S71GL064A0ABAI0B3 [SPANSION]

Memory Circuit, 4MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-56;
S71GL064A0ABAI0B3
型号: S71GL064A0ABAI0B3
厂家: SPANSION    SPANSION
描述:

Memory Circuit, 4MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-56

文件: 总134页 (文件大小:2383K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S71GL064A Based MCPs  
Stacked Multi-Chip Product (MCP) Flash Memory and RAM  
64 Megabit (4 M x 16-bit) CMOS 3.0 Volt-only Page Mode Flash  
Memory and 16/8 Megabit (1M/512K x 16-bit)  
Pseudo Static RAM / Static RAM  
ADVANCE  
INFORMATION  
Notice to Readers: The Advance Information status indicates that this  
document contains information on one or more products under development  
at Spansion LLC. The information is intended to help you evaluate this product.  
Do not design in this product without contacting the factory. Spansion LLC  
reserves the right to change or discontinue work on this proposed product  
without notice.  
Publication Number S71GL064A_00 Revision A Amendment 2 Issue Date February 8, 2005  
This page intentionally left blank.  
S71GL064A based MCPs  
Stacked Multi-Chip Product (MCP) Flash Memory and  
RAM 64 Megabit (4 M x 16-bit) CMOS 3.0 Volt-only Page  
Mode Flash Memory and 16/8 Megabit (1M/512K x 16-bit)  
Pseudo Static RAM / Static RAM  
ADVANCE  
INFORMATION  
Data Sheet  
Distinctive Characteristics  
MCP Features  
„ Power supply voltage of 2.7 to 3.1 volt  
„ High performance  
„ Packages  
— 7 x 9 x 1.2 mm 56 ball FBGA (TLC056)  
„ Operating Temperature  
— 100 ns access time (100 ns Flash, 70 ns pSRAM/  
SRAM)  
— 25 ns page read times  
— –25°C to +85°C  
— –40°C to +85°C  
General Description  
The S71GL064A product series consists of S29GL064 Flash memory with pSRAM and SRAM  
combinations defined as:  
Flash Memory Density  
64Mb  
8Mb  
S71GL064A80/S71GL064A08  
S71GL064AA0/S71GL064A0A  
pSRAM / SRAM  
Density  
16Mb  
Publication Number S71GL064A_00 Revision A Amendment 2 Issue Date February 8, 2005  
This document states the current technical specifications regarding the Spansion product(s) described herein. Each product described herein may be designated as Ad-  
vance Information, Preliminary, or Full Production. See the section “Notice on Data Sheet Designations” for definitions.  
A d v a n c e I n f o r m a t i o n  
Notice On Data Sheet Designations  
Spansion LLC issues data sheets with Advance Information or Preliminary designations to advise  
readers of product information or intended specifications throughout the product life cycle, in-  
cluding development, qualification, initial production, and full production. In all cases, however,  
readers are encouraged to verify that they have the latest information before finalizing their de-  
sign. The following descriptions of Spansion data sheet designations are presented here to high-  
light their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion LLC is developing one or more spe-  
cific products, but has not committed any design to production. Information presented in a doc-  
ument with this designation is likely to change, and in some cases, development on the product  
may discontinue. Spansion LLC therefore places the following conditions upon Advance Informa-  
tion content:  
“This document contains information on one or more products under development at Spansion LLC. The  
information is intended to help you evaluate this product. Do not design in this product without con-  
tacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed  
product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a  
commitment to production has taken place. This designation covers several aspects of the prod-  
uct life cycle, including product qualification, initial production, and the subsequent phases in the  
manufacturing process that occur before full production is achieved. Changes to the technical  
specifications presented in a Preliminary document should be expected while keeping these as-  
pects of production under consideration. Spansion places the following conditions upon Prelimi-  
nary content:  
“This document states the current technical specifications regarding the Spansion product(s) described  
herein. The Preliminary status of this document indicates that product qualification has been completed,  
and that initial production has begun. Due to the phases of the manufacturing process that require  
maintaining efficiency and quality, this document may be revised by subsequent versions or modifica-  
tions due to changes in technical specifications.”  
Combination  
Some data sheets will contain a combination of products with different designations (Advance In-  
formation, Preliminary, or Full Production). This type of document will distinguish these products  
and their designations wherever necessary, typically on the first page, the ordering information  
page, and pages with DC Characteristics table and AC Erase and Program table (in the table  
notes). The disclaimer on the first page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal  
changes are expected, the Preliminary designation is removed from the data sheet. Nominal  
changes may include those affecting the number of ordering part numbers available, such as the  
addition or deletion of a speed option, temperature range, package type, or V range. Changes  
IO  
may also include those needed to clarify a description or to correct a typographical error or incor-  
rect specification. Spansion LLC applies the following conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s) described  
herein. Spansion LLC deems the products to have been in sufficient production volume such that sub-  
sequent versions of this document are not expected to change. However, typographical or specification  
corrections, or modifications to the valid combinations offered may occur.”  
Questions regarding these document designations may be directed to your local AMD or Fujitsu  
sales office.  
2
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Product Selector Guide  
64 Mb Flash Memory  
Device-Model# (Note)  
Flash Access time (ns) (p)SRAM density (p)SRAM Access time (ns)  
(p)SRAM type  
Package  
S71GL064A80-0K  
S71GL064A80-0P  
S71GL064A08-0B  
S71GL064A08-0F  
S71GL064AA0-0K  
S71GL064AA0-0P  
S71GL064AA0-0U  
S71GL064AA0-0Z  
S71GL064A0A-0B  
S71GL064A0A-0F  
8 M pSRAM  
8 M SRAM  
pSRAM1  
SRAM1  
pSRAM1  
pSRAM7  
SRAM1  
100  
70  
TLC056  
16 M pSRAM  
16 M SRAM  
Note: Please see the valid combinations table for the model# description.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
3
A d v a n c e I n f o r m a t i o n  
Reset Command .................................................................................................40  
Autoselect Command Sequence ....................................................................41  
Enter Secured Silicon Sector/Exit Secured Silicon  
S71GL064A based MCPs  
Distinctive Characteristics . . . . . . . . . . . . . . . . . . . 1  
MCP Features ........................................................................................................ 1  
General Description . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . .3  
64 Mb Flash Memory ............................................................................................3  
Connection Diagram (S71GL064A) . . . . . . . . . . . . .8  
Special Handling Instructions For FBGA Package ...................................8  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 10  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 12  
TLC056—56-ball Fine-Pitch Ball Grid Array (FBGA)  
Sector Command Sequence .............................................................................41  
Word Program Command Sequence .......................................................41  
Unlock Bypass Command Sequence ........................................................42  
Write Buffer Programming .........................................................................42  
Accelerated Program ....................................................................................44  
Figure 3. Write Buffer Programming Operation....................... 45  
Figure 4. Program Operation ............................................... 46  
Program Suspend/Program Resume Command Sequence ....................46  
Figure 5. Program Suspend/Program Resume........................ 48  
Chip Erase Command Sequence ...................................................................48  
Sector Erase Command Sequence . . . . . . . . . . . 49  
Figure 6. Erase Operation ................................................... 50  
Erase Suspend/Erase Resume Commands ..................................................50  
9 x 7 mm Package ............................................................................................... 12  
Table 10. Command Definitions (x16 Mode, BYTE# = V ) ......52  
IH  
S29GLxxxA MirrorBit™ Flash Family  
DQ7: Data# Polling ............................................................................................53  
Figure 7. Data# Polling Algorithm ........................................ 54  
RY/BY#: Ready/Busy# ....................................................................................... 54  
Figure 8. Toggle Bit Algorithm ............................................. 56  
Reading Toggle Bits DQ6/DQ2 ..................................................................... 57  
DQ5: Exceeded Timing Limits ........................................................................ 57  
DQ3: Sector Erase Timer ................................................................................58  
DQ1: Write-to-Buffer Abort ...........................................................................58  
Table 11. Write Operation Status .........................................58  
Figure 9. Maximum Negative Overshoot Waveform................. 59  
Figure 10. Maximum Positive Overshoot Waveform ................ 59  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . 59  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 60  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Figure 11. Test Setup......................................................... 61  
Table 12. Test Specifications ...............................................61  
Key to Switching Waveforms . . . . . . . . . . . . . . . . 62  
Figure 12. Input Waveforms and Measurement Levels ............ 62  
Read-Only Operations-S29GL064A only ................................................... 63  
Figure 13. Read Operation Timings....................................... 63  
Figure 14. Page Read Timings.............................................. 64  
Hardware Reset (RESET#) ..............................................................................64  
Figure 15. Reset Timings .................................................... 65  
Erase and Program Operations-S29GL064A Only ..................................66  
Figure 16. Program Operation Timings.................................. 67  
Figure 17. Accelerated Program Timing Diagram.................... 67  
Figure 18. Chip/Sector Erase Operation Timings..................... 68  
Figure 19. Data# Polling Timings  
(During Embedded Algorithms)............................................ 69  
Figure 20. Toggle Bit Timings (During Embedded Algorithms).. 69  
Figure 21. DQ2 vs. DQ6...................................................... 70  
Temporary Sector Unprotect ........................................................................70  
Figure 22. Temporary Sector Group Unprotect Timing Diagram 70  
Figure 23. Sector Group Protect and Unprotect Timing Diagram 71  
Alternate CE# Controlled Erase and  
Distinctive Characteristics 13  
General Description . . . . . . . . . . . . . . . . . . . . . . . . 14  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 15  
S29GL064A ............................................................................................................15  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Logic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . 19  
Table 1. Device Bus Operations ........................................... 19  
Requirements for Reading Array Data ......................................................... 19  
Page Mode Read .............................................................................................20  
Writing Commands/Command Sequences ................................................20  
Write Buffer ....................................................................................................20  
Accelerated Program Operation ..............................................................20  
Autoselect Functions ..................................................................................... 21  
Standby Mode ....................................................................................................... 21  
Automatic Sleep Mode ...................................................................................... 21  
RESET#: Hardware Reset Pin ......................................................................... 21  
Output Disable Mode ........................................................................................ 21  
Table 2. S29GL064A Top Boot Sector Architecture ................. 22  
Table 3. S29GL064A Bottom Boot Sector Architecture ............ 25  
Autoselect Mode ................................................................................................ 29  
Table 4. Autoselect Codes, (High Voltage Method) ................ 30  
Sector Group Protection and Unprotection ............................................. 30  
Table 5. S29GL064A Sector Group  
Protection/Unprotection Address ......................................... 31  
Figure 1. Temporary Sector Group Unprotect Operation .......... 32  
Figure 2. In-System Sector Group Protect/Unprotect Algorithms 33  
Secured Silicon Sector Flash Memory Region ............................................34  
Write Protect (WP#) ........................................................................................35  
Hardware Data Protection ..............................................................................35  
Low VCC Write Inhibit ................................................................................35  
Write Pulse “Glitch” Protection ................................................................35  
Logical Inhibit ...................................................................................................35  
Power-Up Write Inhibit ................................................................................36  
Program Operations-S29GL064A ................................................................. 72  
Figure 24. Alternate CE# Controlled Write (Erase/Program)  
Operation Timings.............................................................. 73  
Erase And Programming Performance . . . . . . . . 74  
Common Flash Memory Interface (CFI) . . . . . . 36  
Table 6. CFI Query Identification String ................................ 37  
Table 7. System Interface String.......................................... 37  
Table 8. Device Geometry Definition .................................... 38  
Table 9. Primary Vendor-Specific Extended Query ................. 38  
Command Definitions . . . . . . . . . . . . . . . . . . . . . .40  
Reading Array Data ...........................................................................................40  
pSRAM Type 1  
Functional Description . . . . . . . . . . . . . . . . . . . . . 75  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . 75  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 76  
4
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Table 13. 4Mb pSRAM Asynchronous .................................... 76  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 105  
Recommended Operating Conditions . . . . . . . . 105  
Package Capacitance . . . . . . . . . . . . . . . . . . . . . 105  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 106  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . .107  
Table 14. 8Mb pSRAM Asynchronous .................................... 76  
Table 15. 16Mb pSRAM Asynchronous .................................. 77  
Table 16. 16Mb pSRAM Page Mode ...................................... 78  
Table 17. 32Mb pSRAM Page Mode ...................................... 79  
Table 18. 64Mb pSRAM Page Mode ...................................... 79  
Read Operation .................................................................................................107  
Write Operation .............................................................................................. 108  
Power Down Parameters ...............................................................................109  
Other Timing Parameters ...............................................................................109  
AC Test Conditions ..........................................................................................110  
AC Measurement Output Load Circuits ....................................................110  
Figure 37. AC Output Load Circuit – 16 Mb.......................... 110  
Figure 38. AC Output Load Circuit – 32 Mb and 64 Mb .......... 110  
Timing Test Conditions . . . . . . . . . . . . . . . . . . . . 80  
Output Load Circuit .......................................................................................... 81  
Figure 25. Output Load Circuit ............................................. 81  
Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . 81  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .82  
Table 19. 4Mb pSRAM Page Mode ........................................ 82  
Table 20. 8Mb pSRAM Asynchronous .................................... 84  
Figure 26. 16Mb pSRAM Asynchronous.................................. 86  
Table 21. 16Mb pSRAM Page Mode ...................................... 87  
Table 22. 32Mb pSRAM Page Mode ...................................... 89  
Table 23. 64Mb pSRAM Page Mode ...................................... 91  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Read Timings .........................................................................................................111  
Figure 39. Read Timing #1 (Basic Timing)........................... 111  
Figure 40. Read Timing #2 (OE# Address Access................. 111  
Figure 41. Read Timing #3 (LB#/UB# Byte Access).............. 112  
Figure 42. Read Timing #4 (Page Address Access after CE1# Control  
Access for 32M and 64M Only)........................................... 112  
Figure 43. Read Timing #5 (Random and Page Address Access for  
32M and 64M Only).......................................................... 113  
Write Timings .....................................................................................................113  
Figure 44. Write Timing #1 (Basic Timing) .......................... 113  
Figure 45. Write Timing #2 (WE# Control).......................... 114  
Figure 46. Write Timing #3-1  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Read Cycle ........................................................................................................... 92  
Figure 27. Timing of Read Cycle  
(CE# = OE# = V , WE# = ZZ# = V )................................. 92  
IL  
IH  
Figure 28. Timing Waveform of Read Cycle (WE# = ZZ# = V ) 93  
IH  
Figure 29. Timing Waveform of Page Mode  
Read Cycle (WE# = ZZ# = V )........................................... 94  
IH  
Write Cycle ..........................................................................................................95  
Figure 30. Timing Waveform of Write Cycle  
(WE# Control, ZZ# = V ) .................................................. 95  
IH  
(WE#/LB#/UB# Byte Write Control)................................... 114  
Figure 47. Write Timing #3-3  
Figure 31. Timing Waveform of Write Cycle  
(CE# Control, ZZ# = V ) ................................................... 95  
IH  
(WE#/LB#/UB# Byte Write Control)................................... 115  
Figure 48. Write Timing #3-4  
Figure 32. Timing Waveform of Page Mode Write  
Cycle (ZZ# = V ).............................................................. 96  
IH  
(WE#/LB#/UB# Byte Write Control)................................... 115  
Read/Write Timings ..........................................................................................116  
Figure 49. Read/Write Timing #1-1 (CE1# Control).............. 116  
Figure 50. Read / Write Timing #1-2  
(CE1#/WE#/OE# Control) ................................................ 116  
Figure 51. Read / Write Timing #2 (OE#, WE# Control)........ 117  
Figure 52. Read / Write Timing #3  
(OE#, WE#, LB#, UB# Control)......................................... 117  
Figure 53. Power-up Timing #1 ......................................... 118  
Figure 54. Power-up Timing #2 ......................................... 118  
Figure 55. Power Down Entry and Exit Timing...................... 118  
Figure 56. Standby Entry Timing after Read or Write ............ 119  
Figure 57. Power Down Program Timing (for 32M/64M Only) . 119  
Power Savings Modes . . . . . . . . . . . . . . . . . . . . . . 96  
Partial Array Self Refresh (PAR) .................................................................... 96  
Temperature Compensated Refresh (for 64Mb) ......................................97  
Deep Sleep Mode ................................................................................................97  
Reduced Memory Size (for 32M and 16M) ...................................................97  
Other Mode Register Settings (for 64M) .....................................................97  
Figure 33. Mode Register..................................................... 98  
Figure 34. Mode Register UpdateTimings (UB#, LB#, OE# are Don’t  
Care)................................................................................ 98  
Figure 35. Deep Sleep Mode - Entry/Exit Timings (for 64M) ..... 99  
Figure 36. Deep Sleep Mode - Entry/Exit Timings  
(for 32M and 16M) ............................................................. 99  
Table 24. Mode Register Update and Deep Sleep Timings ....... 99  
Table 25. Address Patterns for PASR (A4=1) (64M) ............... 99  
ICC Characteristics ..........................................................................................100  
Table 26. Deep ICC Characteristics (for 64Mb) .....................100  
Table 27. Address Patterns for PAR (A3= 0, A4=1) (32M) ......100  
Table 28. Address Patterns for RMS (A3 = 1, A4 = 1) (32M) ..100  
Table 29. Low Power ICC Characteristics (32M) ....................101  
Table 30. Address Patterns for PAR (A3= 0, A4=1) (16M) ......101  
Table 31. Address Patterns for RMS (A3 = 1, A4 = 1) (16M) ..101  
Table 32. Low Power ICC Characteristics (16M) ....................101  
Type 1 SRAM  
Common Features . . . . . . . . . . . . . . . . . . . . . . . 120  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Functional Description . . . . . . . . . . . . . . . . . . . . 121  
4M Version F, 4M version G, 8M version C ..........................................121  
Byte Mode ............................................................................................................121  
8M Version D .................................................................................................122  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 122  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 123  
Capacitance .........................................................................................................123  
DC Operating Characteristics . . . . . . . . . . . . . . 123  
pSRAM Type 7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Functional Description . . . . . . . . . . . . . . . . . . . . . 103  
Power Down (for 32M, 64M Only) . . . . . . . . . . . . 103  
Power Down ......................................................................................................103  
Power Down Program Sequence .................................................................104  
Address Key .......................................................................................................104  
AC Operating Conditions . . . . . . . . . . . . . . . . . . .126  
Test Conditions .................................................................................................126  
Figure 58. AC Output Load................................................ 126  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 126  
Table 33. Read/Write Characteristics (V =2.7-3.3V) ........... 126  
CC  
Data Retention Characteristics . . . . . . . . . . . . . 127  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
5
A d v a n c e I n f o r m a t i o n  
BYTE# is Low, Ignore UB#/LB# Timing) ............................. 130  
Figure 63. Timing Waveform of Write Cycle(3) (UB#, LB#  
controlled)...................................................................... 130  
Figure 64. Data Retention Waveform.................................. 131  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 128  
Figure 59. Timing Waveform of Read Cycle(1) (Address Controlled,  
CS#1=OE#=V , CS2=WE#=V , UB# and/or LB#=V )....... 128  
IL  
IH  
IL  
Figure 60. Timing Waveform of Read Cycle(2) (WE#=V , if BYTE#  
IH  
is Low, Ignore UB#/LB# Timing)........................................ 129  
Figure 61. Timing Waveform of Write Cycle(1) (WE# controlled, if  
BYTE# is Low, Ignore UB#/LB# Timing).............................. 129  
Figure 62. Timing Waveform of Write Cycle(2) (CS# controlled, if  
Revision Summary  
6
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
MCP Block Diagram  
VCC  
f
VCC  
CE1#f  
WP#/ACC  
RESET#  
Flash-only Address  
Flash  
Shared Address  
OE#  
WE#  
RY/BY#  
DQ15 to DQ0  
VCCS  
VCC  
pSRAM/SRAM  
IO15-IO0  
CE1#s  
UB#  
CE#  
UB#  
LB#  
LB#  
CE2s  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
7
A d v a n c e I n f o r m a t i o n  
Connection Diagram (S71GL064A)  
56-ball Fine-Pitch Ball Grid Array  
(Top View, Balls Facing Down)  
Legend  
A2  
A7  
A3  
LB#  
B3  
A4  
WP/ACC  
B4  
A5  
WE#  
B5  
A6  
A8  
A7  
A11  
B7  
B1  
A3  
B2  
B6  
B8  
A15  
C8  
Shared  
(Note 1)  
A6  
UB#  
C3  
RST#f  
C4  
CE2s  
C5  
A19  
C6  
A12  
C7  
C1  
C2  
A2  
A5  
A18  
D3  
RY/BY#  
A20  
A9  
A13  
D7  
A21  
D8  
Flash only  
RAM only  
D1  
D2  
D6  
A1  
A4  
A17  
E3  
A10  
E6  
A14  
E7  
RFU  
E8  
E1  
E2  
A0  
VSS  
F2  
DQ1  
F3  
DQ6  
F6  
RFU  
F7  
A16  
F8  
F1  
F4  
DQ3  
G4  
F5  
DQ4  
G5  
Reserved for  
Future Use  
CE1#f  
G1  
OE#  
G2  
DQ0  
H2  
DQ9  
G3  
DQ13  
G6  
DQ15  
G7  
RFU  
G8  
CE1#s  
DQ10  
H3  
VCCf  
H4  
VCCs  
H5  
DQ12  
H6  
DQ7  
H7  
VSS  
DQ8  
DQ2  
DQ11  
RFU  
DQ5  
DQ14  
Notes:  
1. May be shared depending on density.  
A19 is shared for the 16M pSRAM and above configurations.  
A18 is shared for the 8M (p)SRAM and above configurations.  
MCP  
S71GL064AA0  
Flash-only Addresses  
Shared Addresses  
A19-A0  
A21-A20  
A21-A20  
A21-A19  
A21-A19  
S71GL064A0A  
S71GL064A80  
S71GL064A08  
A19-A0  
A18-A0  
A18-A0  
Special Handling Instructions For FBGA Package  
Special handling is required for Flash Memory products in FBGA packages.  
Flash memory devices in FBGA packages may be damaged if exposed to ultrasonic cleaning  
methods. The package and/or data integrity may be compromised if the package body is ex-  
posed to temperatures above 150°C for prolonged periods of time.  
8
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Pin Description  
A21–A0  
DQ15–DQ0  
CE1#f  
CE1#s  
CE2s  
OE#  
WE#  
RY/BY#  
UB#  
LB#  
=
=
=
=
=
=
=
=
=
=
=
=
=
22 Address Inputs (Common and Flash only)  
16 Data Inputs/Outputs (Common)  
Chip Enable (Flash)  
Chip Enable 1 (pSRAM/SRAM)  
Chip Enable 2 (pSRAM/SRAM)  
Output Enable (Common)  
Write Enable (Common)  
Ready/Busy Output (Flash 1)  
Upper Byte Control (pSRAM/SRAM)  
Lower Byte Control (pSRAM/SRAM)  
Hardware Reset Pin, Active Low (Flash)  
Hardware Write Protect/Acceleration Pin (Flash)  
Flash 3.0 volt-only single power supply (see Product  
Selector Guide for speed options and voltage supply  
tolerances)  
RESET#  
WP#/ACC  
VCC  
f
VCCS  
VSS  
NC  
=
=
=
pSRAM/SRAM Power Supply  
Device Ground (Common)  
Pin Not Connected Internally  
Logic Symbol  
22  
A21–A0  
16  
DQ15–DQ0  
CE1#f  
CE1#s  
R Y/BY#  
CE2s  
OE#  
WE#  
WP#/ACC  
RESET#  
UB#  
LB#  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
9
A d v a n c e I n f o r m a t i o n  
Ordering Information  
The order number is formed by a valid combinations of the following:  
Table 1:  
S71GL  
064  
A
A0 BA  
W
9
Z
0
PACKING TYPE  
0
2
3
=
=
=
Tray  
7” Tape and Reel  
13” Tape and Reel  
MODEL NUMBER  
See the Valid Combinations table.  
PACKAGE MODIFIER  
0
=
7 x 9 mm, 1.2 mm height, 56 balls (TLC056)  
TEMPERATURE RANGE  
W
I
=
=
Wireless (-25  
Industrial (-40  
°
C to +85  
°
C)  
°C to +85  
°C)  
PACKAGE TYPE  
BA  
BF  
=
=
Fine-pitch BGA Lead (Pb)-free compliant package  
Fine-pitch BGA Lead (Pb)-free package  
pSRAM / SRAM DENSITY  
0A  
A0  
80  
08  
=
=
=
=
16 Mb SRAM  
16 Mb pSRAM  
8 Mb pSRAM  
8 Mb SRAM  
PROCESS TECHNOLOGY  
200 nm, MirrorBit Technology  
A
=
FLASH DENSITY  
064 64Mb  
=
PRODUCT FAMILY  
S71GL Multi-chip Product (MCP)  
3.0-volt Page Mode Flash Memory and RAM  
10  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
S71GL064A Valid Combinations  
(p)SRAM Type/  
Access Time  
(ns)  
Base Ordering  
Part Number  
Package &  
Package Modifier/Model  
Number  
Speed Options (ns)/Boot  
Sector Option  
Package  
Marking  
Te mp e ratu re  
Packing Type  
S71GL064A80  
S71GL064A80  
S71GL064A08  
S71GL064A08  
S71GL064AA0  
S71GL064AA0  
S71GL064AA0  
S71GL064AA0  
S71GL064A0A  
S71GL064A0A  
S71GL064A80  
S71GL064A80  
S71GL064A08  
S71GL064A08  
S71GL064AA0  
S71GL064AA0  
S71GL064AA0  
S71GL064AA0  
S71GL064A0A  
S71GL064A0A  
S71GL064A80  
S71GL064A80  
S71GL064A08  
S71GL064A08  
S71GL064AA0  
S71GL064AA0  
S71GL064AA0  
S71GL064AA0  
S71GL064A0A  
S71GL064A0A  
S71GL064A80  
S71GL064A80  
S71GL064A08  
S71GL064A08  
S71GL064AA0  
S71GL064AA0  
S71GL064AA0  
S71GL064AA0  
S71GL064A0A  
S71GL064A0A  
0K  
0P  
0B  
0F  
0K  
0P  
0U  
0Z  
0B  
0F  
0K  
0P  
0B  
0F  
0K  
0P  
0U  
0Z  
0B  
0F  
0K  
0P  
0B  
0F  
0K  
0P  
0U  
0Z  
0B  
0F  
0K  
0P  
0B  
0F  
0K  
0P  
0U  
0Z  
0B  
0F  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
pSRAM1/ 70  
SRAM1 / 70  
pSRAM1/ 70  
pSRAM7 / 70  
SRAM1 / 70  
pSRAM1/ 70  
SRAM1 / 70  
pSRAM1/ 70  
pSRAM7 / 70  
SRAM1 / 70  
pSRAM1/ 70  
SRAM1 / 70  
pSRAM1/ 70  
pSRAM7 / 70  
SRAM1 / 70  
pSRAM1/ 70  
SRAM1 / 70  
pSRAM1/ 70  
pSRAM7 / 70  
SRAM1 / 70  
BAW  
0, 2, 3 (Note 1)  
BFW  
BAI  
BFI  
0, 2, 3 (Note 1)  
0, 2, 3 (Note 1)  
0, 2, 3 (Note 1)  
TLC056  
Notes:  
1. Type 0 is standard. Specify other options as required.  
Valid Combinations  
Valid Combinations list configurations planned to be supported in volume for this de-  
vice. Consult your local sales office to confirm availability of specific valid combinations  
and to check on newly released combinations.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
11  
A d v a n c e I n f o r m a t i o n  
Physical Dimensions  
TLC056—56-ball Fine-Pitch Ball Grid Array (FBGA)  
9 x 7 mm Package  
A
D1  
D
eD  
0.15  
(2X)  
C
8
7
6
5
4
3
2
1
SE  
7
E
B
E1  
eE  
H
G
F
E
D
C
B
A
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
BOTTOM VIEW  
0.20  
0.08  
C
C
A2  
A
C
A1  
SIDE VIEW  
6
56X  
b
0.15  
M
C
C
A
B
0.08  
M
NOTES:  
PACKAGE  
JEDEC  
TLC 056  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
9.00 mm x 7.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
1.20  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.20  
0.81  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
0.97  
BODY THICKNESS  
BODY SIZE  
D
9.00 BSC.  
7.00 BSC.  
5.60 BSC.  
5.60 BSC.  
8
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
8
56  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
φb  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
eE  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
SD / SE  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SOLDER BALL PLACEMENT  
A1,A8,D4,D5,E4,E5,H1,H8  
DEPOPULATED SOLDER BALLS  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3348 \ 16-038.22a  
12  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
S29GLxxxA MirrorBit™ Flash Family  
Stacked Multi-Chip Product (MCP) Flash Memory and  
RAM 64 Megabit (4 M x 16-bit) CMOS 3.0 Volt-only Page  
Mode Flash Memory and 16/8 Megabit (1M/512K x 16-bit)  
Pseudo Static RAM / Static RAM  
ADVANCE  
INFORMATION  
Data Sheet  
Distinctive Characteristics  
„ Low power consumption (typical values at 3.0  
Architectural Advantages  
V, 5 MHz)  
„ Single power supply operation  
— 3 volt read, erase, and program operations  
„ Manufactured on 200 nm MirrorBit process  
technology  
— 18 mA typical active read current  
— 50 mA typical erase/program current  
— 1 µA typical standby mode current  
„ Secured Silicon Sector region  
Software & Hardware Features  
„ Software features  
— 128-word/256-byte sector for permanent, secure  
identification through an 8-word/16-byte random  
Electronic Serial Number, accessible through a  
command sequence  
— May be programmed and locked at the factory or by  
the customer  
— Program Suspend & Resume: read other sectors  
before programming operation is completed  
— Erase Suspend & Resume: read/program other  
sectors before an erase operation is completed  
— Data# polling & toggle bits provide status  
— CFI (Common Flash Interface) compliant: allows host  
system to identify and accommodate multiple flash  
devices  
„ Flexible sector architecture  
— 64Mb (uniform sector models): 128 32 Kword (64 KB)  
sectors or 128 32 Kword sectors  
— 64Mb (boot sector models): 127 32 Kword (64 KB)  
sectors + 8 4Kword (8KB) boot sectors  
— Unlock Bypass Program command reduces overall  
multiple-word programming time  
„ Compatibility with JEDEC standards  
— Provides pinout and software compatibility for single-  
power supply flash, and superior inadvertent write  
protection  
Hardware features  
— Sector Group Protection: hardware-level method of  
preventing write operations within a sector group  
Temporary Sector Unprotect: VID-level method of  
charging code in locked sectors  
„ 100,000 erase cycles typical per sector  
„ 20-year data retention typical  
— WP#/ACC input accelerates programming time (when  
high voltage is applied) for greater throughput during  
system production. Protects first or last sector  
regardless of sector protection settings on uniform  
sector models  
— Hardware reset input (RESET#) resets device  
— Ready/Busy# output (RY/BY#) detects program or  
erase cycle completionDistinctive Characteristics  
Performance Characteristics  
„ High performance  
— 100 ns access time  
— 4-word/8-byte page read buffer  
— 25 ns page read times  
— 16-word/32-byte write buffer, which reduces overall  
programming time for multiple-word updates  
Publication Number S71GL064A_00 Revision A Amendment 2 Issue Date February 8, 2005  
This document contains information on one or more products under development at Spansion LLC. The information is intended to help you evaluate this product. Do not  
design in this product without contacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed product without notice.  
A d v a n c e I n f o r m a t i o n  
General Description  
The S29GL064A is a 64 Mb, organized as 4,194,304 words or 8,388,608 bytes.  
Access times as fast as 90 ns are available. Note that each access time has a specific operat-  
ing voltage range (VCC) as specified in the Product Selector Guide section. Each device has  
separate chip enable (CE#), write enable (WE#) and output enable (OE#) controls.  
Each device requires only a single 3.0 volt power supply for both read and write functions.  
In addition to a VCC input, a high-voltage accelerated program (ACC) feature provides  
shorter programming times through increased current on the WP#/ACC input. This feature is  
intended to facilitate factory throughput during system production, but may also be used in  
the field if desired.  
The device is entirely command set compatible with the JEDEC single-power-supply Flash  
standard. Commands are written to the device using standard microprocessor write timing.  
Write cycles also internally latch addresses and data needed for the programming and erase  
operations.  
The sector erase architecture allows memory sectors to be erased and reprogrammed  
without affecting the data contents of other sectors. The device is fully erased when shipped  
from the factory.  
Device programming and erasure are initiated through command sequences. Once a program  
or erase operation has begun, the host system need only poll the DQ7 (Data# Polling) or DQ6  
(toggle) status bits or monitor the Ready/Busy# (RY/BY#) output to determine whether  
the operation is complete. To facilitate programming, an Unlock Bypass mode reduces com-  
mand sequence overhead by requiring only two write cycles to program data instead of four.  
Hardware data protection measures include a low VCC detector that automatically inhibits  
write operations during power transitions. The hardware sector protection feature disables  
both program and erase operations in any combination of sectors of memory. This can be  
achieved in-system or via programming equipment.  
The Erase Suspend/Erase Resume feature allows the host system to pause an erase op-  
eration in a given sector to read or program any other sector and then complete the erase  
operation. The Program Suspend/Program Resume feature enables the host system to  
pause a program operation in a given sector to read any other sector and then complete the  
program operation.  
The hardware RESET# pin terminates any operation in progress and resets the device, after  
which it is then ready for a new operation. The RESET# pin may be tied to the system reset  
circuitry. A system reset would thus also reset the device, enabling the host system to read  
boot-up firmware from the Flash memory device.  
The device reduces power consumption in the standby mode when it detects specific voltage  
levels on CE# and RESET#, or when addresses have been stable for a specified period of time.  
The Write Protect (WP#) feature protects the first or last sector by asserting a logic low on  
the WP#/ACC pin or WP# pin, depending on model number. The protected sector will still be  
protected even during accelerated programming.  
The Secured Silicon Sector provides a 128-word/256-byte area for code or data that can  
be permanently protected. Once this sector is protected, no further changes within the sector  
can occur.  
Spansion MirrorBit flash technology combines years of Flash memory manufacturing experi-  
ence to produce the highest levels of quality, reliability and cost effectiveness. The device  
electrically erases all bits within a sector simultaneously via hot-hole assisted erase. The data  
is programmed using hot electron injection.  
14  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Product Selector Guide  
S29GL064A  
Part Number  
S29GL064A  
Speed Option  
100  
100  
100  
25  
Max. Access Time (ns)  
Max. CE# Access Time (ns)  
Max. Page Access Time (ns)  
Max. OE# Access Time (ns)  
25  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
15  
A d v a n c e I n f o r m a t i o n  
Block Diagram  
DQ15DQ0 (A-1)  
RY/BY#  
VCC  
Sector Switches  
VSS  
Erase Voltage  
Generator  
Input/Output  
Buffers  
RESET#  
WE#  
WP#/ACC  
State  
Control  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
STB  
CE#  
OE#  
Y-Decoder  
Y-Gating  
STB  
VCC Detector  
Timer  
Cell Matrix  
X-Decoder  
A21–A0  
16  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Pin Descriptions  
A21–A0  
=
=
=
=
=
22 Address inputs  
21 Address inputs  
8 Data inputs/outputs  
15 Data inputs/outputs  
DQ15 (Data input/output, word mode), A-1 (LSB  
Address input, byte mode)  
A20–A0  
DQ7–DQ0  
DQ14–DQ0  
DQ15/A-1  
CE#  
OE#  
WE#  
WP#/ACC  
=
=
=
=
Chip Enable input  
Output Enable input  
Write Enable input  
Hardware Write Protect input/Programming  
Acceleration input  
ACC  
WP#  
RESET#  
RY/BY#  
VCC  
=
=
=
=
=
Acceleration input  
Hardware Write Protect input  
Hardware Reset Pin input  
Ready/Busy output  
3.0 volt-only single power supply  
(see Product Selector Guide for speed options and  
voltage supply tolerances)  
VSS  
NC  
VIO  
=
=
=
Device Ground  
Pin Not Connected Internally  
Output Buffer Power  
Logic Symbols  
S29GL064A (Models R1, R2)  
22  
A21–A0  
16 or 8  
DQ15–DQ0  
(A-1)  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
BYTE#  
VIO  
RY/BY#  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
17  
A d v a n c e I n f o r m a t i o n  
S29GL064A (Models R3, R4)  
22  
A21–A0  
16 or 8  
DQ15–DQ0  
(A-1)  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
BYTE#  
RY/BY#  
S29GL064A (Model R5)  
22  
A21–A0  
16  
DQ15–DQ0  
CE#  
OE#  
WE#  
ACC  
RESET#  
VIO  
RY/BY#  
S29GL064A (Model R6, R7)  
22  
A21–A0  
16  
DQ15–DQ0  
CE#  
OE#  
WE#  
WP#  
ACC  
RESET#  
VIO  
18  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Device Bus Operations  
This section describes the requirements and use of the device bus operations, which are ini-  
tiated through the internal command register. The command register itself does not occupy  
any addressable memory location. The register is a latch used to store the commands, along  
with the address and data information needed to execute the command. The contents of the  
register serve as inputs to the internal state machine. The state machine outputs dictate the  
function of the device. Table 1 lists the device bus operations, the inputs and control levels  
they require, and the resulting output. The following subsections describe each of these op-  
erations in further detail.  
Table 1. Device Bus Operations  
Addresses  
Operation  
CE# OE# WE# RESET#  
WP#  
X
ACC  
X
(Note 1)  
DQ0–DQ15  
DOUT  
Read  
L
L
L
H
H
H
L
H
H
AIN  
Write (Program/Erase)  
Accelerated Program  
(Note 3)  
X
AIN  
(Note 4)  
(Note 4)  
L
L
H
(Note 3) VHH  
AIN  
VCC  
0.3 V  
±
VCC ±  
0.3 V  
Standby  
X
X
X
H
X
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L
X
X
X
X
X
X
High-Z  
High-Z  
X
SA, A6 =L,  
A3=L, A2=L,  
A1=H, A0=L  
Sector Group Protect  
(Note 2)  
L
H
L
VID  
H
X
(Note 4)  
Sector Group  
Unprotect  
(Note 2)  
SA, A6=H,  
A3=L, A2=L,  
A1=H, A0=L  
L
H
X
L
VID  
VID  
H
H
X
X
(Note 4)  
(Note 4)  
Temporary Sector  
Group Unprotect  
X
X
AIN  
Legend: L = Logic Low = V , H = Logic High = V , V = 11.5–12.5V, V = 11.5–12.5V, X = Don’t Care, SA = Sector  
IL  
IH  
ID  
HH  
Address, A = Address In, D = Data In, D = Data Out  
IN  
IN  
OUT  
Notes:  
1. Addresses are Amax:A0 in word mode; Amax:A-1 in byte mode. Sector addresses are Amax:A15 in both modes.  
2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the “Sector Group Protection  
and Unprotection” section.  
3. If WP# = VIL, the first or last sector remains protected (for uniform sector devices), and the two outer boot sectors are protected (for boot  
sector devices). If WP# = VIH, the first or last sector, or the two outer boot sectors will be protected or unprotected as determined by the  
method described in “Sector Group Protection and Unprotection”. All sectors are unprotected when shipped from the factory (The Secured  
Silicon Sector may be factory protected depending on version ordered.)  
4.  
DIN or DOUT as required by command sequence, data polling, or sector protect algorithm (see Figure 2).  
Requirements for Reading Array Data  
To read array data from the outputs, the system must drive the CE# and OE# pins to VIL.  
CE# is the power control and selects the device. OE# is the output control and gates array  
data to the output pins. WE# should remain at VIH.  
The internal state machine is set for reading array data upon device power-up, or after a hard-  
ware reset. This ensures that no spurious alteration of the memory content occurs during the  
power transition. No command is necessary in this mode to obtain array data. Standard mi-  
croprocessor read cycles that assert valid addresses on the device address inputs produce  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
19  
A d v a n c e I n f o r m a t i o n  
valid data on the device data outputs. The device remains enabled for read access until the  
command register contents are altered.  
See “Reading Array Data” for more information. Refer to the AC Read-Only Operations table  
for timing specifications and the timing diagram. Refer to the DC Characteristics table for the  
active current specification on reading array data.  
Page Mode Read  
The device is capable of fast page mode read and is compatible with the page mode Mask  
ROM read operation. This mode provides faster read access speed for random locations within  
a page. The page size of the device is 4 words/8 bytes. The appropriate page is selected by  
the higher address bits A(max)–A2. Address bits A1–A0 in word mode (A1–A-1 in byte mode)  
determine the specific word within a page. This is an asynchronous operation; the micropro-  
cessor supplies the specific word location.  
The random or initial page access is equal to tACC or tCE and subsequent page read accesses  
(as long as the locations specified by the microprocessor falls within that page) is equivalent  
to tPACC. When CE# is deasserted and reasserted for a subsequent access, the access time is  
tACC or tCE. Fast page mode accesses are obtained by keeping the “read-page addresses” con-  
stant and changing the “intra-read page” addresses.  
Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data to the device  
and erasing sectors of memory), the system must drive WE# and CE# to VIL, and OE# to VIH.  
The device features an Unlock Bypass mode to facilitate faster programming. Once the de-  
vice enters the Unlock Bypass mode, only two write cycles are required to program a word,  
instead of four. The “Word Program Command Sequence” section has details on programming  
data to the device using both standard and Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device.  
Refer to the DC Characteristics table for the active current specification for the write mode.  
The AC Characteristics section contains timing specification tables and timing diagrams for  
write operations.  
Write Buffer  
Write Buffer Programming allows the system write to a maximum of 16 words/32 bytes in one  
programming operation. This results in faster effective programming time than the standard  
programming algorithms. See “Write Buffer” for more information.  
Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. This is one of  
two functions provided by the WP#/ACC or ACC pin, depending on model number. This func-  
tion is primarily intended to allow faster manufacturing throughput at the factory.  
If the system asserts VHH on this pin, the device automatically enters the aforementioned Un-  
lock Bypass mode, temporarily unprotects any protected sector groups, and uses the higher  
voltage on the pin to reduce the time required for program operations. The system would use  
a two-cycle program command sequence as required by the Unlock Bypass mode. Removing  
VHH from the WP#/ACC or ACC pin, depending on model number, returns the device to normal  
operation. Note that the WP#/ACC or ACC pin must not be at VHH for operations other than  
accelerated programming, or device damage may result. WP# has an internal pullup; when  
unconnected, WP# is at VIH  
.
20  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Autoselect Functions  
If the system writes the autoselect command sequence, the device enters the autoselect  
mode. The system can then read autoselect codes from the internal register (which is sepa-  
rate from the memory array) on DQ7–DQ0. Standard read cycle timings apply in this mode.  
Refer to the “Autoselect Mode” section on page 29 and “Autoselect Command Sequence” sec-  
tion on page 41 sections for more information.  
Standby Mode  
When the system is not reading or writing to the device, it can place the device in the standby  
mode. In this mode, current consumption is greatly reduced, and the outputs are placed in  
the high impedance state, independent of the OE# input.  
The device enters the CMOS standby mode when the CE# and RESET# pins are both held at  
VIO ± 0.3 V. (Note that this is a more restricted voltage range than VIH.) If CE# and RESET#  
are held at VIH, but not within VIO ± 0.3 V, the device will be in the standby mode, but the  
standby current will be greater. The device requires standard access time (tCE) for read access  
when the device is in either of these standby modes, before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws active current  
until the operation is completed.  
Refer to the “DC Characteristics” section on page 60 for the standby current specification.  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The device automat-  
ically enables this mode when addresses remain stable for tACC + 30 ns. The automatic sleep  
mode is independent of the CE#, WE#, and OE# control signals. Standard address access  
timings provide new data when addresses are changed. While in sleep mode, output data is  
latched and always available to the system. Refer to the “DC Characteristics” section on page  
60 for the automatic sleep mode current specification.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading array data.  
When the RESET# pin is driven low for at least a period of tRP, the device immediately termi-  
nates any operation in progress, tristates all output pins, and ignores all read/write  
commands for the duration of the RESET# pulse. The device also resets the internal state  
machine to reading array data. The operation that was interrupted should be reinitiated once  
the device is ready to accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held at VSS±0.3 V,  
the device draws CMOS standby current (ICC5). If RESET# is held at VIL but not within  
VSS±0.3 V, the standby current will be greater.  
The RESET# pin may be tied to the system reset circuitry. A system reset would thus also  
reset the Flash memory, enabling the system to read the boot-up firmware from the Flash  
memory.  
Refer to the AC Characteristics tables for RESET# parameters and to Figure 15 for the timing  
diagram.  
Output Disable Mode  
When the OE# input is at VIH, output from the device is disabled. The output pins are placed  
in the high impedance state.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
21  
A d v a n c e I n f o r m a t i o n  
Table 2. S29GL064A Top Boot Sector Architecture  
Sector Address  
A21–A12  
Sector Size  
(KBs/Kwords)  
(x8)  
Address Range  
(x16)  
Address Range  
Sector  
SA0  
0000000xxx  
0000001xxx  
0000010xxx  
0000011xxx  
0000100xxx  
0000101xxx  
0000110xxx  
0000111xxx  
0001000xxx  
0001001xxx  
0001010xxx  
0001011xxx  
0001100xxx  
0001101xxx  
0001101xxx  
0001111xxx  
0010000xxx  
0010001xxx  
0010010xxx  
0010011xxx  
0010100xxx  
0010101xxx  
0010110xxx  
0010111xxx  
0011000xxx  
0011001xxx  
0011010xxx  
0011011xxx  
0011000xxx  
0011101xxx  
0011110xxx  
0011111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
000000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
100000h–00FFFFh  
110000h–11FFFFh  
00000h–07FFFh  
08000h–0FFFFh  
10000h–17FFFh  
18000h–1FFFFh  
20000h–27FFFh  
28000h–2FFFFh  
30000h–37FFFh  
38000h–3FFFFh  
40000h–47FFFh  
48000h–4FFFFh  
50000h–57FFFh  
58000h–5FFFFh  
60000h–67FFFh  
68000h–6FFFFh  
70000h–77FFFh  
78000h–7FFFFh  
80000h–87FFFh  
88000h–8FFFFh  
90000h–97FFFh  
98000h–9FFFFh  
A0000h–A7FFFh  
A8000h–AFFFFh  
B0000h–B7FFFh  
B8000h–BFFFFh  
C0000h–C7FFFh  
C8000h–CFFFFh  
D0000h–D7FFFh  
D8000h–DFFFFh  
E0000h–E7FFFh  
E8000h–EFFFFh  
F0000h–F7FFFh  
F8000h–FFFFFh  
F9000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
1A0000h–1AFFFFh  
1B0000h–1BFFFFh  
1C0000h–1CFFFFh  
1D0000h–1DFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
0100000xxx  
0100001xxx  
0100010xxx  
0101011xxx  
22  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Table 2. S29GL064A Top Boot Sector Architecture (Continued)  
Sector Address  
A21–A12  
Sector Size  
(KBs/Kwords)  
(x8)  
Address Range  
(x16)  
Address Range  
Sector  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
0100100xxx  
0100101xxx  
0100110xxx  
0100111xxx  
0101000xxx  
0101001xxx  
0101010xxx  
0101011xxx  
0101100xxx  
0101101xxx  
0101110xxx  
0101111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
270000h–27FFFFh  
280000h–28FFFFh  
290000h–29FFFFh  
2A0000h–2AFFFFh  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
2D0000h–2DFFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
390000h–39FFFFh  
3A0000h–3AFFFFh  
3B0000h–3BFFFFh  
3C0000h–3CFFFFh  
3D0000h–3DFFFFh  
3E0000h–3EFFFFh  
3F0000h–3FFFFFh  
400000h–40FFFFh  
410000h–41FFFFh  
420000h–42FFFFh  
430000h–43FFFFh  
440000h–44FFFFh  
450000h–45FFFFh  
460000h–46FFFFh  
470000h–47FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
0110000xxx  
0110001xxx  
0110010xxx  
0110011xxx  
0100100xxx  
0110101xxx  
0110110xxx  
0110111xxx  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
0111000xxx  
0111001xxx  
0111010xxx  
0111011xxx  
0111100xxx  
0111101xxx  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
0111110xxx  
0111111xxx  
1000000xxx  
1000001xxx  
1000010xxx  
1000011xxx  
1000100xxx  
1000101xxx  
1000110xxx  
1000111xxx  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
23  
A d v a n c e I n f o r m a t i o n  
Table 2. S29GL064A Top Boot Sector Architecture (Continued)  
Sector Address  
A21–A12  
Sector Size  
(KBs/Kwords)  
(x8)  
Address Range  
(x16)  
Address Range  
Sector  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
1001000xxx  
1001001xxx  
1001010xxx  
1001011xxx  
1001100xxx  
1001101xxx  
1001110xxx  
1001111xxx  
1010000xxx  
1010001xxx  
1010010xxx  
1010011xxx  
1010100xxx  
1010101xxx  
1010110xxx  
1010111xxx  
1011000xxx  
1011001xxx  
1011010xxx  
1011011xxx  
1011100xxx  
1011101xxx  
1011110xxx  
1011111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
480000h–48FFFFh  
490000h–49FFFFh  
4A0000h–4AFFFFh  
4B0000h–4BFFFFh  
4C0000h–4CFFFFh  
4D0000h–4DFFFFh  
4E0000h–4EFFFFh  
4F0000h–4FFFFFh  
500000h–50FFFFh  
510000h–51FFFFh  
520000h–52FFFFh  
530000h–53FFFFh  
540000h–54FFFFh  
550000h–55FFFFh  
560000h–56FFFFh  
570000h–57FFFFh  
580000h–58FFFFh  
590000h–59FFFFh  
5A0000h–5AFFFFh  
5B0000h–5BFFFFh  
5C0000h–5CFFFFh  
5D0000h–5DFFFFh  
5E0000h–5EFFFFh  
5F0000h–5FFFFFh  
600000h–60FFFFh  
610000h–61FFFFh  
620000h–62FFFFh  
630000h–63FFFFh  
640000h–64FFFFh  
650000h–65FFFFh  
660000h–66FFFFh  
670000h–67FFFFh  
680000h–68FFFFh  
690000h–69FFFFh  
6A0000h–6AFFFFh  
6B0000h–6BFFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–28FFFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2FFFFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
1100000xxx  
1100001xxx  
1100010xxx  
1100011xxx  
1100100xxx  
1100101xxx  
1100110xxx  
1100111xxx  
1101000xxx  
1101001xxx  
1101010xxx  
1101011xxx  
24  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Table 2. S29GL064A Top Boot Sector Architecture (Continued)  
Sector Address  
A21–A12  
Sector Size  
(KBs/Kwords)  
(x8)  
Address Range  
(x16)  
Address Range  
Sector  
SA108  
SA109  
SA110  
SA111  
1101100xxx  
1101101xxx  
1101110xxx  
1101111xxx  
1110000xxx  
1110001xxx  
1110010xxx  
1110011xxx  
1110100xxx  
1110101xxx  
1110110xxx  
1110111xxx  
1111000xxx  
1111001xxx  
1111010xxx  
1111011xxx  
1111100xxx  
1111101xxx  
1111110xxx  
1111111000  
1111111001  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
6C0000h–6CFFFFh  
6D0000h–6DFFFFh  
6E0000h–6EFFFFh  
6F0000h–6FFFFFh  
700000h–70FFFFh  
710000h–71FFFFh  
720000h–72FFFFh  
730000h–73FFFFh  
740000h–74FFFFh  
750000h–75FFFFh  
760000h–76FFFFh  
770000h–77FFFFh  
780000h–78FFFFh  
790000h–79FFFFh  
7A0000h–7AFFFFh  
7B0000h–7BFFFFh  
7C0000h–7CFFFFh  
7D0000h–7DFFFFh  
7E0000h–7EFFFFh  
7F0000h–7F1FFFh  
7F2000h–7F3FFFh  
7F4000h–7F5FFFh  
7F6000h–7F7FFFh  
7F8000h–7F9FFFh  
7FA000h–7FBFFFh  
7FC000h–7FDFFFh  
7FE000h–7FFFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
8/4  
1111111010  
8/4  
1111111011  
8/4  
1111111100  
8/4  
1111111101  
8/4  
1111111110  
8/4  
1111111111  
8/4  
Table 3. S29GL064A Bottom Boot Sector Architecture  
Sector Address  
A21–A12  
Sector Size  
(KBs/Kwords)  
(x8)  
Address Range  
(x16)  
Address Range  
Sector  
SA0  
SA1  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
000000h–001FFFh  
002000h–003FFFh  
004000h–005FFFh  
006000h–007FFFh  
008000h–009FFFh  
00A000h–00BFFFh  
00000h–00FFFh  
01000h–01FFFh  
02000h–02FFFh  
03000h–03FFFh  
04000h–04FFFh  
05000h–05FFFh  
SA2  
SA3  
SA4  
SA5  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
25  
A d v a n c e I n f o r m a t i o n  
Table 3. S29GL064A Bottom Boot Sector Architecture (Continued)  
Sector Address  
A21–A12  
Sector Size  
(KBs/Kwords)  
(x8)  
Address Range  
(x16)  
Address Range  
Sector  
SA6  
0000000110  
0000000111  
0000001xxx  
0000010xxx  
0000011xxx  
0000100xxx  
0000101xxx  
0000110xxx  
0000111xxx  
0001000xxx  
0001001xxx  
0001010xxx  
0001011xxx  
0001100xxx  
0001101xxx  
0001101xxx  
0001111xxx  
0010000xxx  
0010001xxx  
0010010xxx  
0010011xxx  
0010100xxx  
0010101xxx  
0010110xxx  
0010111xxx  
0011000xxx  
0011001xxx  
0011010xxx  
0011011xxx  
0011000xxx  
0011101xxx  
0011110xxx  
0011111xxx  
8/4  
00C000h–00DFFFh  
00E000h–00FFFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
100000h–00FFFFh  
110000h–11FFFFh  
06000h–06FFFh  
07000h–07FFFh  
08000h–0FFFFh  
10000h–17FFFh  
18000h–1FFFFh  
20000h–27FFFh  
28000h–2FFFFh  
30000h–37FFFh  
38000h–3FFFFh  
40000h–47FFFh  
48000h–4FFFFh  
50000h–57FFFh  
58000h–5FFFFh  
60000h–67FFFh  
68000h–6FFFFh  
70000h–77FFFh  
78000h–7FFFFh  
80000h–87FFFh  
88000h–8FFFFh  
90000h–97FFFh  
98000h–9FFFFh  
A0000h–A7FFFh  
A8000h–AFFFFh  
B0000h–B7FFFh  
B8000h–BFFFFh  
C0000h–C7FFFh  
C8000h–CFFFFh  
D0000h–D7FFFh  
D8000h–DFFFFh  
E0000h–E7FFFh  
E8000h–EFFFFh  
F0000h–F7FFFh  
F8000h–FFFFFh  
F9000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
SA7  
8/4  
SA8  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
1A0000h–1AFFFFh  
1B0000h–1BFFFFh  
1C0000h–1CFFFFh  
1D0000h–1DFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
0100000xxx  
0100001xxx  
0100010xxx  
26  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Table 3. S29GL064A Bottom Boot Sector Architecture (Continued)  
Sector Address  
A21–A12  
Sector Size  
(KBs/Kwords)  
(x8)  
Address Range  
(x16)  
Address Range  
Sector  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
0101011xxx  
0100100xxx  
0100101xxx  
0100110xxx  
0100111xxx  
0101000xxx  
0101001xxx  
0101010xxx  
0101011xxx  
0101100xxx  
0101101xxx  
0101110xxx  
0101111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
270000h–27FFFFh  
280000h–28FFFFh  
290000h–29FFFFh  
2A0000h–2AFFFFh  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
2D0000h–2DFFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
390000h–39FFFFh  
3A0000h–3AFFFFh  
3B0000h–3BFFFFh  
3C0000h–3CFFFFh  
3D0000h–3DFFFFh  
3E0000h–3EFFFFh  
3F0000h–3FFFFFh  
400000h–40FFFFh  
410000h–41FFFFh  
420000h–42FFFFh  
430000h–43FFFFh  
440000h–44FFFFh  
450000h–45FFFFh  
460000h–46FFFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
0110000xxx  
0110001xxx  
0110010xxx  
0110011xxx  
0100100xxx  
0110101xxx  
0110110xxx  
0110111xxx  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
0111000xxx  
0111001xxx  
0111010xxx  
0111011xxx  
0111100xxx  
0111101xxx  
0111110xxx  
0111111xxx  
1000000xxx  
1000001xxx  
1000010xxx  
1000011xxx  
1000100xxx  
1000101xxx  
1000110xxx  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
27  
A d v a n c e I n f o r m a t i o n  
Table 3. S29GL064A Bottom Boot Sector Architecture (Continued)  
Sector Address  
A21–A12  
Sector Size  
(KBs/Kwords)  
(x8)  
Address Range  
(x16)  
Address Range  
Sector  
SA78  
SA79  
SA80  
SA81  
1000111xxx  
1001000xxx  
1001001xxx  
1001010xxx  
1001011xxx  
1001100xxx  
1001101xxx  
1001110xxx  
1001111xxx  
1010000xxx  
1010001xxx  
1010010xxx  
1010011xxx  
1010100xxx  
1010101xxx  
1010110xxx  
1010111xxx  
1011000xxx  
1011001xxx  
1011010xxx  
1011011xxx  
1011100xxx  
1011101xxx  
1011110xxx  
1011111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
470000h–47FFFFh  
480000h–48FFFFh  
490000h–49FFFFh  
4A0000h–4AFFFFh  
4B0000h–4BFFFFh  
4C0000h–4CFFFFh  
4D0000h–4DFFFFh  
4E0000h–4EFFFFh  
4F0000h–4FFFFFh  
500000h–50FFFFh  
510000h–51FFFFh  
520000h–52FFFFh  
530000h–53FFFFh  
540000h–54FFFFh  
550000h–55FFFFh  
560000h–56FFFFh  
570000h–57FFFFh  
580000h–58FFFFh  
590000h–59FFFFh  
5A0000h–5AFFFFh  
5B0000h–5BFFFFh  
5C0000h–5CFFFFh  
5D0000h–5DFFFFh  
5E0000h–5EFFFFh  
5F0000h–5FFFFFh  
600000h–60FFFFh  
610000h–61FFFFh  
620000h–62FFFFh  
630000h–63FFFFh  
640000h–64FFFFh  
650000h–65FFFFh  
660000h–66FFFFh  
670000h–67FFFFh  
680000h–68FFFFh  
690000h–69FFFFh  
6A0000h–6AFFFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–28FFFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2FFFFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
1100000xxx  
1100001xxx  
1100010xxx  
1100011xxx  
1100100xxx  
1100101xxx  
1100110xxx  
1100111xxx  
1101000xxx  
1101001xxx  
1101010xxx  
SA112  
SA113  
28  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Table 3. S29GL064A Bottom Boot Sector Architecture (Continued)  
Sector Address  
A21–A12  
Sector Size  
(KBs/Kwords)  
(x8)  
Address Range  
(x16)  
Address Range  
Sector  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
1101011xxx  
1101100xxx  
1101101xxx  
1101110xxx  
1101111xxx  
1110000xxx  
1110001xxx  
1110010xxx  
1110011xxx  
1110100xxx  
1110101xxx  
1110110xxx  
1110111xxx  
1111000xxx  
1111001xxx  
1111010xxx  
1111011xxx  
1111100xxx  
1111101xxx  
1111110xxx  
1111111000  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
6B0000h–6BFFFFh  
6C0000h–6CFFFFh  
6D0000h–6DFFFFh  
6E0000h–6EFFFFh  
6F0000h–6FFFFFh  
700000h–70FFFFh  
710000h–71FFFFh  
720000h–72FFFFh  
730000h–73FFFFh  
740000h–74FFFFh  
750000h–75FFFFh  
760000h–76FFFFh  
770000h–77FFFFh  
780000h–78FFFFh  
790000h–79FFFFh  
7A0000h–7AFFFFh  
7B0000h–7BFFFFh  
7C0000h–7CFFFFh  
7D0000h–7DFFFFh  
7E0000h–7EFFFFh  
7F0000h–7FFFFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector group pro-  
tection verification, through identifier codes output on DQ7–DQ0. This mode is primarily  
intended for programming equipment to automatically match a device to be programmed  
with its corresponding programming algorithm. However, the autoselect codes can also be ac-  
cessed in-system through the command register.  
When using programming equipment, the autoselect mode requires VID on address pin A9.  
Address pins A6, A3, A2, A1, and A0 must be as shown in Table 4. In addition, when verifying  
sector protection, the sector address must appear on the appropriate highest order address  
bits. Table 4 shows the remaining address bits that are don’t care. When all necessary bits  
have been set as required, the programming equipment may then read the corresponding  
identifier code on DQ7–DQ0.  
To access the autoselect codes in-system, the host system can issue the autoselect command  
via the command register, as shown in Table 10. This method does not require VID. Refer to  
the Autoselect Command Sequence section for more information.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
29  
A d v a n c e I n f o r m a t i o n  
Table 4. Autoselect Codes, (High Voltage Method)  
DQ8 to DQ15  
A22 A14  
A8  
A5 A3  
WE  
#
Description  
CE# OE#  
to to A9 to A6 to to A1 A0  
A15 A10  
DQ7 to DQ0  
BYTE# BYTE#=  
A7  
A4 A2  
= VIH  
VIL  
Manufacturer  
ID: Spansion  
Products  
L
L
L
L
L
L
H
H
H
X
X
X
X
X
VID  
VID  
VID  
X
L
L
L
X
X
X
L
L
L
00  
X
01h  
Cycle 1  
Cycle 2  
L
H
L
H
H
L
22  
22  
X
X
7Eh  
10h  
X
X
00h (bottom boot)  
01h (top boot)  
Cycle 3  
H
L
H
H
H
L
22  
X
X
X
Sector Group  
Protection  
Verification  
01h (protected),  
00h (unprotected)  
SA  
Secured Silicon  
Sector  
98h (factory locked),  
18h (not factory  
locked)  
Indicator Bit  
(DQ7), WP#  
protects  
L
L
L
L
H
H
X
X
X
X
VID  
X
X
L
L
X
X
L
L
H
H
H
H
X
X
X
X
highestaddress  
sector  
Secured Silicon  
Sector  
Indicator Bit  
(DQ7), WP#  
protects lowest  
address sector  
88h (factory locked),  
08h (not factory  
locked)  
VID  
Legend: L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don’t care.  
Sector Group Protection and Unprotection  
The hardware sector group protection feature disables both program and erase operations in  
any sector group. In this device, a sector group consists of four adjacent sectors that are pro-  
tected or unprotected at the same time (see Table 4). The hardware sector group  
unprotection feature re-enables both program and erase operations in previously protected  
sector groups. Sector group protection/unprotection can be implemented via two methods.  
Sector protection/unprotection requires VID on the RESET# pin only, and can be implemented  
either in-system or via programming equipment. Figure 2 shows the algorithms and Figure  
23 shows the timing diagram. This method uses standard microprocessor bus cycle timing.  
For sector group unprotect, all unprotected sector groups must first be protected prior to the  
first sector group unprotect write cycle.  
The device is shipped with all sector groups unprotected. Spansion offers the option of pro-  
gramming and protecting sector groups at its factory prior to shipping the device through  
Spansion Programming Service. Contact a Spansion representative for details.  
It is possible to determine whether a sector group is protected or unprotected. See the Au-  
toselect Mode section for details.  
30  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Table 5. S29GL064A Sector Group Protection/Unprotection Address  
Top Boot Sector  
Sector Group  
SA0  
Bottom Boot Sector  
A21–A15  
0000000  
0000001  
0000010  
0000011  
00001xx  
00010xx  
00011xx  
00100xx  
00101xx  
00110xx  
00111xx  
01000xx  
01001xx  
01010xx  
01011xx  
01100xx  
01101xx  
01110xx  
01111xx  
10000xx  
10001xx  
10010xx  
10011xx  
10100xx  
10101xx  
10110xx  
10111xx  
11000xx  
11001xx  
11010xx  
11011xx  
11100xx  
11101xx  
11110xx  
1111100  
1111101  
1111110  
1111111  
SA1  
SA2  
SA3  
SA4–SA7  
SA8–SA11  
SA12–SA15  
SA16–SA19  
SA20–SA23  
SA24–SA27  
SA28–SA31  
SA32–SA35  
SA36–SA39  
SA40–SA43  
SA44–SA47  
SA48–SA51  
SA52–SA55  
SA56–SA59  
SA60–SA63  
SA64–SA67  
SA68–SA71  
SA72–SA75  
SA76–SA79  
SA80–SA83  
SA84–SA87  
SA88–SA91  
SA92–SA95  
SA96–SA99  
SA100–SA103  
SA104–SA107  
SA108–SA111  
SA112–SA115  
SA116–SA119  
SA120–SA123  
SA124  
SA125  
SA126  
SA127  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
31  
A d v a n c e I n f o r m a t i o n  
Temporary Sector Group Unprotect  
This feature allows temporary unprotection of previously protected sector groups to change  
data in-system. The Sector Group Unprotect mode is activated by setting the RESET# pin to  
VID. During this mode, formerly protected sector groups can be programmed or erased by  
selecting the sector group addresses. Once VID is removed from the RESET# pin, all the pre-  
viously protected sector groups are protected again. Figure 1 shows the algorithm, and Figure  
23 shows the timing diagrams, for this feature.  
START  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
Temporary Sector  
Group Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sector groups unprotected (If WP# = VIL, the first or last sector will remain protected).  
2. All previously protected sector groups are protected once again.  
Figure 1. Temporary Sector Group Unprotect Operation  
32  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
START  
START  
PLSCNT = 1  
PLSCNT = 1  
Protect all sector  
groups: The indicated  
portion of the sector  
group protect algorithm  
must be performed for all  
unprotected sector  
groups prior to issuing  
the first sector group  
unprotect address  
RESET# = VID  
RESET# = VID  
Wait 1 µs  
Wait 1 µs  
Temporary Sector  
Group Unprotect  
Mode  
Temporary Sector  
Group Unprotect  
Mode  
No  
First Write  
Cycle = 60h?  
No  
First Write  
Cycle = 60h?  
Yes  
Yes  
Set up sector  
group address  
All sector  
groups  
No  
protected?  
Yes  
Sector Group Protect:  
Write 60h to sector  
group address with  
A6–A0 = 0xx0010  
Set up first sector  
group address  
Sector Group  
Unprotect:  
Wait 150 µs  
Write 60h to sector  
group address with  
A6–A0 = 1xx0010  
Verify Sector Group  
Protect: Write 40h  
to sector group  
address with  
A6–A0 = 0xx0010  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 15 ms  
Verify Sector Group  
Unprotect: Write  
40h to sector group  
address with  
Read from  
sector group address  
with A6–A0  
= 0xx0010  
Increment  
PLSCNT  
A6–A0 = 1xx0010  
No  
No  
PLSCNT  
= 25?  
Read from  
sector group  
address with  
Data = 01h?  
Yes  
A6–A0 = 1xx0010  
No  
Yes  
Set up  
next sector group  
address  
Protect  
another  
sector group?  
Yes  
No  
PLSCNT  
= 1000?  
Data = 00h?  
Yes  
Device failed  
No  
Yes  
Remove VID  
from RESET#  
Last sector  
group  
verified?  
No  
Device failed  
Write reset  
command  
Yes  
Remove VID  
from RESET#  
Sector Group  
Unprotect  
Sector Group  
Protect  
Sector Group  
Protect complete  
Write reset  
command  
Algorithm  
Algorithm  
Sector Group  
Unprotect complete  
Figure 2. In-System Sector Group Protect/Unprotect Algorithms  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
33  
A d v a n c e I n f o r m a t i o n  
Secured Silicon Sector Flash Memory Region  
The Secured Silicon Sector feature provides a Flash memory region that enables permanent  
part identification through an Electronic Serial Number (ESN). The Secured Silicon Sector is  
256 bytes in length, and uses a Secured Silicon Sector Indicator Bit (DQ7) to indicate whether  
or not the Secured Silicon Sector is locked when shipped from the factory. This bit is perma-  
nently set at the factory and cannot be changed, which prevents cloning of a factory locked  
part. This ensures the security of the ESN once the product is shipped to the field.  
The factory offers the device with the Secured Silicon Sector either customer lockable (stan-  
dard shipping option) or factory locked (contact a Spansion sales representative for ordering  
information). The customer-lockable version is shipped with the Secured Silicon Sector un-  
protected, allowing customers to program the sector after receiving the device. The  
customer-lockable version also has the Secured Silicon Sector Indicator Bit permanently set  
to a “0.The factory-locked version is always protected when shipped from the factory, and  
has the Secured Silicon Sector Indicator Bit permanently set to a “1.Thus, the Secured Sil-  
icon Sector Indicator Bit prevents customer-lockable devices from being used to replace  
devices that are factory locked. Note that the ACC function and unlock bypass modes are not  
available when the Secured Silicon Sector is enabled.  
The Secured Silicon sector address space in this device is allocated as follows:  
Secured Silicon Sector  
Address Range  
ExpressFlash  
Factory Locked  
Customer Lockable ESN Factory Locked  
ESN or determined by  
customer  
000000h–000007h  
000008h–00007Fh  
ESN  
Determined by  
customer  
Determined by  
customer  
Unavailable  
The system accesses the Secured Silicon Sector through a command sequence (see “Write  
Protect (WP#)”). After the system has written the Enter Secured Silicon Sector command se-  
quence, it may read the Secured Silicon Sector by using the addresses normally occupied by  
the first sector (SA0). This mode of operation continues until the system issues the Exit Se-  
cured Silicon Sector command sequence, or until power is removed from the device. On  
power-up, or following a hardware reset, the device reverts to sending commands to sector  
SA0.  
Customer Lockable: Secured Silicon Sector NOT Programmed or  
Protected At the Factory  
Unless otherwise specified, the device is shipped such that the customer may program and  
protect the 256-byte Secured Silicon sector.  
The system may program the Secured Silicon Sector using the write-buffer, accelerated and/  
or unlock bypass methods, in addition to the standard programming command sequence. See  
Command Definitions.  
Programming and protecting the Secured Silicon Sector must be used with caution since, once  
protected, there is no procedure available for unprotecting the Secured Silicon Sector area  
and none of the bits in the Secured Silicon Sector memory space can be modified in any way.  
The Secured Silicon Sector area can be protected using one of the following procedures:  
„ Write the three-cycle Enter Secured Silicon Sector Region command sequence, and then  
follow the in-system sector protect algorithm as shown in Figure 2, except that RESET#  
may be at either VIH or VID. This allows in-system protection of the Secured Silicon Sector  
without raising any device pin to a high voltage. Note that this method is only applicable  
to the Secured Silicon Sector.  
„ To verify the protect/unprotect status of the Secured Silicon Sector, follow the algorithm  
shown in Figure 1.  
34  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Once the Secured Silicon Sector is programmed, locked and verified, the system must write  
the Exit Secured Silicon Sector Region command sequence to return to reading and writing  
within the remainder of the array.  
Factory Locked: Secured Silicon Sector Programmed and Protected At  
the Factory  
In devices with an ESN, the Secured Silicon Sector is protected when the device is shipped  
from the factory. The Secured Silicon Sector cannot be modified in any way. An ESN Factory  
Locked device has an 16-byte random ESN at addresses 000000h–000007h. Please contact  
your sales representative for details on ordering ESN Factory Locked devices.  
Customers may opt to have their code programmed by the factory through the Spansion pro-  
gramming service (Customer Factory Locked). The devices are then shipped from the factory  
with the Secured Silicon Sector permanently locked. Contact your sales representative for de-  
tails on using the Spansion programming service.  
Write Protect (WP#)  
The Write Protect function provides a hardware method of protecting the first or last sector  
group without using VID. Write Protect is one of two functions provided by the WP#/ACC  
input.  
If the system asserts VIL on the WP#/ACC pin, the device disables program and erase func-  
tions in the first or last sector group independently of whether those sector groups were  
protected or unprotected. Note that if WP#/ACC is at VIL when the device is in the standby  
mode, the maximum input load current is increased. See the table in “DC Characteristics” sec-  
tion on page 60.  
If the system asserts VIH on the WP#/ACC pin, the device reverts to whether the  
first or last sector was previously set to be protected or unprotected using the  
method described in “Sector Group Protection and Unprotection”. Note that WP#  
has an internal pullup; when unconnected, WP# is at VIH  
.
Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing provides  
data protection against inadvertent writes (refer to Tables 16 and 17 for command defini-  
tions). In addition, the following hardware data protection measures prevent accidental  
erasure or programming, which might otherwise be caused by spurious system level signals  
during VCC power-up and power-down transitions, or from system noise.  
Low V  
Write Inhibit  
CC  
When VCC is less than VLKO, the device does not accept any write cycles. This protects data  
during VCC power-up and power-down. The command register and all internal program/erase  
circuits are disabled, and the device resets to the read mode. Subsequent writes are ignored  
until VCC is greater than VLKO. The system must provide the proper signals to the control pins  
to prevent unintentional writes when VCC is greater than VLKO  
.
Write Pulse “Glitch” Protection  
Noise pulses of less than 3 ns (typical) on OE#, CE# or WE# do not initiate a write cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH or WE# = VIH. To ini-  
tiate a write cycle, CE# and WE# must be a logical zero while OE# is a logical one.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
35  
A d v a n c e I n f o r m a t i o n  
Power-Up Write Inhibit  
If WE# = CE# = VIL and OE# = VIH during power up, the device does not accept commands  
on the rising edge of WE#. The internal state machine is automatically reset to the read mode  
on power-up.  
Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system software in-  
terrogation handshake, which allows specific vendor-specified software algorithms to be used  
for entire families of devices. Software support can then be device-independent, JEDEC ID-  
independent, and forward- and backward-compatible for the specified flash device families.  
Flash vendors can standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query command, 98h,  
to address 55h, any time the device is ready to read array data. The system can read CFI  
information at the addresses given in Tables 27-30. To terminate reading CFI data, the system  
must write the reset command.  
The system can also write the CFI query command when the device is in the autoselect mode.  
The device enters the CFI query mode, and the system can read CFI data at the addresses  
given in Tables 27-30. The system must write the reset command to return the device to  
reading array data.  
For further information, please refer to the CFI Specification and CFI Publication 100, avail-  
able via the World Wide Web at http://www.amd.com/flash/cfi. Alternatively, contact your  
sales representative for copies of these documents.  
36  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Table 6. CFI Query Identification String  
Addresses (x16)  
Addresses (x8)  
Data  
Description  
10h  
11h  
12h  
20h  
22h  
24h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
26h  
28h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
32h  
34h  
0000h  
0000h  
Table 7. System Interface String  
Addresses (x16)  
Addresses (x8)  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
36h  
0027h  
VCC Max. (write/erase)  
1Ch  
38h  
0036h  
D7–D4: volt, D3–D0: 100 millivolt  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Reserved for future use  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
0000h  
0007h  
0007h  
000Ah  
0000h  
0001h  
0005h  
0004h  
0000h  
Typical timeout for Min. size buffer write 2N  
µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Reserved for future use  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
Note: CFI data related to VCC and time-outs may differ from actual VCC and time-outs of the product. Please consult the Ordering  
Information tables to obtain the VCC range for particular part numbers. Please contact the Erase and Programming Performance table for  
typical timeout specifications.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
37  
A d v a n c e I n f o r m a t i o n  
Table 8. Device Geometry Definition  
Addresses (x16)  
Addresses (x8)  
Data  
Description  
Device Size = 2N byte  
0017h = 64 Mb  
27h  
4Eh  
00xxh  
Flash Device Interface description (refer to CFI publication 100)  
28h  
29h  
50h  
52h  
000xh  
0000h  
0000h = x8-only bus devices  
0001h = x16-only bus devices  
0002h = x8/x16 bus devices  
2Ah  
2Bh  
54h  
56h  
0005h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
Number of Erase Block Regions within device (01h = uniform device,  
02h = boot device)  
2Ch  
58h  
00xxh  
2Dh  
2Eh  
2Fh  
30h  
5Ah  
5Ch  
5Eh  
60h  
00xxh  
000xh  
00x0h  
000xh  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
007Fh, 0000h, 0000h, 0001h = 64 Mb  
31h  
32h  
33h  
34h  
60h  
64h  
66h  
68h  
00xxh  
0000h  
0000h  
000xh  
Erase Block Region 2 Information (refer to CFI publication 100)  
0000h, 0000h, 0000h, 0000h =64 Mb  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 3 Information (refer to CFI publication 100)  
Erase Block Region 4 Information (refer to CFI publication 100)  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
0000h  
0000h  
0000h  
0000h  
Table 9. Primary Vendor-Specific Extended Query  
Addresses (x16)  
Addresses (x8)  
Data  
Description  
40h  
41h  
42h  
80h  
82h  
84h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
86h  
88h  
0031h  
0033h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
8Ah  
000xh  
Process Technology (Bits 7-2) 0010b = 200 nm MirrorBit  
0009h = x8-only bus devices  
0008h = all other devices  
Erase Suspend  
46h  
47h  
48h  
8Ch  
8Eh  
90h  
0002h  
0001h  
0000h  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
38  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Addresses (x16)  
Addresses (x8)  
Data  
Description  
Sector Protect/Unprotect scheme  
49h  
92h  
94h  
96h  
98h  
0004h  
0004h = Standard Mode (Refer to Text)  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors in Bank  
4Ah  
4Bh  
4Ch  
0000h  
0000h  
0001h  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
9Ah  
9Ch  
00B5h  
00C5h  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
00h = Uniform Device without WP# protect, 02h = Bottom Boot  
Device, 03h = Top Boot Device, 04h = Uniform sectors bottom WP#  
protect, 05h = Uniform sectors top WP# protect  
4Fh  
50h  
9Eh  
A0h  
00xxh  
0001h  
Program Suspend  
00h = Not Supported, 01h = Supported  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
39  
A d v a n c e I n f o r m a t i o n  
Command Definitions  
Writing specific address and data commands or sequences into the command register initiates  
device operations. Table 10 defines the valid register command sequences. Writing incorrect  
address and data values or writing them in the improper sequence may place the device in  
an unknown state. A reset command is then required to return the device to reading array  
data.  
All addresses are latched on the falling edge of WE# or CE#, whichever happens later. All data  
is latched on the rising edge of WE# or CE#, whichever happens first. Refer to the AC Char-  
acteristics section for timing diagrams.  
Reading Array Data  
The device is automatically set to reading array data after device power-up. No commands  
are required to retrieve data. The device is ready to read array data after completing an Em-  
bedded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the device enters the erase-suspend-  
read mode, after which the system can read data from any non-erase-suspended sector. After  
completing a programming operation in the Erase Suspend mode, the system may once again  
read array data with the same exception. See the Erase Suspend/Erase Resume Commands  
section for more information.  
The system must issue the reset command to return the device to the read (or erase-sus-  
pend-read) mode if DQ5 goes high during an active program or erase operation, or if the  
device is in the autoselect mode. See the next section, Reset Command, for more  
information.  
See also Requirements for Reading Array Data in the Device Bus Operations section for more  
information. The Read-Only Operations–“AC Characteristics” section on page 63 provides the  
read parameters, and Figure 13 shows the timing diagram.  
Reset Command  
Writing the reset command resets the device to the read or erase-suspend-read mode. Ad-  
dress bits are don’t cares for this command.  
The reset command may be written between the sequence cycles in an erase command se-  
quence before erasing begins. This resets the device to the read mode. Once erasure begins,  
however, the device ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in a program command se-  
quence before programming begins. This resets the device to the read mode. If the program  
command sequence is written while the device is in the Erase Suspend mode, writing the  
reset command returns the device to the erase-suspend-read mode. Once programming be-  
gins, however, the device ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect command  
sequence. Once in the autoselect mode, the reset command must be written to return to the  
read mode. If the device entered the autoselect mode while in the Erase Suspend mode, writ-  
ing the reset command returns the device to the erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation, writing the reset command returns the  
device to the read mode (or erase-suspend-read mode if the device was in Erase Suspend).  
Note that if DQ1 goes high during a Write Buffer Programming operation, the system must  
write the Write-to-Buffer-Abort Reset command sequence to reset the device for the next  
operation.  
40  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Autoselect Command Sequence  
The autoselect command sequence allows the host system to read several identifier codes at  
specific addresses:  
A7:A0  
(x16)  
A6:A-1  
(x8)  
Identifier Code  
Manufacturer ID  
Device ID, Cycle 1  
00h  
01h  
00h  
02h  
Device ID, Cycle 2  
0Eh  
1Ch  
Device ID, Cycle 3  
0Fh  
1Eh  
Secured Silicon Sector Factory Protect  
Sector Protect Verify  
03h  
06h  
(SA)02h  
(SA)04h  
Note: The device ID is read over three cycles. SA = Sector Address  
The autoselect command sequence is initiated by first writing two unlock cycles. This is fol-  
lowed by a third write cycle that contains the autoselect command. The device then enters  
the autoselect mode. The system may read at any address any number of times without ini-  
tiating another autoselect command sequence:  
The system must write the reset command to return to the read mode (or erase-suspend-  
read mode if the device was previously in Erase Suspend).  
Enter Secured Silicon Sector/Exit Secured Silicon  
Sector Command Sequence  
The Secured Silicon Sector region provides a secured data area containing an 8-word/16-byte  
random Electronic Serial Number (ESN). The system can access the Secured Silicon Sector  
region by issuing the three-cycle Enter Secured Silicon Sector command sequence. The de-  
vice continues to access the Secured Silicon Sector region until the system issues the four-  
cycle Exit Secured Silicon Sector command sequence. The Exit Secured Silicon Sector com-  
mand sequence returns the device to normal operation. Table 10 shows the address and data  
requirements for both command sequences. See also “Secured Silicon Sector Flash  
Memory Region” for further information. Note that the ACC function and unlock bypass modes  
are not available when the Secured Silicon Sector is enabled.  
Word Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is initiated by  
writing two unlock write cycles, followed by the program set-up command. The program ad-  
dress and data are written next, which in turn initiate the Embedded Program algorithm. The  
system is not required to provide further controls or timings. The device automatically pro-  
vides internally generated program pulses and verifies the programmed cell margin. Tables  
31 and 32 show the address and data requirements for the word program command se-  
quence, respectively.  
When the Embedded Program algorithm is complete, the device then returns to the read  
mode and addresses are no longer latched. The system can determine the status of the pro-  
gram operation by using DQ7 or DQ6. Refer to the Write Operation Status section for  
information on these status bits. Any commands written to the device during the Embedded  
Program Algorithm are ignored. Note that the Secured Silicon Sector, autoselect, and CFI  
functions are unavailable when a program operation is in progress. Note that a hardware  
reset immediately terminates the program operation. The program command sequence  
should be reinitiated once the device has returned to the read mode, to ensure data integrity.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
41  
A d v a n c e I n f o r m a t i o n  
Programming is allowed in any sequence of address locations and across sector boundaries.  
Programming to the same word address multiple times without intervening erases (incremen-  
tal bit programming) requires a modified programming method. For such application  
requirements, please contact your local Spansion representative. Word programming is sup-  
ported for backward compatibility with existing Flash driver software and for occasional  
writing of individual words. Use of write buffer programming (see below) is strongly recom-  
mended for general programming use when more than a few words are to be programmed.  
The effective word programming time using write buffer programming is approximately four  
times shorter than the single word programming time.  
Any bit in a word cannot be programmed from “0” back to a “1.” Attempting to do so  
may cause the device to set DQ5=1, or cause DQ7 and DQ6 status bits to indicate the oper-  
ation was successful. However, a succeeding read will show that the data is still “0.Only  
erase operations can convert a “0” to a “1.”  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program words to the device faster than using  
the standard program command sequence. The unlock bypass command sequence is initiated  
by first writing two unlock cycles. This is followed by a third write cycle containing the unlock  
bypass command, 20h. The device then enters the unlock bypass mode. A two-cycle unlock  
bypass mode command sequence is all that is required to program in this mode. The first  
cycle in this sequence contains the unlock bypass program command, A0h; the second cycle  
contains the program address and data. Additional data is programmed in the same manner.  
This mode dispenses with the initial two unlock cycles required in the standard program com-  
mand sequence, resulting in faster total programming time. Tables 31 and 32 show the  
requirements for the command sequence.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset  
commands are valid. To exit the unlock bypass mode, the system must issue the two-cycle  
unlock bypass reset command sequence. The first cycle must contain the data 90h. The sec-  
ond cycle must contain the data 00h. The device then returns to the read mode.  
Write Buffer Programming  
Write Buffer Programming allows the system write to a maximum of 16 words/32 bytes in one  
programming operation. This results in faster effective programming time than the standard  
programming algorithms. The Write Buffer Programming command sequence is initiated by  
first writing two unlock cycles. This is followed by a third write cycle containing the Write  
Buffer Load command written at the Sector Address in which programming will occur. The  
fourth cycle writes the sector address and the number of word locations, minus one, to be  
programmed. For example, if the system will program 6 unique address locations, then 05h  
should be written to the device. This tells the device how many write buffer addresses will be  
loaded with data and therefore when to expect the Program Buffer to Flash command. The  
number of locations to program cannot exceed the size of the write buffer or the operation  
will abort.  
The fifth cycle writes the first address location and data to be programmed. The write-buffer-  
page is selected by address bits AMAX–A4. All subsequent address/data pairs must fall within  
the selected-write-buffer-page. The system then writes the remaining address/data pairs into  
the write buffer. Write buffer locations may be loaded in any order.  
The write-buffer-page address must be the same for all address/data pairs loaded into the  
write buffer. (This means Write Buffer Programming cannot be performed across multiple  
write-buffer pages.) This also means that Write Buffer Programming cannot be performed  
across multiple sectors. If the system attempts to load programming data outside of the se-  
lected write-buffer page, the operation will abort.  
42  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Note that if a Write Buffer address location is loaded multiple times, the address/data pair  
counter will be decremented for every data load operation. The host system must therefore  
account for loading a write-buffer location more than once. The counter decrements for each  
data load operation, not for each unique write-buffer-address location. Note also that if an  
address location is loaded more than once into the buffer, the final data loaded for that ad-  
dress will be programmed.  
Once the specified number of write buffer locations have been loaded, the system must then  
write the Program Buffer to Flash command at the sector address. Any other address and data  
combination aborts the Write Buffer Programming operation. The device then begins pro-  
gramming. Data polling should be used while monitoring the last address location loaded into  
the write buffer. DQ7, DQ6, DQ5, and DQ1 should be monitored to determine the device sta-  
tus during Write Buffer Programming.  
The write-buffer programming operation can be suspended using the standard program sus-  
pend/resume commands. Upon successful completion of the Write Buffer Programming  
operation, the device is ready to execute the next command.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
43  
A d v a n c e I n f o r m a t i o n  
The Write Buffer Programming Sequence can be aborted in the following ways:  
„ Load a value that is greater than the page buffer size during the Number of Locations to  
Program step.  
„ Write to an address in a sector different than the one specified during the Write-Buffer-  
Load command.  
„ Write an Address/Data pair to a different write-buffer-page than the one selected by the  
Starting Address during the write buffer data loading stage of the operation.  
„ Write data other than the Confirm Command after the specified number of data load cy-  
cles.  
The abort condition is indicated by DQ1 = 1, DQ7 = DATA# (for the last address location  
loaded), DQ6 = toggle, and DQ5=0. A Write-to-Buffer-Abort Reset command sequence must  
be written to reset the device for the next operation.  
Note that the Secured Silicon Sector, autoselect, and CFI functions are unavailable when a  
program operation is in progress.This flash device is capable of handling multiple write buffer  
programming operations on the same write buffer address range without intervening erases.  
For applications requiring incremental bit programming, a modified programming method is  
required; please contact your local Spansion representative. Any bit in a write buffer ad-  
dress range cannot be programmed from “0” back to a “1.” Attempting to do so may  
cause the device to set DQ5=1, of cause the DQ7 and DQ6 status bits to indicate the opera-  
tion was successful. However, a succeeding read will show that the data is still “0.Only erase  
operations can convert a “0” to a “1.”  
Accelerated Program  
The device offers accelerated program operations through the WP#/ACC or ACC pin depend-  
ing on the particular product. When the system asserts VHH on the WP#/ACC or ACC pin. The  
device uses the higher voltage on the WP#/ACC or ACC pin to accelerate the operation. Note  
that the WP#/ACC pin must not be at VHH for operations other than accelerated program-  
ming, or device damage may result. WP# has an internal pullup; when unconnected, WP# is  
at VIH  
.
Figure 4 illustrates the algorithm for the program operation. Refer to the Erase and Program  
Operations–“AC Characteristics” section on page 63 section for parameters, and Figure 16 for  
timing diagrams.  
44  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Write “Write to Buffer”  
command and  
Sector Address  
Part of “Write to Buffer”  
Command Sequence  
Write number of addresses  
to program minus 1(WC)  
and Sector Address  
Write first address/data  
Yes  
WC = 0 ?  
No  
Write to a different  
sector address  
Abort Write to  
Buffer Operation?  
Yes  
Write to buffer ABORTED.  
Must write “Write-to-buffer  
Abort Reset” command  
sequence to return  
No  
Write next address/data pair  
(Note 1)  
to read mode.  
WC = WC - 1  
Write program buffer to  
flash sector address  
Read DQ7 - DQ0 at  
Last Loaded Address  
Notes:  
1. When Sector Address is specified, any address in  
the selected sector is acceptable. However, when  
loading Write-Buffer address locations  
Yes  
with data, all addresses must fall within  
DQ7 = Data?  
No  
the selected Write-Buffer Page.  
2. DQ7 may change simultaneously with  
DQ5. Therefore, DQ7 should be verified.  
No  
3. If this flowchart location was reached  
because DQ5= “1”, then the device  
FAILED. If this flowchart location was  
reached because DQ1= “1”, then the  
Write to Buffer operation was ABORTED.  
In either case, the proper reset command  
must be written before the device can  
begin another operation. If DQ1=1, write  
the Write-Buffer-Programming-Abort-  
Reset command. if DQ5=1, write the  
Reset command.  
No  
DQ1 = 1?  
DQ5 = 1?  
Yes  
Yes  
Read DQ7 - DQ0 with  
address = Last Loaded  
Address  
4. See Table 10 and for command  
sequences required for write buffer  
programming.  
Yes  
(Note 2)  
DQ7 = Data?  
No  
FAIL or ABORT  
PASS  
(Note 3)  
Figure 3. Write Buffer Programming Operation  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
45  
A d v a n c e I n f o r m a t i o n  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
No  
Yes  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note:See Table 10 for program command sequence.  
Figure 4. Program Operation  
Program Suspend/Program Resume Command Sequence  
The Program Suspend command allows the system to interrupt a programming operation or  
a Write to Buffer programming operation so that data can be read from any non-suspended  
sector. When the Program Suspend command is written during a programming process, the  
device halts the program operation within 15 µs maximum (5µs typical) and updates the sta-  
tus bits. Addresses are not required when writing the Program Suspend command.  
After the programming operation has been suspended, the system can read array data from  
any non-suspended sector. The Program Suspend command may also be issued during a pro-  
gramming operation while an erase is suspended. In this case, data may be read from any  
addresses not in Erase Suspend or Program Suspend. If a read is needed from the Secured  
Silicon Sector area (One-time Program area), then user must use the proper command se-  
quences to enter and exit this region. Note that the Secured Silicon Sector, autoselect, and  
CFI functions are unavailable when a program operation is in progress.  
The system may also write the autoselect command sequence when the device is in the Pro-  
gram Suspend mode. The system can read as many autoselect codes as required. When the  
device exits the autoselect mode, the device reverts to the Program Suspend mode, and is  
ready for another valid operation. See Autoselect Command Sequence for more information.  
After the Program Resume command is written, the device reverts to programming. The sys-  
tem can determine the status of the program operation using the DQ7 or DQ6 status bits, just  
as in the standard program operation. See Write Operation Status for more information.  
46  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
The system must write the Program Resume command (address bits are don’t care) to exit  
the Program Suspend mode and continue the programming operation. Further writes of the  
Resume command are ignored. Another Program Suspend command can be written after the  
device has resumed programming.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
47  
A d v a n c e I n f o r m a t i o n  
Program Operation  
or Write-to-Buffer  
Sequence in Progress  
Write Program Suspend  
Command Sequence  
Write address/data  
XXXh/B0h  
Command is also valid for  
Erase-suspended-program  
operations  
Wait 15 µs  
Autoselect and SecSi Sector  
read operations are also allowed  
Read data as  
required  
Data cannot be read from erase- or  
program-suspended sectors  
Done  
No  
reading?  
Yes  
Write Program Resume  
Command Sequence  
Write address/data  
XXXh/30h  
Device reverts to  
operation prior to  
Program Suspend  
Figure 5. Program Suspend/Program Resume  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writ-  
ing two unlock cycles, followed by a set-up command. Two additional unlock write cycles are  
then followed by the chip erase command, which in turn invokes the Embedded Erase algo-  
rithm. The device does not require the system to preprogram prior to erase. The Embedded  
Erase algorithm automatically preprograms and verifies the entire memory for an all zero data  
pattern prior to electrical erase. The system is not required to provide any controls or timings  
during these operations. Table 10 shows the address and data requirements for the chip erase  
command sequence.  
When the Embedded Erase algorithm is complete, the device returns to the read mode and  
addresses are no longer latched. The system can determine the status of the erase operation  
by using DQ7, DQ6, or DQ2. Refer to the Write Operation Status section for information on  
these status bits.  
Any commands written during the chip erase operation are ignored. However, note that a  
hardware reset immediately terminates the erase operation. If that occurs, the chip erase  
command sequence should be reinitiated once the device has returned to reading array data,  
to ensure data integrity.  
Figure 6 illustrates the algorithm for the erase operation. Refer to the Erase and Program Op-  
erations table in the AC Characteristics section for parameters, and Figure 18 section for  
timing diagrams.  
48  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by  
writing two unlock cycles, followed by a set-up command. Two additional unlock cycles are  
written, and are then followed by the address of the sector to be erased, and the sector erase  
command. Table 10 shows the address and data requirements for the sector erase command  
sequence.  
The device does not require the system to preprogram prior to erase. The Embedded Erase  
algorithm automatically programs and verifies the entire memory for an all zero data pattern  
prior to electrical erase. The system is not required to provide any controls or timings during  
these operations.  
After the command sequence is written, a sector erase time-out of 50 µs occurs. During the  
time-out period, additional sector addresses and sector erase commands may be written.  
Loading the sector erase buffer may be done in any sequence, and the number of sectors may  
be from one sector to all sectors. The time between these additional cycles must be less than  
50 µs, otherwise erasure may begin. Any sector erase address and command following the  
exceeded time-out may or may not be accepted. It is recommended that processor interrupts  
be disabled during this time to ensure all commands are accepted. The interrupts can be  
re-enabled after the last Sector Erase command is written. Any command other than Sec-  
tor Erase or Erase Suspend during the time-out period resets the device to the read  
mode. Note that the Secured Silicon Sector, autoselect, and CFI functions are unavailable  
when an erase operation is in progress. The system must rewrite the command sequence and  
any additional addresses and commands.  
The system can monitor DQ3 to determine if the sector erase timer has timed out (See the  
section on DQ3: Sector Erase Timer.). The time-out begins from the rising edge of the final  
WE# pulse in the command sequence.  
When the Embedded Erase algorithm is complete, the device returns to reading array data  
and addresses are no longer latched. The system can determine the status of the erase op-  
eration by reading DQ7, DQ6, or DQ2 in the erasing sector. Refer to the Write Operation  
Status section for information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is valid. All  
other commands are ignored. However, note that a hardware reset immediately terminates  
the erase operation. If that occurs, the sector erase command sequence should be reinitiated  
once the device has returned to reading array data, to ensure data integrity.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
49  
A d v a n c e I n f o r m a t i o n  
Figure 6 illustrates the algorithm for the erase operation. Refer to the Erase and Program Op-  
erations table in the AC Characteristics section for parameters, and Figure 18 section for  
timing diagrams.  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 10 for program command sequence.  
2. See the section on DQ3 for information on the sector erase timer.  
Figure 6. Erase Operation  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase operation  
and then read data from, or program data to, any sector not selected for erasure. This com-  
mand is valid only during the sector erase operation, including the 50 µs time-out period  
during the sector erase command sequence. The Erase Suspend command is ignored if writ-  
ten during the chip erase operation or Embedded Program algorithm.  
When the Erase Suspend command is written during the sector erase operation, the device  
requires a typical of 5 µs (maximum of 20 µs) to suspend the erase operation. However, when  
the Erase Suspend command is written during the sector erase time-out, the device immedi-  
ately terminates the time-out period and suspends the erase operation.  
After the erase operation has been suspended, the device enters the erase-suspend-read  
mode. The system can read data from or program data to any sector not selected for erasure.  
(The device “erase suspends” all sectors selected for erasure.) Reading at any address within  
erase-suspended sectors produces status information on DQ7–DQ0. The system can use  
DQ7, or DQ6 and DQ2 together, to determine if a sector is actively erasing or is erase-sus-  
pended. Refer to the Write Operation Status section for information on these status bits.  
After an erase-suspended program operation is complete, the device returns to the erase-  
suspend-read mode. The system can determine the status of the program operation using the  
DQ7 or DQ6 status bits, just as in the standard word program operation. Refer to the Write  
Operation Status section for more information.  
In the erase-suspend-read mode, the system can also issue the autoselect command se-  
quence. Refer to the “Autoselect Mode” section on page 29 and “Autoselect Command  
Sequence” section on page 41 sections for details.  
To resume the sector erase operation, the system must write the Erase Resume command.  
Further writes of the Resume command are ignored. Another Erase Suspend command can  
be written after the chip has resumed erasing.  
50  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Note: During an erase operation, this flash device performs multiple internal oper-  
ations which are invisible to the system. When an erase operation is suspended, any  
of the internal operations that were not fully completed must be restarted. As such,  
if this flash device is continually issued suspend/resume commands in rapid suc-  
cession, erase progress will be impeded as a function of the number of suspends.  
The result will be a longer cumulative erase time than without suspends. Note that  
the additional suspends do not affect device reliability or future performance. In  
most systems rapid erase/suspend activity occurs only briefly. In such cases, erase  
performance will not be significantly impacted.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
51  
A d v a n c e I n f o r m a t i o n  
Command Definitions  
Table 10. Command Definitions (x16 Mode, BYTE# = VIH  
)
Bus Cycles (Notes 2–5)  
Command  
Sequence  
(Note 1)  
First  
Second  
Third  
Addr  
Fourth  
Data  
Fifth  
Sixth  
Addr Data  
Addr  
Data  
Data  
Addr  
Addr  
Data Addr Data  
Read (Note 6)  
Reset (Note 7)  
1
1
4
RA  
RD  
F0  
XXX  
555  
Manufacturer ID  
AA  
2AA  
2AA  
55  
55  
555  
555  
90  
90  
X00  
X01  
0001  
227E  
(Note  
18)  
(Note  
18)  
Device ID (Note 9)  
4
4
555  
555  
AA  
AA  
X0E  
X0F  
Secured SiliconSector Factory  
Protect (Note 10)  
2AA  
2AA  
55  
55  
555  
555  
90  
90  
X03  
(Note 10)  
00/01  
Sector Group Protect Verify (Note  
12)  
4
555  
AA  
(SA)X02  
Enter Secured Silicon Sector Region  
Exit Secured Silicon Sector Region  
Program  
3
4
4
3
1
3
3
2
2
6
6
1
1
1
555  
555  
555  
555  
SA  
AA  
AA  
AA  
AA  
29  
AA  
AA  
A0  
90  
AA  
AA  
B0  
30  
98  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
555  
555  
555  
SA  
88  
90  
A0  
25  
XXX  
PA  
00  
PD  
WC  
Write to Buffer (Note 11)  
Program Buffer to Flash  
Write to Buffer Abort Reset (Note 13)  
Unlock Bypass  
SA  
PA  
PD  
WBL  
PD  
555  
555  
XXX  
XXX  
555  
555  
XXX  
XXX  
55  
2AA  
2AA  
PA  
55  
55  
PD  
00  
55  
55  
555  
555  
F0  
20  
Unlock Bypass Program (Note 14)  
Unlock Bypass Reset (Note 15)  
Chip Erase  
XXX  
2AA  
2AA  
555  
555  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
Program/Erase Suspend (Note 16)  
Program/Erase Resume (Note 17)  
CFI Query (Note 18)  
Legend:  
X = Don’t care  
RA = Read Address of memory location to be read.  
PD = Program Data for location PA. Data latches on rising edge of  
WE# or CE# pulse, whichever happens first.  
SA = Sector Address of sector to be verified (in autoselect mode) or  
erased. Address bits A21–A15 uniquely select any sector.  
WBL = Write Buffer Location. Address must be within same write  
buffer page as PA.  
RD = Read Data read from location RA during read operation.  
PA = Program Address. Addresses latch on falling edge of WE# or  
CE# pulse, whichever happens later.  
WC = Word Count. Number of write buffer locations to load minus 1.  
Notes:  
1. See Table 1 for description of bus operations.  
10. Data is 00h for an unprotected sector group and 01h for a  
protected sector group.  
2. All values are in hexadecimal.  
11. Total number of cycles in command sequence is determined by  
number of words written to write buffer. Maximum number of  
cycles in command sequence is 21, including “Program Buffer to  
Flash” command.  
12. Command sequence resets device for next command after  
aborted write-to-buffer operation.  
13. Unlock Bypass command is required prior to Unlock Bypass  
Program command.  
14. Unlock Bypass Reset command is required to return to read  
mode when device is in unlock bypass mode.  
3. Shaded cells indicate read cycles. All others are write cycles.  
4. During unlock and command cycles, when lower address bits are  
555 or 2AA as shown in table, address bits above A11 and data  
bits above DQ7 are don’t care.  
5. No unlock or command cycles required when device is in read  
mode.  
6. Reset command is required to return to read mode (or to erase-  
suspend-read mode if previously in Erase Suspend) when device  
is in autoselect mode, or if DQ5 goes high while device is  
providing status information.  
15. System may read and program in non-erasing sectors, or enter  
autoselect mode, when in Erase Suspend mode. Erase Suspend  
command is valid only during a sector erase operation.  
16. Erase Resume command is valid only during Erase Suspend  
mode.  
7. Fourth cycle of the autoselect command sequence is a read  
cycle. Data bits DQ15–DQ8 are don’t care. Except for RD, PD  
and WC. See Autoselect Command Sequence section for more  
information.  
8. Device ID must be read in three cycles.  
17. Command is valid when device is ready to read array data or  
when device is in autoselect mode.  
18. Refer to Table 4, AutoSelect Codes for individual Device IDs per  
device density and model number.  
9. If WP# protects highest address sector, data is 98h for factory  
locked and 18h for not factory locked. If WP# protects lowest  
address sector, data is 88h for factory locked and 08h for not  
factor locked.  
52  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Write Operation Status  
The device provides several bits to determine the status of a program or erase operation:  
DQ2, DQ3, DQ5, DQ6, and DQ7. Table 11 and the following subsections describe the function  
of these bits. DQ7 and DQ6 each offer a method for determining whether a program or erase  
operation is complete or in progress. The device also provides a hardware-based output sig-  
nal, RY/BY#, to determine whether an Embedded Program or Erase operation is in progress  
or has been completed.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Program or  
Erase algorithm is in progress or completed, or whether the device is in Erase Suspend. Data#  
Polling is valid after the rising edge of the final WE# pulse in the command sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the complement of the  
datum programmed to DQ7. This DQ7 status also applies to programming during Erase Sus-  
pend. When the Embedded Program algorithm is complete, the device outputs the datum  
programmed to DQ7. The system must provide the program address to read valid status in-  
formation on DQ7. If a program address falls within a protected sector, Data# Polling on DQ7  
is active for approximately 1 µs, then the device returns to the read mode.  
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7. When the Em-  
bedded Erase algorithm is complete, or if the device enters the Erase Suspend mode, Data#  
Polling produces a “1” on DQ7. The system must provide an address within any of the sectors  
selected for erasure to read valid status information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing are protected,  
Data# Polling on DQ7 is active for approximately 100 µs, then the device returns to the read  
mode. If not all selected sectors are protected, the Embedded Erase algorithm erases the un-  
protected sectors, and ignores the selected sectors that are protected. However, if the system  
reads DQ7 at an address within a protected sector, the status may not be valid.  
Just prior to the completion of an Embedded Program or Erase operation, DQ7 may change  
asynchronously with DQ0–DQ6 while Output Enable (OE#) is asserted low. That is, the device  
may change from providing status information to valid data on DQ7. Depending on when the  
system samples the DQ7 output, it may read the status or valid data. Even if the device has  
completed the program or erase operation and DQ7 has valid data, the data outputs on DQ0–  
DQ6 may be still invalid. Valid data on DQ0–DQ7 will appear on successive read cycles.  
Table 11 shows the outputs for Data# Polling on DQ7. Figure 7 shows the Data# Polling al-  
gorithm. Figure 19 in the AC Characteristics section shows the Data# Polling timing diagram.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
53  
A d v a n c e I n f o r m a t i o n  
START  
Read DQ15–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
Read DQ15–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a sector erase operation, a valid address is any sector address within the sector  
being erased. During chip erase, a valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because DQ7 may change simultaneously with DQ5.  
Figure 7. Data# Polling Algorithm  
RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin which indicates whether an Embedded Al-  
gorithm is in progress or complete. The RY/BY# status is valid after the rising edge of the final  
WE# pulse in the command sequence. Since RY/BY# is an open-drain output, several RY/BY#  
pins can be tied together in parallel with a pull-up resistor to VCC.  
If the output is low (Busy), the device is actively erasing or programming. (This includes pro-  
gramming in the Erase Suspend mode.) If the output is high (Ready), the device is in the read  
mode, the standby mode, or in the erase-suspend-read mode. Table 11 shows the outputs  
for RY/BY#.  
54  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress  
or complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I may  
be read at any address, and is valid after the rising edge of the final WE# pulse in the com-  
mand sequence (prior to the program or erase operation), and during the sector erase time-  
out.  
During an Embedded Program or Erase algorithm operation, successive read cycles to any ad-  
dress cause DQ6 to toggle. The system may use either OE# or CE# to control the read cycles.  
When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing are protected,  
DQ6 toggles for approximately 100 µs, then returns to reading array data. If not all selected  
sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ig-  
nores the selected sectors that are protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing  
or is erase-suspended. When the device is actively erasing (that is, the Embedded Erase al-  
gorithm is in progress), DQ6 toggles. When the device enters the Erase Suspend mode, DQ6  
stops toggling. However, the system must also use DQ2 to determine which sectors are eras-  
ing or erase-suspended. Alternatively, the system can use DQ7 (see the subsection on DQ7:  
Data# Polling).  
If a program address falls within a protected sector, DQ6 toggles for approximately 1 µs after  
the program command sequence is written, then returns to reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Em-  
bedded Program algorithm is complete.  
Table 11 shows the outputs for Toggle Bit I on DQ6. Figure 8 shows the toggle bit algorithm.  
Figure 20 in the “AC Characteristics” section shows the toggle bit timing diagrams. Figure 21  
shows the differences between DQ2 and DQ6 in graphical form. See also the subsection on  
DQ2: Toggle Bit II.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
55  
A d v a n c e I n f o r m a t i o n  
START  
Read DQ7–DQ0  
Read DQ7–DQ0  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Twice  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Note:  
The system should recheck the toggle bit even if DQ5 = “1”  
because the toggle bit may stop toggling as DQ5 changes to  
“1.See the subsections on DQ6 and DQ2 for more  
information.  
Figure 8. Toggle Bit Algorithm  
56  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular sector is ac-  
tively erasing (that is, the Embedded Erase algorithm is in progress), or whether that sector  
is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE# pulse in the  
command sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have been se-  
lected for erasure. (The system may use either OE# or CE# to control the read cycles.) But  
DQ2 cannot distinguish whether the sector is actively erasing or is erase-suspended. DQ6, by  
comparison, indicates whether the device is actively erasing, or is in Erase Suspend, but can-  
not distinguish which sectors are selected for erasure. Thus, both status bits are required for  
sector and mode information. Refer to Table 11 to compare outputs for DQ2 and DQ6.  
Figure 8 shows the toggle bit algorithm in flowchart form, and the section “DQ2: Toggle Bit  
II” explains the algorithm. See also the RY/BY#: Ready/Busy# subsection. Figure 20 shows  
the toggle bit timing diagram. Figure 21 shows the differences between DQ2 and DQ6 in  
graphical form.  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 8 for the following discussion. Whenever the system initially begins reading  
toggle bit status, it must read DQ7–DQ0 at least twice in a row to determine whether a toggle  
bit is toggling. Typically, the system would note and store the value of the toggle bit after the  
first read. After the second read, the system would compare the new value of the toggle bit  
with the first. If the toggle bit is not toggling, the device has completed the program or erase  
operation. The system can read array data on DQ7–DQ0 on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle bit is still  
toggling, the system also should note whether the value of DQ5 is high (see the section on  
DQ5). If it is, the system should then determine again whether the toggle bit is toggling, since  
the toggle bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer  
toggling, the device has successfully completed the program or erase operation. If it is still  
toggling, the device did not completed the operation successfully, and the system must write  
the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit is toggling  
and DQ5 has not gone high. The system may continue to monitor the toggle bit and DQ5  
through successive read cycles, determining the status as described in the previous para-  
graph. Alternatively, it may choose to perform other system tasks. In this case, the system  
must start at the beginning of the algorithm when it returns to determine the status of the  
operation (top of Figure 6).  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program, erase, or write-to-buffer time has exceeded a specified  
internal pulse count limit. Under these conditions DQ5 produces a “1,indicating that the pro-  
gram or erase cycle was not successfully completed.  
The device may output a “1” on DQ5 if the system tries to program a “1” to a location that  
was previously programmed to “0.Only an erase operation can change a “0” back to a  
“1.” Under this condition, the device halts the operation, and when the timing limit has been  
exceeded, DQ5 produces a “1.”  
In all these cases, the system must write the reset command to return the device to the read-  
ing the array (or to erase-suspend-read if the device was previously in the erase-suspend-  
program mode).  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
57  
A d v a n c e I n f o r m a t i o n  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to determine  
whether or not erasure has begun. (The sector erase timer does not apply to the chip erase  
command.) If additional sectors are selected for erasure, the entire time-out also applies after  
each additional sector erase command. When the time-out period is complete, DQ3 switches  
from a “0” to a “1.If the time between additional sector erase commands from the system  
can be assumed to be less than 50 µs, the system need not monitor DQ3. See also the Sector  
Erase Command Sequence section.  
After the sector erase command is written, the system should read the status of DQ7 (Data#  
Polling) or DQ6 (Toggle Bit I) to ensure that the device has accepted the command sequence,  
and then read DQ3. If DQ3 is “1,the Embedded Erase algorithm has begun; all further com-  
mands (except Erase Suspend) are ignored until the erase operation is complete. If DQ3 is  
“0,the device will accept additional sector erase commands. To ensure the command has  
been accepted, the system software should check the status of DQ3 prior to and following  
each subsequent sector erase command. If DQ3 is high on the second status check, the last  
command might not have been accepted.  
Table 11 shows the status of DQ3 relative to the other status bits.  
DQ1: Write-to-Buffer Abort  
DQ1 indicates whether a Write-to-Buffer operation was aborted. Under these conditions DQ1  
produces a “1. The system must issue the Write-to-Buffer-Abort-Reset command sequence  
to return the device to reading array data. See Write Buffer section for more details.  
Table 11. Write Operation Status  
DQ7  
DQ5  
DQ2  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
DQ1  
0
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Program-Suspended  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
N/A  
Invalid (not allowed)  
Data  
1
1
1
1
0
Program  
Suspend  
Mode  
Program-  
Suspend  
Read  
Sector  
Non-Program  
Suspended Sector  
Erase-Suspended  
Sector  
1
No toggle  
Toggle  
0
N/A  
Toggle  
N/A  
N/A  
N/A  
Erase-  
Suspend  
Read  
Erase  
Suspend  
Mode  
Non-Erase  
Suspended Sector  
Data  
Erase-Suspend-Program  
(Embedded Program)  
DQ7#  
0
N/A  
Busy (Note 3)  
Abort (Note 4)  
DQ7#  
DQ7#  
Toggle  
Toggle  
0
0
N/A  
N/A  
N/A  
N/A  
0
1
0
0
Write-to-  
Buffer  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program, Embedded Erase, or Write-to-Buffer operation has exceeded the maximum timing limits.  
Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.  
3. The Data# Polling algorithm should be used to monitor the last loaded write-buffer address location.  
4. DQ1 switches to ‘1’ when the device has aborted the write-to-buffer operation.  
58  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Absolute Maximum Ratings  
Storage Temperature, Plastic Packages. . . . . . . . . . . . . . . . 65°C to +150°C  
Ambient Temperature with Power Applied . . . . . . . . . . . . . . –65°C to +125°C  
Voltage with Respect to Ground:  
VCC (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to +4.0 V  
. . . . . . . . . . . . A9, OE#, ACC and RESET# (Note 2)–0.5 V to +12.5 V  
All other pins (Note 1). . . . . . . . . . . . . . . . . . . . . 0.5 V to VCC+0.5 V  
Output Short Circuit Current (Note 3). . . . . . . . . . . . . . . . . . . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/Os is –0.5 V. During voltage transitions, inputs  
or I/Os may overshoot V to –2.0 V for periods of up to 20 ns. See Figure 9.  
SS  
Maximum DC voltage on input or I/Os is V + 0.5 V. During voltage transitions,  
CC  
input or I/O pins may overshoot to V + 2.0 V for periods up to 20 ns. See Figure  
CC  
10.  
2. Minimum DC input voltage on pins A9, OE#, ACC, and RESET# is –0.5 V. During  
voltage transitions, A9, OE#, ACC, and RESET# may overshoot V to –2.0 V for  
SS  
periods of up to 20 ns. See Figure 9. Maximum DC input voltage on pin A9, OE#,  
ACC, and RESET# is +12.5 V which may overshoot to +14.0V for periods up to 20  
ns.  
3. No more than one output may be shorted to ground at a time. Duration of the short  
circuit should not be greater than one second.  
4. Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only; functional operation  
of the device at these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied. Exposure of the device to  
absolute maximum rating conditions for extended periods may affect device  
reliability.  
20 ns  
20 ns  
20 ns  
VCC  
+2.0 V  
+0.8 V  
VCC  
–0.5 V  
–2.0 V  
+0.5 V  
2.0 V  
20 ns  
20 ns  
20 ns  
Figure 9. Maximum Negative Overshoot  
Waveform  
Figure 10. Maximum Positive Overshoot  
Waveform  
Operating Ranges  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Supply Voltages  
VCC for full voltage range . . . . . . . . . . . . . . . . . . . . . . . . . +2.7 V to +3.6 V  
VCC for regulated voltage range. . . . . . . . . . . . . . . . . . . . . +3.0 V to +3.6 V  
VIO  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC  
Note:Operating ranges define those limits between which the functionality of the device is guaranteed  
.
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
59  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
CMOS Compatible  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min  
Typ  
Max  
Unit  
(Notes)  
V
IN = VSS to VCC,  
ILI  
Input Load Current (Note 1)  
±1.0  
µA  
VCC = VCC max  
ILIT  
ILR  
A9, ACC Input Load Current  
Reset Leakage Current  
VCC = VCC max; A9 = 12.5 V  
35  
35  
µA  
µA  
VCC = VCC max; RESET# = 12.5 V  
V
OUT = VSS to VCC  
,
ILO  
Output Leakage Current  
±1.0  
µA  
VCC = VCC max  
1 MHz  
5
20  
25  
50  
20  
40  
60  
ICC1  
VCC Initial Read Current (Notes 2, 3)  
CE# = VIL, OE# = VIH  
,
5 MHz  
18  
35  
5
mA  
10 MHz  
10 MHz  
40 MHz  
ICC2  
VCC Intra-Page Read Current (Notes 2, 3) CE# = VIL, OE# = VIH  
mA  
10  
50  
ICC3  
ICC4  
ICC5  
ICC6  
VCC Active Write Current (Note 3)  
VCC Standby Current (Note 3)  
VCC Reset Current (Note 3)  
CE# = VIL, OE# = VIH  
mA  
µA  
µA  
µA  
CE#, RESET# = VCC ± 0.3 V,  
WP# = VIH  
1
1
1
5
5
5
RESET# = VSS ± 0.3 V, WP# = VIH  
VIH = VCC ± 0.3 V;  
-0.1< VIL 0.3 V, WP# = VIH  
Automatic Sleep Mode (Notes 3, 5)  
VIL  
VIH  
VHH  
Input Low Voltage 1 (Note 6)  
–0.5  
0.7 VCC  
11.5  
0.8  
VCC + 0.5  
12.5  
V
V
V
Input High Voltage 1 (Note 6)  
Voltage for ACC Program Acceleration  
VCC = 2.7 –3.6 V  
VCC = 2.7 –3.6 V  
12.0  
12.0  
Voltage for Autoselect and Temporary  
Sector Unprotect  
VID  
11.5  
12.5  
0.45  
V
VOL  
Output Low Voltage (Note 6)  
IOL = 4.0 mA, VCC = VCC min  
IOH = –2.0 mA, VCC = VCC min  
IOH = –100 µA, VCC = VCC min  
V
V
V
V
VOH1  
VOH2  
VLKO  
0.85 VCC  
VCC–0.4  
2.3  
Output High Voltage  
Low VCC Lock-Out Voltage (Note 7)  
2.5  
Notes:  
1. On the WP#/ACC pin only, the maximum input load current when WP# = VIL is ± 2.0 µA.  
2. The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH  
.
3. Maximum ICC specifications are tested with VCC = VCCmax.  
4.  
ICC active while Embedded Erase or Embedded Program is in progress.  
5. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns.  
6. VCC voltage requirements.  
7. Not 100% tested.  
60  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Test Conditions  
Table 12. Test Specifications  
3.3 V  
Test Condition  
All Speeds  
1 TTL gate  
Unit  
Output Load  
2.7 kΩ  
Device  
Under  
Test  
Output Load Capacitance, CL  
(including jig capacitance)  
30  
pF  
Input Rise and Fall Times  
Input Pulse Levels  
5
ns  
V
C
L
6.2 kΩ  
0.0 or VCC  
Input timing measurement  
reference levels (See Note)  
0.5 VCC  
0.5 VCC  
V
V
Output timing measurement  
reference levels  
Note: Diodes are IN3064 or equivalent.  
Figure 11. Test Setup  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
61  
A d v a n c e I n f o r m a t i o n  
Key to Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
V
CC  
0.5 V  
Input  
0.5 V  
Measurement Level  
Output  
CC  
CC  
0.0 V  
Figure 12. Input Waveforms and Measurement Levels  
62  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Read-Only Operations-S29GL064A only  
Parameter  
Speed Options  
Description  
Te s t S e t u p  
Unit  
JEDEC  
tAVAV  
tAVQV  
tELQV  
Std.  
100  
100  
100  
100  
25  
tRC Read Cycle Time (Note 1)  
tACC Address to Output Delay  
tCE Chip Enable to Output Delay  
tPACC Page Access Time  
Min  
CE#, OE# = VIL Max  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OE# = VIL  
Max  
Max  
Max  
Max  
Max  
tGLQV  
tEHQZ  
tGHQZ  
tOE Output Enable to Output Delay  
tDF Chip Enable to Output High Z (Note 1)  
tDF Output Enable to Output High Z (Note 1)  
25  
16  
16  
Output Hold Time From Addresses, CE# or OE#,  
Whichever Occurs First  
tAXQX  
tOH  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
Read  
Output Enable Hold  
Time (Note 1)  
tOEH  
Toggle and  
Data# Polling  
10  
Notes:  
1. Not 100% tested.  
2. See Figure 11 and Table 12 for test specifications.  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tRH  
tRH  
tDF  
tOE  
OE#  
WE#  
tOEH  
tCE  
tOH  
Valid Data  
HIGH Z  
HIGH Z  
Data  
RESET#  
RY/BY#  
0 V  
Figure 13. Read Operation Timings  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
63  
A d v a n c e I n f o r m a t i o n  
Same Page  
A23-A2  
A1-A0*  
Ad  
Aa  
tACC  
Ab  
tPACC  
Ac  
tPACC  
tPACC  
Data Bus  
Qa  
Qb  
Qc  
Qd  
CE#  
OE#  
Note: Shows device in word mode. Addresses are A1–A-1 for byte mode  
.
Figure 14. Page Read Timings  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std.  
Description  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read Mode (See Note)  
tReady  
Max  
Max  
20  
µs  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read Mode (See Note)  
tReady  
500  
ns  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
Reset High Time Before Read (See Note)  
RESET# Input Low to Standby Mode (See Note)  
RY/BY# Output High to CE#, OE# pin Low  
Note:Not 100% tested  
.
64  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Figure 15. Reset Timings  
Notes:  
1. Not 100% tested.  
2. See the “Erase and Programming Performance” section for more information.  
3. For 1–16 words/1–32 bytes programmed.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
65  
A d v a n c e I n f o r m a t i o n  
Erase and Program Operations-S29GL064A Only  
Parameter  
JEDEC  
tAVAV  
tAVWL  
Speed Options  
Unit  
Std.  
tWC  
tAS  
Description  
Write Cycle Time (Note 1)  
100  
100  
0
Min  
Min  
Min  
Min  
ns  
ns  
ns  
ns  
Address Setup Time  
tASO  
tAH  
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
15  
45  
tWLAX  
Address Hold Time From CE# or OE# high during toggle bit  
polling  
tAHT  
Min  
0
ns  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Typ  
Min  
Min  
Min  
Max  
35  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Hold Time  
tCEPH  
tOEPH  
tGHWL  
tCS  
CE# High during toggle bit polling  
OE# High during toggle bit polling  
Read Recovery Time Before Write (OE# High to WE# Low)  
CE# Setup Time  
20  
20  
0
tGHWL  
tELWL  
0
tWHEH  
tWLWH  
tWHDL  
tCH  
CE# Hold Time  
0
tWP  
Write Pulse Width  
35  
30  
240  
60  
54  
0.5  
250  
50  
90  
4
tWPH  
Write Pulse Width High  
Write Buffer Program Operation (Notes 2, 3)  
Single Word Program Operation (Note 2)  
Accelerated Single Word Program Operation (Note 2)  
Sector Erase Operation (Note 2)  
VHH Rise and Fall Time (Note 1)  
VCC Setup Time (Note 1)  
tWHWH1  
tWHWH1  
µs  
tWHWH2  
tWHWH2  
tVHH  
sec  
ns  
µs  
ns  
µs  
tVCS  
tBUSY  
tPOLL  
WE# High to RY/BY# Low  
Program Valid before Status Polling  
Notes:  
1. Not 100% tested.  
2. See the “Erase and Programming Performance” section for more information.  
3. For 1–16 words/1–32 bytes programmed.  
4. If a program suspend command is issued within tPOLL, the device requires tPOLL before reading status data, once programming has resumed  
(that is, the program resume command has been written). If the suspend command was issued after tPOLL, status data is available  
immediately after programming has resumed. See Figure 16.  
66  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tPOLL  
tWP  
WE#  
Data  
tWPH  
tCS  
tWHWH1  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, DOUT is the true data at the program address.  
2. Illustration shows device in word mode.  
Figure 16. Program Operation Timings  
V
HH  
V
or V  
IL IH  
V
or V  
IL IH  
ACC  
t
t
VHH  
VHH  
Figure 17. Accelerated Program Timing Diagram  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
67  
A d v a n c e I n f o r m a t i o n  
Erase Command Sequence (last two cycles)  
Read Status Data  
tAS  
SA  
tWC  
VA  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”.)  
2. Illustration shows device in word mode.  
Figure 18. Chip/Sector Erase Operation Timings  
68  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
tRC  
Addresses  
CE#  
VA  
tACC  
tCE  
VA  
VA  
tPOLL  
tCH  
tOE  
OE#  
WE#  
tDF  
tOH  
tOEH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ0–DQ6  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data  
read cycle.  
Figure 19. Data# Polling Timings (During Embedded Algorithms)  
tAHT  
tAS  
Addresses  
CE#  
tAHT  
tASO  
tCEPH  
tOEH  
WE#  
OE#  
tOEPH  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6 / DQ2  
RY/BY#  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last  
status read cycle, and array data read cycle.  
Figure 20. Toggle Bit Timings (During Embedded Algorithms)  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
69  
A d v a n c e I n f o r m a t i o n  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Erase  
WE#  
Erase  
Erase Suspend  
Read  
Suspend  
Program  
Complete  
DQ6  
DQ2  
Note:DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle DQ2 and DQ6  
.
Figure 21. DQ2 vs. DQ6  
Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
Description  
All Speed Options  
Unit  
tVIDR  
VID Rise and Fall Time (See Note)  
Min  
Min  
500  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
4
µs  
Notes:  
1. Not 100% tested.  
VID  
VID  
RESET#  
VIL or VIH  
VIL or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRRB  
tRSP  
RY/BY#  
Figure 22. Temporary Sector Group Unprotect Timing Diagram  
70  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
V
V
ID  
IH  
RESET#  
SA, A6,  
A3, A2,  
A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector Group Protect or Unprotect  
Verify  
40h  
Data  
60h  
60h  
Sector Group Protect: 150 µs,  
Sector Group Unprotect: 15 ms  
1 µs  
CE#  
WE#  
OE#  
Note: For sector group protect, A6:A0 = 0xx0010. For sector group unprotect, A6:A0 = 1xx0010.  
Figure 23. Sector Group Protect and Unprotect Timing Diagram  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
71  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Alternate CE# Controlled Erase and Program Operations-S29GL064A  
Parameter  
Speed Options  
Unit  
JEDEC  
Std.  
tWC  
tAS  
Description  
Write Cycle Time (Note 1)  
100  
100  
0
tAVAV  
tAVWL  
tELAX  
tDVEH  
tEHDX  
tGHEL  
tWLEL  
tEHWH  
tELEH  
tEHEL  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Typ  
Min  
Max  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Setup Time  
tAH  
Address Hold Time  
45  
35  
0
tDS  
Data Setup Time  
tDH  
Data Hold Time  
tGHEL  
tWS  
tWH  
tCP  
Read Recovery Time Before Write (OE# High to WE# Low)  
WE# Setup Time  
0
0
WE# Hold Time  
0
CE# Pulse Width  
35  
25  
240  
60  
54  
0.5  
50  
4
tCPH  
CE# Pulse Width High  
Write Buffer Program Operation (Notes 2, 3)  
Single Word Program Operation (Note 2)  
Accelerated Single Word Program Operation (Note 2)  
Sector Erase Operation (Note 2)  
RESET# High Time Before Write  
Program Valid before Status Polling (Note 5)  
tWHWH1  
tWHWH1  
µs  
tWHWH2  
tWHWH2  
tRH  
sec  
ns  
tPOLL  
µs  
Notes:  
1. Not 100% tested.  
2. See the “Erase and Programming Performance” section for more information.  
3. For 1–16 words/1–32 bytes programmed.  
4. If a program suspend command is issued within tPOLL, the device requires tPOLL before reading status data, once programming has resumed  
(that is, the program resume command has been written). If the suspend command was issued after tPOLL, status data is available  
immediately after programming has resumed. See Figure 24.  
72  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
PBA for program  
2AA for erase  
SA for program buffer to flash  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tPOLL  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
PBD for program 29 for program buffer to flash  
55 for erase  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. DOUT is the data written to the device.  
4. Illustration shows device in word mode.  
Figure 24. Alternate CE# Controlled Write (Erase/Program) Operation Timings  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
73  
A d v a n c e I n f o r m a t i o n  
Erase And Programming Performance  
Max  
Typ (Note 1)  
(Note 2)  
Unit  
Comments  
Parameter  
Sector Erase Time  
0.5  
3.5  
Excludes 00h  
programming  
prior to erasure  
(Note 6)  
sec  
Chip Erase Time  
S29GL064A  
64  
128  
Total Write Buffer Program Time (Notes 3, 5)  
240  
200  
63  
µs  
µs  
Excludes system  
level overhead  
(Note 7)  
Total Accelerated Effective Write Buffer Program Time  
(Notes 4, 5)  
Chip Program Time  
S29GL064A  
sec  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, VCC = 3.0V, 10,000 cycles; checkerboard data pattern.  
2. Under worst case conditions of 90°C; Worst case VCC, 100,000 cycles.  
3. Effective programming time (typ) is 15 µs (per word), 7.5 µs (per byte).  
4. Effective accelerated programming time (typ) is 12.5 µs (per word), 6.3 µs (per byte).  
5. Effective write buffer specification is calculated on a per-word/per-byte basis for a 16-word/32-byte write buffer operation.  
6. In the pre-programming step of the Embedded Erase algorithm, all bits are programmed to 00h before erasure.  
7. System-level overhead is the time required to execute the command sequence(s) for the program command. See Table 10 for further  
information on command definitions.  
74  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
pSRAM Type 1  
4Mbit (256K Word x 16-bit)  
8Mbit (512K Word x 16-bit)  
16Mbit (1M Word x 16-bit)  
32Mbit (2M Word x 16-bit)  
64Mbit (4M Word x 16-bit)  
Functional Description  
Mode  
CE#  
CE2/ZZ#  
OE#  
L
WE# UB#  
LB#  
L
Addresses  
I/O 1-8  
Dout  
I/O 9-16  
Dout  
Power  
IACTIVE  
Read (word)  
L
L
H
H
H
H
H
H
H
H
L
H
H
H
L
L
H
L
X
X
X
X
X
X
X
X
X
Read (lower byte)  
Read (upper byte)  
Write (word)  
L
L
Dout  
High-Z  
Dout  
IACTIVE  
L
L
H
L
High-Z  
Din  
IACTIVE  
L
X
L
Din  
IACTIVE  
Write (lower byte)  
Write (upper byte)  
Outputs disabled  
Standby  
L
X
L
H
L
L
Din  
Invalid  
Din  
IACTIVE  
L
X
L
H
X
Invalid  
High-Z  
High-Z  
High-Z  
IACTIVE  
L
H
X
H
X
X
X
X
X
High-Z  
High-Z  
High-Z  
IACTIVE  
H
H
X
ISTANDBY  
IDEEP SLEEP  
Deep power down  
X
X
Absolute Maximum Ratings  
Item  
Voltage on any pin relative to VSS  
Voltage on VCC relative to VSS  
Power dissipation  
Symbol  
Vin, Vout  
VCC  
Ratings  
Units  
V
-0.2 to VCC +0.3  
-0.2 to 3.6  
1
V
PD  
W
Storage temperature  
TSTG  
-55 to 150  
-25 to 85  
°C  
°C  
Operating temperature  
TA  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
75  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
Table 13. 4Mb pSRAM Asynchronous  
Asynchronous  
Performance Grade  
Density  
-70  
4Mb pSRAM  
Max  
Symbol  
VCC  
Parameter  
Power Supply  
Conditions  
Min  
2.7  
Units  
3.3  
V
V
V
VIH  
Input High Level  
Input Low Level  
0.8 Vccq  
-0.3  
VCC + 0.3  
0.4  
VIL  
Input Leakage  
Current  
IIL  
Vin = 0 to VCC  
0.5  
0.5  
µA  
µA  
Output Leakage  
Current  
OE = VIH or  
Chip Disabled  
ILO  
IOH = -1.0 mA  
IOH = -0.2 mA  
Output High  
Voltage  
VOH  
0.8 Vccq  
V
V
I
OH = -0.5 mA  
OL = 2.0 mA  
IOL = 0.2 mA  
OL = 0.5 mA  
I
Output Low  
Voltage  
VOL  
0.2  
I
Operating  
Current  
IACTIVE  
VCC = 3.3 V  
25  
70  
mA  
µA  
VCC = 3.0 V  
VCC = 3.3 V  
ISTANDBY Standby Current  
IDEEP  
SLEEP  
Deep Power  
x
x
x
µA  
µA  
µA  
Down Current  
1/4 Array PAR  
Current  
IPAR 1/4  
1/2 Array PAR  
Current  
IPAR 1/2  
Table 14. 8Mb pSRAM Asynchronous  
Asynchronous  
Version  
B
C
-70  
Performance Grade  
Density  
-55  
8Mb pSRAM  
Max  
-70  
8Mb pSRAM  
Max  
8Mb pSRAM  
Max  
Symbol  
VCC  
Parameter  
Conditions  
Min  
2.7  
Units  
Min  
2.7  
Units  
Min  
Units  
Power Supply  
3.3  
V
V
V
3.6  
V
V
V
2.7  
0.8  
3.3  
V
V
V
VIH  
Input High Level  
Input Low Level  
2.2  
VCC + 0.3  
0.6  
2.2  
VCC + 0.3  
0.6  
VCC+0.3  
0.4  
VIL  
-0.3  
-0.3  
-0.3  
Input Leakage  
Current  
IIL  
Vin = 0 to VCC  
0.5  
0.5  
µA  
µA  
0.5  
0.5  
µA  
µA  
0.5  
0.5  
µA  
µA  
Output Leakage  
Current  
OE = VIH or  
Chip Disabled  
ILO  
76  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Table 14. 8Mb pSRAM Asynchronous (Continued)  
Asynchronous  
Version  
Performance Grade  
Density  
B
C
-70  
-55  
8Mb pSRAM  
Max  
-70  
8Mb pSRAM  
Max  
8Mb pSRAM  
Max  
Symbol  
Parameter  
Conditions  
IOH = -1.0 mA VCC-0.4  
OH = -0.2 mA  
Min  
Units  
Min  
Units  
Min  
Units  
VCC-0.4  
VOH  
Output High Voltage  
Output Low Voltage  
I
V
V
0.8 VCCQ  
V
IOH = -0.5 mA  
IOL = 2.0 mA  
0.4  
0.4  
VOL  
I
OL = 0.2 mA  
V
V
0.2  
V
IOL = 0.5 mA  
VCC = 3.3 V  
VCC = 3.0 V  
IACTIVE Operating Current  
ISTANDBY Standby Current  
25  
60  
mA  
µA  
23  
60  
mA  
µA  
25  
70  
mA  
µA  
V
CC = 3.3 V  
IDEEP  
SLEEP  
Deep Power Down  
Current  
x
x
x
µA  
µA  
µA  
x
x
x
µA  
µA  
µA  
x
x
x
µA  
µA  
µA  
1/4 Array PAR  
Current  
IPAR 1/4  
1/2 Array PAR  
Current  
IPAR 1/2  
Table 15. 16Mb pSRAM Asynchronous  
Asynchronous  
Performance Grade  
Density  
-55  
16Mb pSRAM  
-70  
16Mb pSRAM  
Minimum Maximum Units  
Symbol  
Parameter  
Conditions  
Minimum Maximum  
Units  
V
VCC  
VIH  
VIL  
IIL  
Power Supply  
2.7  
2.2  
3.6  
VCC + 0.3  
0.6  
2.7  
2.2  
3.6  
VCC + 0.3  
0.6  
V
V
Input High Level  
Input Low Level  
V
-0.3  
V
-0.3  
V
Input Leakage Current  
Output Leakage Current  
Vin = 0 to VCC  
OE = VIH or Chip Disabled  
IOH = -1.0 mA  
0.5  
µA  
µA  
0.5  
µA  
µA  
ILO  
0.5  
0.5  
VCC-0.4  
VCC-0.4  
VOH  
Output High Voltage  
Output Low Voltage  
IOH = -0.2 mA  
V
V
V
V
IOH = -0.5 mA  
IOL = 2.0 mA  
0.4  
0.4  
VOL  
IOL = 0.2 mA  
IOL = 0.5 mA  
VCC = 3.3 V  
IACTIVE  
Operating Current  
Standby Current  
25  
mA  
µA  
25  
mA  
µA  
V
CC = 3.0 V  
100  
100  
ISTANDBY  
VCC = 3.3 V  
IDEEP SLEEP Deep Power Down Current  
IPAR 1/4 1/4 Array PAR Current  
x
x
µA  
µA  
x
x
µA  
µA  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
77  
A d v a n c e I n f o r m a t i o n  
Table 15. 16Mb pSRAM Asynchronous (Continued)  
Asynchronous  
Performance Grade  
Density  
-55  
16Mb pSRAM  
Minimum Maximum  
x
-70  
16Mb pSRAM  
Symbol  
Parameter  
Conditions  
Units  
Minimum Maximum Units  
IPAR 1/2  
1/2 Array PAR Current  
µA  
x
µA  
Table 16. 16Mb pSRAM Page Mode  
Page Mode  
-65  
Performance Grade  
-60  
16Mb pSRAM  
Max  
-70  
16Mb pSRAM  
Max  
Density  
16Mb pSRAM  
Symbol  
Parameter  
Conditions  
Min  
Units  
Min  
Max  
Units  
Min  
Units  
VCC  
Power Supply  
2.7  
3.3  
V
2.7  
3.3  
V
2.7  
3.3  
V
Input High  
Level  
VIH  
VIL  
IIL  
0.8 Vccq  
-0.2  
V
CC + 0.2  
V
V
0.8 Vccq VCC + 0.2  
V
V
0.8 Vccq  
-0.2  
VCC + 0.2  
0.2 Vccq  
1
V
V
Input Low  
Level  
0.2 Vccq  
1
-0.2  
0.2 Vccq  
1
Input Leakage  
Current  
Vin = 0 to VCC  
µA  
µA  
µA  
Output  
Leakage  
Current  
OE = VIH or  
ILO  
1
µA  
V
1
µA  
V
1
µA  
V
Chip Disabled  
IOH = -1.0 mA  
IOH = -0.2 mA  
Output High  
Voltage  
VOH  
IOH = -0.5 mA 0.8 Vccq  
IOL = 2.0 mA  
0.8 Vccq  
0.8 Vccq  
Output Low  
Voltage  
VOL  
IOL = 0.2 mA  
V
V
V
IOL = 0.5 mA  
0.2 Vccq  
25  
0.2 Vccq  
25  
0.2 Vccq  
25  
Operating  
Current  
IACTIVE  
VCC = 3.3 V  
mA  
µA  
mA  
µA  
mA  
µA  
V
CC = 3.0 V  
Standby  
Current  
ISTANDBY  
VCC = 3.3 V  
100  
10  
100  
10  
100  
10  
IDEEP  
SLEEP  
Deep Power  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Down Current  
1/4 Array PAR  
Current  
IPAR 1/4  
65  
80  
65  
80  
65  
80  
1/2 Array PAR  
Current  
IPAR 1/2  
78  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Table 17. 32Mb pSRAM Page Mode  
Page Mode  
Version  
Performance Grade  
Density  
C
-65  
E
-60  
32Mb pSRAM  
-65  
32Mb pSRAM  
Min Max Units  
-70  
32Mb pSRAM  
32Mb pSRAM  
Min Max Units  
Symbol Parameter  
Conditions  
Min  
Max  
Units  
Min  
Max  
Units  
Power  
VCC  
VIH  
VIL  
IIL  
2.7  
1.4  
3.6  
V
V
2.7  
0.8 Vccq  
-0.2  
3.3  
V
V
2.7  
0.8 Vccq  
-0.2  
3.3  
V
V
2.7  
3.3  
V
V
Supply  
VCC  
+
0.2  
Input High  
Level  
VCC  
+
VCC  
+ 0.2  
VCC  
+ 0.2  
0.8  
Vccq  
0.2  
Input Low  
Level  
0.2  
Vccq  
0.2  
Vccq  
0.2  
Vccq  
-0.2  
0.4  
0.5  
V
V
V
-0.2  
V
Input  
Leakage  
Current  
Vin = 0 to VCC  
µA  
1
1
µA  
1
1
µA  
1
1
µA  
Output  
Leakage  
Current  
OE = VIH or  
Chip Disabled  
ILO  
0.5  
µA  
V
µA  
V
µA  
V
µA  
V
I
OH = -1.0 mA  
0.8  
Vccq  
Output High IOH = -0.2 mA  
Voltage  
VOH  
0.8  
Vccq  
I
OH = -0.5 mA  
OL = 2.0 mA  
IOL = 0.2 mA  
OL = 0.5 mA  
0.8 Vccq  
0.8 Vccq  
I
Output Low  
Voltage  
0.2  
25  
VOL  
V
V
V
V
0.2  
0.2  
0.2  
Vccq  
I
Vccq  
Vccq  
Operating  
Current  
IACTIVE  
VCC = 3.3 V  
CC = 3.0 V  
VCC = 3.3 V  
mA  
µA  
25  
mA  
µA  
25  
mA  
µA  
25  
mA  
µA  
V
Standby  
Current  
ISTANDBY  
100  
10  
120  
10  
120  
10  
120  
10  
Deep Power  
Down  
Current  
IDEEP  
SLEEP  
µA  
µA  
µA  
µA  
1/4 Array  
IPAR 1/4  
65  
80  
µA  
µA  
75  
90  
µA  
µA  
75  
90  
µA  
µA  
75  
90  
µA  
µA  
PAR Current  
1/2 Array  
PAR Current  
IPAR 1/2  
Table 18. 64Mb pSRAM Page Mode  
Page Mode  
-70  
Performance Grade  
Density  
64Mb pSRAM  
Max  
Symbol  
Parameter  
Conditions  
Min  
2.7  
Units  
VCC  
VIH  
VIL  
Power Supply  
3.3  
V
V
V
Input High Level  
Input Low Level  
0.8 Vccq  
-0.2  
VCC + 0.2  
0.2 Vccq  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
79  
A d v a n c e I n f o r m a t i o n  
Table 18. 64Mb pSRAM Page Mode (Continued)  
Page Mode  
Performance Grade  
Density  
-70  
64Mb pSRAM  
Max  
Symbol  
Parameter  
Conditions  
Min  
Units  
Input Leakage  
Current  
IIL  
Vin = 0 to VCC  
1
1
µA  
Output Leakage  
Current  
OE = VIH or  
Chip Disabled  
ILO  
µA  
V
I
OH = -1.0 mA  
IOH = -0.2 mA  
OH = -0.5 mA  
Output High  
Voltage  
VOH  
I
0.8 Vccq  
IOL = 2.0 mA  
IOL = 0.2 mA  
Output Low  
Voltage  
VOL  
V
I
OL = 0.5 mA  
CC = 3.3 V  
VCC = 3.0 V  
CC = 3.3 V  
0.2 Vccq  
25  
Operating  
Current  
IACTIVE  
V
mA  
µA  
ISTANDBY Standby Current  
V
120  
10  
IDEEP  
SLEEP  
Deep Power  
µA  
µA  
µA  
Down Current  
1/4 Array PAR  
Current  
IPAR 1/4  
65  
80  
1/2 Array PAR  
Current  
IPAR 1/2  
Timing Test Conditions  
Item  
Input Pulse Level  
0.1 VCC to 0.9 VCC  
5ns  
Input Rise and Fall Time  
Input and Output Timing Reference Levels  
Operating Temperature  
0.5 VCC  
-25°C to +85°C  
80  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Output Load Circuit  
VCC  
14.5K  
30 pF  
I/O  
14.5K  
Output Load  
Figure 25. Output Load Circuit  
Power Up Sequence  
After applying power, maintain a stable power supply for a minimum of 200 µs  
after CE# > VIH.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
81  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Table 19. 4Mb pSRAM Page Mode  
Asynchronous  
Performance Grade  
Density  
-70  
4Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
trc  
Read cycle time  
70  
ns  
Address Access  
Time  
taa  
70  
70  
20  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip select to  
output  
tco  
toe  
tba  
tlz  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
20  
20  
20  
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
ns  
ns  
Output hold from  
Address Change  
10  
82  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Table 19. 4Mb pSRAM Page Mode (Continued)  
Asynchronous  
Performance Grade  
Density  
-70  
4Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
twc  
tcw  
Write cycle time  
70  
ns  
Chipselect to end  
of write  
70  
0
ns  
ns  
ns  
Address set up  
Time  
tas  
Address valid to  
end of write  
taw  
70  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
70  
55  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
20  
ns  
ns  
ns  
Data to write  
time overlap  
25  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
output Low-Z  
Write high pulse  
width  
7.5  
ns  
tpc  
tpa  
Page read cycle  
x
Page address  
access time  
x
twpc  
tcp  
Page write cycle  
x
x
Chip select high  
pulse width  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
83  
A d v a n c e I n f o r m a t i o n  
Table 20. 8Mb pSRAM Asynchronous  
Asynchronous  
Version  
B
C
-70  
Performance Grade  
Density  
-55  
8Mb pSRAM  
Max  
-70  
8Mb pSRAM  
Max  
8Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
Min  
Units  
Min  
Units  
trc  
Read cycle time  
55  
ns  
70  
ns  
70  
ns  
Address Access  
Time  
taa  
55  
55  
30  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
70  
70  
35  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
70  
70  
20  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip select to  
output  
tco  
toe  
tba  
tlz  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
5
5
5
0
5
5
5
0
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
20  
20  
20  
25  
25  
25  
0
20  
20  
20  
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
ns  
ns  
0
ns  
ns  
0
ns  
ns  
Output hold from  
Address Change  
10  
10  
10  
84  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Table 20. 8Mb pSRAM Asynchronous (Continued)  
Asynchronous  
Version  
Performance Grade  
Density  
B
C
-70  
-55  
8Mb pSRAM  
Max  
-70  
8Mb pSRAM  
Max  
8Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
Min  
Units  
Min  
Units  
twc  
tcw  
Write cycle time  
55  
ns  
70  
ns  
70  
ns  
Chip select to  
end of write  
45  
0
ns  
ns  
ns  
55  
0
ns  
ns  
ns  
70  
0
ns  
ns  
ns  
Address set up  
Time  
tas  
Address valid to  
end of write  
taw  
45  
55  
70  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
45  
45  
0
ns  
ns  
ns  
55  
55  
0
ns  
ns  
ns  
70  
55  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
25  
ns  
ns  
ns  
25  
20  
ns  
ns  
ns  
Data to write  
time overlap  
40  
0
40  
0
ns  
ns  
25  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
5
5
output Low-Z  
Write high pulse  
width  
x
x
x
ns  
x
x
x
ns  
x
x
x
ns  
tpc  
tpa  
Page read cycle  
x
x
x
Page address  
access time  
twpc  
tcp  
Page write cycle  
x
x
x
x
x
x
Chip select high  
pulse width  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
85  
A d v a n c e I n f o r m a t i o n  
Figure 26. 16Mb pSRAM Asynchronous  
Asynchronous  
Performance Grade  
Density  
-55  
-70  
16Mb pSRAM  
16Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
Min  
Max  
Units  
trc  
Read cycle time  
55  
ns  
ns  
70  
ns  
ns  
Address Access  
Time  
taa  
55  
55  
30  
55  
70  
70  
35  
70  
Chip select to  
output  
tco  
toe  
tba  
tlz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
5
5
5
0
5
5
5
0
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
25  
25  
25  
25  
25  
25  
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
ns  
ns  
0
ns  
ns  
Output hold from  
Address Change  
10  
10  
twc  
tcw  
Write cycle time  
55  
50  
ns  
ns  
70  
55  
ns  
ns  
Chipselect to end  
of write  
Address set up  
Time  
tas  
0
ns  
ns  
0
ns  
ns  
Address valid to  
end of write  
taw  
50  
55  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
50  
50  
0
ns  
ns  
ns  
55  
55  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
25  
ns  
ns  
ns  
25  
ns  
ns  
ns  
Data to write  
time overlap  
25  
0
25  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
5
output Low-Z  
Write high pulse  
width  
x
x
ns  
x
x
ns  
86  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Figure 26. 16Mb pSRAM Asynchronous (Continued)  
Asynchronous  
Performance Grade  
Density  
-55  
-70  
16Mb pSRAM  
16Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
Min  
Max  
Units  
tpc  
tpa  
Page read cycle  
x
x
Page address  
access time  
x
x
twpc  
tcp  
Page write cycle  
x
x
x
x
Chip select high  
pulse width  
Table 21. 16Mb pSRAM Page Mode  
Page Mode  
-65  
16Mb pSRAM  
Performance Grade  
Density  
-60  
-70  
16Mb pSRAM  
16Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
Min  
Max  
Units  
Min  
Max  
Units  
trc  
Read cycle time  
60  
20k  
ns  
ns  
65  
20k  
ns  
ns  
70  
20k  
ns  
ns  
Address Access  
Time  
taa  
60  
60  
25  
60  
65  
65  
25  
65  
70  
70  
25  
70  
Chip select to  
output  
tco  
toe  
tba  
tlz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
10  
10  
5
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
5
5
5
0
5
5
5
0
5
5
5
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
5
ns  
ns  
0
5
ns  
ns  
0
5
ns  
ns  
Output hold from  
Address Change  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
87  
A d v a n c e I n f o r m a t i o n  
Table 21. 16Mb pSRAM Page Mode (Continued)  
Page Mode  
Performance Grade  
Density  
-60  
-65  
-70  
16Mb pSRAM  
16Mb pSRAM  
16Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
Min  
Max  
Units  
Min  
Max  
Units  
twc  
tcw  
Write cycle time  
60  
20k  
ns  
ns  
65  
20k  
ns  
ns  
70  
20k  
ns  
ns  
Chipselect to end  
of write  
50  
0
60  
0
60  
0
Address set up  
Time  
tas  
ns  
ns  
ns  
ns  
ns  
ns  
Address valid to  
end of write  
taw  
50  
60  
60  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
50  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
Data to write  
time overlap  
20  
0
20  
0
20  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
5
5
output Low-Z  
Write high pulse  
width  
7.5  
ns  
7.5  
ns  
7.5  
ns  
tpc  
tpa  
Page read cycle  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
Page address  
access time  
twpc  
tcp  
Page write cycle  
25  
10  
20k  
25  
10  
20k  
25  
10  
20k  
Chip select high  
pulse width  
88  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Table 22. 32Mb pSRAM Page Mode  
Page Mode  
Version  
Performance Grade  
Density  
C
-65  
E
-60  
-65  
-70  
32Mb pSRAM  
32Mb pSRAM  
32Mb pSRAM  
32Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max Units  
Min  
Max Units  
Min  
Max Units  
Min  
Max Units  
trc  
Read cycle time  
65  
20k  
65  
ns  
ns  
60  
20k  
60  
ns  
ns  
65  
20k  
65  
ns  
ns  
70  
20k  
70  
ns  
ns  
Address Access  
Time  
taa  
Chip select to  
output  
tco  
toe  
tba  
tlz  
65  
20  
65  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
65  
25  
65  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
70  
25  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
10  
10  
5
10  
10  
5
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
20  
20  
20  
0
5
5
5
0
5
5
5
0
5
5
5
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
5
ns  
ns  
0
5
ns  
ns  
0
5
ns  
ns  
0
5
ns  
ns  
Output hold from  
Address Change  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
89  
A d v a n c e I n f o r m a t i o n  
Table 22. 32Mb pSRAM Page Mode (Continued)  
Page Mode  
Version  
Performance Grade  
Density  
C
-65  
E
-60  
-65  
-70  
32Mb pSRAM  
32Mb pSRAM  
32Mb pSRAM  
32Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max Units  
Min  
Max Units  
Min  
Max Units  
Min  
Max Units  
twc  
tcw  
Write cycle time  
65  
55  
20k  
ns  
ns  
60  
50  
20k  
ns  
ns  
65  
60  
20k  
ns  
ns  
70  
60  
20k  
ns  
ns  
Chipselect to end  
of write  
Address set up  
Time  
tas  
0
ns  
ns  
0
ns  
ns  
0
ns  
ns  
0
ns  
ns  
Address valid to  
end of write  
taw  
55  
50  
60  
60  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
55  
55  
0
ns  
ns  
ns  
50  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
Write pulse width  
20k  
5
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
ns  
ns  
ns  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
Data to write  
time overlap  
25  
0
20  
0
20  
0
20  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
5
5
5
output Low-Z  
Write high pulse  
width  
7.5  
ns  
7.5  
ns  
7.5  
ns  
7.5  
ns  
tpc  
tpa  
Page read cycle  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
Page address  
access time  
twpc  
tcp  
Page write cycle  
25  
10  
20k  
25  
10  
20k  
25  
10  
20k  
25  
10  
20k  
Chip select high  
pulse width  
90  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Table 23. 64Mb pSRAM Page Mode  
Page Mode  
Performance Grade  
Density  
-70  
64Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
trc  
Read cycle time  
70  
20k  
ns  
ns  
Address Access  
Time  
taa  
70  
70  
25  
70  
Chip select to  
output  
tco  
toe  
tba  
tlz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
5
5
5
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
5
ns  
ns  
Output hold from  
Address Change  
twc  
tcw  
Write cycle time  
70  
60  
20k  
ns  
ns  
Chipselect to end  
of write  
Address set up  
Time  
tas  
0
ns  
ns  
Address valid to  
end of write  
taw  
60  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
60  
50  
0
ns  
ns  
ns  
Write pulse width  
20k  
5
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
ns  
ns  
ns  
Data to write  
time overlap  
20  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
output Low-Z  
Write high pulse  
width  
7.5  
ns  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
91  
A d v a n c e I n f o r m a t i o n  
Table 23. 64Mb pSRAM Page Mode (Continued)  
Page Mode  
Performance Grade  
Density  
-70  
64Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
tpc  
tpa  
Page read cycle  
20  
20k  
20  
ns  
ns  
ns  
ns  
Page address  
access time  
twpc  
tcp  
Page write cycle  
20  
10  
20k  
Chip select high  
pulse width  
Timing Diagrams  
Read Cycle  
tRC  
Address  
tAA  
tOH  
Previous Data Valid  
Data Valid  
Data Out  
Figure 27. Timing of Read Cycle (CE# = OE# = VIL, WE# = ZZ# = VIH  
)
92  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
tRC  
Address  
tAA  
CE#  
tCO  
tLZ  
tHZ  
tOE  
OE#  
tOLZ  
tOHZ  
tLB, UB  
t
LB#, UB#  
Data Out  
tBHZ  
Data Valid  
tBLZ  
High-Z  
Figure 28. Timing Waveform of Read Cycle (WE# = ZZ# = VIH  
)
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
93  
A d v a n c e I n f o r m a t i o n  
tPGMAX  
Page Address (A4 - A20)  
tRC  
tPC  
Word Address (A0 - A3)  
tAA  
tPA  
tHZ  
CE#  
tCO  
tOE  
tOHZ  
OE#  
tOLZ  
tBHZ  
tLB, UB  
t
LB#, UB#  
tBLZ,  
High-Z  
Data Out  
Figure 29. Timing Waveform of Page Mode Read Cycle (WE# = ZZ# = VIH  
)
94  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Write Cycle  
tWC  
Address  
tWR  
tAW  
CE#  
tCW  
tBW  
LB#, UB#  
tAS  
tWP  
WE#  
tDW  
tDH  
High-Z  
Data Valid  
Data In  
Data Out  
tWHZ  
tOW  
High-Z  
Figure 30. Timing Waveform of Write Cycle (WE# Control, ZZ# = VIH  
)
tWC  
Address  
CE#  
tAW  
tWR  
tCW  
tAS  
tBW  
LB#, UB#  
WE#  
tWP  
tDW  
tDH  
Data Valid  
Data In  
tWHZ  
High-Z  
Figure 31. Timing Waveform of Write Cycle (CE# Control, ZZ# = VIH  
February 8, 2005 S71GL064A_00_A2 S71GL064A based MCPs  
Data Out  
)
95  
A d v a n c e I n f o r m a t i o n  
tPGMAX  
Page Address  
(A4 - A20)  
tWC  
tPWC  
Wor d Address  
(A0 - A3 )  
tAS  
tCW  
CE#  
tWP  
WE#  
tLBW, UBW  
t
LB#, UB#  
tDW  
tDH tPDW tPDH  
tPDW tPDH  
High-Z  
Data Out  
Figure 32. Timing Waveform of Page Mode Write Cycle (ZZ# = VIH  
)
Power Savings Modes  
(For 16M Page Mode, 32M and 64M Only)  
There are several power savings modes.  
„ Partial Array Self Refresh  
„ Temperature Compensated Refresh (64M)  
„ Deep Sleep Mode  
„ Reduced Memory Size (32M, 16M)  
The operation of the power saving modes ins controlled by the settings of bits  
contained in the Mode Register. This definition of the Mode Register is shown in  
Figure 33 and the various bits are used to enable and disable the various low  
power modes as well as enabling Page Mode operation. The Mode Register is set  
by using the timings defined in Figure 34.  
Partial Array Self Refresh (PAR)  
In this mode of operation, the internal refresh operation can be restricted to a  
16Mb, 32Mb, or 48Mb portion of the array. The array partition to be refreshed is  
determined by the respective bit settings in the Mode Register. The register set-  
96  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
tings for the PASR operation are defined in Table 25. In this PASR mode, when  
ZZ# is active low, only the portion of the array that is set in the register is re-  
freshed. The data in the remainder of the array will be lost. The PASR operation  
mode is only available during standby time (ZZ# low) and once ZZ# is returned  
high, the device resumes full array refresh. All future PASR cycles will use the  
contents of the Mode Register that has been previously set. To change the ad-  
dress space of the PASR mode, the Mode Register must be reset using the  
previously defined procedures. For PASR to be activated, the register bit, A4 must  
be set to a one (1) value, “PASR Enabled. If this is the case, PASR will be acti-  
vated 10 µs after ZZ# is brought low. If the A4 register bit is set equal to zero  
(0), PASR will not be activated.  
Temperature Compensated Refresh (for 64Mb)  
In this mode of operation, the internal refresh rate can be optimized for the op-  
eration temperature used and this can then lower standby current. The DRAM  
array in the PSRAM must be refreshed internally on a regular basis. At higher  
temperatures, the DRAM cell must be refreshed more often than at lower tem-  
peratures. By setting the temperature of operation in the Mode Register, this  
refresh rate can be optimized to yield the lowest standby current at the given op-  
erating temperature. There are four different temperature settings that can be  
programmed in to the pSRAM. These are defined in Figure 33.  
Deep Sleep Mode  
In this mode of operation, the internal refresh is turned off and all data integrity  
of the array is lost. Deep Sleep is entered by bringing ZZ# low with the A4 reg-  
ister bit set to a zero (0), “Deep Sleep Enabled. If this is the case, Deep Sleep  
will be entered 10 µs after ZZ# is brought low. The device will remain in this mode  
as long as ZZ# remains low. If the A4 register bit is set equal to one (1), Deep  
Sleep will not be activated.  
Reduced Memory Size (for 32M and 16M)  
In this mode of operation, the 32Mb PSRAM can be operated as a 8Mb or 16Mb  
device. The mode and array size are determined by the settings in the VA register.  
The VA register is set according to the following timings and the bit settings in  
the table “Address Patterns for RMS. The RMS mode is enabled at the time of  
ZZ transitioning high and the mode remains active until the register is updated.  
To return to the full 32Mb address space, the VA register must be reset using the  
previously defined procedures. While operating in the RMS mode, the unselected  
portion of the array may not be used.  
Other Mode Register Settings (for 64M)  
The Page Mode operation can also be enabled and disabled using the Mode Reg-  
ister. Register bit A7 controls the operation of Page Mode and setting this bit to a  
one (1), enables Page Mode. If the register bit A7 is set to a zero (0), Page Mode  
operation is disabled.  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
97  
A d v a n c e I n f o r m a t i o n  
64 Mb  
32 Mb / 16 Mb  
A21 - A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Array Mode  
for ZZ#  
Reserved  
Must set to all 0  
Temp  
Compensated  
Refresh  
0 = PAR (default)  
1 = RMS  
PAR Section  
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1 = Top 1/4 array  
0 = Top 1/2 array  
1 = Top 3/4 array  
0 = No PAR  
1 = Bottom 1/4 array  
0 = Bottom 1/2 array  
1 = Bottom 3/4 array  
0 = Full array (default)  
1
0
0
1
0 = 15oC  
1 = 45oC  
0 = 70oC  
1 = 85oC (default)  
Page Mode  
0 = Page Mode Disabled (default)  
1 = Page Mode Enabled  
Deep Sleep Enable/Disable  
0 = Deep Sleep Enabled  
1 = Deep Sleep Disabled (default)  
Figure 33. Mode Register  
t
WC  
Address  
t
AW  
t
AS  
t
WR  
CE#  
t
WP  
WE#  
ZZ#  
t
ZZWE  
t
CDZZ  
Figure 34. Mode Register UpdateTimings (UB#, LB#, OE# are Don’t Care)  
98  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
t
ZZMIN  
ZZ#  
CE#  
t
t
R
CDZZ  
Figure 35. Deep Sleep Mode - Entry/Exit Timings (for 64M)  
t
WC  
A4  
t
t
AS  
AW  
CE#  
t
WR  
t
WP  
WE#  
t
t
BW  
LB#, UB#  
R
t
ZZWE  
t
ZZMIN  
ZZ#  
Figure 36. Deep Sleep Mode - Entry/Exit Timings (for 32M and 16M)  
Table 24. Mode Register Update and Deep Sleep Timings  
Item  
Symbol  
tCDZZ  
tZZWE  
tWC  
Min  
5
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
Note  
Chip deselect to ZZ# low  
ZZ# low to WE# low  
Write register cycle time  
Chip enable to end of write  
Address valid to end of write  
Write recovery time  
10  
500  
70/85  
70/85  
70/85  
0
1
1
1
tCW  
tAW  
tWR  
Address setup time  
tAS  
0
Write pulse width  
tWR  
40  
Deep Sleep Pulse Width  
Deep Sleep Recovery  
tZZMIN  
tR  
10  
200  
Notes:  
1. Minimum cycle time for writing register is equal to speed grade of product.  
Table 25. Address Patterns for PASR (A4=1) (64M)  
A2 A1 A0  
Active Section  
Top quarter of die  
Top half of die  
Reserved  
Address Space  
300000h-3FFFFFh  
200000h-3FFFFFh  
Size  
Density  
16Mb  
32Mb  
1
1
1
1
1
0
1
0
1
1Mb x 16  
2Mb x 16  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
99  
A d v a n c e I n f o r m a t i o n  
Table 25. Address Patterns for PASR (A4=1) (64M) (Continued)  
A2 A1 A0  
Active Section  
No PASR  
Address Space  
None  
Size  
0
Density  
0
1
0
0
0
0
0
1
1
0
0
0
1
0
1
0
Bottom quarter of die  
Bottom half of die  
Reserved  
000000h-0FFFFFh  
000000h-1FFFFFh  
1Mb x 16  
2Mb x 16  
16Mb  
32Mb  
Full array  
000000h-3FFFFFh  
4Mb x 16  
64Mb  
ICC Characteristics  
Table 26. Deep ICC Characteristics (for 64Mb)  
Item  
Symbol  
Te st  
Array Partition Typ Max Unit  
None  
10  
60  
1/4 Array  
1/2 Array  
Full Array  
PASR Mode Standby Current  
IPASR  
VIN = VCC or 0V, Chip Disabled, tA = 85°C  
µA  
80  
120  
Item  
Symbol  
Max Temperature  
15°C  
Typ  
Max  
50  
Unit  
45°C  
60  
Temperature Compensated Refresh Current  
ITCR  
µA  
70°C  
80  
85°C  
120  
Item  
Symbol  
Test  
Typ  
Max  
10  
Unit  
Deep Sleep Current  
IZZ  
VIN = VCC or 0V, Chip in ZZ# mode, tA = 25°C  
µA  
Table 27. Address Patterns for PAR (A3= 0, A4=1) (32M)  
A2 A1 A0  
Active Section  
One-quarter of die  
Address Space  
000000h - 07FFFFh  
Size  
Density  
8Mb  
0
0
x
1
1
1
1
0
1
1
1
0
0
1
0
512Kb x 16  
1Mb x 16  
2Mb x 16  
512Kb x 16  
1Mb x 16  
One-half of die  
Full die  
000000h - 0FFFFFh  
000000h - 1FFFFFh  
180000h - 1FFFFFh  
100000h - 1FFFFFh  
16Mb  
32Mb  
8Mb  
One-quarter of die  
One-half of die  
16Mb  
Table 28. Address Patterns for RMS (A3 = 1, A4 = 1) (32M)  
A2 A1 A0  
Active Section  
One-quarter of die  
One-half of die  
Address Space  
000000h - 07FFFFh  
Size  
Density  
8Mb  
0
0
1
1
1
0
512Kb x 16  
1Mb x 16  
000000h - 0FFFFFh  
16Mb  
100  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Table 28. Address Patterns for RMS (A3 = 1, A4 = 1) (32M) (Continued)  
A2 A1 A0  
Active Section  
One-quarter of die  
One-half of die  
Address Space  
180000h - 1FFFFFh  
Size  
Density  
8Mb  
1
1
1
1
1
0
512Kb x 16  
1Mb x 16  
100000h - 1FFFFFh  
16Mb  
Table 29. Low Power ICC Characteristics (32M)  
Item  
Symbol  
Te s t  
Array Partition  
Typ  
Max  
Unit  
µA  
1/4 Array  
75  
90  
75  
90  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
PAR Mode Standby Current IPAR  
RMS Mode Standby Current IRMSSB  
1/2 Array  
µA  
8Mb Device  
16Mb Device  
µA  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
µA  
VIN = VCC or 0V,  
Chip in ZZ mode, tA= 85oC  
Deep Sleep Current  
IZZ  
10  
µA  
Table 30. Address Patterns for PAR (A3= 0, A4=1) (16M)  
A2 A1 A0  
Active Section  
One-quarter of die  
Address Space  
00000h - 0FFFFh  
Size  
Density  
4Mb  
0
0
x
1
1
1
1
0
1
1
1
0
0
1
0
256Kb x 16  
512Kb x 16  
1Mb x 16  
One-half of die  
Full die  
00000h - 7FFFFh  
00000h - FFFFFh  
C0000h - FFFFh  
80000h - 1FFFFFh  
8Mb  
16Mb  
4Mb  
One-quarter of die  
One-half of die  
256Kb x 16  
512Kb x 16  
8Mb  
Table 31. Address Patterns for RMS (A3 = 1, A4 = 1) (16M)  
A2 A1 A0  
Active Section  
One-quarter of die  
Address Space  
00000h - 0FFFFh  
Size  
Density  
4Mb  
0
0
1
1
1
1
1
1
1
0
1
0
256Kb x 16  
512Kb x 16  
256Kb x 16  
512Kb x 16  
One-half of die  
One-quarter of die  
One-half of die  
00000h - 7FFFFh  
C0000h - FFFFFh  
80000h - FFFFFh  
8Mb  
4Mb  
8Mb  
Table 32. Low Power ICC Characteristics (16M)  
Item  
Symbol  
Test  
Array Partition  
1/4 Array  
Typ  
Max  
Unit  
65  
80  
65  
80  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
PAR Mode Standby Current  
IPAR  
µA  
1/2 Array  
4Mb Device  
8Mb Device  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
RMS Mode Standby Current  
Deep Sleep Current  
IRMSSB  
µA  
µA  
VIN = VCC or 0V,  
Chip in ZZ# mode, tA= 85oC  
IZZ  
10  
February 8, 2005 S71GL064A_00_A2  
S71GL064A based MCPs  
101  
A d v a n c e I n f o r m a t i o n  
pSRAM Type 7  
16Mb (1M word x 16-bit)  
32Mb (2M word x 16-bit)  
64Mb (4M word x 16-bit)  
CMOS 1M/2M/4M-Word x 16-bit Fast Cycle Random Access Memory with Low  
Power SRAM Interface  
Features  
„ Asynchronous SRAM Interface  
„ Fast Access Time  
— tCE = tAA = 60ns max (16M)  
— tCE = tAA = 65ns max (32M/64M)  
„ 8 words Page Access Capability  
— tPAA = 20ns max (32M/64M)  
„ Low Voltage Operating Condition  
— VDD = +2.7V to +3.1V  
„ Wide Operating Temperature  
— TA = -30°C to +85°C  
„ Byte Control by LB and UB  
„ Various Power Down modes  
— Sleep (16M)  
— Sleep, 4M-bit Partial, or 8M-bit Partial (32M)  
— Sleep, 8M-bit Partial, or 16M-bit Partial (64M)  
Pin Description  
Pin Name  
A21 to A0  
CE1#  
CE2#  
WE#  
Description  
Address Input: A19 to A0 for 16M, A20 to A0 for 32M, A21 to A0 for 64M  
Chip Enable (Low Active)  
Chip Enable (High Active)  
Write Enable (Low Active)  
OE#  
Output Enable (Low Active)  
UB#  
Upper Byte Control (Low Active)  
Lower Byte Control (Low Active)  
Upper Byte Data Input/Output  
Lower Byte Data Input/Output  
Power Supply  
LB#  
DQ16 9  
-
DQ8-1  
VDD  
VSS  
Ground  
102  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e i n f o r m a t i o n  
Functional Description  
Mode  
Standby (Deselect)  
Output Disable (Note 1)  
Output Disable (No Read)  
Read (Upper Byte)  
Read (Lower Byte)  
Read (Word)  
CE2#  
CE1#  
WE#  
OE#  
X
LB#  
X
UB#  
X
A21-0  
X
DQ8-1  
High-Z  
DQ16-9  
High-Z  
H
H
X
H
H
X
X
Note 3  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
X
High-Z  
High-Z  
H
H
L
H
L
High-Z  
High-Z  
High-Z  
Output Valid  
High-Z  
H
L
H
L
Output Valid  
Output Valid  
Invalid  
H
L
L
Output Valid  
Invalid  
No Write  
H
H
L
H
L
Write (Upper Byte)  
Write (Lower Byte)  
Write (Word)  
Invalid  
Input Valid  
Invalid  
L
H
X
H
L
Input Valid  
Input Valid  
High-Z  
L
Input Valid  
High-Z  
Power Down  
L
X
X
X
X
Legend:L = VIL, H = VIH, X can be either VIL or VIH, High-Z = High Impedance.  
Notes:  
1. Should not be kept this logic condition longer than 1 ms. Please contact local Spansion representative for the relaxation of  
1ms limitation.  
2. Power Down mode can be entered from Standby state and all DQ pins are in High-Z state. Data retention depends on the  
selection of the Power-Down Program, 16M has data retention in all modes except Power Down. Refer to Power Down for  
details.  
3. Can be either VIL or VIH but must be valid before Read or Write.  
Power Down (for 32M, 64M Only)  
Power Down  
The Power Down is a low-power idle state controlled by CE2. CE2 Low drives the  
device in power-down mode and maintains the low-power idle state as long as  
CE2 is kept Low. CE2 High resumes the device from power-down mode. These  
devices have three power-down modes. These can be programmed by series of  
read/write operation. Each mode has following features.  
32M  
Retention Data  
No  
64M  
Retention Data  
No  
Mode  
Retention Address  
N/A  
Mode  
Retention Address  
N/A  
Sleep (default)  
4M Partial  
Sleep (default)  
8M Partial  
4M bit  
00000h to 3FFFFh  
00000h to 7FFFFh  
8M bit  
00000h to 7FFFFh  
00000h to FFFFFh  
8M Partial  
8M bit  
16M Partial  
16M bit  
The default state is Sleep and it is the lowest power consumption but all data is  
lost once CE2 is brought to Low for Power Down. It is not required to program to  
Sleep mode after power-up.  
February 8, 2005 S71GL064A_00_A2  
pSRAM Type 7  
103  
A d v a n c e I n f o r m a t i o n  
Power Down Program Sequence  
The program requires 6 read/write operations with a unique address. Between  
each read/write operation requires that device be in standby mode. The following  
table shows the detail sequence.  
Cycle #  
1st  
Operation  
Read  
Address  
3FFFFFh (MSB)  
3FFFFFh  
Data  
Read Data (RDa)  
RDa  
2nd  
3rd  
Write  
Write  
Write  
Write  
Read  
3FFFFFh  
RDa  
4th  
3FFFFFh  
Don’t Care (X)  
X
5th  
3FFFFFh  
6th  
Address Key  
Read Data (RDb)  
The first cycle reads from the most significant address (MSB).  
The second and third cycle are to write back the data (RDa) read by first cycle.  
If the second or third cycle is written into the different address, the program is  
cancelled, and the data written by the second or third cycle is valid as a normal  
write operation.  
The fourth and fifth cycles write to MSB. The data from the fourth and fifth cycles  
is “don’t care.If the fourth or fifth cycles are written into different address, the  
program is also cancelled but write data might not be written as normal write  
operation.  
The last cycle is to read from specific address key for mode selection.  
Once this program sequence is performed from a Partial mode to the other Partial  
mode, the written data stored in memory cell array can be lost. So, it should per-  
form this program prior to regular read/write operation if Partial mode is used.  
Address Key  
The address key has following format.  
Mode  
Address  
32M  
Sleep (default)  
4M Partial  
8M Partial  
N/A  
64M  
Sleep (default)  
N/A  
A21  
1
A20  
1
A19  
1
A18 - A0  
Binary  
1
1
1
1
3FFFFFh  
37FFFFh  
2FFFFFh  
27FFFFh  
1
1
0
8M Partial  
16M Partial  
1
0
1
1
0
0
104  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e i n f o r m a t i o n  
Absolute Maximum Ratings  
Item  
Symbol  
VDD  
Value  
Unit  
V
Voltage of VDD Supply Relative to VSS  
Voltage at Any Pin Relative to VSS  
Short Circuit Output Current  
Storage temperature  
-0.5 to +3.6  
-0.5 to +3.6  
±50  
VIN, VOUT  
IOUT  
V
mA  
°C  
TSTG  
-55 to +125  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,  
etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
Recommended Operating Conditions  
(See Warning Below)  
Parameter  
Symbol  
VDD  
VSS  
VIH  
Min  
2.7  
Max  
3.1  
Unit  
V
Supply Voltage  
0
0
V
High Level Input Voltage (Note 1)  
High Level Input Voltage (Note 1)  
Ambient Temperature  
VDD 0.8  
-0.3  
-30  
VDD+0.2  
VDD 0.2  
85  
V
VIL  
V
TA  
°C  
Notes:  
1. Maximum DC voltage on input and I/O pins is VDD+0.2V. During voltage transitions, inputs can positive overshoot to  
DD+1.0V for periods of up to 5 ns.  
V
2. Minimum DC voltage on input or I/O pins is -0.3V. During voltage transitions, inputs can negative overshoot VSS to -1.0V for  
periods of up to 5ns.  
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the de-  
vice’s electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges can  
adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet.  
Users considering application outside the listed conditions are advised to contact their FUJITSU representative before-  
hand.  
Package Capacitance  
Test conditions: TA = 25°C, f = 1.0 MHz  
Symbol  
Description  
Test Setup  
VIN = 0V  
VIN = 0V  
VIO = 0V  
Typ  
Max  
5
Unit  
pF  
CIN1  
CIN2  
CIO  
Address Input Capacitance  
Control Input Capacitance  
Data Input/Output Capacitance  
5
pF  
8
pF  
February 8, 2005 S71GL064A_00_A2  
pSRAM Type 7  
105  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
(Under Recommended Conditions Unless Otherwise Noted)  
16M  
32M  
64M  
Parameter  
Symbol  
Test Conditions  
VIN = VSS to VDD  
Min. Max. Min. Max. Min. Max. Unit  
Input Leakage  
Current  
ILI  
-1.0 +1.0 -1.0 +1.0 -1.0 +1.0  
-1.0 +1.0 -1.0 +1.0 -1.0 +1.0  
µ
A
A
Output Leakage  
Current  
ILO  
VOH  
VOL  
VOUT = VSS to VDD, Output Disable  
VDD = VDD(min), IOH = –0.5mA  
IOL = 1mA  
µ
Output High  
Voltage Level  
2.2  
2.4  
2.4  
V
Output Low  
Voltage Level  
0.4  
10  
0.4  
0.4  
10  
V
IDDPS  
IDDP4  
IDDP8  
IDDP16  
SLEEP  
10  
40  
50  
µ
A
A
A
A
VDD = VDD max.,  
VIN = VIH or VIL,  
4M Partial  
8M Partial  
16M Partial  
N/A  
N/A  
µ
µ
µ
VDD Power  
Down Current  
N/A  
N/A  
80  
CE2  
0.2 V  
N/A  
100  
VDD = VDD max.,  
VIN = VIH or VIL  
CE1 = CE2 = VIH  
IDDS  
1
1.5  
80  
1.5  
mA  
VDD Standby  
Current  
VDD = VDD max.,  
170  
90  
µ
A
A
TA< +85°C  
TA< +40°C  
IDDS1  
VIN  
CE1 = CE2  
0.2V or VIN  
VDD – 0.2V,  
100  
µ
VDD – 0.2V  
VDD = VDD max.,  
VIN = VIH or VIL,  
CE1 = VIL and CE2= VIH,  
IOUT=0mA  
IDDA1  
IDDA2  
tRC / tWC = min.  
20  
3
30  
3
40  
mA  
mA  
VDD  
Active Current  
tRC / tWC = 1  
µs  
5
VDD = VDD max., VIN = VIH or VIL,  
CE1 = VIL and CE2= VIH,  
IOUT=0mA, tPRC = min.  
VDD Page  
Read Current  
IDDA3  
N/A  
10  
10  
mA  
Notes:  
1. All voltages are referenced to VSS  
.
2. DC Characteristics are measured after following POWER-UP timing.  
3. IOUT depends on the output load conditions.  
106  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e i n f o r m a t i o n  
AC Characteristics  
(Under Recommended Operating Conditions Unless Otherwise Noted)  
Read Operation  
16M  
32M  
64M  
Parameter  
Symbol  
Unit  
Notes  
Min.  
70  
Max.  
1000  
60  
Min.  
65  
20  
5
Max.  
1000  
65  
40  
65  
30  
20  
1000  
Min.  
65  
20  
5
Max.  
1000  
65  
40  
65  
30  
20  
1000  
Read Cycle Time  
tRC  
tCE  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1, 2  
CE1# Access Time  
3
OE# Access Time  
tOE  
40  
3
Address Access Time  
tAA  
60  
3, 5  
LB# / UB# Access Time  
tBA  
30  
3
Page Address Access Time  
Page Read Cycle Time  
tPAA  
tPRC  
tOH  
N/A  
N/A  
3,6  
1, 6, 7  
Output Data Hold Time  
5
5
3
4
4
4
3
3
3
CE1# Low to Output Low-Z  
OE# Low to Output Low-Z  
LB# / UB# Low to Output Low-Z  
CE1# High to Output High-Z  
OE# High to Output High-Z  
LB# / UB# High to Output High-Z  
Address Setup Time to CE1# Low  
Address Setup Time to OE# Low  
Address Invalid Time  
tCLZ  
tOLZ  
tBLZ  
tCHZ  
tOHZ  
tBHZ  
tASC  
tASO  
tAX  
5
5
0
0
0
0
0
0
6  
10  
-6  
-6  
10  
10  
20  
20  
20  
–6  
10  
–6  
–6  
12  
12  
20  
14  
20  
–6  
10  
–6  
–6  
25  
12  
20  
14  
20  
10  
10  
10  
5, 8  
9
Address Hold Time from CE1# High  
Address Hold Time from OE# High  
WE# High to OE# Low Time for Read  
CE1# High Pulse Width  
tCHAH  
tOHAH  
tWHOL  
tCP  
1000  
10  
Notes:  
1. Maximum value is applicable if CE#1 is kept at Low without change of address input of A3 to A21. If needed by system  
operation, please contact local Spansion representative for the relaxation of 1µs limitation.  
2. Address should not be changed within minimum tRC  
.
3. The output load 50 pF with 50 ohm termination to VDD x 0.5 (16M), The output load 50 pF (32M and 64M).  
4. The output load 5pF.  
5. Applicable to A3 to A21 (32M and 64M) when CE1# is kept at Low.  
6. Applicable only to A0, A1 and A2 (32M and 64M) when CE1# is kept at Low for the page address access.  
7. In case Page Read Cycle is continued with keeping CE1# stays Low, CE1# must be brought to High within 4 µs. In other  
words, Page Read Cycle must be closed within 4 µs.  
8. Applicable when at least two of address inputs among applicable are switched from previous state.  
9.  
tRC(min) and tPRC(min) must be satisfied.  
10. If actual value of tWHOL is shorter than specified minimum values, the actual tAA of following Read can become longer by the  
amount of subtracting the actual value from the specified minimum value.  
February 8, 2005 S71GL064A_00_A2  
pSRAM Type 7  
107  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Write Operation  
16M  
32M  
64M  
Parameter  
Write Cycle Time  
Symbol  
tWC  
Min.  
70  
0
Max.  
1000  
Min.  
65  
0
Max.  
Min.  
65  
0
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
1000  
1000  
1,2  
3
Address Setup Time  
tAS  
CE1# Write Pulse Width  
tCW  
tWP  
45  
45  
45  
-5  
-5  
0
40  
40  
40  
–5  
–5  
0
40  
40  
40  
–5  
–5  
0
3
WE# Write Pulse Width  
3
LB#/UB# Write Pulse Width  
LB#/UB# Byte Mask Setup Time  
LB#/UB# Byte Mask Hold Time  
Write Recovery Time  
tBW  
3
tBS  
4
tBH  
5
tWR  
tCP  
6
CE1# High Pulse Width  
10  
7.5  
10  
15  
0
12  
7.5  
12  
12  
0
12  
7.5  
12  
12  
0
WE# High Pulse Width  
tWHP  
tBHP  
tDS  
1000  
1000  
1000  
1000  
1000  
1000  
7
LB#/UB# High Pulse Width  
Data Setup Time  
Data Hold Time  
tDH  
OE# High to CE1# Low Setup Time for Write  
OE# High to Address Setup Time for Write  
LB# and UB# Write Pulse Overlap  
tOHCL  
tOES  
tBWO  
-5  
0
–5  
0
–5  
0
8
9
30  
30  
30  
Notes:  
1. Maximum value is applicable if CE1# is kept at Low without any address change. If the relaxation is needed by system  
operation, please contact local Spansion representative for the relaxation of 1µs limitation.  
2. Minimum value must be equal or greater than the sum of write pulse (tCW, tWP or tBW) and write recovery time (tWR).  
3. Write pulse is defined from High to Low transition of CE1#, WE#, or LB#/UB#, whichever occurs last.  
4. Applicable for byte mask only. Byte mask setup time is defined to the High to Low transition of CE1# or WE# whichever  
occurs last.  
5. Applicable for byte mask only. Byte mask hold time is defined from the Low to High transition of CE1# or WE# whichever  
occurs first.  
6. Write recovery is defined from Low to High transition of CE1#, WE#, or LB#/UB#, whichever occurs first.  
7.  
tWPH minimum is absolute minimum value for device to detect High level. And it is defined at minimum VIH level.  
8. If OE# is Low after minimum tOHCL, read cycle is initiated. In other words, OE# must be brought to High within 5ns after  
CE1# is brought to Low. Once read cycle is initiated, new write pulse should be input after minimum tRC is met.  
9. If OE# is Low after new address input, read cycle is initiated. In other word, OE# must be brought to High at the same time  
or before new address valid. Once read cycle is initiated, new write pulse should be input after minimum tRC is met and data  
bus is in High-Z.  
108  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e i n f o r m a t i o n  
AC Characteristics  
Power Down Parameters  
16M  
32M  
64M  
Parameter  
Symbol Min. Max. Min. Max. Min. Max. Unit Note  
CE2 Low Setup Time for Power Down Entry  
CE2 Low Hold Time after Power Down Entry  
tCSP  
10  
80  
10  
65  
10  
65  
ns  
ns  
tC2LP  
CE1# High Hold Time following CE2 High after Power  
Down Exit [SLEEP mode only]  
tCHH  
tCHHP  
tCHS  
300  
300  
1
300  
1
µ
s
s
1
2
1
CE1# High Hold Time following CE2 High after Power  
Down Exit [not in SLEEP mode]  
N/A  
µ
CE1# High Setup Time following CE2 High after Power  
Down Exit  
0
0
0
ns  
Notes:  
1. Applicable also to power-up.  
2. Applicable when 4Mb and 8Mb Partial modes are programmed.  
Other Timing Parameters  
16M  
32M  
64M  
Parameter  
Symbol Min. Max. Min. Max. Min. Max. Unit Note  
CE1# High to OE# Invalid Time for Standby Entry  
CE1# High to WE# Invalid Time for Standby Entry  
CE2 Low Hold Time after Power-up  
tCHOX  
tCHWX  
tC2LH  
tCHH  
tT  
10  
10  
50  
300  
1
25  
10  
10  
50  
300  
1
25  
10  
10  
50  
300  
1
25  
ns  
ns  
1
2
µ
s
s
CE1# High Hold Time following CE2 High after Power-up  
Input Transition Time  
µ
ns  
Notes:  
1. Some data might be written into any address location if tCHWX(min) is not satisfied.  
2. The Input Transition Time (tT) at AC testing is 5ns as shown in below. If actual tT is longer than 5ns, it can violate the AC  
specification of some of the timing parameters.  
February 8, 2005 S71GL064A_00_A2  
pSRAM Type 7  
109  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
AC Test Conditions  
Symbol  
VIH  
Description  
Te s t S e t up  
Value  
VDD * 0.8  
VDD * 0.2  
VDD * 0.5  
5
Unit  
V
Note  
Input High Level  
VIL  
Input Low Level  
V
VREF  
tT  
Input Timing Measurement Level  
Input Transition Time  
V
Between VIL and VIH  
ns  
AC Measurement Output Load Circuits  
VDD *0.5 V  
50 ohm  
OUT  
VDD  
DEVICE  
UNDER  
TEST  
0.1 µF  
VSS  
50 pF  
Figure 37. AC Output Load Circuit – 16 Mb  
VDD  
DEVICE  
UNDER  
TEST  
OUT  
0.1µF  
VSS  
50pF  
Figure 38. AC Output Load Circuit – 32 Mb and 64 Mb  
110  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e i n f o r m a t i o n  
Timing Diagrams  
Read Timings  
tRC  
ADDRESS VALID  
ADDRESS  
tASC  
tCE  
tCHAH  
tASC  
CE1#  
OE#  
tCP  
tCHZ  
tOE  
tOHZ  
tBHZ  
tBA  
LB#/UB#  
tBLZ  
tOLZ  
DQ  
(Output)  
tCLZ  
VALID DATA OUTPUT  
tOH  
Note: This timing diagram assumes CE2=H and WE#=H.  
Figure 39. Read Timing #1 (Basic Timing)  
tAx  
tRC  
tRC  
ADDRESS  
CE1#  
ADDRESS VALID  
ADDRESS VALID  
tAA  
tAA  
tOHAH  
Low  
tASO  
tOE  
OE#  
LB#/UB#  
tOLZ  
tOH  
tOHZ  
tOH  
DQ  
(Output)  
VALID DATA OUTPUT  
Note: This timing diagram assumes CE2=H and WE#=H.  
VALID DATA OUTPUT  
Figure 40. Read Timing #2 (OE# Address Access  
February 8, 2005 S71GL064A_00_A2  
pSRAM Type 7  
111  
A d v a n c e I n f o r m a t i o n  
tAX  
tRC  
tAx  
ADDRESS  
ADDRESS VALID  
tAA  
Low  
CE1#, OE#  
tBA  
tBA  
LB#  
tBA  
UB#  
tBHZ  
tBHZ  
tOH  
tOH  
tBLZ  
tBLZ  
DQ1-8  
(Output)  
VALID DATA  
OUTPUT  
tBHZ  
VALID DATA  
OUTPUT  
tOH  
tBLZ  
DQ9-16  
(Output)  
VALID DATA OUTPUT  
Note: This timing diagram assumes CE2=H and WE#=H.  
Figure 41. Read Timing #3 (LB#/UB# Byte Access)  
tRC  
ADDRESS  
(A21-A3)  
ADDRESS VALID  
tRC  
tPRC  
tPRC  
tPRC  
ADDRESS  
(A2-A0)  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS VALID  
tASC  
tCHAH  
tPAA  
tPAA  
tPAA  
CE1#  
OE#  
tCHZ  
tCE  
LB#/UB#  
tOH  
tCLZ  
tOH  
tOH  
tOH  
DQ  
(Output)  
VALID DATA OUTPUT  
(Page Access)  
VALID DATA OUTPUT  
(Normal Access)  
Note: This timing diagram assumes CE2=H and WE#=H.  
Figure 42. Read Timing #4 (Page Address Access after CE1# Control Access for 32M and 64M Only)  
112  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e i n f o r m a t i o n  
tRC  
tAX  
tRC  
tAx  
ADDRESS  
(A21-A3)  
ADDRESS VALID  
ADDRESS VALID  
tRC  
tPRC  
tRC  
tPRC  
ADDRESS  
(A2-A0)  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
tAA  
tPAA  
tAA  
tPAA  
CE1#  
Low  
tASO  
tOE  
OE#  
tBA  
LB#/UB#  
tOLZ  
tBLZ  
tOH  
tOH  
tOH  
tOH  
DQ  
(Output)  
VALID DATA OUTPUT  
(Page Access)  
VALID DATA OUTPUT  
(Normal Access)  
Notes:  
1. This timing diagram assumes CE2=H and WE#=H.  
2. Either or both LB# and UB# must be Low when both CE1# and OE# are Low.  
Figure 43. Read Timing #5 (Random and Page Address Access for 32M and 64M Only)  
Write Timings  
tWC  
ADDRESS  
ADDRESS VALID  
tAS  
tCW  
tWR  
tWR  
tWR  
tAS  
CE1#  
WE#  
tCP  
tAS  
tWP  
tAS  
tWHP  
tAS  
tBW  
tAS  
LB#, UB#  
tBHP  
tOHCL  
OE#  
tDS  
tDH  
DQ  
(Input)  
VALID DATA INPUT  
Note: This timing diagram assumes CE2=H.  
Figure 44. Write Timing #1 (Basic Timing)  
February 8, 2005 S71GL064A_00_A2  
pSRAM Type 7  
113  
A d v a n c e I n f o r m a t i o n  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
tOHAH  
Low  
tAS  
tWP  
tWR  
tAS  
tWP  
tWR  
WE#  
tWHP  
LB#, UB#  
OE#  
tOES  
tOHZ  
tDS  
tDH  
tDS  
tDH  
DQ  
(Input)  
VALID DATA INPUT  
VALID DATA INPUT  
Note:This timing diagram assumes CE2=H.  
Figure 45. Write Timing #2 (WE# Control)  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
tAS  
tWP  
tAS  
tWP  
tWHP  
tBS  
WE#  
LB#  
tBH  
tWR  
tWR  
tBS  
tBH  
UB#  
tDS  
tDH  
DQ1-8  
(Input)  
VALID DATA INPUT  
tDS  
tDH  
DQ9-16  
(Input)  
Note: This timing diagram assumes CE2=H and OE#=H.  
Figure 46. Write Timing #3-1(WE#/LB#/UB# Byte Write Control)  
114  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e i n f o r m a t i o n  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
tWR  
tWR  
WE#  
LB#  
tWHP  
tAS  
tBW  
tBS  
tBH  
tAS  
tBW  
tBH  
tBS  
UB#  
tDS  
tDH  
DQ1-8  
(Input)  
VALID DATA INPUT  
tDS  
tDH  
DQ9-16  
(Input)  
VALID DATA INPUT  
Note: This timing diagram assumes CE2=H and OE#=H.  
Figure 47. Write Timing #3-3 (WE#/LB#/UB# Byte Write Control)  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
WE#  
LB#  
tAS  
tBW  
tWR  
tAS  
tBW  
tWR  
tDH  
tBHP  
tBWO  
tDS  
tDH  
tDS  
DQ1-8  
(Input)  
VALID  
DATA INPUT  
VALID  
DATA INPUT  
tAS  
tBW  
tWR  
tAS  
tWR  
tBWO  
tBW  
UB#  
tBHP  
tDS  
tDH  
tDS  
tDH  
DQ9-16  
(Input)  
VALID  
DATA INPUT  
VALID  
DATA INPUT  
Note: This timing diagram assumes CE2=H and OE#=H.  
Figure 48. Write Timing #3-4 (WE#/LB#/UB# Byte Write Control)  
February 8, 2005 S71GL064A_00_A2  
pSRAM Type 7  
115  
A d v a n c e I n f o r m a t i o n  
Read/Write Timings  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tCHAH  
tAS  
tCW  
tWR  
tASC  
tCE  
tCHAH  
tCP  
tCP  
WE#  
UB#, LB#  
OE#  
tOHCL  
tCHZ  
tOH  
tDS  
tDH  
tCLZ  
tOH  
DQ  
READ DATA OUTPUT  
WRITE DATA INPUT  
Notes:  
1. This timing diagram assumes CE2=H.  
2. Write address is valid from either CE1# or WE# of last falling edge.  
Figure 49. Read/Write Timing #1-1 (CE1# Control)  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tCHAH  
tAS  
tWR  
tASC  
tCE  
tCHAH  
tCP  
tCP  
tWP  
WE#  
UB#, LB#  
OE#  
tOHCL  
tOE  
tCHZ  
tOH  
tDS  
tDH  
tOLZ  
tOH  
DQ  
READ DATA OUTPUT  
WRITE DATA INPUT  
READ DATA OUTPUT  
Notes:  
1. This timing diagram assumes CE2=H.  
2. OE# can be fixed Low during write operation if it is CE1# controlled write at Read-Write-Read sequence.  
Figure 50. Read / Write Timing #1-2 (CE1#/WE#/OE# Control)  
116  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e i n f o r m a t i o n  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tOHAH  
tOHAH  
tAA  
Low  
tAS  
tWR  
tWP  
WE#  
UB#, LB#  
OE#  
tOES  
tASO  
tOE  
tWHOL  
tOHZ  
tOH  
tOHZ  
tOH  
tDS  
tDH  
tOLZ  
DQ  
READ DATA OUTPUT  
READ DATA OUTPUT  
WRITE DATA INPUT  
Notes:  
1. This timing diagram assumes CE2=H.  
2. CE1# can be tied to Low for WE# and OE# controlled operation.  
Figure 51. Read / Write Timing #2 (OE#, WE# Control)  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tAA  
tOHAH  
tOHAH  
Low  
WE#  
tOES  
tAS  
tBW  
tWR  
tBA  
UB#, LB#  
OE#  
tBHZ  
tASO  
tWHOL  
tBHZ  
tOH  
tDS  
tDH  
tBLZ  
tOH  
DQ  
READ DATA OUTPUT  
READ DATA OUTPUT  
WRITE DATA INPUT  
Notes:  
1. This timing diagram assumes CE2=H.  
2. CE1# can be tied to Low for WE# and OE# controlled operation.  
Figure 52. Read / Write Timing #3 (OE#, WE#, LB#, UB# Control)  
February 8, 2005 S71GL064A_00_A2  
pSRAM Type 7  
117  
A d v a n c e I n f o r m a t i o n  
CE1#  
CE2  
tCHS  
tC2LH  
tCHH  
VDD  
VDD min  
0V  
Note: The t  
specifies after V  
reaches specified minimum level.  
C2LH  
DD  
Figure 53. Power-up Timing #1  
CE1#  
tCHH  
CE2  
VDD  
VDD min  
0V  
Note: The t  
specifies after V  
reaches specified minimum level and applicable to both CE1# and CE2.  
CHH  
DD  
Figure 54. Power-up Timing #2  
CE1#  
tCHS  
CE2  
DQ  
tCSP  
tC2LP  
tCHH (tCHHP)  
High-Z  
Power Down Entry  
Power Down Mode  
Power Down Exit  
Note: This Power Down mode can be also used as a reset timing if POWER-UP timing above could not be satisfied and  
Power-Down program was not performed prior to this reset.  
Figure 55. Power Down Entry and Exit Timing  
118  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e i n f o r m a t i o n  
CE1#  
OE#  
tCHOX  
tCHWX  
WE#  
Active (Read)  
and t define the earliest entry timing for Standby mode. If either of timing is not satisfied, it takes  
CHWX  
Standby  
Active (Write)  
Standby  
Note: Both t  
CHOX  
t
(min) period for Standby mode from CE1# Low to High transition.  
RC  
Figure 56. Standby Entry Timing after Read or Write  
tRC  
tWC  
tWC  
tWC  
tWC  
tRC  
MSB*1  
MSB*1  
MSB*1  
MSB*1  
MSB*1  
Key*2  
ADDRESS  
CE1#  
tCP*3  
tCP  
tCP  
tCP  
tCP  
tCP  
OE#  
WE#  
LB#, UB#  
DQ*3  
RDa  
Cycle #1  
RDa  
Cycle #2  
RDa  
Cycle #3  
X
X
RDb  
Cycle #6  
Cycle #4  
Cycle #5  
Notes:  
1. The all address inputs must be High from Cycle #1 to #5.  
2. The address key must confirm the format specified in page 104. If not, the operation and data are not guaranteed.  
3. After tCP following Cycle #6, the Power Down Program is completed and returned to the normal operation.  
Figure 57. Power Down Program Timing (for 32M/64M Only)  
February 8, 2005 S71GL064A_00_A2  
pSRAM Type 7  
119  
A d v a n c e I n f o r m a t i o n  
Type 1 SRAM  
4/8 Megabit CMOS SRAM  
Common Features  
„ Process Technology: Full CMOS  
„ Power Supply Voltage: 2.7~3.3V  
„ Three state outputs  
Organization  
Standby  
Version  
Density  
4Mb  
(ISB1, Max.)  
x8 or x16 (note 1)  
x8 or x16 (note 1)  
x8 or x16 (note 1)  
X16  
(ICC2, Max.)  
Operating  
22 mA  
22 mA  
22 mA  
TBD  
Mode  
F
G
C
D
10 µA  
10 µA  
15 µA  
TBD  
Dual CS, UB# / LB# (tCS)  
Dual CS, UB# / LB# (tCS)  
Dual CS, UB# / LB# (tCS)  
Dual CS, UB# / LB# (tCS)  
4Mb  
8Mb  
8Mb  
Notes:  
1. UB#, LB# swapping is available only at x16. x8 or x16 select by BYTE# pin.  
Pin Description  
Pin Name  
CS1#, CS2  
OE#  
Description  
I/O  
Chip Selects  
I
I
I
I
Output Enable  
WE#  
Write Enable  
BYTE#  
Word (VCC)/Byte (VSS) Select  
A0~A17 (4M)  
A0~A18 (8M)  
Address Inputs  
I
SA  
Address Input for Byte Mode  
Data Inputs/Outputs  
Power Supply  
I
I/O  
-
I/O0~I/O15  
VCC  
VSS  
Ground  
-
DNU  
Do Not Use  
-
NC  
No Connection  
-
120  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Functional Description  
4M Version F, 4M version G, 8M version C  
CS1# CS2 OE# WE# BYTE#  
SA  
X
X
X
X
X
X
X
X
X
X
X
LB#  
X
X
H
L
UB#  
X
IO0~7  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
IO8~15  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
Mode  
Power  
Standby  
Standby  
Standby  
Active  
H
X
X
L
L
L
L
L
L
L
L
X
L
X
X
X
H
H
L
X
X
X
H
H
H
H
H
L
X
Deselected  
X
X
Deselected  
X
H
H
H
H
H
H
H
H
X
H
X
Deselected  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Output Disabled  
Output Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
X
L
L
Active  
H
L
Active  
L
H
L
High-Z  
Dout  
Active  
L
L
Dout  
Active  
X
X
X
L
H
L
Din  
High-Z  
Din  
Lower Byte Write  
Upper Byte Write  
Word Write  
Active  
L
H
L
High-Z  
Din  
Active  
L
L
Din  
Active  
Note: X means don’t care (must be low or high state).  
Byte Mode  
CS1# CS2 OE# WE# BYTE#  
SA  
X
LB#  
X
UB#  
X
IO0~7  
IO8~15  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Mode  
Power  
Standby  
Standby  
Standby  
Active  
H
X
L
X
L
X
X
H
L
X
X
H
L
X
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Deselected  
X
X
X
Deselected  
H
H
H
X
X
H
H
Deselected  
L
VCC  
VCC  
X
L
X
Output Disabled  
Output Disabled  
L
X
L
X
X
L
Active  
February 8, 2005 S71GL064A_00_A2  
Type 1 SRAM  
121  
A d v a n c e I n f o r m a t i o n  
Functional Description  
8M Version D  
CS1#  
H
X
X
L
CS2  
X
OE#  
X
WE#  
X
LB#  
X
X
H
L
UB#  
X
IO0~8  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
IO9~16  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
Mode  
Power  
Standby  
Standby  
Standby  
Active  
Deselected  
L
X
X
X
Deselected  
X
X
X
H
X
Deselected  
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
L
Output Disabled  
Output Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
L
X
L
L
Active  
L
H
L
Active  
L
L
H
L
High-Z  
Dout  
Active  
L
L
L
Dout  
Active  
L
X
L
H
L
Din  
High-Z  
Din  
Lower Byte Write  
Upper Byte Write  
Word Write  
Active  
L
X
L
H
L
High-Z  
Din  
Active  
L
X
L
L
Din  
Active  
Note: X means don’t care (must be low or high state).  
Absolute Maximum Ratings  
4M Version F  
Item  
Symbol  
Ratings  
Unit  
Voltage on any pin relative to VSS  
Voltage on VCC supply relative to VSS  
Power Dissipation  
VIN,VOUT  
VCC  
-0.2 to VCC+0.3V  
-0.2 to 4.0V  
1.0  
V
V
PD  
W
Operating Temperature  
TA  
-40 to 85  
°C  
Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Functional  
operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
4M Version G, 8M Version C, 8M Version D  
Item  
Symbol  
VIN,VOUT  
VCC  
Ratings  
-0.2 to VCC+0.3V (Max. 3.6V)  
-0.2 to 3.6V  
Unit  
V
Voltage on any pin relative to VSS  
Voltage on VCC supply relative to VSS  
Power Dissipation  
V
PD  
1.0  
W
Operating Temperature  
TA  
-40 to 85  
°C  
Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Functional  
operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
122  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
Recommended DC Operating Conditions (Note 1)  
Item  
Symbol  
VCC  
Min  
Typ  
3.0  
0
Max  
Unit  
V
Supply voltage  
Ground  
2.7  
3.3  
VSS  
0
2.2  
0
VCC+0.2 (Note 2)  
0.6  
V
Input high voltage  
Input low voltage  
VIH  
-
V
VIL  
-0.2 (Note 3)  
-
V
Notes:  
1. T = -40 to 85°C, unless otherwise specified.  
A
2. Overshoot: Vcc+1.0V in case of pulse width 20ns.  
3. Undershoot: -1.0V in case of pulse width 20ns.  
4. Overshoot and undershoot are sampled, not 100% tested.  
Capacitance  
(f=1MHz, TA=25°C)  
Item  
Symbol  
CIN  
Test Condition  
Min  
Max  
8
Unit  
Input capacitance  
VIN=0V  
VIO=0V  
-
-
pF  
pF  
Input/Output capacitance  
CIO  
10  
Note: Capacitance is sampled, not 100% tested  
DC Operating Characteristics  
Common  
Typ  
Item  
Symbol  
Test Conditions  
Min  
(Note)  
Max  
Unit  
Input leakage current  
ILI  
VIN=VSS to VCC  
-1  
-
1
µ
A
A
CS1#=VIH or CS2=VIL or OE#=VIH or WE#=VIL  
or LB#=UB#=VIH, VIO=Vss to VCC  
Output leakage current  
ILO  
-1  
-
1
µ
Output low voltage  
Output high voltage  
VOL  
VOH  
IOL = 2.1mA  
IOH = -1.0mA  
-
-
-
0.4  
-
V
2.4  
V
February 8, 2005 S71GL064A_00_A2  
Type 1 SRAM  
123  
A d v a n c e I n f o r m a t i o n  
4M Version F  
Typ  
Item  
Symbol  
Test Conditions  
Min  
(Note)  
Max  
Unit  
Cycle time=1µs, 100% duty, IIO=0mA, CS1#  
CS2 VCC-0.2V,  
BYTE#=VSS or VCC, VIN  
0.2V or/and UB# 0.2V  
0.2V,  
ICC1  
-
-
-
3
mA  
0.2V or VIN VCC-0.2V, LB#  
Average operating current  
Cycle time=Min, IIO=0mA, 100% duty, CS1# = VIL,  
CS2=VIH,  
ICC2  
-
-
22  
10  
mA  
µA  
BYTE# = VSS or VCC, VIN=VIL or VIH, LB#  
and UB# 0.2V  
0.2V or/  
CS1#  
VCC-0.2V, CS2 VCC-0.2V (CS1# controlled)  
ISB1  
(Note)  
1.0  
(Note)  
or CS2 0.2V (CS2 controlled), BYTE# = VSS or VCC  
,
Standby Current (CMOS)  
Other input =0~VCC  
Note: Typical values are not 100% tested.  
4M Version G  
Typ  
Item  
Symbol  
Test Conditions  
Min  
(Note)  
Max  
Unit  
Cycle time=1µs, 100% duty, IIO=0mA, CS1# 0.2V,  
CS2  
BYTE#=VSS or VCC, VIN  
0.2V or/and UB# 0.2V  
VCC-0.2V,  
ICC1  
-
-
-
4
mA  
0.2V or VIN VCC-0.2V, LB#  
Average operating current  
Cycle time=Min, IIO=0mA, 100% duty, CS1# = VIL,  
CS2=VIH,  
ICC2  
-
-
22  
10  
mA  
µA  
BYTE# = VSS or VCC, VIN=VIL or VIH, LB#  
and UB# 0.2V  
0.2V or/  
CS1#  
VCC-0.2V, CS2 VCC-0.2V (CS1# controlled)  
ISB1  
(Note)  
3.0  
(Note)  
or CS2 0.2V (CS2 controlled), BYTE# = VSS or VCC  
,
Standby Current (CMOS)  
Other input = 0~VCC  
Note: Typical values are not 100% tested.  
124  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
8M Version C  
Typ  
Item  
Symbol  
Test Conditions  
Min  
(Note)  
Max  
Unit  
Cycle time=1µs, 100% duty, IIO=0mA, CS1# 0.2V,  
CS2  
BYTE#=VSS or VCC, VIN  
0.2V or/and UB# 0.2V  
VCC-0.2V,  
ICC1  
-
-
3
mA  
0.2V or VIN VCC-0.2V, LB#  
Average operating current  
Cycle time=Min, IIO=0mA, 100% duty, CS1# = VIL,  
CS2=VIH,  
ICC2  
-
-
-
-
22  
15  
mA  
µA  
BYTE# = VSS or VCC, VIN=VIL or VIH, LB#  
and UB# 0.2V  
0.2V or/  
CS1#  
VCC-0.2V, CS2 VCC-0.2V (CS1# controlled)  
ISB1  
(Note)  
or CS2 0.2V (CS2 controlled), BYTE# = VSS or VCC  
,
Standby Current (CMOS)  
Other input = 0~VCC  
Note: Typical values are not 100% tested.  
8M Version D  
Typ  
Item  
Symbol  
Test Conditions  
Min  
(Note)  
Max  
Unit  
Cycle time=1µs, 100% duty, IIO=0mA, CS1# 0.2V,  
CS2  
BYTE#=VSS or VCC, VIN  
0.2V or/and UB# 0.2V  
VCC-0.2V,  
ICC1  
-
-
TBD  
mA  
0.2V or VIN VCC-0.2V, LB#  
Average operating current  
Cycle time=Min, IIO=0mA, 100% duty, CS1# = VIL,  
CS2=VIH,  
ICC2  
-
-
-
-
TBD  
TBD  
mA  
µA  
BYTE# = VSS or VCC, VIN=VIL or VIH, LB#  
and UB# 0.2V  
0.2V or/  
CS1#  
VCC-0.2V, CS2 VCC-0.2V (CS1# controlled)  
ISB1  
(Note)  
or CS2 0.2V (CS2 controlled), BYTE# = VSS or VCC  
,
Standby Current (CMOS)  
Other input = 0~VCC  
Note: Typical values are not 100% tested.  
February 8, 2005 S71GL064A_00_A2  
Type 1 SRAM  
125  
A d v a n c e I n f o r m a t i o n  
AC Operating Conditions  
Test Conditions  
Test Load and Test Input/Output Reference  
„ Input pulse level: 0.4 to 2.2V  
„ Input rising and falling time: 5ns  
„ Input and output reference voltage: 1.5V  
„ Output load (See Figure 58): CL= 30pF+1TTL  
V
(note 3)  
TM  
R2 (note 2)  
R1 (note 2)  
CL (note 1)  
Figure 58. AC Output Load  
Notes:  
1. Including scope and jig capacitance.  
2. R1=3070, R2=3150Ω.  
3. VTM =2.8V.  
AC Characteristics  
Table 33. Read/Write Characteristics (VCC=2.7-3.3V)  
Speed Bins  
70ns  
Parameter List  
Read cycle time  
Symbol  
tRC  
Min  
70  
-
Max  
-
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address access time  
tAA  
70  
70  
35  
70  
-
Chip select to output  
tCO1, tCO2  
tOE  
-
Output enable to valid output  
LB#, UB# Access Time  
-
tBA  
-
Chip select to low-Z output  
LB#, UB# enable to low-Z output  
Output enable to low-Z output  
Chip disable to high-Z output  
UB#, LB# disable to high-Z output  
Output disable to high-Z output  
Output hold from address change  
tLZ1, tLZ2  
tBLZ  
10  
10  
5
-
tOLZ  
-
tHZ1, tHZ2  
tBHZ  
0
25  
25  
25  
-
0
tOHZ  
0
tOH  
10  
126  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
Table 33. Read/Write Characteristics (VCC=2.7-3.3V) (Continued)  
Speed Bins  
70ns  
Parameter List  
Write cycle time  
Symbol  
tWC  
tCW  
tAS  
Min  
70  
60  
0
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
Chip select to end of write  
Address set-up time  
-
Address valid to end of write  
LB#, UB# valid to end of write  
Write pulse width  
tAW  
60  
60  
50  
0
-
tBW  
-
tWP  
-
Write recovery time  
tWR  
tWHZ  
tDW  
tDH  
-
Write to output high-Z  
Data to write time overlap  
Data hold from write time  
End write to output low-Z  
0
20  
-
30  
0
-
tOW  
5
-
Data Retention Characteristics  
4M Version F  
Item  
Symbol  
Test Condition  
Min  
Typ  
Max Unit  
VCC for data retention  
VDR  
CS1#  
VCC-0.2V (Note 1), VIN  
0V. BYTE# = VSS or VCC 1.5  
-
3.3  
10  
V
1.0  
(Note 2)  
Data retention current  
IDR  
VCC=3.0V, CS1#  
VCC-0.2V (Note 1), VIN  
0V  
-
µA  
Data retention set-up time  
Recovery time  
tSDR  
tRDR  
0
-
-
-
-
See data retention waveform  
ns  
tRC  
Notes:  
1. CS1 controlled:CS1#VCC-0.2V. CS2 controlled: CS2 0.2V.  
2. Typical values are not 100% tested.  
February 8, 2005 S71GL064A_00_A2  
Type 1 SRAM  
127  
A d v a n c e I n f o r m a t i o n  
4M Version G  
Item  
Symbol  
VDR  
Test Condition  
Min  
Typ  
Max Unit  
VCC for data retention  
CS1#  
VCC-0.2V (Note 1), VIN  
0V. BYTE# = VSS or VCC 1.5  
-
-
-
-
3.3  
3
V
Data retention current  
Data retention set-up time  
Recovery time  
IDR  
VCC=1.5V, CS1#  
VCC-0.2V (Note 1), VIN  
0V  
-
0
µA  
tSDR  
tRDR  
-
See data retention waveform  
ns  
tRC  
-
Notes:  
1. CS1 controlled:CS1#V -0.2V. CS2 controlled: CS2 0.2V.  
CC  
8M Version C  
Item  
Symbol  
VDR  
Test Condition  
VCC-0.2V (Note 1). BYTE# = VSS or VCC  
VCC=3.0V, CS1# VCC-0.2V (Note 1)  
Min  
1.5  
-
Typ  
Max Unit  
VCC for data retention  
Data retention current  
Data retention set-up time  
Recovery time  
CS1#  
-
-
-
-
3.3  
15  
-
V
IDR  
µA  
tSDR  
tRDR  
0
See data retention waveform  
ns  
tRC  
-
Notes:  
1. CS1 controlled:CS1#VCC-0.2V. CS2 controlled: CS2 0.2V.  
8M Version D  
Item  
Symbol  
VDR  
Test Condition  
Min  
1.5  
-
Typ  
Max Unit  
VCC for data retention  
Data retention current  
Data retention set-up time  
Recovery time  
CS1#  
VCC-0.2V (Note 1), BYTE# = VSS or VCC  
-
-
-
-
3.3  
TBD  
-
V
IDR  
VCC=3.0V, CS1#  
VCC-0.2V (Note 1)  
µA  
tSDR  
tRDR  
0
See data retention waveform  
ns  
tRC  
-
Notes:  
1. CS1 controlled:CS1#VCC-0.2V. CS2 controlled: CS2 0.2V.  
Timing Diagrams  
tRC  
Address  
tAA  
tOH  
Data Out  
Previous Data Valid  
Data Valid  
Figure 59. Timing Waveform of Read Cycle(1) (Address Controlled, CS#1=OE#=VIL, CS2=WE#=VIH, UB#  
and/or LB#=VIL)  
128  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
tRC  
Address  
tOH  
tAA  
tCO1  
CS1#  
CS2  
tCO2  
tBA  
tHZ  
UB#, LB#  
tBHZ  
tOHZ  
tOE  
OE#  
tOLZ  
tBLZ  
tLZ  
Data out  
High-Z  
Data Valid  
Notes:  
1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to  
output voltage levels.  
2. At any given temperature and voltage condition, t (Max.) is less than t (Min.) both for a given device and from  
HZ  
LZ  
device to device interconnection.  
Figure 60. Timing Waveform of Read Cycle(2) (WE#=VIH, if BYTE# is Low, Ignore UB#/LB# Timing)  
tWC  
Address  
tCW(2)  
tWR(4)  
CS1#  
tAW  
CS2  
tCW(2)  
tBW  
UB#, LB#  
tWP(1)  
WE#  
tAS(3)  
tDW  
Data Valid  
tDH  
High-Z  
High-Z  
Data in  
tWHZ  
tOW  
Data out  
Data Undefined  
Figure 61. Timing Waveform of Write Cycle(1) (WE# controlled, if BYTE# is Low, Ignore UB#/LB# Timing)  
February 8, 2005 S71GL064A_00_A2  
Type 1 SRAM  
129  
A d v a n c e I n f o r m a t i o n  
tWC  
Address  
CS1#  
tAS(3)  
tCW(2)  
tAW  
tWR(4)  
CS2  
UB#, LB#  
WE#  
tBW  
tWP(1)  
tDW  
Data Valid  
tDH  
Data in  
Data out  
High-Z  
High-Z  
Figure 62. Timing Waveform of Write Cycle(2) (CS# controlled, if BYTE# is Low, Ignore UB#/LB# Timing)  
tWC  
Address  
tCW(2)  
tWR(4)  
CS1#  
tAW  
CS2  
tCW(2)  
tBW  
UB#, LB#  
tAS(3)  
tWP(1)  
WE#  
tDH  
tDW  
Data Valid  
Data in  
Data out  
High-Z  
High-Z  
Notes:  
1. A write occurs during the overlap (t ) of low CS1# and low WE#. A write begins when CS1# goes low and WE#  
WP  
goes low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double  
byte operation. A write ends at the earliest transition when CS1# goes high and WE# goes high. The t  
measured from the beginning of write to the end of write.  
is  
WP  
2. t  
is measured from the CS1# going low to the end of write.  
CW  
3. t is measured from the address valid to the beginning of write.  
AS  
4. t  
is measured from the end of write to the address change. t  
applied in case a write ends as CS1# or WE#  
WR  
WR  
going high.  
Figure 63. Timing Waveform of Write Cycle(3) (UB#, LB# controlled)  
130  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  
A d v a n c e I n f o r m a t i o n  
CS1# Controlled  
Data Retention Mode  
tSDR  
tRDR  
V
CC  
2.7V  
2.2V  
V
DR  
CS1# V  
CC  
- 0.2V  
CS1#  
GND  
CS2 Controlled  
Data Retention Mode  
V
CC  
2.7V  
CS2  
tSDR  
tRDR  
V
DR  
CS2 0.2V  
0.4V  
GND  
Figure 64. Data Retention Waveform  
February 8, 2005 S71GL064A_00_A2  
Type 1 SRAM  
131  
A d v a n c e I n f o r m a t i o n  
Revision Summary  
Revision A (October 28, 2004)  
Initial release.  
Revision A1 (December 7, 2004)  
Global  
Access speed updated.  
MCP Block Diagram  
Control signals updated.  
Pin Description  
Descriptions updated.  
Ordering Information  
Package Modifiers and pSRAM densities updated.  
Valid Combinations table  
Speed options updated.  
Revision A2 (February 8, 2005)  
pSRAM Type 7  
Entire section updated.  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary  
industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that  
includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal  
injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control,  
medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable ( i.e., submersible repeater and  
artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-men-  
tioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other  
abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under  
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior au-  
thorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion LLC product under development  
by Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided  
as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement  
of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the  
use of the information in this document.  
Copyright ©2004-2005 Spansion LLC. All rights reserved. Spansion, the Spansion logo, and MirrorBit are trademarks of Spansion LLC. Other company and  
product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
132  
S71GL064A based MCPs  
S71GL064A_00_A2 February 8, 2005  

相关型号:

S71GL064A0ABAI0F2

Memory Circuit, 4MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-56
SPANSION

S71GL064A0ABAW0B0

Memory Circuit, 4MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-56
SPANSION

S71GL064A0ABAW0B2

Memory Circuit, 4MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-56
SPANSION

S71GL064A0ABAW0B3

Memory Circuit, 4MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-56
SPANSION

S71GL064A0ABAW0F0

Memory Circuit, 4MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-56
SPANSION

S71GL064A0ABAW0F2

Memory Circuit, 4MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-56
SPANSION

S71GL064A0ABFI0F2

Memory Circuit, 4MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-56
SPANSION

S71GL064A0ABFW0B0

Memory Circuit, 4MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-56
SPANSION

S71GL064A0ABFW0B3

Memory Circuit, 4MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-56
SPANSION

S71GL064A0ABFW0F0

Memory Circuit, 4MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-56
SPANSION

S71GL064A0ABFW0F2

Memory Circuit, 4MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-56
SPANSION

S71GL064A40BAI0B0

Stacked Multi-Chip Product (MCP) Flash Memory and RAM
SPANSION