tWP(min) = 70ns for continuous write operation over 50 times.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
125  
A d v a n c e I n f o r m a t i o n  
31.3.4.2 Write Cycle (Low ADV# Type)  
MRS# = VIH, OE# = VIH, WAIT# = High-Z, UB# & LB# Controlled  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
CLK  
ADV#  
tWC  
Address  
CS#  
tWR  
tCW  
tAW  
tBW  
UB#, LB#  
WE#  
tAS  
tWLRL  
tWP  
tDH  
tDW  
Data Valid  
Data in  
Read Latency 5  
High-Z  
Data out  
High-Z  
Notes:  
1. A write occurs during the overlap (t ) of low CS# and low WE#. A write begins when CS# goes low and WE# goes low  
WP  
with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte operation.  
A write ends at the earliest transition when CS# goes high or WE# goes high. The t  
of write to the end of write.  
is measured from the beginning  
WP  
2.  
3.  
4.  
t
t
t
is measured from the CS# going low to the end of write.  
is measured from the address valid to the beginning of write.  
CW  
AS  
is measured from the end of write to the address change. t  
is applied in case a write ends with CS# or WE#  
WR  
WR  
going high.  
5. Clock input does not have any affect to the write operation if the parameter t  
is met.  
WLRL  
Figure 31.9 Timing Waveform Of Write Cycle (Low ADV# Type)  
Table 31.8 Asynchronous Write in Synchronous Mode AC Characteristics  
Speed  
Speed  
Max  
Symbol  
tWC  
Min  
70  
60  
60  
60  
Max  
Units  
Symbol  
tWLRL  
tAS  
Min  
1
Units  
clock  
tCW  
0
tAW  
ns  
tWR  
0
ns  
tBW  
tDW  
30  
0
tWP  
55 (note 2)  
tDH  
Notes:  
1. Low ADV# type multiple write, UB#, LB# controlled.  
2.  
t
= 70ns for continuous write operation over 50 times.  
WP(min)  
126  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
31.3.4.3 Multiple Write Cycle (Low ADV# Type)  
MRS# = VIH, OE# = VIH, WAIT# = High-Z, WE# Controlled  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
CLK  
ADV#  
Address  
tWC  
tWC  
tWR  
tWR  
t
AW  
tCW  
t
AW  
tCW  
CS#  
tBW  
tBW  
UB#, LB#  
tWHP  
tWP  
tWP  
WE#  
tAS  
tAS  
tDH  
tDH  
tDW  
tDW  
Data in  
Data Valid  
DataValid  
Data out  
High-Z  
High-Z  
Notes:  
1. A write occurs during the overlap (t ) of low CS# and low WE#. A write begins when CS# goes low and WE# goes low  
WP  
with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte operation.  
A write ends at the earliest transition when CS# goes high or WE# goes high. The t  
of write to the end of write.  
is measured from the beginning  
WP  
2.  
3.  
4.  
t
t
t
is measured from the CS# going low to the end of write.  
is measured from the address valid to the beginning of write.  
CW  
AS  
is measured from the end of write to the address change. t  
is applied in case a write ends with CS# or WE#  
WR  
WR  
going high.  
5. Clock input does not have any affect on the asynchronous multiple write operation if t  
Latency - 1) clock duration.  
is shorter than the (Read  
WHP  
6.  
t
= 70ns for continuous write operation over 50 times.  
WP(min)  
Figure 31.10 Timing Waveform Of Multiple Write Cycle (Low ADV# Type)  
Table 31.9 Asynchronous Write in Synchronous Mode AC Characteristics  
Speed  
Speed  
Max  
Symbol  
Units  
Symbol  
Units  
Min  
70  
60  
60  
60  
Max  
Min  
5ns  
0
t
t
t
t
t
Latency-1 clock  
WC  
CW  
AW  
BW  
WHP  
t
AS  
ns  
t
0
WR  
DW  
ns  
t
30  
0
t
55 (note 2)  
t
DH  
WP  
Notes:  
1. Low ADV# type multiple write, WE# Controlled.  
2.  
t
= 70ns for continuous write operation over 50 times.  
WP(min)  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
127  
A d v a n c e I n f o r m a t i o n  
32 AC Operating Conditions  
32.1 Test Conditions (Test Load and Test Input/Output Reference)  
„ Input pulse level: 0.2 to VCC-0.2V  
„ Input rising and falling time: 3ns  
„ Input and output reference voltage: 0.5 x VCC  
„ Output load (See Figure 32.1): CL = 30pF  
„
Vtt = 0.5 x V  
DDQ  
50  
Dout  
Z0=50  
30pF  
Figure 32.1 AC Output Load Circuit  
128  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
32.2 Synchronous AC Characteristics  
Speed  
Max  
Parameter List  
Symbol  
Units  
Min  
15  
0
Clock Cycle Time  
T
200  
2500  
10  
10  
12  
7
Burst Cycle Time  
t
BC  
Address Set-up Time to ADV# Falling (Burst)  
Address Hold Time from ADV# Rising (Burst)  
ADV# Setup Time  
t
AS(B)  
AH(B)  
t
7
t
5
ADVS  
ADV# Hold Time  
t
7
ADVH  
CS# Setup Time to Clock Rising (Burst)  
Burst End to New ADV# Falling  
Burst Stop to New ADV# Falling  
CS# Low Hold Time from Clock  
CS# High Pulse Width  
t
5
CSS(B)  
t
7
Burst Operation  
(Common)  
BEADV  
ns  
t
12  
7
BSADV  
t
t
CSLH  
CSHP  
ADHP  
5
ADV# High Pulse Width  
t
5
Chip Select to WAIT# Low  
t
1
WL  
ADV# Falling to WAIT# Low  
Clock to WAIT# High  
t
AWL  
t
WH  
Chip De-select to WAIT# High-Z  
UB#, LB# Enable to End of Latency Clock  
Output Enable to End of Latency Clock  
UB#, LB# Valid to Low-Z Output  
Output Enable to Low-Z Output  
Latency Clock Rising Edge to Data Output  
Output Hold  
t
WZ  
BEL  
OEL  
BLZ  
OLZ  
t
10  
10  
7
clock  
clock  
t
t
1
5
t
5
t
3
CD  
Burst Read Operation  
t
OH  
ns  
Burst End Clock to Output High-Z  
Chip De-select to Output High-Z  
Output Disable to Output High-Z  
UB#, LB# Disable to Output High-Z  
WE# Set-up Time to Command Clock  
WE# Hold Time from Command Clock  
WE# High Pulse Width  
t
5
HZ  
t
CHZ  
OHZ  
t
7
t
7
BHZ  
WES  
WEH  
WHP  
t
t
t
5
5
UB#, LB# Set-up Time to Clock  
UB#, LB# Hold Time from Clock  
Byte Masking Set-up Time to Clock  
Byte Masking Hold Time from Clock  
Data Set-up Time to Clock  
t
5
BS  
Burst Write Operation  
t
5
ns  
BH  
t
7
BMS  
BMH  
t
7
t
5
DS  
Data Hold Time from Clock  
t
3
DHC  
Note: (V = 1.7~2.0V, T =-40 to 85 °C, Maximum Main Clock Frequency = 66MHz.  
CC  
A
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
129  
A d v a n c e I n f o r m a t i o n  
32.3 Timing Diagrams  
32.3.1 Synchronous Burst Operation Timing Waveform  
Latency = 5, Burst Length = 4 (MRS# = VIH)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Dont Care  
Valid  
tCSS(B)  
tBC  
Undefined  
Data out  
Data in  
DQ0 DQ1 DQ2 DQ3  
D0  
D1  
D2  
D3  
D0  
Burst Command Clock  
Burst Read End Clock  
Burst Write End Clock  
Figure 32.2 Timing Waveform Of Basic Burst Operation  
Table 32.1 Burst Operation AC Characteristics  
Speed  
Speed  
Symbol  
Min  
15  
5
Max  
Units  
Symbol  
tAS(B)  
Min  
0
Max  
Units  
T
200  
tBC  
2500  
tAH(B)  
7
ns  
ns  
tADVS  
tADVH  
tCSS(B)  
tBEADV  
5
7
7
130  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
32.3.2 Synchronous Burst Read Timing Waveforms  
32.3.2.1 Read Timings  
Latency = 5, Burst Length = 4, WP = Low enable (WE# = VIH, MRS# = VIH).  
CS# Toggling Consecutive Burst Read  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
t
ADVH  
ADVS  
t
ADV#  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Dont Care  
Valid  
t
CSHP  
tCSS(B)  
tBC  
tBHZ  
tBEL  
LB#, UB#  
OE#  
tBLZ  
tOHZ  
tOEL  
t
t
CHZ  
t
OLZ  
Latency 5  
tCD  
tOH  
HZ  
Undefined  
Data out  
DQ0 DQ1 DQ2 DQ3  
tWZ  
tWL  
tWH  
tWH  
tWL  
WAIT#  
High-Z  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge).  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 32.3 Timing Waveform of Burst Read Cycle (1)  
Table 32.2 Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
tCSHP  
tBEL  
Min  
5
Max  
Units  
Symbol  
tOHZ  
tBHZ  
tCD  
Min  
3
Max  
7
Units  
ns  
1
7
clock  
ns  
tOEL  
1
10  
10  
12  
7
tBLZ  
5
tOH  
ns  
tOLZ  
tHZ  
5
tWL  
10  
7
tWH  
tCHZ  
tWZ  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
131  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4, WP = Low enable (WE# = VIH, MRS# = VIH).  
CS# Low Holding Consecutive Burst Read  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
t
ADVH  
ADVS  
t
ADV#  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Dont Care  
Valid  
tCSS(B)  
tBC  
tBEL  
LB#, UB#  
OE#  
tBLZ  
tOEL  
t
OLZ  
Latency 5  
tCD  
tOH  
tHZ  
Undefined  
Data out  
DQ0 DQ1 DQ2 DQ3  
tAWL  
tWH  
tWL  
tWH  
WAIT#  
High-Z  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge).  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. The consecutive multiple burst read operation with holding CS# low is possible only through issuing a new ADV# and  
address.  
5. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 32.4 Timing Waveform of Burst Read Cycle (2)  
Table 32.3 Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
tBEL  
Min  
1
Max  
Units  
Symbol  
tCD  
Min  
3
Max  
10  
Units  
clock  
tOEL  
tBLZ  
tOLZ  
tHZ  
1
tOH  
5
tWL  
10  
10  
12  
ns  
5
ns  
tAWL  
tWH  
10  
132  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4, WP = Low enable (WE# = VIH, MRS# = VIH).  
Last data sustaining  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
T
CLK  
tADVH  
tADVS  
ADV#  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Don’t Care  
tCSS(B)  
tBC  
tBEL  
tOEL  
LB#, UB#  
OE#  
tBLZ  
tOLZ  
Latency 5  
tOH  
tCD  
Undefined  
Data out  
DQ0 DQ1 DQ2 DQ3  
tWL  
tWH  
High-Z  
WAIT#  
Notes:  
1. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge).  
2. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
3. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 32.5 Timing Waveform of Burst Read Cycle (3)  
Table 32.4 Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
tBEL  
Min  
1
Max  
Units  
Symbol  
tCD  
Min  
3
Max  
10  
Units  
clock  
tOEL  
1
tOH  
ns  
tBLZ  
5
tWL  
10  
12  
ns  
tOLZ  
5
tWH  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
133  
A d v a n c e I n f o r m a t i o n  
32.3.2.1 Write Timings  
Latency = 5, Burst Length = 4, WP = Low enable (OE# = VIH, MRS# = VIH).  
CS# Toggling Consecutive Burst Write  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tCSHP  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Valid  
Don’t Care  
tBC  
tCSS(B)  
tBS  
tBMS  
tBH  
tBMH  
LB#, UB#  
WE#  
tWEH  
tWHP  
tWES  
tDS  
tDHC  
tDHC  
Latency 5  
tWH  
Latency 5  
tWH  
Data in  
D0  
D1  
D2  
D3  
D0  
tWZ  
tWL  
tWL  
High-Z  
WAIT#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
3. /WAIT Low (t or t ): Data not available (driven by CS# low going edge or ADV# low going edge)  
WL  
AWL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
WH  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
WZ  
4. D2 is masked by UB# and LB#.  
5. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 32.6 Timing Waveform of Burst Write Cycle (1)  
Table 32.5 Burst Write AC Characteristics  
Speed  
Speed  
Symbol  
tCSHP  
tBS  
Min  
5
Max  
Units  
Symbol  
tWHP  
tDS  
Min  
5
Max  
Units  
5
5
tBH  
5
tDHC  
tWL  
3
ns  
tBMS  
tBMH  
tWES  
tWEH  
7
ns  
10  
12  
7
7
tWH  
5
tWZ  
5
134  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4, WP = Low enable (OE# = VIH, MRS# = VIH).  
CS# Low Holding Consecutive Burst Write  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
T
CLK  
ADV  
tADVH  
tADVS  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Valid  
Don’t Care  
tBC  
tCSS(B)  
tBS  
tBMS  
tBH  
tBMH  
LB#, UB#  
WE#  
tWEH  
tWHP  
tWES  
tDS  
tDHC  
tDHC  
Latency 5  
tWH  
Latency 5  
tWH  
Data in  
D0  
D1  
D2  
D3  
D0  
tWL  
tAWL  
High-Z  
WAIT#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
3. /WAIT Low (t or t ): Data not available (driven by CS# low going edge or ADV# low going edge)  
WL  
AWL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
WH  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
WZ  
4. D2 is masked by UB# and LB#.  
5. The consecutive multiple burst read operation with holding CS# low is possible only through issuing a new ADV# and  
address.  
6. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 32.7 Timing Waveform of Burst Write Cycle (2)  
Table 32.6 Burst Write AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
5
Max  
Min  
5
Max  
t
t
WHP  
BS  
t
5
t
5
BH  
DS  
t
7
t
3
BMS  
BMH  
WES  
WEH  
DHC  
ns  
ns  
t
t
7
t
10  
10  
12  
WL  
5
t
AWL  
t
5
t
WH  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
135  
A d v a n c e I n f o r m a t i o n  
32.3.3 Synchronous Burst Read Stop Timing Waveform  
Latency = 5, Burst Length = 4, WP = Low enable (WE#= VIH, MRS# = VIH).  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
T
CLK  
tADVH  
tADVS  
ADV#  
tBSADV  
tCSHP  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Don’t Care  
Valid  
tCSS(B)  
tCSLH  
tBEL  
tOEL  
LB#, UB#  
OE#  
tBLZ  
tOLZ  
Latency 5  
tOH  
tCHZ  
tCD  
Undefined  
Data  
DQ0  
DQ1  
tWZ  
tWL  
tWL  
tWH  
High-Z  
High-Z  
WAIT#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished.  
2. /WAIT Low (t or t ): Data not available (driven by CS# low going edge or ADV# low going edge)  
WL  
AWL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
WH  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
WZ  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. The burst stop operation should not be repeated for over 2.5µs.  
Figure 32.8 Timing Waveform of Burst Read Stop by CS#  
Table 32.7 Burst Read Stop AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
12  
7
Max  
Min  
3
Max  
10  
t
t
BSADV  
CD  
t
t
ns  
t
CSLH  
CSHP  
OH  
5
t
7
CHZ  
ns  
t
1
t
10  
12  
7
BEL  
OEL  
WL  
clock  
ns  
t
1
t
WH  
t
5
t
WZ  
BLZ  
OLZ  
t
5
136  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
32.3.4 Synchronous Burst Write Stop Timing Waveform  
Latency = 5, Burst Length = 4, WP = Low enable (OE#= VIH, MRS# = VIH).  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
T
CLK  
t
ADVH  
ADVS  
t
ADV#  
tBSADV  
tAH(B)  
tAS(B)  
Don’t Care  
Address  
CS#  
Valid  
Valid  
tCSHP  
t
CSS(B)  
tCSLH  
tBS  
tBH  
LB#, UB#  
WE#  
tWHP  
t
WEH  
t
WES  
tDS  
tDHC  
Latency 5  
Latency 5  
Data in  
D0  
D1  
D0  
D1  
D2  
tWZ  
t
WL  
t
WL  
tWH  
tWH  
High-Z  
High-Z  
WAIT#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished.  
2. /WAIT Low (t or t ): Data not available (driven by CS# low going edge or ADV# low going edge)  
WL  
AWL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
WH  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
WZ  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. The burst stop operation should not be repeated for over 2.5µs.  
Figure 32.9 Timing Waveform of Burst Write Stop by CS#  
Table 32.8 Burst Write Stop AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
12  
7
Max  
Min  
5
Max  
t
t
WHP  
BSADV  
t
t
t
5
CSLH  
DS  
5
t
3
CSHP  
DHC  
ns  
t
5
t
10  
12  
7
ns  
BS  
WL  
t
5
t
WH  
BH  
t
5
t
WZ  
WES  
WEH  
t
5
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
137  
A d v a n c e I n f o r m a t i o n  
32.3.5 Synchronous Burst Read Suspend Timing Waveform  
Latency = 5, Burst Length = 4, WP = Low enable (WE#= VIH, MRS# = VIH).  
0
1
2
3
4
5
6
7
8
9
10  
11  
T
CLK  
tADVH  
tADVS  
ADV#  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Dont Care  
tCSS(B)  
tBC  
tBEL  
tOEL  
LB#, UB#  
OE#  
tBLZ  
tOLZ  
Latency 5  
tOHZ  
tOLZ  
tOH  
tCD  
tHZ  
High-Z  
Undefined  
Data out  
DQ0 DQ1  
DQ1 DQ2 DQ3  
tWZ  
tWL  
tWH  
WAIT#  
High-Z  
Notes:  
1. If the clock input is halted during burst read operation, the data output is suspended. During the burst read suspend  
period, OE# high drives data output to high-Z. If the clock input is resumed, the suspended data is output first.  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
3. During the suspend period, OE# high drives DQ to High-Z and OE# low drives DQ to Low-Z. If OE# stays low during  
suspend period, the previous data is sustained.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 32.10 Timing Waveform of Burst Read Suspend Cycle (1)  
Table 32.9 Burst Read Suspend AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
1
Max  
Min  
Max  
10  
7
t
t
HZ  
BEL  
clock  
t
1
t
OEL  
OHZ  
t
5
t
10  
12  
7
BLZ  
OLZ  
WL  
ns  
t
5
t
WH  
ns  
t
3
10  
t
CD  
OH  
WZ  
t
138  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
33 Transition Timing Waveform Between Read And Write  
Latency = 5, Burst Length = 4 (MRS# = VIH).  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
T
CLK  
tADVH  
tADVS  
ADV#  
tADV  
tAH(A)  
tBEADV  
tAS(A)  
tAH(B)  
tAS(B)  
Valid  
Dont Care  
Valid  
Address  
CS#  
tCSS(B)  
tAW  
tCW  
tBC  
tCSS(A)  
tWLRL  
tWP  
WE#  
OE#  
tAS  
tOEL  
tBEL  
tBW  
LB#, UB#  
Data in  
tDH  
tDW  
Data Valid  
Latency 5  
High-Z  
tCD  
tOH  
DQ0 DQ1 DQ2 DQ3  
tHZ  
High-Z  
Data out  
tWL  
tWZ  
tWH  
High-Z  
High-Z  
WAIT#  
Read Latency 5  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 33.1 Synchronous Burst Read to Asynchronous Write (Address Latch Type)  
Table 33.1 Burst Read to Asynchronous Write (Address Latch Type) AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
7
ns  
t
1
clock  
BEADV  
WLRL  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
139  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4 (MRS# = VIH).  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
21  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Don’t Care  
Valid Adderss  
tWR  
tAW  
tCW  
tCSS(B)  
tBC  
tWLRL  
tWP  
WE#  
OE#  
tAS  
tOEL  
tBEL  
tBW  
LB#, UB#  
Data in  
tDH  
tDW  
Data Valid  
Latency 5  
High-Z  
tCD  
tOH  
DQ0 DQ1 DQ2 DQ3  
tHZ  
High-Z  
Data out  
tWL  
tWZ  
tWH  
High-Z  
High-Z  
WAIT#  
Read Latency 5  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 33.2 Synchronous Burst Read to Asynchronous Write (Low ADV# Type)  
Table 33.2 Burst Read to Asynchronous Write (Low ADV# Type) AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
7
ns  
t
1
clock  
BEADV  
WLRL  
140  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4 (MRS# = VIH).  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
T
0
CLK  
tADVH  
tAH(B)  
tADVS  
ADV#  
tADV  
tAH(A)  
tAS(A)  
tAS(B)  
Address  
CS#  
Dont Care  
tAW  
tCW  
Dont Care  
tBC  
Valid  
Valid  
tCSS(A)  
tCSS(B)  
tWLRL  
tWP  
WE#  
OE#  
tAS  
tOEL  
tBEL  
tBW  
LB#, UB#  
Data in  
tDH  
tDW  
Data Valid  
Latency 5  
tCD  
tOH  
tHZ  
Data out  
High-Z  
Read Latency 5  
DQ0 DQ1 DQ2 DQ3  
tWH  
tWL  
tWZ  
High-Z  
WAIT#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 33.3 Asynchronous Write (Address Latch Type) to Synchronous Burst Read Timing  
Table 33.3 Asynchronous Write (Address Latch Type) to Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
1
clock  
WLRL  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
141  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4 (MRS# = VIH).  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
T
0
CLK  
tADVH  
tAH(B)  
tADtHAPDVS  
ADV#  
Address  
CS#  
tAS(B)  
tWC  
Valid  
Valid  
Dont Care  
tBC  
tAW  
tCW  
tWR  
tCSS(B)  
tWLRL  
tWP  
tBW  
WE#  
OE#  
tAS  
tOEL  
tBEL  
LB#, UB#  
Data in  
tDH  
tDW  
Data Valid  
Latency 5  
tCD  
tOH  
tHZ  
Data out  
High-Z  
DQ0 DQ1 DQ2 DQ3  
tWH  
tWL  
tWZ  
High-Z  
Read Latency 5  
WAIT#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 33.4 Asynchronous Write (Low ADV# Type) to Synchronous Burst Read Timing  
Table 33.4 Asynchronous Write (Low ADV# Type) to Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
1
clock  
t
5
ns  
WLRL  
ADHP  
142  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4 (MRS# = VIH).  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tAH(B)  
tAH(B)  
tAS(B)  
tAS(B)  
Valid  
Dont Care  
Valid  
Address  
CS#  
tCSS(B)  
tBC  
tBC  
tCSS(B)  
tWES  
tWEH  
WE#  
OE#  
tOEL  
tBEL  
tBS  
tBH  
LB#, UB#  
Data in  
tDS  
Latency 5  
tDHC  
tWZ  
D0 D1 D2 D3  
High-Z  
Latency 5  
High-Z  
tCD  
tOH  
DQ0 DQ1 DQ2 DQ3  
tWZ  
tHZ  
High-Z  
Data out  
tWH  
tWL  
tWH  
tWL  
High-Z  
WAIT#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 33.5 Synchronous Burst Read to Synchronous Burst Write Timing  
Table 33.5 Asynchronous Write (Low ADV# Type) to Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
7
ns  
BEADV  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
143  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4 (MRS# = VIH).  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tAH(B)  
tAH(B)  
tAS(B)  
tAS(B)  
Valid  
Dont Care  
Valid  
Address  
CS#  
tCSS(B)  
tBC  
tBC  
tCSS(B)  
tWES  
tWEH  
WE#  
OE#  
tOEL  
tBS  
tBH  
tBEL  
LB#, UB#  
Data in  
tDS  
Latency 5  
tDHC  
D0 D1 D2  
D3  
High-Z  
Latency 5  
tCD  
tOH  
tHZ  
DQ0 DQ1 DQ2 DQ3  
High-Z  
Data out  
tWL  
tWH  
tWZ  
tWH  
tWL  
High-Z  
WAIT#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 33.6 Synchronous Burst Write to Synchronous Burst Read Timing  
Table 33.6 Asynchronous Write (Low ADV# Type) to Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
7
ns  
BEADV  
144  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
1.8V pSRAM Type 4  
8M x 16-bit Synchronous Burst pSRAM  
ADVANCE  
INFORMATION  
Features  
„ Process Technology: CMOS  
„ Organization: 8M x16 bit Power Supply Voltage: 1.7–2.0V  
„ Three State Outputs  
„ Supports MRS (Mode Register Set)  
„ MRS control - MRS Pin Control  
„ Supports Power Saving modes - Partial Array Refresh mode Internal TCSR  
„ Supports Driver Strength Optimization for system environment power saving  
„ Supports Asynchronous 4-Page Read and Asynchronous Write Operation  
„ Supports Synchronous Burst Read and Asynchronous Write Operation (Address Latch Type  
and Low ADV Type)  
„ Supports Synchronous Burst Read and Synchronous Burst Write Operation  
„ Synchronous Burst (Read/Write) Operation  
— Supports 4 word / 8 word / 16 word and Full Page(256 word) burst  
— Supports Linear Burst type & Interleave Burst type  
— Latency support:  
Latency 5 @ 66MHz(tCD 10ns)  
Latency 4 @ 54MHz(tCD 10ns)  
— Supports Burst Read Suspend in No Clock toggling  
— Supports Burst Write Data Masking by /UB & /LB pin control  
— Supports WAIT pin function for indicating data availability.  
„ Max. Burst Clock Frequency: 66MHz  
Publication Number S71WS-N_01 Revision A Amendment 4 Issue Date September 15, 2005  
A d v a n c e I n f o r m a t i o n  
34 Pin Description  
Pin Name  
CLK  
Function  
Clock  
Type  
Description  
Commands are referenced to CLK  
ADV#  
MRS#  
Address Valid  
Mode Register set  
Valid Address is latched by ADV falling edge  
MRS# low enables Mode Register to be set  
CS# low enables the chip to be active  
CS# high disables the chip and puts it  
into standby mode  
CS#  
Chip Select  
Input  
OE#  
WE#  
LB#  
Output Enable  
Write Enable  
OE# low enables the chip to output the data  
WE# low enables the chip to  
start writing the data  
Lower Byte (I/O  
)  
7
0
UB# (LB#) low enables upper byte  
(lower byte) to start operating  
UB#  
Upper Byte (I/O )  
8 15  
Valid addresses input when ADV is low  
Mode setting input when MRS is low  
A0-A22  
Address 0 Address 22  
Depending on UB# or LB# status, word (16-bit,  
UB#, and LB# low) data, upper byte (8-bit, UB#  
low & LB# high) data or lower byte (8-bit, LB# low,  
and UB# high) data is loaded  
I/O0-I/O15  
Data Inputs / Outputs  
Input/Output  
V
Voltage Source  
Voltage Source  
Power  
Power  
GND  
Core Power supply  
CC  
V
I/O Power supply  
CCQ  
V
Ground Source  
Core ground Source  
SS  
V
I/O Ground Source  
Valid Data Indicator  
GND  
I/O Ground Source  
SSQ  
WAIT#  
Output  
WAIT# indicates whether data is valid or not  
35 Power Up Sequence  
After applying VCC up to minimum operating voltage (1.7V), drive CS# high first and then drive  
MRS# high. This gets the device into power up mode. Wait 200 µs minimum to get into the normal  
operation mode. During power up mode, the standby current cannot be guaranteed. To obtain  
stable standby current levels, at least one cycle of active operation should be implemented re-  
gardless of wait time duration. To obtain appropriate device operation, be sure to follow the  
proper power up sequence.  
1. Apply power.  
2. Maintain stable power (VCC min.=1.7V) for a minimum 200 µs with CS# and MRS# high.  
146  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
36 Power Up and Standby Mode Timing Diagrams  
36.1 Power Up  
200 µs  
VCC(Min)  
V
CC  
Min. 0ns  
Min. 0ns  
MRS#  
CS#  
Min. 200 µs  
PowerUp Mode  
Normal Operation  
Note: After V reaches V (Min.), wait 200 µs with CS# and MRS# high. This puts the device into normal operation.  
CC  
CC  
Figure 36.1 Power Up Timing  
36.2 Standby Mode  
CS# = V  
IH  
MRS# = V  
CS# = UB# = LB# = V  
CS# = V , UB# or LB# = V  
IL  
MRS# = V  
IL  
IL  
IL  
WE# = V , MRS# = V  
IL  
CS# = V  
IH  
IH  
IH  
MRS# = V  
IH  
Initial State  
(wait 200µs)  
Standby  
Mode  
PAR  
Mode  
Power On  
MRS Setting  
Active  
MRS# = V  
IL  
MRS Setting  
CS# = V  
IL  
WE# = V , MRS#=V  
IL IL  
Figure 36.2 Standby Mode State Machines  
The default mode after power up is Asynchronous mode (4 Page Read and Asynchronous Write).  
But this default mode is not 100% guaranteed, so the MRS# setting sequence is highly recom-  
mended after power up.  
For entry to PAR mode, drive the MRS# pin into VIL for over 0.5µs or longer (suspend period)  
during standby mode after the MRS# setting has been completed (A4=1, A3=0). If the MRS# pin  
is driven into VIH during PAR mode, the device reverts to standby mode without the wake up  
sequence.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
147  
A d v a n c e I n f o r m a t i o n  
37 Functional Description  
Table 37.1 Asynchronous 4 Page Read & Asynchronous Write Mode (A15/A14=0/0)  
Mode  
CS#  
H
H
L
MRS#  
H
OE#  
X
WE#  
X
LB#  
X
X
X
H
L
UB#  
X
I/O  
I/O  
Power  
Standby  
PAR  
0-7  
8-15  
Deselected  
Deselected  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
L
X
X
X
Output Disabled  
Outputs Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
H
H
X
H
X
X
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
L
H
H
H
L
L
H
L
H
H
H
L
D
OUT  
L
H
L
H
L
High-Z  
D
D
OUT  
OUT  
L
H
L
L
D
OUT  
Lower Byte Write  
Upper Byte Write  
Word Write  
L
H
H
H
H
H
L
H
L
D
High-Z  
IN  
L
H
L
H
L
High-Z  
D
D
IN  
IN  
L
H
L
L
D
IN  
Mode Register Set  
L
L
L
L
L
High-Z  
High-Z  
Legend: X = Don’t care (must be low or high state).  
Notes:  
1. In asynchronous mode, Clock and ADV# are ignored.  
2. The WAIT# pin is High-Z in asynchronous mode.  
Table 37.2 Synchronous Burst Read & Asynchronous Write Mode (A15/A14=0/1)  
Mode  
Deselected  
CS# MRS# OE# WE# LB# UB#  
I/O  
I/O  
CLK  
ADV#  
Power  
0-7  
8-15  
X
X
H
H
L
H
L
X
X
H
X
X
X
H
X
X
X
X
H
X
X
X
H
High-Z High-Z  
High-Z High-Z  
High-Z High-Z  
High-Z High-Z  
Standby  
(note 2)  
(note 2)  
X
X
Deselected  
PAR  
(note 2)  
(note 2)  
X
Output Disabled  
Outputs Disabled  
H
H
H
H
Active  
Active  
(note 2)  
X
L
(note 2)  
Read Command  
Lower Byte Read  
Upper Byte Read  
L
L
L
H
H
H
X
L
L
H
H
H
X
L
X
H
L
High-Z High-Z  
Active  
Active  
Active  
D
High-Z  
H
H
OUT  
H
High-Z  
D
D
OUT  
OUT  
Word Read  
L
H
L
H
L
L
D
H
Active  
OUT  
X
Lower Byte Write  
Upper Byte Write  
Word Write  
L
L
L
L
H
H
H
L
H
H
H
H
L
L
L
L
L
H
L
H
L
L
L
D
High-Z  
Active  
Active  
Active  
Active  
IN  
or  
or  
or  
or  
(note 2)  
X
High-Z  
D
D
IN  
IN  
(note 2)  
X
D
IN  
(note 2)  
X
Mode Register Set  
L
High-Z High-Z  
(note 2)  
Notes:  
1. X must be low or high state.  
2. X means “Don’t care” (can be low, high or toggling).  
3. WAIT# is the device output signal and does not have any affect on the mode definition. Please refer to each timing  
diagram for Wait# pin function.  
148  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Table 37.3 Synchronous Burst Read & Synchronous Burst Write Mode(A15/A14 = 1/0)  
Mode  
CS# MRS#  
OE#  
WE#  
LB#  
UB#  
I/O  
I/O  
CLK  
ADV#  
Power  
0-7  
8-15  
X
X
X
X
X
X
Deselected  
H
H
L
H
L
High-Z High-Z  
High-Z High-Z  
High-Z High-Z  
High-Z High-Z  
Standby  
(note1)  
(note1)  
(note1) (note1)  
(note 2) (note 2)  
X
X
X
X
X
X
Deselected  
PAR  
(note1)  
(note1)  
(note1) (note1)  
(note 2) (note 2)  
Output  
Disabled  
X
H
H
H
H
X
H
X
H
H
H
Active  
Active  
(note 2)  
Outputs  
Disabled  
X
X
X
L
(note1)  
(note1)  
(note 2)  
X
Read Command  
L
L
L
H
H
H
H
H
H
X
L
X
H
L
High-Z High-Z  
Active  
Active  
Active  
(note1)  
Lower Byte  
Read  
L
L
D
High-Z  
H
H
OUT  
Upper Byte  
Read  
H
High-Z  
D
D
OUT  
OUT  
Word Read  
L
H
L
H
L
L
D
H
Active  
OUT  
X
Write Command  
L
L
L
H
H
H
High-Z High-Z  
Active  
Active  
Active  
L
or  
(note1)  
Lower Byte  
Write  
X
H
H
L
H
L
D
High-Z  
H
H
IN  
(note1)  
Upper Byte  
Write  
X
H
High-Z  
D
D
IN  
IN  
(note1)  
X
Word Write  
L
L
H
L
H
H
L
L
L
L
D
H
Active  
Active  
IN  
(note1)  
Mode Register  
Set  
High-Z High-Z  
L
or  
Notes:  
1. X must be low or high state.  
2. X means “Don’t care” (can be low, high or toggling).  
3. WAIT# is the device output signal and does not have any affect on the mode definition. Please refer to each timing  
diagram for WAIT# pin function.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
149  
A d v a n c e I n f o r m a t i o n  
38 Mode Register Setting Operation  
The device has several modes:  
„ Asynchronous Page Read mode  
„ Asynchronous Write mode  
„ Synchronous Burst Read mode  
„ Synchronous Burst Write mode  
„ Standby mode and Partial Array Refresh (PAR) mode.  
Partial Array Refresh (PAR) mode is defined through the Mode Register Set (MRS) option. The MRS  
option also defines burst length, burst type, wait polarity and latency count at synchronous burst  
read/write mode.  
38.1 Mode Register Set (MRS)  
The mode register stores the data for controlling the various operation modes of the pSRAM. It  
programs Partial Array Refresh (PAR), burst length, burst type, latency count and various vendor  
specific options to make pSRAM useful for a variety of different applications. The default values  
of mode register are defined, therefore when the reserved address is input, the device runs at  
default modes.  
The mode register is written by driving CS#, ADV#, WE#, UB#, LB# and MRS# to VIL and driving  
OE# to VIH during valid addressing. The mode register is divided into various fields depending on  
the fields of functions. The PAR field uses A0–A4, Burst Length field uses A5–A7, Burst Type uses  
A8, Latency Count uses A9–A11, Wait Polarity uses A13, Operation Mode uses A14–A15 and  
Driver Strength uses A16–A17.  
Refer to the Table below for detailed Mode Register Settings. A18–A22 addresses are “Don’t care”  
in the Mode Register Setting.  
Table 38.1 Mode Register Setting According to Field of Function  
Address  
Function  
A17 – A16  
A15 – A14  
A13  
A12  
A11 – A19  
A8  
A7 – A5  
A4 – A3  
A2  
A1 – A0  
DS  
MS  
WP  
RFU  
Latency  
BT  
BL  
PAR  
PARA  
PARS  
Note: DS (Driver Strength), MS (Mode Select), WP (Wait Polarity), Latency (Latency Count), BT (Burst Type), BL (Burst  
Length), PAR (Partial Array Refresh), PARA (Partial Array Refresh Array), PARS (Partial Array Refresh Size), RFU (Reserved  
for Future Use).  
Table 38.2 Mode Register Set  
Driver Strength  
DS  
Mode Select  
MS  
A17  
0
A16  
0
A15  
0
A14  
0
Full Drive (note 1)  
1/2 Drive  
Async. 4 Page Read / Async. Write (note 1)  
Sync. Burst Read / Async. Write  
0
1
0
1
1
0
1/4 Drive  
1
0
Sync. Burst Read / Sync. Burst Write  
WAIT# Polarity  
WP  
RFU  
RFU  
Latency Count  
Burst Type  
BT  
Burst Length  
A7 A6 A5 BL  
A13  
A12  
0
A11 A10 A9 Latency A8  
Must  
(note 1)  
0
1
Low Enable (note 1)  
High Enable  
0
0
0
3
0
1
Linear (note 1)  
Interleave  
0
1
0
4 word  
1
0
0
0
0
1
1
1
0
1
4
5
6
0
1
1
1
0
1
1
0
1
8 word  
16 word (note 1)  
Full (256 word)  
150  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Partial Array Refresh  
PAR  
PAR Array  
PAR Size  
PARS  
A4  
1
A3  
0
A2  
0
PARA  
Bottom Array (note 1)  
Top Array  
A1  
0
A0  
0
PAR Enable  
Full Array (note 1)  
3/4 Array  
1
1
PAR Disable (note 1)  
1
0
1
1
0
1/2 Array  
1
1
1/4 Array  
Note: Default mode. The address bits other than those listed in the table above are reserved. For example, Burst Length  
address bits(A7:A6:A5) have 4 sets of reserved bits like 0:0:0, 0:0:1, 1:0:1 and 1:1:0. If the reserved address bits are input,  
then the mode will be set to the default mode. Each field has its own default mode, but this default mode is not 100% guar-  
anteed, so the MRS setting sequence is highly recommended after power up. A12 is a reserved bit for future use. A12 must  
be set as “0”. Not all the mode settings are tested. Per the mode settings to be tested, please contact Spansion. The 256  
word Full page burst mode needs to meet t (Burst Cycle time) parameter as max. 2500ns.  
BC  
38.2 MRS Pin Control Type Mode Register Setting Timing  
In this device, the MRS pin is used for two purposes. One is to get into the mode register setting  
and the other is to execute Partial Array Refresh mode.  
To get into the Mode Register Setting, the system must drive the MRS# pin to VIL and immediately  
(within 0.5µs) issue a write command (drive CS#, ADV#, UB#, LB# and WE# to VIL and drive  
OE# to VIH during valid address). If the subsequent write command (WE# signal input) is not  
issued within 0.5µs, then the device may get into the PAR mode.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
CLK  
ADV#  
tWC  
Address  
CS#  
tCW  
tAW  
tBW  
UB#, LB#  
WE#  
tWP  
tAS  
tWU  
tMW  
MRS#  
Register Update Complete  
Register Write Complete  
Register Write Start  
(MRS SETTING TIMING)  
1. Clock input is ignored.  
Figure 38.1 Mode Register Setting Timing (OE# = V  
Table 38.3 MRS AC Characteristics  
)
IH  
Speed  
Parameter List  
MRS# Enable to Register Write Start  
End of Write to MRS# Disable  
Symbol  
tMW  
Min  
Max  
500  
Units  
ns  
0
0
MRS  
Note:  
tWU  
ns  
V
=1.7  
2.0V, T =-40 to 85°C, Maximum Main Clock Frequency=66MHz  
CC  
A
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
151  
A d v a n c e I n f o r m a t i o n  
39 Asynchronous Operation  
39.1 Asynchronous 4 Page Read Operation  
Asynchronous normal read operation starts when CS#, OE# and UB# or LB# are driven to VIL  
under the valid address without toggling page addresses (A0, A1). If the page addresses (A0, A1)  
are toggled under the other valid address, the first data will be out with the normal read cycle  
time (tRC) and the second, the third and the fourth data will be out with the page cycle time (tPC).  
(MRS# and WE# should be driven to VIH during the asynchronous (page) read operation) Clock,  
ADV#, WAIT# signals are ignored during the asynchronous (page) read operation.  
39.2 Asynchronous Write Operation  
Asynchronous write operation starts when CS#, WE# and UB# or LB# are driven to VIL under the  
valid address. MRS# and OE# should be driven to VIH during the asynchronous write operation.  
Clock, ADV#, WAIT# signals are ignored during the asynchronous (page) read operation.  
39.3 Asynchronous Write Operation in Synchronous Mode  
A write operation starts when CS#, WE# and UB# or LB# are driven to VIL under the valid ad-  
dress. Clock input does not have any affect to the write operation (MRS# and OE# should be  
driven to VIH during write operation. ADV# can be either toggling for address latch or held in VIL).  
Clock, ADV#, WAIT# signals are ignored during the asynchronous (page) read operation.  
A22~A2  
A1~A0  
CS#  
UB#, LB#  
OE#  
Data Out  
Figure 39.1 Asynchronous 4-Page Read  
Address  
CS#  
UB#, LB#  
WE#  
High-Z  
Data in  
High-Z  
High-Z  
Data out  
Figure 39.2 Asynchronous Write  
152  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
40 Synchronous Burst Operation  
Burst mode operations enable the system to get high performance read and write operation. The  
address to be accessed is latched on the rising edge of clock or ADV# (whichever occurs first).  
CS# should be setup before the address latch. During this first clock rising edge, WE# indicates  
whether the operation is going to be a Read (WE# High) or a Write (WE# Low).  
For the optimized Burst Mode of each system, the system should determine how many clock cy-  
cles are required for the first data of each burst access (Latency Count), how many words the  
device outputs during an access (Burst Length) and which type of burst operation (Burst Type:  
Linear or Interleave) is needed. The Wait Polarity should also be determined (See Table 38.2).  
40.1 Synchronous Burst Read Operation  
The Synchronous Burst Read command is implemented when the clock rising is detected during  
the ADV# low pulse. ADV# and CS# should be set up before the clock rising. During the Read  
command, WE# should be held in VIH. The multiple clock risings (during the low ADV# period)  
are allowed, but the burst operation starts from the first clock rising. The first data will be out  
with Latency count and tCD  
.
40.2 Synchronous Burst Write Operation  
The Synchronous Burst Write command is implemented when the clock rising is detected during  
the ADV# and WE# low pulse. ADV#, WE# and CS# should be set up before the clock rising. The  
multiple clock risings (during the low ADV# period) are allowed but, the burst operation starts  
from the first clock rising. The first data will be written in the Latency clock with tDS  
.
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
CLK  
ADV#  
Addr.  
CS#  
UB#, LB#  
OE#  
Data Out  
WAIT#  
Note: Latency 5, BL 4, WP: Low Enable  
Figure 40.1 Synchronous Burst Read  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
CLK  
ADV#  
Addr.  
CS#  
UB#, LB#  
WE#  
Data in  
WAIT#  
Note: Latency 5, BL 4, WP: Low Enable  
Figure 40.2 Synchronous Burst Write  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
153  
A d v a n c e I n f o r m a t i o n  
41 Synchronous Burst Operation Terminology  
41.1 Clock (CLK)  
The clock input is used as the reference for synchronous burst read and write operation of the  
pSRAM. The synchronous burst read and write operations are synchronized to the rising edge of  
the clock. The clock transitions must swing between VIL and VIH.  
41.2 Latency Count  
The Latency Count configuration tells the device how many clocks must elapse from the burst  
command before the first data should be available on its data pins. This value depends on the  
input clock frequency. Table 41.1 shows the supported Latency Count.  
Table 41.1 Latency Count Support  
Clock Frequency  
Latency Count  
Up to 66 MHz  
Up to 54 MHz  
Up to 40 MHz  
5
4
3
Table 41.2 Number of CLocks for 1st Data  
Set Latency  
Latency 3  
Latency 4  
Latency 5  
# of Clocks for 1st data (Read)  
# of Clocks for 1st data (Write)  
4
2
5
3
6
4
T
Clock  
ADV#  
Address  
Latency 3  
DQ1  
DQ2  
DQ3  
DQ2  
DQ1  
DQ4  
DQ3  
DQ2  
DQ1  
DQ5  
DQ4  
DQ3  
DQ2  
DQ6  
DQ5  
DQ4  
DQ3  
DQ7  
DQ6  
DQ5  
DQ4  
DQ8  
DQ7  
DQ6  
DQ5  
DQ9  
DQ8  
DQ7  
DQ6  
Data out  
Data out  
Data out  
Data out  
Latency 4  
Latency 5  
Latency 6  
DQ1  
Note: The first data will always keep the Latency. From the second data on, some period of wait time may be caused by  
WAIT# pin.  
Figure 41.1 Latency Configuration (Read)  
41.3 Burst Length  
Burst Length identifies how many data the device outputs during an access. The device supports  
4 word, 8 word, 16 word and 256 word burst read or write. 256 word Full page burst mode needs  
to meet tBC (Burst Cycle time) parameter as 2500ns max.  
The first data will be output with the set Latency + tCD. From the second data on, the data will be  
output with tCD from each clock.  
154  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
41.4 Burst Stop  
Burst stop is used when the system wants to stop burst operation on purpose. If driving CS# to  
VIH during the burst read operation, the burst operation is stopped. During the burst read oper-  
ation, the new burst operation cannot be issued. The new burst operation can be issued only after  
the previous burst operation is finished.  
The burst stop feature is very useful because it enables the user to utilize the un-supported burst  
length such as 1 burst or 2 burst, used mostly in the mobile handset application environment.  
41.5 Wait Control (WAIT#)  
The WAIT# signal is the device’s output signal that indicates to the host system when it’s data-  
out or data-in is valid.  
To be compatible with the Flash interfaces of various microprocessor types, the WAIT# polarity  
(WP) can be configured. The polarity can be programmed to be either low enable or high enable.  
For the timing of WAIT# signal, the WAIT# signal should be set active one clock prior to the data  
regardless of Read or Write cycle.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
CLK  
ADV#  
CS#  
Latency 5  
Read  
Data out  
DQ0 DQ1  
DQ2  
DQ3  
High-Z  
High-Z  
WAIT#  
Latency 5  
Write  
Data in  
D0  
D1  
D2  
D3  
WAIT#  
Note: LATENCY: 5, Burst Length: 4, WP: Low Enable  
Figure 41.2 WAIT# and Read/Write Latency Control  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
155  
A d v a n c e I n f o r m a t i o n  
41.6 Burst Type  
The device supports Linear type burst sequence and Interleave type burst sequence. Linear type  
burst sequentially increments the burst address from the starting address. The detailed Linear  
and Interleave type burst address sequence is shown in Table 41.3.  
Table 41.3 Burst Sequence  
Burst Address Sequence (Decimal)  
Wrap (note 1)  
16 word Burst  
Interleave  
Start  
Address  
4 word Burst  
8 word Burst  
Linear Interleave  
Full Page(256 word)  
Linear  
Linear Interleave  
Linear  
0
1
2
3
4
5
6
7
0-1-2-3 0-1-2-3 0-1-...-5-6-7 0-1-2-...-6-7 0-1-2-...-14-15 0-1-2-3-4...14-15  
0-1-2-...-254-255  
1-2-3-...-255-0  
2-3-4-...-255-0-1  
3-4-5-...-255-0-1-2  
1-2-3-0 1-0-3-2 1-2-...-6-7-0 1-0-3-...-7-6  
2-3-0-1 2-3-0-1 2-3-...-7-0-1 2-3-0-...-4-5  
3-0-1-2 3-2-1-0 3-4-...-0-1-2 3-2-1-...-5-4  
4-5-...-1-2-3 4-5-6-...-2-3  
1-2-3-...-15-0  
2-3-4-...-0-1  
3-4-5-...-1-2  
4-5-6-...-2-3  
5-6-7-...-3-4  
6-7-8-...-4-5  
7-8-9-...-5-6  
1-0-3-2-5...15-14  
2-3-0-1-6...12-13  
3-2-1-0-7...13-12  
4-5-6-7-0...10-11 4-5-6-...-255-0-1-2-3  
5-6-...-2-3-4 5-4-7-...-3-2  
5-4-7-6-1...11-10  
6-7-4-5-2...8-9  
7-6-5-4-3...9-8  
5-6-7-...-255-...-3-4  
6-7-8-...-255-...-4-5  
7-8-9-...-255-...-5-6  
6-7-...-3-4-5 6-7-4-...-0-1  
7-0-...-4-5-6 7-6-5-...-1-0  
14  
14-15-0-...-12-13 14-15-12-...-0-1 14-15-...-255-...-12-13  
15  
15-0-1-...-13-14 15-14-13-...-1-0 15-16-...-255-...-13-14  
255  
255-0-1-...-253-254  
156  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
42 Low Power Features  
42.1 Internal TCSR  
The internal Temperature Compensated Self Refresh (TCSR) feature is a very useful tool for re-  
ducing standby current at room temperature (below 40°C). DRAM cells have weak refresh  
characteristics in higher temperatures. High temperatures require more refresh cycles, which can  
lead to standby current increase.  
Without the internal TCSR, the refresh cycle should be set at worst condition so as to cover the  
high temperature (85°C) refresh characteristics. But with internal TCSR, a refresh cycle below  
40°C can be optimized, so the standby current at room temperature can be greatly reduced. This  
feature is beneficial since most mobile phones are used at or below 40°C in the phone standby  
mode.  
0.5 µs  
MRS#  
Normal  
Operation  
Normal  
Operation  
Suspend  
PAR mode  
MODE  
CS#  
Figure 42.1 PAR Mode Execution and Exit  
Table 42.1 PAR Mode Characteristics  
Address  
(Bottom Array)  
(note 2)  
Address  
(Top Array)  
(note 2)  
Memory Cell  
Data  
Standby Current Wait Time  
Power Mode  
(µA, Max)  
(µs)  
Standby (Full Array)  
Partial Refresh(3/4 Block)  
Partial Refresh(1/2 Block)  
Partial Refresh(1/4 Block)  
000000h  
7FFFFFh  
000000h  
7FFFFFh  
200  
170  
150  
140  
000000h  
000000h  
000000h  
5FFFFFh  
3FFFFFh  
1FFFFFh  
200000h  
400000h  
600000h  
7FFFFFh  
7FFFFFh  
7FFFFFh  
Valid (note 1)  
0
Notes:  
1. Only the data in the refreshed block are valid.  
2. The PAR Array can be selected through Mode Register Set (see Mode Register Setting Operation).  
42.2 Driver Strength Optimization  
The optimization of output driver strength is possible through the mode register setting to adjust  
for the different data loadings. Through this driver strength optimization, the device can minimize  
the noise generated on the data bus during read operation. The device supports full drive, 1/2  
drive and 1/4 drive.  
42.3 Partial Array Refresh (PAR) mode  
The PAR mode enables the user to specify the active memory array size. The pSRAM consists of  
4 blocks and the user can select 1 block, 2 blocks, 3 blocks or all blocks as active memory arrays  
through the Mode Register Setting. The active memory array is periodically refreshed whereas  
the disabled array is not refreshed, so the previously stored data is lost. Even though PAR mode  
is enabled through the Mode Register Setting, PAR mode execution by the MRS# pin is still  
needed. The normal operation can be executed even in refresh-disabled array as long as the  
MRS# pin is not driven to the Low condition for over 0.5µs. Driving the MRS# pin to the High  
condition puts the device back to the normal operation mode from the PAR executed mode. Refer  
to Figure 42.1 and Table 42.1 for PAR operation and PAR address mapping.  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
157  
A d v a n c e I n f o r m a t i o n  
43 Absolute Maximum Ratings  
Item  
Voltage on any pin relative to VSS  
Power supply voltage relative to VSS  
Power Dissipation  
Symbol  
VIN , VOUT  
VCC  
Ratings  
-0.2 to VCC+0.3V  
-0.2 to 2.5V  
1.0  
Unit  
V
V
PD  
W
Storage temperature  
TSTG  
-65 to 150  
-40 to 85  
°C  
°C  
Operating Temperature  
TA  
Note: Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
Functional operation should be restricted to use under recommended operating conditions only. Exposure to absolute maxi-  
mum rating conditions longer than one second may affect reliability.  
44 DC Recommended Operating Conditions  
Symbol  
VCC  
Parameter  
Power Supply Voltage  
Ground  
Min  
1.7  
Typ  
1.85  
0
Max  
Unit  
2.0  
VSS  
0
0
V
VIH  
Input High Voltage  
0.8 x VCC  
VCC + 0.2 (note 2)  
-0.2 (note  
3)  
VIL  
Input Low Voltage  
0.4  
Notes:  
1. TA=-40 to 85°C, unless otherwise specified.  
2. Overshoot: V +1.0V in case of pulse width 20ns.  
CC  
3. Undershoot: -1.0V in case of pulse width 20ns.  
4. Overshoot and undershoot are sampled, not 100% tested.  
45 Capacitance (Ta = 25°C, f = 1 MHz)  
Symbol  
CIN  
Parameter  
Test Condition  
VIN = 0V  
VOUT = 0V  
Min  
Max  
8
Unit  
Input Capacitance  
pF  
pF  
CIO  
Input/Output Capacitance  
10  
Note: This parameter is sampled periodically and is not 100% tested.  
158  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
46 DC and Operating Characteristics  
46.1 Common  
Item  
Symbol  
Test Conditions  
Min Typ Max Unit  
Input Leakage Current  
I
V
=V to V  
CC  
-1  
1
µA  
LI  
IN  
SS  
CS#=V , MRS#=V , OE#=V or  
IH  
IH  
IH  
Output Leakage Current  
I
LO  
-1  
1
µA  
WE#=V , V =V to V  
IL  
IO  
SS  
CC  
Average Operating  
Current  
Cycle time=t +3t , I =0mA, 100% duty,  
RC  
PC IO  
I
40  
mA  
CC2  
CS#=V , MRS#=V , V =V or V  
IL  
IH  
IN  
IL  
IH  
Output Low Voltage  
Output High Voltage  
V
I
I
=0.1mA  
1.4  
0.2  
V
V
OL  
OL  
V
=-0.1mA  
OH  
OH  
< 40°C  
< 85°C  
TBD µA  
200 µA  
TBD  
CS# V -0.2V, MRS# V -0.2V,  
Other inputs = V to V  
CC  
CC  
Standby Current (CMOS)  
I
SB1  
SS  
CC  
3/4 Block  
< 40°C 1/2 Block  
1/4 Block  
TBD µA  
TBD  
MRS# 0.2V, CS# V -0.2V  
Other inputs = V to V  
CC  
CC  
Partial Refresh Current  
I
(note 1)  
SBP  
SS  
3/4 Block  
170  
< 85°C 1/2 Block  
1/4 Block  
150 µA  
140  
Notes:  
1. Full Array Partial Refresh Current (I  
) is same as Standby Current (I  
).  
SBP  
SB1  
47 AC Operating Conditions  
47.1 Test Conditions (Test Load and Test Input/Output Reference)  
„ Input pulse level: 0.2 to VCC -0.2V  
„ Input rising and falling time: 3ns  
„ Input and output reference voltage: 0.5 x VCC  
„ Output load (See Figure 47.1): CL=50pF  
Vtt = 0.5 x V  
DDQ  
50  
Dout  
Z0=50  
30pF  
Figure 47.1 PAR Mode Execution and Exit  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
159  
A d v a n c e I n f o r m a t i o n  
47.2 Asynchronous AC Characteristics  
(VCC=1.7–2.0V, TA=–40 to 85 °C)  
Speed Bins  
Symbol  
Parameter  
Unit  
Min  
Max  
70  
20  
70  
35  
35  
7
t
Read Cycle Time  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RC  
t
Page Read Cycle Time  
25  
PC  
t
Address Access Time  
AA  
t
Page Access Time  
PA  
t
Chip Select to Output  
CO  
t
t
Output Enable to Valid Output  
UB#, LB# Access Time  
OE  
BA  
t
Chip Select to Low-Z Output  
UB#, LB# Enable to Low-Z Output  
Output Enable to Low-Z Output  
Chip Disable to High-Z Output  
UB#, LB# Disable to High-Z Output  
Output Disable to High-Z Output  
Output Hold  
10  
LZ  
t
5
BLZ  
OLZ  
CHZ  
BHZ  
OHZ  
t
5
t
t
0
0
7
t
0
7
t
3
OH  
WC  
CW  
t
Write Cycle Time  
70  
t
Chip Select to End of Write  
ADV# Minimum Low Pulse Width  
Address Set-up Time to Beginning of Write  
Address Set-up Time to ADV# Falling  
Address Hold Time from ADV# Rising  
CS# Setup Time to ADV# Rising  
Address Valid to End of Write  
UB#, LB# Valid to End of Write  
Write Pulse Width  
60  
t
7
ADV  
t
0
AS  
t
0
AS(A)  
AH(A)  
t
7
t
10  
CSS(A)  
t
t
60  
AW  
BW  
60  
t
55 (Note 1)  
WP  
t
WE# High Pulse Width  
5 ns  
0
Latency-1 clock  
WHP  
t
Write Recovery Time  
ns  
clock  
ns  
ns  
WR  
t
WE# Low to Read Latency  
Data to Write Time Overlap  
Data Hold from Write Time  
1
WLRL  
t
30  
0
DW  
t
DH  
Note:  
t
(min)=70ns for continuous write operation over 50 times.  
WP  
160  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
47.3 Timing Diagrams  
47.3.1 Asynchronous Read Timing Waveform  
MRS# = VIH, WE# = VIH, WAIT# = High-Z  
tRC  
Address  
tAA  
tOH  
tCO  
CS#  
tCHZ  
tBHZ  
tBA  
UB#, LB#  
tOE  
OE#  
tOLZ  
tBLZ  
tLZ  
tOHZ  
Data out  
High-Z  
Data Valid  
Notes:  
1.  
t
and t  
are defined as the time at which the outputs achieve the open circuit conditions and are not referenced  
OHZ  
CHZ  
to output voltage levels.  
2. At any given temperature and voltage condition, t  
to device interconnection.  
is less than t  
both for a given device and from device  
LZ(Min.)  
CHZ(Max.)  
3. In asynchronous read cycle, Clock, ADV# and WAIT# signals are ignored.  
Figure 47.2 Timing Waveform Of Asynchronous Read Cycle  
Table 47.1 Asynchronous Read AC Characteristics  
Speed  
Speed  
Symbol  
tRC  
Min  
70  
3
Max  
Units  
Symbol  
tOLZ  
tBLZ  
Min  
5
Max  
7
Units  
tAA  
70  
70  
35  
35  
5
tCO  
tLZ  
10  
0
ns  
ns  
tBA  
tCHZ  
tBHZ  
tOHZ  
tOE  
0
7
tOH  
0
7
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
161  
A d v a n c e I n f o r m a t i o n  
47.3.1.1 Page Read  
MRS# = VIH, WE# = VIH, WAIT# = High-Z  
t
RC  
Valid  
Address  
A22~A2  
tOH  
tAA  
Valid  
Valid  
Valid  
Valid  
A1~A0  
CS#  
Address  
Address Address Address  
tPC  
tCO  
tBA  
UB#, LB#  
OE#  
t
BHZ  
t
OE  
tCHZ  
tBOLZLZ  
t
OHZ  
t
t
PA  
t
LZ  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data out  
High Z  
Notes:  
1.  
t
and t  
are defined as the time at which the outputs achieve the open circuit conditions and are not referenced  
OHZ  
CHZ  
to output voltage levels.  
2. At any given temperature and voltage condition, t  
to device interconnection.  
is less than t  
both for a given device and from device  
LZ(Min.)  
CHZ(Max.)  
3. In asynchronous 4 page read cycle, Clock, ADV# and WAIT# signals are ignored.  
Figure 47.3 Timing Waveform Of Page Read Cycle  
Table 47.2 Asynchronous Page Read AC Characteristics  
Speed  
Speed  
Symbol  
tRC  
Min  
70  
Max  
Units  
Symbol  
tOH  
Min  
3
Max  
7
Units  
tAA  
70  
tOLZ  
tBLZ  
tLZ  
5
tPC  
25  
5
tPA  
20  
70  
35  
35  
ns  
10  
0
ns  
tCO  
tBA  
tCHZ  
tBHZ  
tOHZ  
0
7
tOE  
0
7
162  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
47.3.2 Asynchronous Write Timing Waveform  
Asynchronous Write Cycle - WE# Controlled  
tWC  
tCW  
Address  
CS#  
tWR  
tAW  
tBW  
UB#, LB#  
WE#  
tWP  
tAS  
tDW  
tDH  
High-Z  
High-Z  
Data in  
Data Valid  
High-Z  
Data out  
High-Z  
Notes:  
1. A write occurs during the overlap (t ) of low CS# and low WE#. A write begins when CS# goes low and WE# goes  
WP  
low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte  
operation. A write ends at the earliest transition when CS# goes high or WE# goes high. The t  
beginning of write to the end of write.  
is measured from the  
WP  
2.  
3.  
4.  
t
t
t
is measured from the CS# going low to the end of write.  
is measured from the address valid to the beginning of write.  
CW  
AS  
is measured from the end of write to the address change. t  
is applied in case a write ends with CS# or WE#  
WR  
WR  
going high.  
5. In asynchronous write cycle, Clock, ADV# and WAIT# signals are ignored.  
Figure 47.4 Timing Waveform Of Write Cycle  
Table 47.3 Asynchronous Write AC Characteristics  
Speed  
Speed  
Symbol  
tWC  
Min  
70  
60  
60  
60  
Max  
Units  
Symbol  
tAS  
Min  
0
Max  
Units  
tCW  
tWR  
0
ns  
tAW  
ns  
tDW  
30  
0
tBW  
tDH  
tWP  
55 (note 1)  
Note:  
t
= 70ns for continuous write operation over 50 times.  
WP(min)  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
163  
A d v a n c e I n f o r m a t i o n  
47.3.2.1 Write Cycle 2  
MRS# = VIH, OE# = VIH, WAIT# = High-Z, UB# & LB# Controlled  
tWC  
Address  
tWR  
tCW  
CS#  
tAW  
tBW  
UB#, LB#  
tAS  
tWP  
WE#  
tDH  
tDW  
Data Valid  
Data in  
High-Z  
Data out  
High-Z  
Notes:  
1. A write occurs during the overlap (t ) of low CS# and low WE#. A write begins when CS# goes low and WE# goes  
WP  
low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte  
operation. A write ends at the earliest transition when CS# goes high or WE# goes high. The t  
beginning of write to the end of write.  
is measured from the  
WP  
2.  
3.  
4.  
t
t
t
is measured from the CS# going low to the end of write.  
is measured from the address valid to the beginning of write.  
CW  
AS  
is measured from the end of write to the address change. t  
is applied in case a write ends with CS# or WE#  
WR  
WR  
going high.  
5. In asynchronous write cycle, Clock, ADV# and WAIT# signals are ignored.  
Figure 47.5 Timing Waveform of Write Cycle(2)  
Table 47.4 Asynchronous Write AC Characteristics (UB# & LB# Controlled)  
Speed  
Speed  
Max  
Symbol  
tWC  
Min  
70  
60  
60  
60  
Max  
Units  
Symbol  
tAS  
Min  
0
Units  
tCW  
tWR  
0
ns  
tAW  
ns  
tDW  
30  
0
tBW  
tDH  
tWP  
55 (note 1)  
Note:  
t
= 70ns for continuous write operation over 50 times.  
WP(min)  
164  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
47.3.2.1 Write Cycle (Address Latch Type)  
MRS# = VIH, OE# = VIH, WAIT# = High-Z, WE# Controlled  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
CLK  
tADV  
ADV#  
tAS(A)  
tAH(A)  
Address  
Valid  
tCSS(A)  
tCW  
CS#  
tAW  
tBW  
UB#, LB#  
tWLRL  
tWP  
WE#  
tAS  
tDW  
tDH  
Data in  
Data Valid  
Read Latency5  
High-Z  
High-Z  
Data out  
Notes:  
1. A write occurs during the overlap (t ) of low CS# and low WE#. A write begins when CS# goes low and WE# goes  
WP  
low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for word operation.  
A write ends at the earliest transition when CS# goes high or WE# goes high. The t  
of write to the end of write.  
is measured from the beginning  
WP  
2.  
3.  
4.  
t
t
t
is measured from the address valid to the end of write. In this address latch type write timing, t  
is measured from the CS# going low to the end of write.  
is measured from the UB# and LB# going low to the end of write.  
is same as t  
.
AW  
AW  
CW  
BW  
WC  
5. Clock input does not have any affect to the write operation if the parameter t  
is met.  
WLRL  
Figure 47.6 Timing Waveform Of Write Cycle (Address Latch Type)  
Table 47.5 Asynchronous Write in Synchronous Mode AC Characteristics  
Speed  
Max  
Speed  
Symbol  
tADV  
Min  
7
Units  
Symbol  
tBW  
Min  
Max  
Units  
ns  
60  
tAS(A)  
tAH(A)  
tCSS(A)  
tCW  
0
tWP  
55 (note 2)  
7
tWLRL  
tAS  
1
0
clock  
ns  
10  
60  
60  
tDW  
30  
0
ns  
tAW  
tDH  
Notes:  
1. Address Latch Type, WE# Controlled.  
2.  
t
= 70ns for continuous write operation over 50 times.  
WP(min)  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
165  
A d v a n c e I n f o r m a t i o n  
47.3.1 Asynchronous Write Timing Waveform in Synchronous Mode  
47.3.1.1 Write Cycle (Low ADV# Type)  
MRS# = VIH, OE# = VIH, WAIT# = High-Z, WE# Controlled  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
CLK  
ADV#  
tWC  
Address  
tWR  
tCW  
tAW  
CS#  
tBW  
UB#, LB#  
tWLRL  
tWP  
WE#  
tAS  
tDH  
tDW  
Data in  
Data Valid  
Read Latency 5  
High-Z  
Data out  
High-Z  
Notes:  
1. Low ADV# type write cycle - WE# Controlled.  
2. A write occurs during the overlap (tWP) of low CS# and low WE#. A write begins when CS# goes low and WE# goes  
low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte  
operation. A write ends at the earliest transition when CS# goes high or WE# goes high. The t  
beginning of write to the end of write.  
is measured from the  
WP  
3.  
4.  
5.  
t
t
t
is measured from the CS# going low to the end of write.  
is measured from the address valid to the beginning of write.  
CW  
AS  
is measured from the end of write to the address change. t  
is applied in case a write ends with CS# or WE#  
WR  
WR  
going high.  
6. Clock input does not have any affect to the write operation if the parameter t  
is met.  
WLRL  
Figure 47.7 Timing Waveform Of Write Cycle (Low ADV# Type)  
Table 47.6 Asynchronous Write in Synchronous Mode AC Characteristics  
Speed  
Speed  
Max  
Symbol  
tWC  
Min  
70  
60  
60  
60  
Max  
Units  
Symbol  
tWLRL  
tAS  
Min  
1
Units  
clock  
tCW  
0
tAW  
ns  
tWR  
0
ns  
tBW  
tDW  
30  
0
tWP  
55 (note 2)  
tDH  
Notes:  
1. Low ADV# Type, WE# Controlled.  
2. tWP(min) = 70ns for continuous write operation over 50 times.  
166  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
47.3.1.2 Write Cycle (Low ADV# Type)  
MRS# = VIH, OE# = VIH, WAIT# = High-Z, UB# & LB# Controlled  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
CLK  
ADV#  
tWC  
Address  
CS#  
tWR  
tCW  
tAW  
tBW  
UB#, LB#  
WE#  
tAS  
tWLRL  
tWP  
tDH  
tDW  
Data Valid  
Data in  
Read Latency 5  
High-Z  
Data out  
High-Z  
Notes:  
1. Low ADV# type write cycle - UB# and LB# Controlled.  
2. A write occurs during the overlap (t ) of low CS# and low WE#. A write begins when CS# goes low and WE# goes  
WP  
low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte  
operation. A write ends at the earliest transition when CS# goes high or WE# goes high. The t  
beginning of write to the end of write.  
is measured from the  
WP  
3.  
4.  
5.  
t
t
t
is measured from the CS# going low to the end of write.  
is measured from the address valid to the beginning of write.  
CW  
AS  
is measured from the end of write to the address change. t  
is applied in case a write ends with CS# or WE#  
WR  
WR  
going high.  
6. Clock input does not have any affect to the write operation if the parameter t  
is met.  
WLRL  
Figure 47.8 Timing Waveform Of Write Cycle (Low ADV# Type)  
Table 47.7 Asynchronous Write in Synchronous Mode AC Characteristics  
Speed  
Speed  
Max  
Symbol  
tWC  
Min  
70  
60  
60  
60  
Max  
Units  
Symbol  
tWLRL  
tAS  
Min  
1
Units  
clock  
tCW  
0
tAW  
ns  
tWR  
0
ns  
tBW  
tDW  
30  
0
tWP  
55 (note 2)  
tDH  
Notes:  
1. Low ADV# type multiple write, UB#, LB# controlled.  
2.  
t
= 70ns for continuous write operation over 50 times.  
WP(min)  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
167  
A d v a n c e I n f o r m a t i o n  
47.3.1.3 Multiple Write Cycle (Low ADV# Type)  
MRSE = VIH, OE# = VIH, WAIT# = High-Z, WE# Controlled\  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
CLK  
ADV#  
Address  
tWC  
tWC  
tWR  
tWR  
t
AW  
tCW  
t
AW  
tCW  
CS#  
tBW  
tBW  
UB#, LB#  
tWHP  
tWP  
tWP  
WE#  
tAS  
tAS  
tDH  
tDH  
tDW  
tDW  
Data in  
Data Valid  
DataValid  
Data out  
High-Z  
High-Z  
Notes:  
1. Low ADV# type multiple write cycle.  
2. A write occurs during the overlap (t ) of low CS# and low WE#. A write begins when CS# goes low and WE# goes  
WP  
low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte  
operation. A write ends at the earliest transition when CS# goes high or WE# goes high. The t  
beginning of write to the end of write.  
is measured from the  
WP  
3.  
4.  
5.  
t
t
t
is measured from the CS# going low to the end of write.  
is measured from the address valid to the beginning of write.  
CW  
AS  
is measured from the end of write to the address change. t  
is applied in case a write ends with CS# or WE#  
WR  
WR  
going high.  
6. Clock input does not have any affect on the asynchronous multiple write operation if t  
Latency - 1) clock duration.  
is shorter than the (Read  
WHP  
7.  
t
= 70ns for continuous write operation over 50 times.  
WP(min)  
Figure 47.9 Timing Waveform Of Multiple Write Cycle (Low ADV# Type)  
Table 47.8 Asynchronous Write in Synchronous Mode AC Characteristics  
Speed  
Speed  
Max  
Symbol  
Units  
Symbol  
Units  
Min  
70  
60  
60  
60  
Max  
Min  
5ns  
0
t
t
t
t
t
Latency-1 clock  
WC  
CW  
AW  
BW  
WHP  
t
AS  
ns  
t
0
WR  
DW  
ns  
t
30  
0
t
55 (note 2)  
t
DH  
WP  
Notes:  
1. Low ADV# type multiple write, WE# Controlled.  
2.  
t
= 70ns for continuous write operation over 50 times.  
WP(min)  
168  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
48 AC Operating Conditions  
48.1 Test Conditions (Test Load and Test Input/Output Reference)  
„ Input pulse level: 0.2 to VCC-0.2V  
„ Input rising and falling time: 3ns  
„ Input and output reference voltage: 0.5 x VCC  
„ Output load (See Figure 48.1): CL = 30pF  
„
Vtt = 0.5 x V  
DDQ  
50  
Dout  
Z0=50  
30pF  
Figure 48.1 AC Output Load Circuit  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
169  
A d v a n c e I n f o r m a t i o n  
48.2 Synchronous AC Characteristics  
Speed  
Max  
Parameter List  
Symbol  
Units  
Min  
15  
0
Clock Cycle Time  
T
200  
2500  
10  
10  
12  
7
Burst Cycle Time  
t
BC  
Address Set-up Time to ADV# Falling (Burst)  
Address Hold Time from ADV# Rising (Burst)  
ADV# Setup Time  
t
AS(B)  
AH(B)  
t
7
t
5
ADVS  
ADV# Hold Time  
t
7
ADVH  
CS# Setup Time to Clock Rising (Burst)  
Burst End to New ADV# Falling  
Burst Stop to New ADV# Falling  
CS# Low Hold Time from Clock  
CS# High Pulse Width  
t
5
CSS(B)  
t
7
Burst Operation  
(Common)  
BEADV  
ns  
t
12  
7
BSADV  
t
t
CSLH  
CSHP  
ADHP  
55  
1
ADV# High Pulse Width  
t
Chip Select to WAIT# Low  
t
WL  
ADV# Falling to WAIT# Low  
Clock to WAIT# High  
t
AWL  
t
WH  
Chip De-select to WAIT# High-Z  
UB#, LB# Enable to End of Latency Clock  
Output Enable to End of Latency Clock  
UB#, LB# Valid to Low-Z Output  
Output Enable to Low-Z Output  
Latency Clock Rising Edge to Data Output  
Output Hold  
t
WZ  
BEL  
OEL  
BLZ  
OLZ  
t
10  
10  
7
clock  
clock  
t
t
1
5
t
5
t
3
CD  
Burst Read Operation  
t
OH  
ns  
Burst End Clock to Output High-Z  
Chip De-select to Output High-Z  
Output Disable to Output High-Z  
UB#, LB# Disable to Output High-Z  
WE# Set-up Time to Command Clock  
WE# Hold Time from Command Clock  
WE# High Pulse Width  
t
5
HZ  
t
CHZ  
OHZ  
t
7
t
7
BHZ  
WES  
WEH  
WHP  
t
t
t
5
5
UB#, LB# Set-up Time to Clock  
UB#, LB# Hold Time from Clock  
Byte Masking Set-up Time to Clock  
Byte Masking Hold Time from Clock  
Data Set-up Time to Clock  
t
5
BS  
Burst Write Operation  
t
5
ns  
BH  
t
7
BMS  
BMH  
t
7
t
5
DS  
Data Hold Time from Clock  
t
3
DHC  
Note: 3.(V = 1.72.0V, TA=-40 to 85 °C, Maximum Main Clock Frequency = 66MHz.  
CC  
48.3 Timing Diagrams  
48.3.1 Synchronous Burst Operation Timing Waveform  
Latency = 5, Burst Length = 4 (MRS# = VIH)  
170  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Dont Care  
Valid  
tCSS(B)  
tBC  
Undefined  
Data out  
Data in  
DQ0 DQ1 DQ2 DQ3  
D0  
D1  
D2  
D3  
D0  
Burst Command Clock  
Burst Read End Clock  
Burst Write End Clock  
Figure 48.2 Timing Waveform Of Basic Burst Operation  
Table 48.1 Burst Operation AC Characteristics  
Speed  
Speed  
Symbol  
Min  
15  
5
Max  
Units  
Symbol  
tAS(B)  
Min  
0
Max  
Units  
T
200  
tBC  
2500  
tAH(B)  
7
ns  
ns  
tADVS  
tADVH  
tCSS(B)  
tBEADV  
5
7
7
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
171  
A d v a n c e I n f o r m a t i o n  
48.3.2 Synchronous Burst Read Timing Waveforms  
48.3.2.1 Read Timings  
Latency = 5, Burst Length = 4, WP = Low enable (WE# = VIH, MRS# = VIH).  
CS# Toggling Consecutive Burst Read  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Dont Care  
Valid  
tCSHP  
tCSS(B)  
tBC  
tBHZ  
tOHZ  
tBEL  
LB#, UB#  
OE#  
tBLZ  
tOEL  
tCHZ  
tHZ  
tOLZ  
Latency 5  
tCD  
tOH  
Undefined  
Data out  
DQ0 DQ1 DQ2 DQ3  
tWZ  
tWL  
tWH  
tWH  
tWL  
WAIT#  
High-Z  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge).  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 48.3 Timing Waveform of Burst Read Cycle (1)  
Table 48.2 Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
tCSHP  
tBEL  
Min  
5
Max  
Units  
Symbol  
tOHZ  
tBHZ  
tCD  
Min  
3
Max  
7
Units  
ns  
1
7
clock  
ns  
tOEL  
1
10  
10  
12  
7
tBLZ  
5
tOH  
ns  
tOLZ  
tHZ  
5
tWL  
10  
7
tWH  
tCHZ  
tWZ  
172  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4, WP = Low enable (WE# = VIH, MRS# = VIH).  
CS# Low Holding Consecutive Burst Read  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
t
ADVH  
ADVS  
t
ADV#  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Dont Care  
Valid  
tCSS(B)  
tBC  
tBEL  
LB#, UB#  
OE#  
tBLZ  
tOEL  
t
OLZ  
Latency 5  
tCD  
tOH  
tHZ  
Undefined  
Data out  
DQ0 DQ1 DQ2 DQ3  
tAWL  
tWH  
tWL  
tWH  
WAIT#  
High-Z  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge).  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. The consecutive multiple burst read operation with holding CS# low is possible only through issuing a new ADV# and  
address.  
5. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 48.4 Timing Waveform of Burst Read Cycle (2)  
Table 48.3 Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
tBEL  
Min  
1
Max  
Units  
Symbol  
tCD  
Min  
3
Max  
10  
Units  
clock  
tOEL  
tBLZ  
tOLZ  
tHZ  
1
tOH  
5
tWL  
10  
10  
12  
ns  
5
ns  
tAWL  
tWH  
10  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
173  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4, WP = Low enable (WE# = VIH, MRS# = VIH).  
Last data sustaining  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
T
CLK  
tADVH  
tADVS  
ADV#  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Don’t Care  
tCSS(B)  
tBC  
tBEL  
tOEL  
LB#, UB#  
OE#  
tBLZ  
tOLZ  
Latency 5  
tOH  
tCD  
Undefined  
Data out  
DQ0 DQ1 DQ2 DQ3  
tWL  
tWH  
High-Z  
WAIT#  
Notes:  
1. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge).  
2. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
3. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 48.5 Timing Waveform of Burst Read Cycle (3)  
Table 48.4 Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
tBEL  
Min  
1
Max  
Units  
Symbol  
tCD  
Min  
3
Max  
10  
Units  
clock  
tOEL  
1
tOH  
ns  
tBLZ  
5
tWL  
10  
12  
ns  
tOLZ  
5
tAWL  
174  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
48.3.2.1 Write Timings  
Latency = 5, Burst Length = 4, WP = Low enable (OE# = VIH, MRS# = VIH).  
CS# Toggling Consecutive Burst Write  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tCSHP  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Valid  
Don’t Care  
tBC  
tCSS(B)  
tBS  
tBMS  
tBH  
tBMH  
LB#, UB#  
WE#  
tWEH  
tWHP  
tWES  
tDS  
tDHC  
tDHC  
Latency 5  
tWH  
Latency 5  
tWH  
Data in  
D0  
D1  
D2  
D3  
D0  
tWZ  
tWL  
tWL  
High-Z  
WAIT#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
3. /WAIT Low (t or t ): Data not available (driven by CS# low going edge or ADV# low going edge)  
WL  
AWL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
WH  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
WZ  
4. D2 is masked by UB# and LB#.  
5. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 48.6 Timing Waveform of Burst Write Cycle (1)  
Table 48.5 Burst Write AC Characteristics  
Speed  
Speed  
Symbol  
tCSHP  
tBS  
Min  
5
Max  
Units  
Symbol  
tWHP  
tDS  
Min  
5
Max  
Units  
5
5
tBH  
5
tDHC  
tWL  
3
ns  
tBMS  
tBMH  
tWES  
tWEH  
7
ns  
10  
12  
7
7
tWH  
5
tWZ  
5
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
175  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4, WP = Low enable (OE# = VIH, MRS# = VIH).  
CS# Low Holding Consecutive Burst Write  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
t
ADVH  
ADVS  
t
ADV#  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Dont Care  
Valid  
tCSS(B)  
tBC  
tBEL  
LB#, UB#  
OE#  
tBLZ  
tOEL  
t
OLZ  
Latency 5  
tCD  
tOH  
tHZ  
Undefined  
Data out  
DQ0 DQ1 DQ2 DQ3  
tAWL  
tWH  
tWL  
tWH  
WAIT#  
High-Z  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
3. /WAIT Low (t or t ): Data not available (driven by CS# low going edge or ADV# low going edge)  
WL  
AWL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
WH  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
WZ  
4. D2 is masked by UB# and LB#.  
5. The consecutive multiple burst read operation with holding CS# low is possible only through issuing a new ADV# and  
address.  
6. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 48.7 Timing Waveform of Burst Write Cycle (2)  
Table 48.6 Burst Write AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
5
Max  
Min  
5
Max  
t
t
WHP  
BS  
t
5
t
5
BH  
DS  
t
7
t
3
BMS  
BMH  
WES  
WEH  
DHC  
ns  
ns  
t
t
7
t
10  
10  
12  
WL  
5
t
AWL  
t
5
t
WH  
176  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
48.3.3 Synchronous Burst Read Stop Timing Waveform  
Latency = 5, Burst Length = 4, WP = Low enable (WE#= VIH, MRS# = VIH).  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
T
CLK  
tADVH  
tADVS  
ADV#  
tBSADV  
tCSHP  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Don’t Care  
Valid  
tCSS(B)  
tCSLH  
tBEL  
tOEL  
LB#, UB#  
OE#  
tBLZ  
tOLZ  
Latency 5  
tOH  
tCHZ  
tCD  
Undefined  
Data  
DQ0  
DQ1  
tWZ  
tWL  
tWL  
tWH  
High-Z  
High-Z  
WAIT#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished.  
2. /WAIT Low (t or t ): Data not available (driven by CS# low going edge or ADV# low going edge)  
WL  
AWL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
WH  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
WZ  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. The burst stop operation should not be repeated for over 2.5µs.  
Figure 48.8 Timing Waveform of Burst Read Stop by CS#  
Table 48.7 Burst Read Stop AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
12  
7
Max  
Min  
3
Max  
10  
t
t
BSADV  
CD  
t
t
ns  
t
CSLH  
CSHP  
OH  
5
t
7
CHZ  
ns  
t
1
t
10  
12  
7
BEL  
OEL  
WL  
clock  
ns  
t
1
t
WH  
t
5
t
WZ  
BLZ  
OLZ  
t
5
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
177  
A d v a n c e I n f o r m a t i o n  
48.3.4 Synchronous Burst Write Stop Timing Waveform  
Latency = 5, Burst Length = 4, WP = Low enable (OE#= VIH, MRS# = VIH).  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
T
CLK  
t
ADVH  
ADVS  
t
ADV#  
tBSADV  
tAH(B)  
tAS(B)  
Don’t Care  
Address  
CS#  
Valid  
Valid  
tCSHP  
t
CSS(B)  
tCSLH  
tBS  
tBH  
LB#, UB#  
WE#  
tWHP  
t
WEH  
t
WES  
tDS  
tDHC  
Latency 5  
Latency 5  
Data in  
D0  
D1  
D0  
D1  
D2  
tWZ  
t
WL  
t
WL  
tWH  
tWH  
High-Z  
High-Z  
WAIT#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished.  
2. /WAIT Low (t or t ): Data not available (driven by CS# low going edge or ADV# low going edge)  
WL  
AWL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
WH  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
WZ  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. The burst stop operation should not be repeated for over 2.5µs.  
Figure 48.9 Timing Waveform of Burst Write Stop by CS#  
Table 48.8 Burst Write Stop AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
12  
7
Max  
Min  
5
Max  
t
t
WHP  
BSADV  
t
t
t
5
CSLH  
DS  
5
t
3
CSHP  
DHC  
ns  
t
5
t
10  
12  
7
ns  
BS  
WL  
t
5
t
WH  
BH  
t
5
t
WZ  
WES  
WEH  
t
5
178  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
48.3.5 Synchronous Burst Read Suspend Timing Waveform  
Latency = 5, Burst Length = 4, WP = Low enable (WE#= VIH, MRS# = VIH).  
0
1
2
3
4
5
6
7
8
9
10  
11  
T
CLK  
tADVH  
tADVS  
ADV#  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Dont Care  
tCSS(B)  
tBC  
tBEL  
tOEL  
LB#, UB#  
OE#  
tBLZ  
tOLZ  
Latency 5  
tOHZ  
tOLZ  
tOH  
tCD  
tHZ  
High-Z  
Undefined  
Data out  
DQ0 DQ1  
DQ1 DQ2 DQ3  
tWZ  
tWL  
tWH  
WAIT#  
High-Z  
Notes:  
1. If the clock input is halted during burst read operation, the data output will be suspended. During the burst read  
suspend period, OE# high drives data output to high-Z. If the clock input is resumed, the suspended data will be  
output first.  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
WL  
AWL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
3. During the suspend period, OE# high drives DQ to High-Z and OE# low drives DQ to Low-Z. If OE# stays low during  
suspend period, the previous data will be sustained.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 48.10 Timing Waveform of Burst Read Suspend Cycle (1)  
Table 48.9 Burst Read Suspend AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
1
Max  
Min  
Max  
10  
7
t
t
HZ  
BEL  
clock  
t
1
t
OEL  
OHZ  
t
5
t
10  
12  
7
BLZ  
OLZ  
WL  
ns  
t
5
t
WH  
ns  
t
3
10  
t
CD  
OH  
WZ  
t
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
179  
A d v a n c e I n f o r m a t i o n  
49 Transition Timing Waveform Between Read And Write  
Latency = 5, Burst Length = 4, WP = Low enable (MRS# = VIH).  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
T
CLK  
tADVH  
tADVS  
ADV#  
tADV  
tAH(A)  
tBEADV  
tAS(A)  
tAH(B)  
tAS(B)  
Valid  
Dont Care  
Valid  
Address  
CS#  
tCSS(B)  
tAW  
tCW  
tBC  
tCSS(A)  
tWLRL  
tWP  
WE#  
OE#  
tAS  
tOEL  
tBEL  
tBW  
LB#, UB#  
Data in  
tDH  
tDW  
Data Valid  
Latency 5  
High-Z  
tCD  
tOH  
DQ0 DQ1 DQ2 DQ3  
tHZ  
High-Z  
Data out  
tWL  
tWZ  
tWH  
High-Z  
High-Z  
WAIT#  
Read Latency 5  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 49.1 Synchronous Burst Read to Asynchronous Write (Address Latch Type)  
Table 49.1 Burst Read to Asynchronous Write (Address Latch Type) AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
7
ns  
t
1
clock  
BEADV  
WLRL  
180  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4 (MRS# = VIH).  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
21  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS#  
Valid  
Don’t Care  
Valid Adderss  
tWR  
tAW  
tCW  
tCSS(B)  
tBC  
tWLRL  
tWP  
WE#  
OE#  
tAS  
tOEL  
tBEL  
tBW  
LB#, UB#  
Data in  
tDH  
tDW  
Data Valid  
Latency 5  
High-Z  
tCD  
tOH  
DQ0 DQ1 DQ2 DQ3  
tHZ  
High-Z  
Data out  
tWL  
tWZ  
tWH  
High-Z  
High-Z  
WAIT#  
Read Latency 5  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 49.2 Synchronous Burst Read to Asynchronous Write (Low ADV# Type)  
Table 49.2 Burst Read to Asynchronous Write (Low ADV# Type) AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
7
ns  
t
1
clock  
BEADV  
WLRL  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
181  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4 (MRS# = VIH).  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
T
0
CLK  
tADVH  
tAH(B)  
tADVS  
ADV#  
tADV  
tAH(A)  
tAS(A)  
tAS(B)  
Address  
CS#  
Dont Care  
tAW  
tCW  
Dont Care  
tBC  
Valid  
Valid  
tCSS(A)  
tCSS(B)  
tWLRL  
tWP  
WE#  
OE#  
tAS  
tOEL  
tBEL  
tBW  
LB#, UB#  
Data in  
tDH  
tDW  
Data Valid  
Latency 5  
tCD  
tOH  
tHZ  
Data out  
High-Z  
Read Latency 5  
DQ0 DQ1 DQ2 DQ3  
tWH  
tWL  
tWZ  
High-Z  
WAIT#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 49.3 Asynchronous Write (Address Latch Type) to Synchronous Burst Read Timing  
Table 49.3 Asynchronous Write (Address Latch Type) to Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
1
clock  
WLRL  
182  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4 (MRS# = VIH).  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
T
0
CLK  
tADVH  
tAH(B)  
tADtHAPDVS  
ADV#  
Address  
CS#  
tAS(B)  
tWC  
Valid  
Valid  
Dont Care  
tBC  
tAW  
tCW  
tWR  
tCSS(B)  
tWLRL  
tWP  
tBW  
WE#  
OE#  
tAS  
tOEL  
tBEL  
LB#, UB#  
Data in  
tDH  
tDW  
Data Valid  
Latency 5  
tCD  
tOH  
tHZ  
Data out  
High-Z  
DQ0 DQ1 DQ2 DQ3  
tWH  
tWL  
tWZ  
High-Z  
Read Latency 5  
WAIT#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 49.4 Asynchronous Write (Low ADV# Type) to Synchronous Burst Read Timing  
Table 49.4 Asynchronous Write (Low ADV# Type) to Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
1
clock  
t
ns  
WLRL  
ADHP  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
183  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4 (MRS# = VIH).  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tAH(B)  
tAH(B)  
tAS(B)  
tAS(B)  
Valid  
Dont Care  
Valid  
Address  
CS#  
tCSS(B)  
tBC  
tBC  
tCSS(B)  
tWES  
tWEH  
WE#  
OE#  
tOEL  
tBEL  
tBS  
tBH  
LB#, UB#  
Data in  
tDS  
Latency 5  
tDHC  
tWZ  
D0 D1 D2 D3  
High-Z  
Latency 5  
High-Z  
tCD  
tOH  
DQ0 DQ1 DQ2 DQ3  
tWZ  
tHZ  
High-Z  
Data out  
tWH  
tWL  
tWH  
tWL  
High-Z  
WAIT#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 49.5 Synchronous Burst Read to Synchronous Burst Write Timing  
Table 49.5 Asynchronous Write (Low ADV# Type) to Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
7
ns  
BEADV  
184  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  
A d v a n c e I n f o r m a t i o n  
Latency = 5, Burst Length = 4 (MRS# = VIH).  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
T
CLK  
tADVH  
tADVS  
ADV#  
tBEADV  
tAH(B)  
tAH(B)  
tAS(B)  
tAS(B)  
Valid  
Dont Care  
Valid  
Address  
CS#  
tCSS(B)  
tBC  
tBC  
tCSS(B)  
tWES  
tWEH  
WE#  
OE#  
tOEL  
tBS  
tBH  
tBEL  
LB#, UB#  
Data in  
tDS  
Latency 5  
tDHC  
D0 D1 D2  
D3  
High-Z  
Latency 5  
tCD  
tOH  
tHZ  
DQ0 DQ1 DQ2 DQ3  
High-Z  
Data out  
tWL  
tWH  
tWZ  
tWH  
tWL  
High-Z  
WAIT#  
Notes:  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation,  
t
should be met.  
BEADV  
2. /WAIT Low (t  
or t  
WH  
WZ  
): Data not available (driven by CS# low going edge or ADV# low going edge)  
AWL  
WL  
/WAIT High (t ): Data available (driven by Latency-1 clock)  
/WAIT High-Z (t ): Data don’t care (driven by CS# high going edge)  
3. Multiple clock risings are allowed during low ADV# period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time (t ) should not be over 2.5µs.  
BC  
Figure 49.6 Synchronous Burst Write to Synchronous Burst Read Timing  
Table 49.6 Asynchronous Write (Low ADV# Type) to Burst Read AC Characteristics  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
t
7
ns  
BEADV  
September 15, 2005 S71WS-N_01_A4  
S71WS-Nx0 Based MCPs  
185  
A d v a n c e I n f o r m a t i o n  
50 Revisions  
Revision A (February 1, 2004)  
Initial Release  
Revision A1 (February 9, 2005)  
Updated document to include Burst Speed of 66 Mhz  
Updated Publication Number  
Revision A2 (April 11, 2005)  
Updated Product Selector Guide and Ordering Information tables  
Revision A3 (May 13, 2005)  
Updated the entire utRAM module  
Revision A4 (September 15, 2005)  
Added 128-MB module.  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary  
industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that  
includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal  
injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control,  
medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and  
artificial satellite). Please note that Spansion LLC will not be liable to you and/or any third party for any claims or damages arising in connection with above-  
mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such  
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels  
and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on ex-  
port under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the  
prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion LLC product under development  
by Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided  
as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement  
of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the  
use of the information in this document.  
Copyright ©2004-2005 Spansion LLC. All rights reserved. Spansion, the Spansion logo, and MirrorBit are trademarks of Spansion LLC. Other company and  
product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
186  
S71WS-Nx0 Based MCPs  
S71WS-N_01_A4 September 15, 2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY