S71GL032A04BFI0B2 [SPANSION]

Stacked Multi-Chip Product (MCP) Flash Memory and RAM; 堆叠式多芯片产品( MCP )闪存和RAM
S71GL032A04BFI0B2
型号: S71GL032A04BFI0B2
厂家: SPANSION    SPANSION
描述:

Stacked Multi-Chip Product (MCP) Flash Memory and RAM
堆叠式多芯片产品( MCP )闪存和RAM

闪存
文件: 总102页 (文件大小:1762K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S71GL032A Based MCPs  
Stacked Multi-Chip Product (MCP) Flash Memory and  
RAM  
32 Megabit (2 M x 16-bit) CMOS 3.0 Volt-only  
Page Mode Flash Memory and  
16/8/4 Megabit (1M/512K/256K x 16-bit)  
Pseudo Static RAM  
ADVANCE  
INFORMATION  
Data Sheet  
Notice to Readers: The Advance Information status indicates that this  
document contains information on one or more products under development  
at Spansion LLC. The information is intended to help you evaluate this product.  
Do not design in this product without contacting the factory. Spansion LLC  
reserves the right to change or discontinue work on this proposed product  
without notice.  
Publication Number S71GL032A_00 Revision A Amendment 0 Issue Date March 31, 2005  
Notice On Data Sheet Designations  
Spansion LLC issues data sheets with Advance Information or Preliminary designations to advise  
readers of product information or intended specifications throughout the product life cycle, including  
development, qualification, initial production, and full production. In all cases, however, readers are  
encouraged to verify that they have the latest information before finalizing their design. The follow-  
ing descriptions of Spansion data sheet designations are presented here to highlight their presence  
and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion LLC is developing one or more specific  
products, but has not committed any design to production. Information presented in a document  
with this designation is likely to change, and in some cases, development on the product may discon-  
tinue. Spansion LLC therefore places the following conditions upon Advance Information content:  
“This document contains information on one or more products under development at Spansion LLC. The  
information is intended to help you evaluate this product. Do not design in this product without con-  
tacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed  
product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a com-  
mitment to production has taken place. This designation covers several aspects of the product life cy-  
cle, including product qualification, initial production, and the subsequent phases in the  
manufacturing process that occur before full production is achieved. Changes to the technical specifi-  
cations presented in a Preliminary document should be expected while keeping these aspects of pro-  
duction under consideration. Spansion places the following conditions upon Preliminary content:  
“This document states the current technical specifications regarding the Spansion product(s) described  
herein. The Preliminary status of this document indicates that product qualification has been completed,  
and that initial production has begun. Due to the phases of the manufacturing process that require  
maintaining efficiency and quality, this document may be revised by subsequent versions or modifica-  
tions due to changes in technical specifications.”  
Combination  
Some data sheets will contain a combination of products with different designations (Advance Infor-  
mation, Preliminary, or Full Production). This type of document will distinguish these products and  
their designations wherever necessary, typically on the first page, the ordering information page, and  
pages with DC Characteristics table and AC Erase and Program table (in the table notes). The dis-  
claimer on the first page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal  
changes are expected, the Preliminary designation is removed from the data sheet. Nominal changes  
may include those affecting the number of ordering part numbers available, such as the addition or  
deletion of a speed option, temperature range, package type, or V range. Changes may also in-  
IO  
clude those needed to clarify a description or to correct a typographical error or incorrect specifica-  
tion. Spansion LLC applies the following conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s) described  
herein. Spansion LLC deems the products to have been in sufficient production volume such that sub-  
sequent versions of this document are not expected to change. However, typographical or specification  
corrections, or modifications to the valid combinations offered may occur.”  
Questions regarding these document designations may be directed to your local AMD or  
Fujitsu sales office.  
S71GL032A Based MCPs  
Stacked Multi-Chip Product (MCP) Flash Memory and RAM  
32 Megabit (2 M x 16-bit) CMOS 3.0 Volt-only  
Page Mode Flash Memory and  
16/8/4 Megabit (1M/512K/256K x 16-bit)  
Pseudo Static RAM  
ADVANCE  
INFORMATION  
General Description  
The S71GL series is a product line of stacked Multi-Chip Product (MCP) packages and consists  
of:  
„ One S29PL032A (Simultaneous Read/Write) Flash memory die  
„ pSRAM or SRAM  
The products covered by this document are listed in the table below:  
Flash Memory Density  
32Mb  
4Mb  
8Mb  
S71GL032A40  
pSRAM  
Density  
S71GL032A80/S71GL032A08  
Distinctive Characteristics  
MCP Features  
„
„
Power supply voltage of 2.7 V to 3.1 V  
High performance  
100 ns (100 ns Flash, 70 ns pSRAM/SRAM)  
„
„
Packages  
7 x 9 x 1.2 mm 56 ball FBGA  
Operating Temperature  
–25°C to +85°C  
–40°C to +85°C  
Publication Number S71GL032A_00 Revision A Amendment 0 Issue Date March 31, 2005  
This document contains information on one or more products under development at Spansion LLC. The information is intended to help you evaluate this product. Do not  
design in this product without contacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed product without notice.  
Product Selector Guide  
32 Mb Flash Memory  
Device-Model#  
S71GL032A40-0B  
S71GL032A40-0F  
S71GL032A08-0B  
S71GL032A08-0F  
Flash Access time (ns) (p)SRAM density (p)SRAM Access time (ns) pSRAM type Package  
4 M pSRAM  
8 M pSRAM  
pSRAM4  
SRAM1  
100  
70  
TLC056  
4
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Contents  
Figure 1. Temporary Sector Group Unprotect Operation.......... 35  
Figure 2. In-System Sector Group  
S71GL032A Based MCPs  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . .4  
32 Mb Flash Memory ............................................................................................4  
Connection Diagram (S71GL032A) . . . . . . . . . . . . .8  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 10  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 12  
TLC056—56-ball Fine-Pitch Ball Grid Array (FBGA)  
Protect/Unprotect Algorithms .............................................. 36  
Secured Silicon Sector Flash Memory Region ........................................... 37  
Write Protect (WP#) .......................................................................................38  
Hardware Data Protection .............................................................................38  
Low VCC Write Inhibit ................................................................................39  
Write Pulse “Glitch” Protection ...............................................................39  
Logical Inhibit ...................................................................................................39  
Power-Up Write Inhibit ...............................................................................39  
Common Flash Memory Interface (CFI) . . . . . . .40  
Table 18. CFI Query Identification String .............................. 40  
Table 19. System Interface String........................................ 41  
Table 20. Device Geometry Definition................................... 42  
Table 21. Primary Vendor-Specific Extended Query................ 43  
9 x 7 mm Package ............................................................................................... 12  
S29GL-A MirrorBit™ Flash Family  
General Description . . . . . . . . . . . . . . . . . . . . . . . . 14  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 16  
S29GL064A, S29GL032A .................................................................................. 16  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Command Definitions . . . . . . . . . . . . . . . . . . . . . .44  
Reading Array Data ...........................................................................................44  
Reset Command .................................................................................................44  
Autoselect Command Sequence ....................................................................45  
Enter Secured Silicon Sector/Exit Secured Silicon  
Sector Command Sequence ............................................................................45  
Word Program Command Sequence ......................................................45  
Unlock Bypass Command Sequence ........................................................46  
Write Buffer Programming ..........................................................................46  
Accelerated Program ....................................................................................48  
Figure 3. Write Buffer Programming Operation ...................... 49  
Figure 4. Program Operation............................................... 50  
Program Suspend/Program Resume Command Sequence ....................50  
Figure 5. Program Suspend/Program Resume........................ 51  
Chip Erase Command Sequence ....................................................................51  
Sector Erase Command Sequence . . . . . . . . . . . . 53  
Figure 6. Erase Operation................................................... 54  
Erase Suspend/Erase Resume Commands ..................................................54  
Table 22. Command Definitions (x16 Mode) .......................... 56  
DQ7: Data# Polling ............................................................................................ 57  
Figure 7. Data# Polling Algorithm........................................ 58  
RY/BY#: Ready/Busy# .......................................................................................58  
Figure 8. Toggle Bit Algorithm............................................. 60  
Reading Toggle Bits DQ6/DQ2 ......................................................................61  
DQ5: Exceeded Timing Limits .........................................................................61  
DQ3: Sector Erase Timer ................................................................................62  
DQ1: Write-to-Buffer Abort ...........................................................................62  
Table 23. Write Operation Status ......................................... 63  
Figure 9. Maximum Negative Overshoot Waveform ................ 64  
Figure 10. Maximum Positive  
Overshoot Waveform ......................................................... 64  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . .64  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Figure 11. Test Setup......................................................... 66  
Table 24. Test Specifications ............................................... 66  
Key to Switching Waveforms . . . . . . . . . . . . . . . 66  
Figure 12. Input Waveforms and Measurement Levels............ 66  
Read-Only Operations-S29GL064A only ....................................................67  
Read-Only Operations-S29GL032A only ....................................................67  
Figure 13. Read Operation Timings ...................................... 68  
Figure 14. Page Read Timings ............................................. 68  
Hardware Reset (RESET#) ..............................................................................69  
Figure 15. Reset Timings .................................................... 69  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Logic Symbol-S29GL064A (Model R6, R7) .................................................20  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . 21  
Table 1. Device Bus Operations ........................................... 21  
Requirements for Reading Array Data ........................................................ 22  
Page Mode Read ............................................................................................. 22  
Writing Commands/Command Sequences ................................................ 22  
Write Buffer .....................................................................................................23  
Accelerated Program Operation ...............................................................23  
Autoselect Functions .....................................................................................23  
Standby Mode .......................................................................................................23  
Automatic Sleep Mode ......................................................................................23  
RESET#: Hardware Reset Pin ........................................................................ 24  
Output Disable Mode ....................................................................................... 24  
Table 2. S29GL032M (Models R1, R2) Sector Addresses ......... 24  
Table 3. S29GL032M (Models R3) Top Boot Sector Addresses . 25  
Table 4. S29GL032M (Models R4) Bottom  
Boot Sector Addresses ....................................................... 25  
Table 5. S29GL064A (Models R1, R2, R8, R9)  
Sector Addresses .............................................................. 26  
Table 6. S29GL064A (Model R3) Top Boot Sector Addresses ... 27  
Table 7. S29GL064A (Model R4) Bottom Boot Sector Addresses 28  
Table 8. S29GL064A (Model R5) Sector Addresses ................. 29  
Table 9. S29GL064A (Models R6, R7) Sector Addresses .......... 30  
Autoselect Mode ..................................................................................................31  
Sector Group Protection and Unprotection ...............................................31  
Table 10. S29GL032A (Models R1, R2) Sector Group Protection/  
Unprotection Addresses ...................................................... 32  
Table 11. S29GL032A (Models R3) Sector Group Protection/  
Unprotection Address Table ................................................ 32  
Table 12. S29GL032A (Models R4) Sector Group Protection/  
Unprotection Address Table ................................................ 32  
Table 13. S29GL064A (Models R1, R2, R8, R9) Sector Group  
Protection/Unprotection Addresses ...................................... 32  
Table 14. S29GL064A (Model R3) Top Boot Sector Protection/  
Unprotection Addresses ...................................................... 34  
Table 15. S29GL064A (Model R4) Bottom Boot Sector Protection/  
Unprotection Addresses ...................................................... 34  
Table 16. S29GL064A (Model R5) Sector Group Protection/  
Unprotection Addresses ...................................................... 34  
Table 17. S29GL064A (Models R6, R7) Sector Group Protection/  
Unprotection Addresses ...................................................... 34  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
5
A d v a n c e I n f o r m a t i o n  
Erase and Program Operations-S29GL064A Only .................................. 70  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Functional Description . . . . . . . . . . . . . . . . . . . . . . 91  
4M Version F, 4M version G, 8M version C ...........................................91  
Byte Mode ..............................................................................................................91  
Functional Description . . . . . . . . . . . . . . . . . . . . . 92  
8M Version D ..................................................................................................92  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 93  
Recommended DC Operating Conditions (Note 1) ...............................93  
Figure 16. Program Operation Timings.................................. 72  
Figure 17. Accelerated Program Timing Diagram .................... 72  
Figure 18. Chip/Sector Erase Operation Timings..................... 73  
Figure 19. Data# Polling Timings  
(During Embedded Algorithms)............................................ 73  
Figure 20. Toggle Bit Timings (During Embedded Algorithms) .. 74  
Figure 21. DQ2 vs. DQ6...................................................... 74  
Temporary Sector Unprotect .........................................................................75  
Figure 22. Temporary Sector Group Unprotect Timing Diagram 75  
Figure 23. Sector Group Protect and Unprotect Timing Diagram 76  
Alternate CE# Controlled Erase and  
Capacitance (f=1MHz, T =25°C) ...................................................................93  
A
DC Operating Characteristics .......................................................................93  
Common ...........................................................................................................93  
DC Operating Characteristics .......................................................................94  
4M Version F ...................................................................................................94  
DC Operating Characteristics .......................................................................94  
4M Version G ..................................................................................................94  
DC Operating Characteristics .......................................................................95  
8M Version C ..................................................................................................95  
DC Operating Characteristics .......................................................................95  
8M Version D ..................................................................................................95  
AC Operating Conditions . . . . . . . . . . . . . . . . . . .96  
Test Conditions ..................................................................................................96  
Figure 32. AC Output Load.................................................. 96  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 96  
Program Operations-S29GL064A ..................................................................77  
Figure 24. Alternate CE# Controlled Write (Erase/Program)  
Operation Timings.............................................................. 79  
Erase And Programming Performance . . . . . . . .80  
Type 4 pSRAM  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Functional Description . . . . . . . . . . . . . . . . . . . . . 81  
Product Portfolio ................................................................................................ 81  
Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Operating Range ................................................................................................. 82  
Table 25. DC Electrical Characteristics  
Read/Write Characteristics (V =2.7-3.3V) ..............................................96  
CC  
(Over the Operating Range) ............................................... 82  
Data Retention Characteristics (4M Version F) .......................................97  
Data Retention Characteristics (4M Version G) ......................................98  
Data Retention Characteristics (8M Version C) ......................................98  
Data Retention Characteristics (8M Version D) ......................................98  
Timing Diagrams .................................................................................................98  
Figure 33. Timing Waveform of Read Cycle(1) (Address Controlled,  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . 83  
AC Test Loads and Waveforms . . . . . . . . . . . . . 83  
Figure 25. AC Test Loads and Waveforms.............................. 83  
Table 26. Switching Characteristics ...................................... 84  
Switching Waveforms . . . . . . . . . . . . . . . . . . . . . 85  
Figure 26. Read Cycle 1 (Address Transition Controlled).......... 85  
Figure 27. Read Cycle 2 (OE# Controlled) ............................. 85  
Figure 28. Write Cycle 1 (WE# Controlled) ............................ 86  
Figure 29. Write Cycle 2 (CE#1 or CE2 Controlled) ................. 87  
Figure 30. Write Cycle 3 (WE# Controlled, OE# Low).............. 88  
Figure 31. Write Cycle 4 (BHE#/BLE# Controlled, OE# Low).... 88  
CS#1=OE#=V , CS2=WE#=V , UB# and/or LB#=V ) ........ 98  
IL  
IH  
IL  
Figure 34. Timing Waveform of Read Cycle(2) (WE#=V , if BYTE#  
IH  
is Low, Ignore UB#/LB# Timing) ......................................... 99  
Figure 35. Timing Waveform of Write Cycle(1) (WE# controlled, if  
BYTE# is Low, Ignore UB#/LB# Timing)............................... 99  
Figure 36. Timing Waveform of Write Cycle(2) (CS# controlled, if  
BYTE# is Low, Ignore UB#/LB# Timing)............................. 100  
Figure 37. Timing Waveform of Write Cycle(3) (UB#, LB#  
Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Table 27. Truth Table ......................................................... 89  
controlled)...................................................................... 100  
Figure 38. Data Retention Waveform.................................. 101  
Type 1 SRAM  
Revision Summary  
Common Features . . . . . . . . . . . . . . . . . . . . . . . . 90  
6
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
MCP Block Diagram  
VCC  
f
VCC  
CE#  
WP#/ACC  
RESET#  
Flash-only Address  
Flash  
Shared Address  
OE#  
WE#  
RY/BY#  
DQ15 to DQ0  
VCCS  
VCC  
pSRAM/SRAM  
IO15-IO0  
CE#s  
UB#s  
CE#  
UB#  
LB#  
LB#s  
CE2  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
7
A d v a n c e I n f o r m a t i o n  
Connection Diagram (S71GL032A)  
56-ball Fine-Pitch Ball Grid Array  
(Top View, Balls Facing Down)  
Legend  
A2  
A7  
A3  
LB#  
B3  
A4  
WP/ACC  
B4  
A5  
WE#  
B5  
A6  
A8  
A7  
A11  
B7  
B1  
A3  
B2  
B6  
B8  
A15  
C8  
Shared  
(Note 1)  
A6  
UB#  
C3  
RST#f  
C4  
CE2s  
C5  
A19  
C6  
A12  
C7  
C1  
C2  
A2  
A5  
A18  
D3  
RY/BY#  
A20  
A9  
A13  
D7  
RFU  
D8  
Flash only  
RAM only  
D1  
D2  
D6  
A1  
A4  
A17  
E3  
A10  
E6  
A14  
E7  
RFU  
E8  
E1  
E2  
A0  
VSS  
F2  
DQ1  
F3  
DQ6  
F6  
RFU  
F7  
A16  
F8  
F1  
F4  
DQ3  
G4  
F5  
DQ4  
G5  
Reserved for  
Future Use  
CE1#f  
G1  
OE#  
G2  
DQ0  
H2  
DQ9  
G3  
DQ13  
G6  
DQ15  
G7  
RFU  
G8  
CE1#s  
DQ10  
H3  
VCCf  
H4  
VCCs  
H5  
DQ12  
H6  
DQ7  
H7  
VSS  
DQ8  
DQ2  
DQ11  
RFU  
DQ5  
DQ14  
Notes:  
1. May be shared depending on density.  
— A18 is shared for the 8M (p)SRAM and above configurations.  
MCP  
S71GL032A80  
Flash-only Addresses  
A20-A19  
Shared Addresses  
A18-A0  
A18-A0  
A17-A0  
S71GL032A08  
S71GL032A40  
A20-A19  
A20-A18  
8
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Pin Description  
A20–A0  
DQ15–DQ0  
CE#f  
CE#ps  
OE#  
WE#  
RY/BY#  
UB#  
LB#  
RESET#  
WP#/ACC  
=
=
=
=
=
=
=
=
=
=
=
=
21 Address Inputs (Common and Flash only)  
16 Data Inputs/Outputs (Common)  
Chip Enable (Flash)  
Chip Enable 1 (pSRAM)  
Output Enable (Common)  
Write Enable (Common)  
Ready/Busy Output (Flash 1)  
Upper Byte Control (pSRAM/SRAM)  
Lower Byte Control (pSRAM/SRAM)  
Hardware Reset Pin, Active Low (Flash)  
Hardware Write Protect/Acceleration Pin (Flash)  
Flash 3.0 volt-only single power supply (see Product  
Selector Guide for speed options and voltage supply  
tolerances)  
VCC  
f
VCCps  
VSS  
NC  
=
=
=
pSRAM/SRAM Power Supply  
Device Ground (Common)  
Pin Not Connected Internally  
Logic Symbol  
21  
A20–A0  
16  
CE1#f  
DQ15–DQ0  
R Y/BY#  
CE2#f  
CE1#ps  
CE2ps  
OE#  
WE#  
WP#/ACC  
RESET#  
UB#  
LB#  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
9
A d v a n c e I n f o r m a t i o n  
Ordering Information  
The order number is formed by a valid combinations of the following:  
S71GL  
032  
A
80 BA  
W
0
F
0
PACKING TYPE  
0
2
3
=
=
=
Tray  
7” Tape and Reel  
13” Tape and Reel  
MODEL NUMBER  
See the Valid Combinations table.  
PACKAGE MODIFIER  
0
=
7 x 9 mm, 1.2 mm height, 56 balls (TLC056)  
TEMPERATURE RANGE  
W
I
=
=
Wireless (-25  
Industrial (-40  
°
C to +85  
°
C)  
°C to +85  
°C)  
PACKAGE TYPE  
BA  
BF  
=
=
Fine-pitch BGA Lead (Pb)-free compliant package  
Fine-pitch BGA Lead (Pb)-free package  
pSRAM DENSITY  
80  
40  
08  
04  
=
=
=
=
8 Mb pSRAM  
4 Mb pSRAM  
8 Mb SRAM  
4 Mb SRAM  
PROCESS TECHNOLOGY  
200 nm, MirrorBit Technology  
A
=
FLASH DENSITY  
064  
032  
=
=
64Mb  
32Mb  
PRODUCT FAMILY  
S71GL Multi-chip Product (MCP)  
3.0-volt Page Mode Flash Memory and RAM  
10  
S71GL032A_00A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
S71GL032A Valid Combinations  
(p)SRAM  
Type/Access  
Time (ns)  
Base Ordering  
Part Number  
Package &  
Package Modifier/  
Model Number  
Speed Options (ns)/  
Boot Sector Option  
Package  
Marking  
Temperature  
Packing Type  
S71GL032A40  
S71GL032A40  
S71GL032A08  
S71GL032A08  
S71GL032A40  
S71GL032A40  
S71GL032A08  
S71GL032A08  
S71GL032A40  
S71GL032A40  
S71GL032A08  
S71GL032A08  
S71GL032A40  
S71GL032A40  
S71GL032A08  
S71GL032A08  
0B  
0F  
0B  
0F  
0B  
0F  
0B  
0F  
0B  
0F  
0B  
0F  
0B  
0F  
0B  
0F  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
100 / Bottom Boot Sector  
100 / Top Boot Sector  
pSRAM4/ 70  
SRAM1 / 70  
pSRAM4/ 70  
SRAM1 / 70  
pSRAM4/ 70  
SRAM1 / 70  
pSRAM4/ 70  
SRAM1 / 70  
BAW  
BFW  
BAI  
0, 2, 3 (Note 1)  
0, 2, 3 (Note 1)  
0, 2, 3 (Note 1)  
0, 2, 3 (Note 1)  
TLC056  
BFI  
Notes:  
1. Type 0 is standard. Specify other options as required.  
Valid Combinations  
Valid Combinations list configurations planned to be supported in volume for this device.  
Consult your local sales office to confirm availability of specific valid combinations and to  
check on newly released combinations.  
March 31, 2005 S71GL032A_00A0  
11  
A d v a n c e I n f o r m a t i o n  
Physical Dimensions  
TLC056—56-ball Fine-Pitch Ball Grid Array (FBGA)  
9 x 7 mm Package  
A
D1  
D
eD  
0.15  
(2X)  
C
8
7
6
5
4
3
2
1
SE  
7
E
B
E1  
eE  
H
G
F
E
D
C
B
A
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
BOTTOM VIEW  
0.20  
0.08  
C
C
A2  
A
C
A1  
SIDE VIEW  
6
56X  
b
0.15  
M
C
C
A
B
0.08  
M
NOTES:  
PACKAGE  
JEDEC  
TLC 056  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
9.00 mm x 7.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
1.20  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.20  
0.81  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
0.97  
BODY THICKNESS  
BODY SIZE  
D
9.00 BSC.  
7.00 BSC.  
5.60 BSC.  
5.60 BSC.  
8
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
8
56  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
φb  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
eE  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
SD / SE  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SOLDER BALL PLACEMENT  
A1,A8,D4,D5,E4,E5,H1,H8  
DEPOPULATED SOLDER BALLS  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3348 \ 16-038.22a  
12  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
S29GL-A MirrorBit™ Flash Family  
S29GL064A, S29GL032A  
64 Megabit, 32 Megabit 3.0, Volt-only Page Mode Flash  
Memory Featuring 200 nm MirrorBit Process Technology  
ADVANCE  
INFORMATION  
Data Sheet  
Distinctive Characteristics  
25 ns page read times  
16-word/32-byte write buffer which reduces overall  
programming time for multiple-word updates  
Architectural Advantages  
„
„
„
Single power supply operation  
3 volt read, erase, and program operations  
„
Low power consumption (typical values at 3.0 V, 5  
MHz)  
Manufactured on 200 nm MirrorBit process  
technology  
18 mA typical active read current  
50 mA typical erase/program current  
1 µA typical standby mode current  
Secured Silicon Sector region  
128-word/256-byte sector for permanent, secure  
identification through an 8-word/16-byte random  
Electronic Serial Number, accessible through a  
command sequence  
Software & Hardware Features  
„
Software features  
May be programmed and locked at the factory or by  
the customer  
Program Suspend & Resume: read other sectors  
before programming operation is completed  
Erase Suspend & Resume: read/program other  
sectors before an erase operation is completed  
Data# polling & toggle bits provide status  
CFI (Common Flash Interface) compliant: allows host  
system to identify and accommodate multiple flash  
devices  
„
Flexible sector architecture  
64Mb (uniform sector models): 128 32 Kword (64 KB)  
sectors  
64Mb (boot sector models): 127 32 Kword (64 KB)  
sectors + 8 4Kword (8KB) boot sectors  
32Mb (uniform sector models): 64 32Kword (64KB)  
sectors  
Unlock Bypass Program command reduces overall  
multiple-word programming time  
32Mb (boot sector models): 63 32Kword (64KB)  
sectors + 8 4Kword (8KB) boot sectors  
„
Hardware features  
Sector Group Protection: hardware-level method of  
preventing write operations within a sector group  
Temporary Sector Unprotect: VID-level method of  
charging code in locked sectors  
WP#/ACC input accelerates programming time  
(when high voltage is applied) for greater throughput  
during system production. Protects first or last sector  
regardless of sector protection settings on uniform  
sector models  
„
Compatibility with JEDEC standards  
Provides pinout and software compatibility for single-  
power supply flash, and superior inadvertent write  
protection  
„
„
100,000 erase cycles typical per sector  
20-year data retention typical  
Performance Characteristics  
„
Hardware reset input (RESET#) resets device  
Ready/Busy# output (RY/BY#) detects program or  
erase cycle completion  
High performance  
90 ns access time  
4-word/8-byte page read buffer  
Publication Number S71GL032A_00 Revision A Amendment 0 Issue Date March 31, 2005  
This document contains information on one or more products under development at Spansion LLC. The information is intended to help you evaluate this product. Do not  
design in this product without contacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed product without notice.  
A d v a n c e I n f o r m a t i o n  
General Description  
The S29GL-A family of devices are 3.0 V single power Flash memory manufac-  
tured using 200 nm MirrorBit technology. The S29GL064A is a 64 Mb, organized  
as 4,194,304 words or 8,388,608 bytes. The S29GL032A is a 32 Mb, organized  
as 2,097,152 words or 4,194,304 bytes. Depending on the model number, the  
devices have an 8-bit wide data bus only, 16-bit wide data bus only, or a 16-bit  
wide data bus that can also function as an 8-bit wide data bus by using the BYTE#  
input. The devices can be programmed either in the host system or in standard  
EPROM programmers.  
Access times as fast as 90 ns are available. Note that each access time has a spe-  
cific operating voltage range (VCC) as specified in the Product Selector Guide and  
the Ordering Information sections. Package offerings include 48-pin TSOP, 56-pin  
TSOP, 48-ball fine-pitch BGA and 64-ball Fortified BGA, depending on model num-  
ber. Each device has separate chip enable (CE#), write enable (WE#) and output  
enable (OE#) controls.  
Each device requires only a single 3.0 volt power supply for both read and  
write functions. In addition to a VCC input, a high-voltage accelerated program  
(ACC) feature provides shorter programming times through increased current on  
the WP#/ACC input. This feature is intended to facilitate factory throughput dur-  
ing system production, but may also be used in the field if desired.  
The device is entirely command set compatible with the JEDEC single-power-  
supply Flash standard. Commands are written to the device using standard mi-  
croprocessor write timing. Write cycles also internally latch addresses and data  
needed for the programming and erase operations.  
The sector erase architecture allows memory sectors to be erased and repro-  
grammed without affecting the data contents of other sectors. The device is fully  
erased when shipped from the factory.  
Device programming and erasure are initiated through command sequences.  
Once a program or erase operation has begun, the host system need only poll the  
DQ7 (Data# Polling) or DQ6 (toggle) status bits or monitor the Ready/Busy#  
(RY/BY#) output to determine whether the operation is complete. To facilitate  
programming, an Unlock Bypass mode reduces command sequence overhead  
by requiring only two write cycles to program data instead of four.  
Hardware data protection measures include a low VCC detector that automat-  
ically inhibits write operations during power transitions. The hardware sector  
protection feature disables both program and erase operations in any combina-  
tion of sectors of memory. This can be achieved in-system or via programming  
equipment.  
The Erase Suspend/Erase Resume feature allows the host system to pause an  
erase operation in a given sector to read or program any other sector and then  
complete the erase operation. The Program Suspend/Program Resume fea-  
ture enables the host system to pause a program operation in a given sector to  
read any other sector and then complete the program operation.  
The hardware RESET# pin terminates any operation in progress and resets the  
device, after which it is then ready for a new operation. The RESET# pin may be  
tied to the system reset circuitry. A system reset would thus also reset the device,  
enabling the host system to read boot-up firmware from the Flash memory  
device.  
14  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
The device reduces power consumption in the standby mode when it detects  
specific voltage levels on CE# and RESET#, or when addresses have been stable  
for a specified period of time.  
The Write Protect (WP#) feature protects the first or last sector by asserting  
a logic low on the WP#/ACC pin or WP# pin, depending on model number. The  
protected sector will still be protected even during accelerated programming.  
The Secured Silicon Sector provides a 128-word/256-byte area for code or  
data that can be permanently protected. Once this sector is protected, no further  
changes within the sector can occur.  
Spansion MirrorBit flash technology combines years of Flash memory manufac-  
turing experience to produce the highest levels of quality, reliability and cost  
effectiveness. The device electrically erases all bits within a sector simultaneously  
via hot-hole assisted erase. The data is programmed using hot electron injection.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
15  
A d v a n c e I n f o r m a t i o n  
Product Selector Guide  
S29GL064A, S29GL032A  
Part Number  
S29GL064A  
S29GL032A  
Speed Option  
90  
90  
90  
25  
25  
10  
100  
100  
30  
11  
110  
110  
30  
90  
90  
90  
25  
25  
10  
100  
100  
30  
11  
110  
110  
30  
Max. Access Time (ns)  
Max. CE# Access Time (ns)  
Max. Page Access Time (ns)  
Max. OE# Access Time (ns)  
30  
30  
30  
30  
Block Diagram  
DQ15DQ0 (A-1)  
RY/BY#  
VCC  
Sector Switches  
VSS  
Erase Voltage  
Generator  
Input/Output  
Buffers  
RESET#  
WE#  
WP#/ACC  
BYTE#  
State  
Control  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
STB  
CE#  
OE#  
Y-Decoder  
Y-Gating  
STB  
VCC Detector  
Timer  
Cell Matrix  
X-Decoder  
AMax**–A0  
Note:  
**A  
**A  
GL064A = A21.  
MAX  
GL032A = A20.  
MAX  
16  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Pin Descriptions  
A21–A0  
A20–A0  
DQ7–DQ0  
DQ14–DQ0  
DQ15/A-1  
=
=
=
=
=
22 Address inputs  
21 Address inputs  
8 Data inputs/outputs  
15 Data inputs/outputs  
DQ15 (Data input/output, word mode), A-1 (LSB  
Address input, byte mode)  
Chip Enable input  
Output Enable input  
Write Enable input  
CE#  
OE#  
WE#  
WP#/ACC  
=
=
=
=
Hardware Write Protect input/Programming  
Acceleration input  
ACC  
WP#  
RESET#  
RY/BY#  
BYTE#  
VCC  
=
=
=
=
=
=
Acceleration input  
Hardware Write Protect input  
Hardware Reset Pin input  
Ready/Busy output  
Selects 8-bit or 16-bit mode  
3.0 volt-only single power supply  
(see Product Selector Guide for speed options and  
voltage supply tolerances)  
Device Ground  
VSS  
NC  
VIO  
=
=
=
Pin Not Connected Internally  
Output Buffer Power  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
17  
A d v a n c e I n f o r m a t i o n  
Logic Symbol-S29GL032A (Models R1, R2)  
21  
A20–A0  
16  
DQ15–DQ0  
(A-1)  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
BYTE#  
RY/BY#  
VIO  
Logic Symbol-S29GL032A (Models R3, R4)  
21  
A20–A0  
16  
DQ15–DQ0  
CE#  
OE#  
WE#  
(A-1)  
WP#/ACC  
RESET#  
RY/BY#  
BYTE#  
18  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Logic Symbol-S29GL064A (Models R1, R2, R8, R9)  
22  
A21–A0  
16  
DQ15–DQ0  
(A-1)  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
BYTE#  
VIO  
RY/BY#  
Logic Symbol-S29GL064A (Models R3, R4)  
22  
A21–A0  
16  
DQ15–DQ0  
CE#  
(A-1)  
OE#  
WE#  
WP#/ACC  
RESET#  
BYTE#  
RY/BY#  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
19  
A d v a n c e I n f o r m a t i o n  
Logic Symbol-S29GL064A (Model R5)  
22  
A21–A0  
16  
DQ15–DQ0  
CE#  
OE#  
WE#  
ACC  
RESET#  
VIO  
RY/BY#  
Logic Symbol-S29GL064A (Model R6, R7)  
22  
A21–A0  
16  
DQ15–DQ0  
CE#  
OE#  
WE#  
WP#  
ACC  
RESET#  
VIO  
20  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Device Bus Operations  
This section describes the requirements and use of the device bus operations,  
which are initiated through the internal command register. The command register  
itself does not occupy any addressable memory location. The register is a latch  
used to store the commands, along with the address and data information  
needed to execute the command. The contents of the register serve as inputs to  
the internal state machine. The state machine outputs dictate the function of the  
device. Table 1 lists the device bus operations, the inputs and control levels they  
require, and the resulting output. The following subsections describe each of  
these operations in further detail.  
Table 1. Device Bus Operations  
DQ8–DQ15  
BYTE# BYTE#  
Addresses  
(Note 1)  
DQ0–  
DQ7  
Operation  
CE# OE# WE# RESET#  
WP#  
ACC  
= V = V  
IH  
IL  
Read  
L
L
L
H
L
H
H
X
X
AIN  
AIN  
DOUT  
DOUT  
(Note  
4)  
DQ8–DQ14  
= High-Z,  
DQ15 = A-1  
Write (Program/Erase)  
Accelerated Program  
Standby  
H
(Note 3)  
X
(Note 4)  
(Note  
4)  
L
H
X
L
H
(Note 3) VHH  
AIN  
X
(Note 4)  
VCC  
0.3 V  
±
VCC ±  
0.3 V  
X
X
H
High-Z High-Z  
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L
X
X
X
X
X
X
High-Z High-Z  
High-Z High-Z  
High-Z  
High-Z  
X
SA, A6 =L,  
A3=L, A2=L, (Note 4)  
A1=H, A0=L  
Sector Group Protect  
(Note 2)  
L
H
L
VID  
H
X
X
X
X
Sector Group  
Unprotect  
(Note 2)  
SA, A6=H,  
A3=L, A2=L, (Note 4)  
A1=H, A0=L  
L
H
X
L
VID  
VID  
H
H
X
X
X
Temporary Sector  
Group Unprotect  
(Note  
4)  
X
X
AIN  
(Note 4)  
High-Z  
Legend: L = Logic Low = V , H = Logic High = V , V = 11.5–12.5V, V = 11.5–12.5V, X = Don’t Care, SA = Sector  
IL  
IH  
ID  
HH  
Address, A = Address In, D = Data In, D = Data Out  
IN  
IN  
OUT  
Notes:  
1. Addresses are Amax:A0 in word mode; Amax:A-1 in byte mode. Sector addresses are Amax:A15 in both modes.  
2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the  
“Sector Group Protection and Unprotection” section.  
3. If WP# = V , the first or last sector remains protected (for uniform sector devices), and the two outer boot sectors  
IL  
are protected (for boot sector devices). If WP# = V , the first or last sector, or the two outer boot sectors will be  
IH  
protected or unprotected as determined by the method described in “Sector Group Protection and Unprotection”.  
All sectors are unprotected when shipped from the factory (The Secured Silicon Sector may be factory protected  
depending on version ordered.)  
4. D or D  
as required by command sequence, data polling, or sector protect algorithm (see Figure 7).  
IN  
OUT  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
21  
A d v a n c e I n f o r m a t i o n  
Word/Byte Configuration  
The BYTE# pin controls whether the device data I/O pins operate in the byte or  
word configuration. If the BYTE# pin is set at logic ‘1, the device is in word con-  
figuration, DQ0–DQ15 are active and controlled by CE# and OE#.  
Requirements for Reading Array Data  
To read array data from the outputs, the system must drive the CE# and OE#  
pins to VIL. CE# is the power control and selects the device. OE# is the output  
control and gates array data to the output pins. WE# should remain at VIH  
.
The internal state machine is set for reading array data upon device power-up,  
or after a hardware reset. This ensures that no spurious alteration of the memory  
content occurs during the power transition. No command is necessary in this  
mode to obtain array data. Standard microprocessor read cycles that assert valid  
addresses on the device address inputs produce valid data on the device data  
outputs. The device remains enabled for read access until the command register  
contents are altered.  
See “Reading Array Data” for more information. Refer to the AC Read-Only Op-  
erations table for timing specifications and the timing diagram. Refer to the DC  
Characteristics table for the active current specification on reading array data.  
Page Mode Read  
The device is capable of fast page mode read and is compatible with the page  
mode Mask ROM read operation. This mode provides faster read access speed for  
random locations within a page. The page size of the device is 4 words/8 bytes.  
The appropriate page is selected by the higher address bits A(max)–A2. Address  
bits A1–A0 in word mode (A1–A-1 in byte mode) determine the specific word  
within a page. This is an asynchronous operation; the microprocessor supplies  
the specific word location.  
The random or initial page access is equal to tACC or tCE and subsequent page  
read accesses (as long as the locations specified by the microprocessor falls  
within that page) is equivalent to tPACC. When CE# is deasserted and reasserted  
for a subsequent access, the access time is tACC or tCE. Fast page mode accesses  
are obtained by keeping the “read-page addresses” constant and changing the  
“intra-read page” addresses.  
Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data  
to the device and erasing sectors of memory), the system must drive WE# and  
CE# to VIL, and OE# to VIH  
.
The device features an Unlock Bypass mode to facilitate faster programming.  
Once the device enters the Unlock Bypass mode, only two write cycles are re-  
quired to program a word, instead of four. The “Word Program Command  
Sequence” section has details on programming data to the device using both  
standard and Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device.  
Table 2-Table 17 indicates the address space that each sector occupies.  
Refer to the DC Characteristics table for the active current specification for the  
write mode. The AC Characteristics section contains timing specification tables  
and timing diagrams for write operations.  
22  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Write Buffer  
Write Buffer Programming allows the system write to a maximum of 16 in one  
programming operation. This results in faster effective programming time than  
the standard programming algorithms. See “Write Buffer” for more information.  
Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. This  
is one of two functions provided by the WP#/ACC or ACC pin, depending on model  
number. This function is primarily intended to allow faster manufacturing  
throughput at the factory.  
If the system asserts VHH on this pin, the device automatically enters the afore-  
mentioned Unlock Bypass mode, temporarily unprotects any protected sector  
groups, and uses the higher voltage on the pin to reduce the time required for  
program operations. The system would use a two-cycle program command se-  
quence as required by the Unlock Bypass mode. Removing VHH from the WP#/  
ACC or ACC pin, depending on model number, returns the device to normal op-  
eration. Note that the WP#/ACC or ACC pin must not be at VHH for operations  
other than accelerated programming, or device damage may result. WP# has an  
internal pullup; when unconnected, WP# is at VIH  
.
Autoselect Functions  
If the system writes the autoselect command sequence, the device enters the au-  
toselect mode. The system can then read autoselect codes from the internal  
register (which is separate from the memory array) on DQ7–DQ0. Standard read  
cycle timings apply in this mode. Refer to the “Autoselect Mode” section on page  
31 and “Autoselect Command Sequence” section on page 45 sections for more  
information.  
Standby Mode  
When the system is not reading or writing to the device, it can place the device  
in the standby mode. In this mode, current consumption is greatly reduced, and  
the outputs are placed in the high impedance state, independent of the OE#  
input.  
The device enters the CMOS standby mode when the CE# and RESET# pins are  
both held at VIO ± 0.3 V. (Note that this is a more restricted voltage range than  
VIH.) If CE# and RESET# are held at VIH, but not within VIO ± 0.3 V, the device  
will be in the standby mode, but the standby current will be greater. The device  
requires standard access time (tCE) for read access when the device is in either  
of these standby modes, before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws ac-  
tive current until the operation is completed.  
Refer to the “DC Characteristics” section on page 65 for the standby current  
specification.  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The de-  
vice automatically enables this mode when addresses remain stable for tACC  
+
30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# con-  
trol signals. Standard address access timings provide new data when addresses  
are changed. While in sleep mode, output data is latched and always available to  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
23  
A d v a n c e I n f o r m a t i o n  
the system. Refer to the “DC Characteristics” section on page 65 for the  
automatic sleep mode current specification.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading  
array data. When the RESET# pin is driven low for at least a period of tRP, the  
device immediately terminates any operation in progress, tristates all output  
pins, and ignores all read/write commands for the duration of the RESET# pulse.  
The device also resets the internal state machine to reading array data. The op-  
eration that was interrupted should be reinitiated once the device is ready to  
accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held  
at VSS±0.3 V, the device draws CMOS standby current (ICC5). If RESET# is held  
at VIL but not within VSS±0.3 V, the standby current will be greater.  
The RESET# pin may be tied to the system reset circuitry. A system reset would  
thus also reset the Flash memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
Refer to the AC Characteristics tables for RESET# parameters and to Figure 15  
for the timing diagram.  
Output Disable Mode  
When the OE# input is at VIH, output from the device is disabled. The output pins  
are placed in the high impedance state.  
Table 2. S29GL032M (Models R1, R2) Sector Addresses  
Sector  
Size  
Sector  
Size  
16-bit  
Address  
Range  
16-bit  
Address  
Range  
A20-A15  
A20-A15  
(KB/  
(KB/  
Kwords)  
Kwords)  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
000000–007FFF  
008000–00FFFF  
010000–017FFF  
018000–01FFFF  
020000–027FFF  
028000–02FFFF  
030000–037FFF  
038000–03FFFF  
040000–047FFF  
048000–04FFFF  
050000–057FFF  
058000–05FFFF  
060000–067FFF  
068000–06FFFF  
070000–077FFF  
078000–07FFFF  
080000–087FFF  
088000–08FFFF  
090000–097FFF  
098000–09FFFF  
0A0000–0A7FFF  
0A8000–0AFFFF  
0B0000–0B7FFF  
0B8000–0BFFFF  
0C0000–0C7FFF  
0C8000–0CFFFF  
0D0000–0D7FFF  
0D8000–0DFFFF  
0E0000–0E7FFF  
0E8000–0EFFFF  
0F0000–0F7FFF  
0F8000–0FFFFF  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
100000–107FFF  
108000–10FFFF  
110000–117FFF  
118000–11FFFF  
120000–127FFF  
128000–12FFFF  
130000–137FFF  
138000–13FFFF  
140000–147FFF  
148000–14FFFF  
150000–157FFF  
158000–15FFFF  
160000–167FFF  
168000–16FFFF  
170000–177FFF  
178000–17FFFF  
180000–187FFF  
188000–18FFFF  
190000–197FFF  
198000–19FFFF  
1A0000–1A7FFF  
1A8000–1AFFFF  
1B0000–1B7FFF  
1B8000–1BFFFF  
1C0000–1C7FFF  
1C8000–1CFFFF  
1D0000–1D7FFF  
1D8000–1DFFFF  
1E0000–1E7FFF  
1E8000–1EFFFF  
1F0000–1F7FFF  
1F8000–1FFFFF  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
24  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Table 3. S29GL032M (Models R3) Top Boot Sector Addresses  
Sector  
Size  
Sector  
Size  
16-bit  
Address  
Range  
16-bit  
Address  
Range  
A20–A12  
A20–A12  
(KB/  
(KB/  
Kwords)  
Kwords)  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
000000xxx  
000001xxx  
000010xxx  
000011xxx  
000100xxx  
000101xxx  
000110xxx  
000111xxx  
001000xxx  
001001xxx  
001010xxx  
001011xxx  
001100xxx  
001101xxx  
001101xxx  
001111xxx  
010000xxx  
010001xxx  
010010xxx  
010011xxx  
010100xxx  
010101xxx  
010110xxx  
010111xxx  
011000xxx  
011001xxx  
011010xxx  
011011xxx  
011000xxx  
011101xxx  
011110xxx  
011111xxx  
100000xxx  
100001xxx  
100010xxx  
101011xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
00000h–07FFFh  
08000h–0FFFFh  
10000h–17FFFh  
18000h–1FFFFh  
20000h–27FFFh  
28000h–2FFFFh  
30000h–37FFFh  
38000h–3FFFFh  
40000h–47FFFh  
48000h–4FFFFh  
50000h–57FFFh  
58000h–5FFFFh  
60000h–67FFFh  
68000h–6FFFFh  
70000h–77FFFh  
78000h–7FFFFh  
80000h–87FFFh  
88000h–8FFFFh  
90000h–97FFFh  
98000h–9FFFFh  
A0000h–A7FFFh  
A8000h–AFFFFh  
B0000h–B7FFFh  
B8000h–BFFFFh  
C0000h–C7FFFh  
C8000h–CFFFFh  
D0000h–D7FFFh  
D8000h–DFFFFh  
E0000h–E7FFFh  
E8000h–EFFFFh  
F0000h–F7FFFh  
F8000h–FFFFFh  
F9000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
100100xxx  
100101xxx  
100110xxx  
100111xxx  
101000xxx  
101001xxx  
101010xxx  
101011xxx  
101100xxx  
101101xxx  
101110xxx  
101111xxx  
110000xxx  
110001xxx  
110010xxx  
110011xxx  
100100xxx  
110101xxx  
110110xxx  
110111xxx  
111000xxx  
111001xxx  
111010xxx  
111011xxx  
111100xxx  
111101xxx  
111110xxx  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1F8FFFh  
1F9000h–1F9FFFh  
1FA000h–1FAFFFh  
1FB000h–1FBFFFh  
1FC000h–1FCFFFh  
1FD000h–1FDFFFh  
1FE000h–1FEFFFh  
1FF000h–1FFFFFh  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
Table 4. S29GL032M (Models R4) Bottom Boot Sector Addresses (Sheet 1 of 2)  
Sector  
Size  
Sector  
Size  
16-bit  
Address  
Range  
16-bit  
Address  
Range  
A20–A12  
A20–A12  
(KB/  
(KB/  
Kwords)  
Kwords)  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
000000110  
000000111  
000001xxx  
000010xxx  
000011xxx  
000100xxx  
000101xxx  
000110xxx  
000111xxx  
001000xxx  
001001xxx  
001010xxx  
001011xxx  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
00000h–00FFFh  
01000h–01FFFh  
02000h–02FFFh  
03000h–03FFFh  
04000h–04FFFh  
05000h–05FFFh  
06000h–06FFFh  
07000h–07FFFh  
08000h–0FFFFh  
10000h–17FFFh  
18000h–1FFFFh  
20000h–27FFFh  
28000h–2FFFFh  
30000h–37FFFh  
38000h–3FFFFh  
40000h–47FFFh  
48000h–4FFFFh  
50000h–57FFFh  
58000h–5FFFFh  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
001100xxx  
001101xxx  
001101xxx  
001111xxx  
010000xxx  
010001xxx  
010010xxx  
010011xxx  
010100xxx  
010101xxx  
010110xxx  
010111xxx  
011000xxx  
011001xxx  
011010xxx  
011011xxx  
011000xxx  
011101xxx  
011110xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
60000h–67FFFh  
68000h–6FFFFh  
70000h–77FFFh  
78000h–7FFFFh  
80000h–87FFFh  
88000h–8FFFFh  
90000h–97FFFh  
98000h–9FFFFh  
A0000h–A7FFFh  
A8000h–AFFFFh  
B0000h–B7FFFh  
B8000h–BFFFFh  
C0000h–C7FFFh  
C8000h–CFFFFh  
D0000h–D7FFFh  
D8000h–DFFFFh  
E0000h–E7FFFh  
E8000h–EFFFFh  
F0000h–F7FFFh  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
25  
A d v a n c e I n f o r m a t i o n  
Table 4. S29GL032M (Models R4) Bottom Boot Sector Addresses (Sheet 2 of 2)  
Sector  
Size  
Sector  
Size  
16-bit  
Address  
Range  
16-bit  
Address  
Range  
A20–A12  
A20–A12  
(KB/  
(KB/  
Kwords)  
Kwords)  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
011111xxx  
100000xxx  
100001xxx  
100010xxx  
101011xxx  
100100xxx  
100101xxx  
100110xxx  
100111xxx  
101000xxx  
101001xxx  
101010xxx  
101011xxx  
101100xxx  
101101xxx  
101110xxx  
101111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
F8000h–FFFFFh  
F9000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
110000xxx  
110001xxx  
110010xxx  
110011xxx  
100100xxx  
110101xxx  
110110xxx  
110111xxx  
111000xxx  
111001xxx  
111010xxx  
111011xxx  
111100xxx  
111101xxx  
111110xxx  
111111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
Table 5. S29GL064A (Models R1, R2, R8, R9) Sector Addresses (Sheet 1 of 2)  
Sector  
Size  
Sector  
Size  
16-bit  
Address  
Range  
16-bit  
Address  
Range  
A21–A15  
A21–A15  
(KB/  
(KB/  
Kwords)  
Kwords)  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
000000–007FFF  
008000–00FFFF  
010000–017FFF  
018000–01FFFF  
020000–027FFF  
028000–02FFFF  
030000–037FFF  
038000–03FFFF  
040000–047FFF  
048000–04FFFF  
050000–057FFF  
058000–05FFFF  
060000–067FFF  
068000–06FFFF  
070000–077FFF  
078000–07FFFF  
080000–087FFF  
088000–08FFFF  
090000–097FFF  
098000–09FFFF  
0A0000–0A7FFF  
0A8000–0AFFFF  
0B0000–0B7FFF  
0B8000–0BFFFF  
0C0000–0C7FFF  
0C8000–0CFFFF  
0D0000–0D7FFF  
0D8000–0DFFFF  
0E0000–0E7FFF  
0E8000–0EFFFF  
0F0000–0F7FFF  
0F8000–0FFFFF  
100000–107FFF  
108000–10FFFF  
110000–117FFF  
118000–11FFFF  
120000–127FFF  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
128000–12FFFF  
130000–137FFF  
138000–13FFFF  
140000–147FFF  
148000–14FFFF  
150000–157FFF  
158000–15FFFF  
160000–167FFF  
168000–16FFFF  
170000–177FFF  
178000–17FFFF  
180000–187FFF  
188000–18FFFF  
190000–197FFF  
198000–19FFFF  
1A0000–1A7FFF  
1A8000–1AFFFF  
1B0000–1B7FFF  
1B8000–1BFFFF  
1C0000–1C7FFF  
1C8000–1CFFFF  
1D0000–1D7FFF  
1D8000–1DFFFF  
1E0000–1E7FFF  
1E8000–1EFFFF  
1F0000–1F7FFF  
1F8000–1FFFFF  
200000–207FFF  
208000–20FFFF  
210000–217FFF  
218000–21FFFF  
220000–227FFF  
228000–22FFFF  
230000–237FFF  
238000–23FFFF  
240000–247FFF  
248000–24FFFF  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
26  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Table 5. S29GL064A (Models R1, R2, R8, R9) Sector Addresses (Sheet 2 of 2)  
Sector  
Size  
Sector  
Size  
16-bit  
Address  
Range  
16-bit  
Address  
Range  
A21–A15  
A21–A15  
(KB/  
(KB/  
Kwords)  
Kwords)  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
250000–257FFF  
258000–25FFFF  
260000–267FFF  
268000–26FFFF  
270000–277FFF  
278000–27FFFF  
280000–287FFF  
288000–28FFFF  
290000–297FFF  
298000–29FFFF  
2A0000–2A7FFF  
2A8000–2AFFFF  
2B0000–2B7FFF  
2B8000–2BFFFF  
2C0000–2C7FFF  
2C8000–2CFFFF  
2D0000–2D7FFF  
2D8000–2DFFFF  
2E0000–2E7FFF  
2E8000–2EFFFF  
2F0000–2F7FFF  
2F8000–2FFFFF  
300000–307FFF  
308000–30FFFF  
310000–317FFF  
318000–31FFFF  
320000–327FFF  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
328000–32FFFF  
330000–337FFF  
338000–33FFFF  
340000–347FFF  
348000–34FFFF  
350000–357FFF  
358000–35FFFF  
360000–367FFF  
368000–36FFFF  
370000–377FFF  
378000–37FFFF  
380000–387FFF  
388000–38FFFF  
390000–397FFF  
398000–39FFFF  
3A0000–3A7FFF  
3A8000–3AFFFF  
3B0000–3B7FFF  
3B8000–3BFFFF  
3C0000–3C7FFF  
3C8000–3CFFFF  
3D0000–3D7FFF  
3D8000–3DFFFF  
3E0000–3E7FFF  
3E8000–3EFFFF  
3F0000–3F7FFF  
3F8000–3FFFFF  
Table 6. S29GL064A (Model R3) Top Boot Sector Addresses (Sheet 1 of 2)  
Sector  
Size  
Sector  
Size  
16-bit  
Address  
Range  
16-bit  
Address  
Range  
A21–A15  
A21–A15  
(KB/  
(KB/  
Kwords)  
Kwords)  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
0000000xxx  
0000001xxx  
0000010xxx  
0000011xxx  
0000100xxx  
0000101xxx  
0000110xxx  
0000111xxx  
0001000xxx  
0001001xxx  
0001010xxx  
0001011xxx  
0001100xxx  
0001101xxx  
0001101xxx  
0001111xxx  
0010000xxx  
0010001xxx  
0010010xxx  
0010011xxx  
0010100xxx  
0010101xxx  
0010110xxx  
0010111xxx  
0011000xxx  
0011001xxx  
0011010xxx  
0011011xxx  
0011000xxx  
0011101xxx  
0011110xxx  
0011111xxx  
0100000xxx  
0100001xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
00000h–07FFFh  
08000h–0FFFFh  
10000h–17FFFh  
18000h–1FFFFh  
20000h–27FFFh  
28000h–2FFFFh  
30000h–37FFFh  
38000h–3FFFFh  
40000h–47FFFh  
48000h–4FFFFh  
50000h–57FFFh  
58000h–5FFFFh  
60000h–67FFFh  
68000h–6FFFFh  
70000h–77FFFh  
78000h–7FFFFh  
80000h–87FFFh  
88000h–8FFFFh  
90000h–97FFFh  
98000h–9FFFFh  
A0000h–A7FFFh  
A8000h–AFFFFh  
B0000h–B7FFFh  
B8000h–BFFFFh  
C0000h–C7FFFh  
C8000h–CFFFFh  
D0000h–D7FFFh  
D8000h–DFFFFh  
E0000h–E7FFFh  
E8000h–EFFFFh  
F0000h–F7FFFh  
F8000h–FFFFFh  
F9000h–107FFFh  
108000h–10FFFFh  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
0100010xxx  
0101011xxx  
0100100xxx  
0100101xxx  
0100110xxx  
0100111xxx  
0101000xxx  
0101001xxx  
0101010xxx  
0101011xxx  
0101100xxx  
0101101xxx  
0101110xxx  
0101111xxx  
0110000xxx  
0110001xxx  
0110010xxx  
0110011xxx  
0100100xxx  
0110101xxx  
0110110xxx  
0110111xxx  
0111000xxx  
0111001xxx  
0111010xxx  
0111011xxx  
0111100xxx  
0111101xxx  
0111110xxx  
0111111xxx  
1000000xxx  
1000001xxx  
1000010xxx  
1000011xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
27  
A d v a n c e I n f o r m a t i o n  
Table 6. S29GL064A (Model R3) Top Boot Sector Addresses (Sheet 2 of 2)  
Sector  
Size  
Sector  
Size  
16-bit  
Address  
Range  
16-bit  
Address  
Range  
A21–A15  
A21–A15  
(KB/  
(KB/  
Kwords)  
Kwords)  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
1000100xxx  
1000101xxx  
1000110xxx  
1000111xxx  
1001000xxx  
1001001xxx  
1001010xxx  
1001011xxx  
1001100xxx  
1001101xxx  
1001110xxx  
1001111xxx  
1010000xxx  
1010001xxx  
1010010xxx  
1010011xxx  
1010100xxx  
1010101xxx  
1010110xxx  
1010111xxx  
1011000xxx  
1011001xxx  
1011010xxx  
1011011xxx  
1011100xxx  
1011101xxx  
1011110xxx  
1011111xxx  
1100000xxx  
1100001xxx  
1100010xxx  
1100011xxx  
1100100xxx  
1100101xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–28FFFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2FFFFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
1100110xxx  
1100111xxx  
1101000xxx  
1101001xxx  
1101010xxx  
1101011xxx  
1101100xxx  
1101101xxx  
1101110xxx  
1101111xxx  
1110000xxx  
1110001xxx  
1110010xxx  
1110011xxx  
1110100xxx  
1110101xxx  
1110110xxx  
1110111xxx  
1111000xxx  
1111001xxx  
1111010xxx  
1111011xxx  
1111100xxx  
1111101xxx  
1111110xxx  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
Table 7. S29GL064A (Model R4) Bottom Boot Sector Addresses (Sheet 1 of 2)  
Sector  
Size  
Sector  
Size  
16-bit  
Address  
Range  
16-bit  
Address  
Range  
A21–A15  
A21–A15  
(KB/  
(KB/  
Kwords)  
Kwords)  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001xxx  
0000010xxx  
0000011xxx  
0000100xxx  
0000101xxx  
0000110xxx  
0000111xxx  
0001000xxx  
0001001xxx  
0001010xxx  
0001011xxx  
0001100xxx  
0001101xxx  
0001101xxx  
0001111xxx  
0010000xxx  
0010001xxx  
0010010xxx  
0010011xxx  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
00000h–00FFFh  
01000h–01FFFh  
02000h–02FFFh  
03000h–03FFFh  
04000h–04FFFh  
05000h–05FFFh  
06000h–06FFFh  
07000h–07FFFh  
08000h–0FFFFh  
10000h–17FFFh  
18000h–1FFFFh  
20000h–27FFFh  
28000h–2FFFFh  
30000h–37FFFh  
38000h–3FFFFh  
40000h–47FFFh  
48000h–4FFFFh  
50000h–57FFFh  
58000h–5FFFFh  
60000h–67FFFh  
68000h–6FFFFh  
70000h–77FFFh  
78000h–7FFFFh  
80000h–87FFFh  
88000h–8FFFFh  
90000h–97FFFh  
98000h–9FFFFh  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
0010100xxx  
0010101xxx  
0010110xxx  
0010111xxx  
0011000xxx  
0011001xxx  
0011010xxx  
0011011xxx  
0011000xxx  
0011101xxx  
0011110xxx  
0011111xxx  
0100000xxx  
0100001xxx  
0100010xxx  
0101011xxx  
0100100xxx  
0100101xxx  
0100110xxx  
0100111xxx  
0101000xxx  
0101001xxx  
0101010xxx  
0101011xxx  
0101100xxx  
0101101xxx  
0101110xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
A0000h–A7FFFh  
A8000h–AFFFFh  
B0000h–B7FFFh  
B8000h–BFFFFh  
C0000h–C7FFFh  
C8000h–CFFFFh  
D0000h–D7FFFh  
D8000h–DFFFFh  
E0000h–E7FFFh  
E8000h–EFFFFh  
F0000h–F7FFFh  
F8000h–FFFFFh  
F9000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
28  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Table 7. S29GL064A (Model R4) Bottom Boot Sector Addresses (Sheet 2 of 2)  
Sector  
Size  
Sector  
Size  
16-bit  
Address  
Range  
16-bit  
Address  
Range  
A21–A15  
A21–A15  
(KB/  
(KB/  
Kwords)  
Kwords)  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
0101111xxx  
0110000xxx  
0110001xxx  
0110010xxx  
0110011xxx  
0100100xxx  
0110101xxx  
0110110xxx  
0110111xxx  
0111000xxx  
0111001xxx  
0111010xxx  
0111011xxx  
0111100xxx  
0111101xxx  
0111110xxx  
0111111xxx  
1000000xxx  
1000001xxx  
1000010xxx  
1000011xxx  
1000100xxx  
1000101xxx  
1000110xxx  
1000111xxx  
1001000xxx  
1001001xxx  
1001010xxx  
1001011xxx  
1001100xxx  
1001101xxx  
1001110xxx  
1001111xxx  
1010000xxx  
1010001xxx  
1010010xxx  
1010011xxx  
1010100xxx  
1010101xxx  
1010110xxx  
1010111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–28FFFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
SA95  
SA96  
SA97  
SA98  
SA99  
1011000xxx  
1011001xxx  
1011010xxx  
1011011xxx  
1011100xxx  
1011101xxx  
1011110xxx  
1011111xxx  
1100000xxx  
1100001xxx  
1100010xxx  
1100011xxx  
1100100xxx  
1100101xxx  
1100110xxx  
1100111xxx  
1101000xxx  
1101001xxx  
1101010xxx  
1101011xxx  
1101100xxx  
1101101xxx  
1101110xxx  
1101111xxx  
1110000xxx  
1110001xxx  
1110010xxx  
1110011xxx  
1110100xxx  
1110101xxx  
1110110xxx  
1110111xxx  
1111000xxx  
1111001xxx  
1111010xxx  
1111011xxx  
1111100xxx  
1111101xxx  
1111110xxx  
1111111000  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2FFFFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
Table 8. S29GL064A (Model R5) Sector Addresses (Sheet 1 of 2)  
16-bit  
Address  
Range  
16-bit  
Address  
Range  
A21–A15  
A21–A15  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
000000–007FFF  
008000–00FFFF  
010000–017FFF  
018000–01FFFF  
020000–027FFF  
028000–02FFFF  
030000–037FFF  
038000–03FFFF  
040000–047FFF  
048000–04FFFF  
050000–057FFF  
058000–05FFFF  
060000–067FFF  
068000–06FFFF  
070000–077FFF  
078000–07FFFF  
080000–087FFF  
088000–08FFFF  
090000–097FFF  
098000–09FFFF  
0A0000–0A7FFF  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0A8000–0AFFFF  
0B0000–0B7FFF  
0B8000–0BFFFF  
0C0000–0C7FFF  
0C8000–0CFFFF  
0D0000–0D7FFF  
0D8000–0DFFFF  
0E0000–0E7FFF  
0E8000–0EFFFF  
0F0000–0F7FFF  
0F8000–0FFFFF  
200000–207FFF  
208000–20FFFF  
210000–217FFF  
218000–21FFFF  
220000–227FFF  
228000–22FFFF  
230000–237FFF  
238000–23FFFF  
240000–247FFF  
248000–24FFFF  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
29  
A d v a n c e I n f o r m a t i o n  
Table 8. S29GL064A (Model R5) Sector Addresses (Sheet 2 of 2)  
16-bit  
Address  
Range  
16-bit  
Address  
Range  
A21–A15  
A21–A15  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
250000–257FFF  
258000–25FFFF  
260000–267FFF  
268000–26FFFF  
270000–277FFF  
278000–27FFFF  
280000–287FFF  
288000–28FFFF  
290000–297FFF  
298000–29FFFF  
2A0000–2A7FFF  
2A8000–2AFFFF  
2B0000–2B7FFF  
2B8000–2BFFFF  
2C0000–2C7FFF  
2C8000–2CFFFF  
2D0000–2D7FFF  
2D8000–2DFFFF  
2E0000–2E7FFF  
2E8000–2EFFFF  
2F0000–2F7FFF  
2F8000–2FFFFF  
100000–107FFF  
108000–10FFFF  
110000–117FFF  
118000–11FFFF  
120000–127FFF  
128000–12FFFF  
130000–137FFF  
138000–13FFFF  
140000–147FFF  
148000–14FFFF  
150000–157FFF  
158000–15FFFF  
160000–167FFF  
168000–16FFFF  
170000–177FFF  
178000–17FFFF  
180000–187FFF  
188000–18FFFF  
190000–197FFF  
198000–19FFFF  
1A0000–1A7FFF  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
1A8000–1AFFFF  
1B0000–1B7FFF  
1B8000–1BFFFF  
1C0000–1C7FFF  
1C8000–1CFFFF  
1D0000–1D7FFF  
1D8000–1DFFFF  
1E0000–1E7FFF  
1E8000–1EFFFF  
1F0000–1F7FFF  
1F8000–1FFFFF  
300000–307FFF  
308000–30FFFF  
310000–317FFF  
318000–31FFFF  
320000–327FFF  
328000–32FFFF  
330000–337FFF  
338000–33FFFF  
340000–347FFF  
348000–34FFFF  
350000–357FFF  
358000–35FFFF  
360000–367FFF  
368000–36FFFF  
370000–377FFF  
378000–37FFFF  
380000–387FFF  
388000–38FFFF  
390000–397FFF  
398000–39FFFF  
3A0000–3A7FFF  
3A8000–3AFFFF  
3B0000–3B7FFF  
3B8000–3BFFFF  
3C0000–3C7FFF  
3C8000–3CFFFF  
3D0000–3D7FFF  
3D8000–3DFFFF  
3E0000–3E7FFF  
3E8000–3EFFFF  
3F0000–3F7FFF  
3F8000–3FFFFF  
Table 9. S29GL064A (Models R6, R7) Sector Addresses (Sheet 1 of 2)  
16-bit  
Address  
Range  
16-bit  
Address  
Range  
A21–A15  
A21–A15  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
000000–007FFF  
008000–00FFFF  
010000–017FFF  
018000–01FFFF  
020000–027FFF  
028000–02FFFF  
030000–037FFF  
038000–03FFFF  
040000–047FFF  
048000–04FFFF  
050000–057FFF  
058000–05FFFF  
060000–067FFF  
068000–06FFFF  
070000–077FFF  
078000–07FFFF  
080000–087FFF  
088000–08FFFF  
090000–097FFF  
098000–09FFFF  
0A0000–0A7FFF  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0A8000–0AFFFF  
0B0000–0B7FFF  
0B8000–0BFFFF  
0C0000–0C7FFF  
0C8000–0CFFFF  
0D0000–0D7FFF  
0D8000–0DFFFF  
0E0000–0E7FFF  
0E8000–0EFFFF  
0F0000–0F7FFF  
0F8000–0FFFFF  
200000–207FFF  
208000–20FFFF  
210000–217FFF  
218000–21FFFF  
220000–227FFF  
228000–22FFFF  
230000–237FFF  
238000–23FFFF  
240000–247FFF  
248000–24FFFF  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
30  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Table 9. S29GL064A (Models R6, R7) Sector Addresses (Sheet 2 of 2)  
16-bit  
Address  
Range  
16-bit  
Address  
Range  
A21–A15  
A21–A15  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
250000–257FFF  
258000–25FFFF  
260000–267FFF  
268000–26FFFF  
270000–277FFF  
278000–27FFFF  
280000–287FFF  
288000–28FFFF  
290000–297FFF  
298000–29FFFF  
2A0000–2A7FFF  
2A8000–2AFFFF  
2B0000–2B7FFF  
2B8000–2BFFFF  
2C0000–2C7FFF  
2C8000–2CFFFF  
2D0000–2D7FFF  
2D8000–2DFFFF  
2E0000–2E7FFF  
2E8000–2EFFFF  
2F0000–2F7FFF  
2F8000–2FFFFF  
100000–107FFF  
108000–10FFFF  
110000–117FFF  
118000–11FFFF  
120000–127FFF  
128000–12FFFF  
130000–137FFF  
138000–13FFFF  
140000–147FFF  
148000–14FFFF  
150000–157FFF  
158000–15FFFF  
160000–167FFF  
168000–16FFFF  
170000–177FFF  
178000–17FFFF  
180000–187FFF  
188000–18FFFF  
190000–197FFF  
198000–19FFFF  
1A0000–1A7FFF  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
1A8000–1AFFFF  
1B0000–1B7FFF  
1B8000–1BFFFF  
1C0000–1C7FFF  
1C8000–1CFFFF  
1D0000–1D7FFF  
1D8000–1DFFFF  
1E0000–1E7FFF  
1E8000–1EFFFF  
1F0000–1F7FFF  
1F8000–1FFFFF  
300000–307FFF  
308000–30FFFF  
310000–317FFF  
318000–31FFFF  
320000–327FFF  
328000–32FFFF  
330000–337FFF  
338000–33FFFF  
340000–347FFF  
348000–34FFFF  
350000–357FFF  
358000–35FFFF  
360000–367FFF  
368000–36FFFF  
370000–377FFF  
378000–37FFFF  
380000–387FFF  
388000–38FFFF  
390000–397FFF  
398000–39FFFF  
3A0000–3A7FFF  
3A8000–3AFFFF  
3B0000–3B7FFF  
3B8000–3BFFFF  
3C0000–3C7FFF  
3C8000–3CFFFF  
3D0000–3D7FFF  
3D8000–3DFFFF  
3E0000–3E7FFF  
3E8000–3EFFFF  
3F0000–3F7FFF  
3F8000–3FFFFF  
Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector  
group protection verification, through identifier codes output on DQ7–DQ0. This  
mode is primarily intended for programming equipment to automatically match a  
device to be programmed with its corresponding programming algorithm. How-  
ever, the autoselect codes can also be accessed in-system through the command  
register.  
To access the autoselect codes in-system, the host system can issue the autose-  
lect command via the command register, as shown in Table 22. Refer to the  
Autoselect Command Sequence section for more information.  
Sector Group Protection and Unprotection  
The hardware sector group protection feature disables both program and erase  
operations in any sector group (see Table 9-Table 17). The hardware sector group  
unprotection feature re-enables both program and erase operations in previously  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
31  
A d v a n c e I n f o r m a t i o n  
protected sector groups. Sector group protection/unprotection can be imple-  
mented via two methods.  
Sector protection/unprotection requires VID on the RESET# pin only, and can be  
implemented either in-system or via programming equipment. Figure 2 shows  
the algorithms and Figure 24 shows the timing diagram. This method uses stan-  
dard microprocessor bus cycle timing. For sector group unprotect, all unprotected  
sector groups must first be protected prior to the first sector group unprotect  
write cycle.  
The device is shipped with all sector groups unprotected. Spansion offers the op-  
tion of programming and protecting sector groups at its factory prior to shipping  
the device through Spansion Programming Service. Contact a Spansion represen-  
tative for details.  
It is possible to determine whether a sector group is protected or unprotected.  
See the Autoselect Mode section for details.  
Table 10. S29GL032A (Models R1, R2) Sector Group Protection/Unprotection Addresses  
Sector Group  
SA0  
A20–A15  
000000  
000001  
000010  
000011  
0001xx  
0010xx  
Sector Group  
SA12–SA15  
SA16–SA19  
SA20–SA23  
SA24–SA27  
SA28–SA31  
SA32–SA35  
A20–A15  
0011xx  
0100xx  
0101xx  
0110xx  
0111xx  
1000xx  
Sector Group  
SA36–SA39  
SA40–SA43  
SA44–SA47  
SA48–SA51  
SA52–SA55  
A20–A15  
1001xx  
1010xx  
1011xx  
1100xx  
1101xx  
Sector Group  
SA56–SA59  
SA60  
A20–A15  
1110xx  
111100  
111101  
111110  
111111  
SA1  
SA2  
SA3  
SA61  
SA62  
SA63  
SA4–SA7  
SA8–SA11  
Table 11. S29GL032A (Models R3) Sector Group Protection/Unprotection Address Table  
Sector/Sector  
Block Size  
(Kbytes)  
Sector/Sector  
Block Size  
(Kbytes)  
Sector/Sector  
Block Size  
(Kbytes)  
Sector  
A20–A12  
Sector  
A20–A12  
Sector  
A20–A12  
SA0-SA3  
SA4-SA7  
SA8-SA11  
SA12-SA15 0011XXXXXh  
SA16-SA19 0100XXXXXh  
SA20-SA23 0101XXXXXh  
SA24-SA27 0110XXXXXh  
SA28-SA31 0111XXXXXh  
SA32–SA35 1000XXXXXh  
0000XXXXXh  
0001XXXXXh  
0010XXXXXh  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
SA36–SA39 1001XXXXXh  
SA40–SA43 1010XXXXXh  
SA44–SA47 1011XXXXXh  
SA48–SA51 1100XXXXXh  
SA52-SA55 1101XXXXXh  
SA56-SA59 1110XXXXXh  
111100XXXh  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
111111000h  
111111001h  
111111010h  
111111011h  
111111100h  
111111101h  
111111110h  
111111111h  
8
8
8
8
8
8
8
8
SA60-SA62 111101XXXh  
111110XXXh  
192 (3x64)  
Table 12. S29GL032A (Models R4) Sector Group Protection/Unprotection Address Table  
Sector/Sector  
Block Size  
(Kbytes)  
Sector/Sector  
Block Size  
(Kbytes)  
Sector/Sector  
Block Size  
(Kbytes)  
Sector  
A20–A12  
Sector  
A20–A12  
Sector  
A20–A12  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
000000000h  
000000001h  
000000010h  
000000011h  
000000100h  
000000101h  
000000110h  
000000111h  
8
8
8
8
8
8
8
8
000001XXXh  
000010XXXh  
000011XXXh  
SA35-SA38 0111XXXXXh  
SA39-SA42 1000XXXXXh  
SA43-SA46 1001XXXXXh  
SA47-SA50 1010XXXXXh  
SA51-SA54 1011XXXXXh  
SA55–SA58 1100XXXXXh  
SA59–SA62 1101XXXXXh  
SA63–SA66 1110XXXXXh  
SA67–SA70 1111XXXXXh  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
SA8–SA10  
192 (3x64)  
SA11–SA14 0001XXXXXh  
SA15–SA18 0010XXXXXh  
SA19–SA22 0011XXXXXh  
SA23–SA26 0100XXXXXh  
SA27-SA30 0101XXXXXh  
SA31-SA34 0110XXXXXh  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
Table 13. S29GL064A (Models R1, R2, R8, R9) Sector Group Protection/Unprotection Addresses  
Sector Group  
A21–A15  
0000000  
0000001  
0000010  
0000011  
00001xx  
00010xx  
00011xx  
00100xx  
00101xx  
00110xx  
Sector Group  
SA28–SA31  
SA32–SA35  
SA36–SA39  
SA40–SA43  
SA44–SA47  
SA48–SA51  
SA52–SA55  
SA56–SA59  
SA60–SA63  
SA64–SA67  
A21–A15  
00111xx  
01000xx  
01001xx  
01010xx  
01011xx  
01100xx  
01101xx  
01110xx  
01111xx  
10000xx  
Sector Group  
SA68–SA71  
SA72–SA75  
SA76–SA79  
SA80–SA83  
SA84–SA87  
SA88–SA91  
SA92–SA95  
SA96–SA99  
SA100–SA103  
SA104–SA107  
A21–A15  
10001xx  
10010xx  
10011xx  
10100xx  
10101xx  
10110xx  
10111xx  
11000xx  
11001xx  
11010xx  
Sector Group  
SA108–SA111  
SA112–SA115  
SA116–SA119  
SA120–SA123  
SA124  
A21–A15  
11011xx  
11100xx  
11101xx  
11110xx  
1111100  
1111101  
1111110  
1111111  
SA0  
SA1  
SA2  
SA3  
SA4–SA7  
SA8–SA11  
SA12–SA15  
SA16–SA19  
SA20–SA23  
SA24–SA27  
SA125  
SA126  
SA127  
32  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
33  
A d v a n c e I n f o r m a t i o n  
Table 14. S29GL064A (Model R3) Top Boot Sector Protection/Unprotection Addresses  
Sector/Sector  
Block Size  
(Kbytes)  
Sector/Sector  
Block Size  
(Kbytes)  
Sector/Sector  
Block Size  
(Kbytes)  
Sector  
A21–A12  
Sector  
A20–A12  
Sector  
A20–A12  
SA0-SA3  
SA4-SA7  
SA8-SA11 00010XXXXX  
00000XXXXX  
00001XXXXX  
256 (4x64)  
256 (4x64)  
256 (4x64)  
SA56-SA59  
SA60-SA63  
SA64-SA67  
01110XXXXX  
01111XXXXX  
10000XXXXX  
256 (4x64)  
256 (4x64)  
256 (4x64)  
SA112-SA115 11100XXXXX  
SA116-SA119 11101XXXXX  
SA120-SA123 11110XXXXX  
1111100XXX  
256 (4x64)  
256 (4x64)  
256 (4x64)  
SA12-SA15 00011XXXXX  
256 (4x64)  
SA68-SA71  
10001XXXXX  
256 (4x64)  
SA124-SA126 1111101XXX  
1111110XXX  
192 (3x64)  
SA16-SA19 00100XXXXX  
SA20-SA23 00101XXXXX  
SA24-SA27 00110XXXXX  
SA28-SA31 00111XXXXX  
SA32-SA35 01000XXXXX  
SA36-SA39 01001XXXXX  
SA40-SA43 01010XXXXX  
SA44-SA47 01011XXXXX  
SA48-SA51 01100XXXXX  
SA52-SA55 01101XXXXX  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
SA72-SA75  
SA76-SA79  
SA80-SA83  
SA84-SA87  
SA88-SA91  
SA92-SA95  
SA96-SA99  
SA100-SA103 11001XXXXX  
SA104-SA107 11010XXXXX  
SA108-SA111 11011XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
8
8
8
8
8
8
8
8
Table 15. S29GL064A (Model R4) Bottom Boot Sector Protection/Unprotection Addresses  
Sector/Sector  
Block Size  
(Kbytes)  
Sector/Sector  
Block Size  
(Kbytes)  
Sector/Sector  
Block Size  
(Kbytes)  
Sector  
A21–A12  
Sector  
A20–A12  
Sector  
A20–A12  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX,  
8
8
8
8
8
8
8
8
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55–SA58  
SA59–SA62  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
SA87–SA90  
SA91–SA94  
SA95–SA98  
SA99–SA102 10111XXXXX  
SA103–SA106 11000XXXXX  
SA107–SA110 11001XXXXX  
SA111–SA114 11010XXXXX  
SA115–SA118 11011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
SA8–SA10 0000010XXX,  
192 (3x64)  
SA63–SA66  
01110XXXXX  
256 (4x64)  
SA119–SA122 11100XXXXX  
256 (4x64)  
0000011XXX,  
SA11–SA14 00001XXXXX  
SA15–SA18 00010XXXXX  
SA19–SA22 00011XXXXX  
SA23–SA26 00100XXXXX  
SA27-SA30 00101XXXXX  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
SA67–SA70  
SA71–SA74  
SA75–SA78  
SA79–SA82  
SA83–SA86  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
256 (4x64)  
SA123–SA126 11101XXXXX  
SA127–SA130 11110XXXXX  
SA131–SA134 11111XXXXX  
256 (4x64)  
256 (4x64)  
256 (4x64)  
Table 16. S29GL064A (Model R5) Sector Group Protection/Unprotection Addresses  
Sector Group  
SA0–SA3  
SA4–SA7  
SA8–SA11  
SA12–SA15  
SA16–SA19  
SA20–SA23  
SA24–SA27  
SA28–SA31  
A21–A15  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
Sector Group  
SA32–SA35  
SA36–SA39  
SA40–SA43  
SA44–SA47  
SA48–SA51  
SA52–SA55  
SA56–SA59  
SA60–SA63  
A21–A15  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
Sector Group  
SA64–SA67  
SA68–SA71  
SA72–SA75  
SA76–SA79  
SA80–SA83  
SA84–SA87  
SA88–SA91  
SA92–SA95  
A21–A15  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
Sector Group  
SA96–SA99  
A21–A15  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
SA100–SA103  
SA104–SA107  
SA108–SA111  
SA112–SA115  
SA116–SA119  
SA120–SA123  
SA124–SA127  
Note: All sector groups are 128 Kwords in size.  
Table 17. S29GL064A (Models R6, R7) Sector Group Protection/Unprotection Addresses  
Sector Group  
SA0–SA3  
SA4–SA7  
SA8–SA11  
SA12–SA15  
SA16–SA19  
SA20–SA23  
SA24–SA27  
SA28–SA31  
A21–A15  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
Sector Group  
SA32–SA35  
SA36–SA39  
SA40–SA43  
SA44–SA47  
SA48–SA51  
SA52–SA55  
SA56–SA59  
SA60–SA63  
A21–A15  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
Sector Group  
SA64–SA67  
SA68–SA71  
SA72–SA75  
SA76–SA79  
SA80–SA83  
SA84–SA87  
SA88–SA91  
SA92–SA95  
A21–A15  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
Sector Group  
SA96–SA99  
A21–A15  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
SA100–SA103  
SA104–SA107  
SA108–SA111  
SA112–SA115  
SA116–SA119  
SA120–SA123  
SA124–SA127  
Note: All sector groups are 128 Kwords in size.  
34  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Temporary Sector Group Unprotect  
This feature allows temporary unprotection of previously protected sector groups  
to change data in-system. The Sector Group Unprotect mode is activated by set-  
ting the RESET# pin to VID. During this mode, formerly protected sector groups  
can be programmed or erased by selecting the sector group addresses. Once VID  
is removed from the RESET# pin, all the previously protected sector groups are  
protected again. Figure 1 shows the algorithm, and Figure 22 shows the timing  
diagrams, for this feature.  
START  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
Temporary Sector  
Group Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sector groups unprotected (If WP# = V , the highest or lowest address sector will remain protected for  
IL  
uniform sector devices; the top or bottom two address sectors will remain protected for boot sector devices).  
2. All previously protected sector groups are protected once again.  
Figure 1. Temporary Sector Group Unprotect Operation  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
35  
A d v a n c e I n f o r m a t i o n  
START  
START  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
Protect all sector  
groups: The indicated  
portion of the sector  
group protect algorithm  
must be performed for all  
unprotected sector  
groups prior to issuing  
the first sector group  
unprotect address  
RESET# = VID  
Wait 1 µs  
Wait 1 µs  
Temporary Sector  
Group Unprotect  
Mode  
Temporary Sector  
Group Unprotect  
Mode  
No  
First Write  
Cycle = 60h?  
No  
First Write  
Cycle = 60h?  
Yes  
Yes  
Set up sector  
group address  
All sector  
groups  
No  
protected?  
Yes  
Sector Group Protect:  
Write 60h to sector  
group address with  
A6–A0 = 0xx0010  
Set up first sector  
group address  
Sector Group  
Unprotect:  
Wait 150 µs  
Write 60h to sector  
group address with  
A6–A0 = 1xx0010  
Verify Sector Group  
Protect: Write 40h  
to sector group  
address with  
A6–A0 = 0xx0010  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 15 ms  
Verify Sector Group  
Unprotect: Write  
40h to sector group  
address with  
Read from  
sector group address  
with A6–A0  
= 0xx0010  
Increment  
PLSCNT  
A6–A0 = 1xx0010  
No  
No  
PLSCNT  
= 25?  
Read from  
sector group  
address with  
Data = 01h?  
Yes  
A6–A0 = 1xx0010  
No  
Yes  
Set up  
next sector group  
address  
Protect  
another  
sector group?  
Yes  
No  
PLSCNT  
= 1000?  
Data = 00h?  
Yes  
Device failed  
No  
Yes  
Remove VID  
from RESET#  
Last sector  
group  
verified?  
No  
Device failed  
Write reset  
command  
Yes  
Remove VID  
from RESET#  
Sector Group  
Unprotect  
Sector Group  
Protect  
Sector Group  
Protect complete  
Write reset  
command  
Algorithm  
Algorithm  
Sector Group  
Unprotect complete  
Figure 2. In-System Sector Group Protect/Unprotect Algorithms  
36  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Secured Silicon Sector Flash Memory Region  
The Secured Silicon Sector feature provides a Flash memory region that enables  
permanent part identification through an Electronic Serial Number (ESN). The  
Secured Silicon Sector is 256 bytes in length, and uses a Secured Silicon Sector  
Indicator Bit (DQ7) to indicate whether or not the Secured Silicon Sector is locked  
when shipped from the factory. This bit is permanently set at the factory and can-  
not be changed, which prevents cloning of a factory locked part. This ensures the  
security of the ESN once the product is shipped to the field.  
The factory offers the device with the Secured Silicon Sector either customer  
lockable (standard shipping option) or factory locked (contact a Spansion sales  
representative for ordering information). The customer-lockable version is  
shipped with the Secured Silicon Sector unprotected, allowing customers to pro-  
gram the sector after receiving the device. The customer-lockable version also  
has the Secured Silicon Sector Indicator Bit permanently set to a “0.The factory-  
locked version is always protected when shipped from the factory, and has the  
Secured Silicon Sector Indicator Bit permanently set to a “1.Thus, the Secured  
Silicon Sector Indicator Bit prevents customer-lockable devices from being used  
to replace devices that are factory locked. Note that the ACC function and unlock  
bypass modes are not available when the Secured Silicon Sector is enabled.  
The Secured Silicon sector address space in this device is allocated as follows:  
Secured Silicon Sector  
Address Range  
Standard Factory  
Locked  
ExpressFlash Factory  
Locked  
x16  
Customer Lockable  
ESN or determined by  
customer  
000000h–000007h  
000008h–00007Fh  
ESN  
Determined by customer  
Unavailable  
Determined by customer  
The system accesses the Secured Silicon Sector through a command sequence  
(see “Write Protect (WP#)”). After the system has written the Enter Secured Sil-  
icon Sector command sequence, it may read the Secured Silicon Sector by using  
the addresses normally occupied by the first sector (SA0). This mode of operation  
continues until the system issues the Exit Secured Silicon Sector command se-  
quence, or until power is removed from the device. On power-up, or following a  
hardware reset, the device reverts to sending commands to sector SA0.  
Customer Lockable: Secured Silicon Sector NOT Programmed or  
Protected At the Factory  
Unless otherwise specified, the device is shipped such that the customer may  
program and protect the 256-byte Secured Silicon sector.  
The system may program the Secured Silicon Sector using the write-buffer, ac-  
celerated and/or unlock bypass methods, in addition to the standard  
programming command sequence. See “Command Definitions” .  
Programming and protecting the Secured Silicon Sector must be used with cau-  
tion since, once protected, there is no procedure available for unprotecting the  
Secured Silicon Sector area and none of the bits in the Secured Silicon Sector  
memory space can be modified in any way.  
The Secured Silicon Sector area can be protected using one of the following  
procedures:  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
37  
A d v a n c e I n f o r m a t i o n  
„
„
Write the three-cycle Enter Secured Silicon Sector Region command se-  
quence, and then follow the in-system sector protect algorithm as shown in  
Figure 2, except that RESET# may be at either VIH or VID. This allows in-sys-  
tem protection of the Secured Silicon Sector without raising any device pin to  
a high voltage. Note that this method is only applicable to the Secured Silicon  
Sector.  
Write the three-cycle Enter Secured Silicon Sector Region command se-  
quence, and then use the alternate method of sector protection described in  
the “Sector Group Protection and Unprotection” section.  
Once the Secured Silicon Sector is programmed, locked and verified, the system  
must write the Exit Secured Silicon Sector Region command sequence to return  
to reading and writing within the remainder of the array.  
Factory Locked: Secured Silicon Sector Programmed and  
Protected At the Factory  
In devices with an ESN, the Secured Silicon Sector is protected when the device  
is shipped from the factory. The Secured Silicon Sector cannot be modified in any  
way. An ESN Factory Locked device has an 16-byte random ESN at addresses  
000000h–000007h. Please contact your sales representative for details on order-  
ing ESN Factory Locked devices.  
Customers may opt to have their code programmed by the factory through the  
Spansion programming service (Customer Factory Locked). The devices are then  
shipped from the factory with the Secured Silicon Sector permanently locked.  
Contact your sales representative for details on using the Spansion programming  
service.  
Write Protect (WP#)  
The Write Protect function provides a hardware method of protecting the first or  
last sector group without using VID. Write Protect is one of two functions provided  
by the WP#/ACC input.  
If the system asserts VIL on the WP#/ACC pin, the device disables program and  
erase functions in the first or last sector group independently of whether those  
sector groups were protected or unprotected. Note that if WP#/ACC is at VIL  
when the device is in the standby mode, the maximum input load current is in-  
creased. See the table in “DC Characteristics” section on page 65.  
If the system asserts VIH on the WP#/ACC pin, the device reverts to  
whether the first or last sector was previously set to be protected or un-  
protected using the method described in “Sector Group Protection and  
Unprotection”. Note that WP# has an internal pullup; when uncon-  
nected, WP# is at VIH  
.
Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing  
provides data protection against inadvertent writes (refer to Table 22 for com-  
mand definitions). In addition, the following hardware data protection measures  
prevent accidental erasure or programming, which might otherwise be caused by  
spurious system level signals during VCC power-up and power-down transitions,  
or from system noise.  
38  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Low V  
Write Inhibit  
CC  
When VCC is less than VLKO, the device does not accept any write cycles. This pro-  
tects data during VCC power-up and power-down. The command register and all  
internal program/erase circuits are disabled, and the device resets to the read  
mode. Subsequent writes are ignored until VCC is greater than VLKO. The system  
must provide the proper signals to the control pins to prevent unintentional writes  
when VCC is greater than VLKO  
.
Write Pulse “Glitch” Protection  
Noise pulses of less than 3 ns (typical) on OE#, CE# or WE# do not initiate a write  
cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH or WE# =  
VIH. To initiate a write cycle, CE# and WE# must be a logical zero while OE# is a  
logical one.  
Power-Up Write Inhibit  
If WE# = CE# = VIL and OE# = VIH during power up, the device does not accept  
commands on the rising edge of WE#. The internal state machine is automatically  
reset to the read mode on power-up.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
39  
A d v a n c e I n f o r m a t i o n  
Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system  
software interrogation handshake, which allows specific vendor-specified soft-  
ware algorithms to be used for entire families of devices. Software support can  
then be device-independent, JEDEC ID-independent, and forward- and back-  
ward-compatible for the specified flash device families. Flash vendors can  
standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query  
command, 98h, to address 55h, any time the device is ready to read array data.  
The system can read CFI information at the addresses given in Table 18-Table 21.  
To terminate reading CFI data, the system must write the reset command.  
The system can also write the CFI query command when the device is in the au-  
toselect mode. The device enters the CFI query mode, and the system can read  
CFI data at the addresses given in Table 18-Table 21. The system must write the  
reset command to return the device to reading array data.  
For further information, please refer to the CFI Specification and CFI Publication  
100. Alternatively, contact your sales representative for copies of these  
documents.  
Table 18. CFI Query Identification String  
Addresses  
(x16)  
Data  
Description  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
40  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Table 19. System Interface String  
Addresses  
(x16)  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
1Ch  
0027h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
0036h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0007h  
0007h  
000Ah  
0000h  
0001h  
0005h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Reserved for future use  
Typical timeout for Min. size buffer write 2N  
µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Reserved for future use  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
Note: CFI data related to V and time-outs may differ from actual V and time-outs of the product. Please consult the Ordering  
CC  
CC  
Information tables to obtain the V range for particular part numbers. Please consult the Erase and Programming Performance table  
CC  
for typical timeout specifications.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
41  
A d v a n c e I n f o r m a t i o n  
Table 20. Device Geometry Definition  
Addresses  
(x16)  
Data  
Description  
Device Size = 2N byte  
27h  
00xxh  
0017h = 64 Mb, 0016h = 32Mb  
Flash Device Interface description (refer to CFI publication 100)  
28h  
29h  
000xh  
0000h  
0000h = x8-only bus devices  
0001h = x16-only bus devices  
0002h = x8/x16 bus devices  
2Ah  
2Bh  
0005h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
Number of Erase Block Regions within device (01h = uniform device,  
02h = boot device)  
2Ch  
00xxh  
Erase Block Region 1 Information  
2Dh  
2Eh  
2Fh  
30h  
00xxh  
000xh  
00x0h  
000xh  
(refer to the CFI specification or CFI publication 100)  
007Fh, 0000h, 0020h, 0000h = 32 Mb (-R1, -R2)  
003Fh, 0000h, 0001h = 32 Mb (-R3, R4)  
007Fh, 0000h, 0020h, 0000h = 64 Mb (-R1, -R2, -R8, -R9)  
007Fh, 0000h, 0000h, 0001h = 64 Mb (-R3, -R4, -R5, -R6, -R7)  
31h  
32h  
33h  
34h  
00xxh  
0000h  
0000h  
000xh  
Erase Block Region 2 Information (refer to CFI publication 100)  
003Eh, 0000h, 0000h, 0001h = 32 Mb (-R1, -R2)  
007Eh, 0000h, 0000h, 0001h = 64 Mb (-R1, -R2, -R8, -R9)  
0000h, 0000h, 0000h, 0000h = all others  
35h  
36h  
37h  
38h  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 3 Information (refer to CFI publication 100)  
Erase Block Region 4 Information (refer to CFI publication 100)  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
42  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Table 21. Primary Vendor-Specific Extended Query  
Addresses  
(x16)  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
0031h  
0033h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
000xh  
Process Technology (Bits 7-2) 0010b = 200 nm MirrorBit  
0009h = x8-only bus devices  
0008h = all other devices  
Erase Suspend  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
0002h  
0001h  
0001h  
0004h  
0000h  
0000h  
0001h  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
0004h = Standard Mode (Refer to Text)  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors in Bank  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
00B5h  
00C5h  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
4Fh  
50h  
00xxh  
0001h  
02h = Bottom Boot Device, 03h = Top Boot Device, 04h = Uniform  
sectors bottom WP# protect, 05h = Uniform sectors top WP# protect  
Program Suspend  
00h = Not Supported, 01h = Supported  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
43  
A d v a n c e I n f o r m a t i o n  
Command Definitions  
Writing specific address and data commands or sequences into the command  
register initiates device operations. Table 22 defines the valid register command  
sequences. Writing incorrect address and data values or writing them in the im-  
proper sequence may place the device in an unknown state. A reset command is  
then required to return the device to reading array data.  
All addresses are latched on the falling edge of WE# or CE#, whichever happens  
later. All data is latched on the rising edge of WE# or CE#, whichever happens  
first. Refer to the AC Characteristics section for timing diagrams.  
Reading Array Data  
The device is automatically set to reading array data after device power-up. No  
commands are required to retrieve data. The device is ready to read array data  
after completing an Embedded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the device enters the  
erase-suspend-read mode, after which the system can read data from any non-  
erase-suspended sector. After completing a programming operation in the Erase  
Suspend mode, the system may once again read array data with the same ex-  
ception. See the Erase Suspend/Erase Resume Commands section for more  
information.  
The system must issue the reset command to return the device to the read (or  
erase-suspend-read) mode if DQ5 goes high during an active program or erase  
operation, or if the device is in the autoselect mode. See the next section, Reset  
Command, for more information.  
See also Requirements for Reading Array Data in the Device Bus Operations sec-  
tion for more information. The Read-Only Operations–“AC Characteristics”  
section on page 67 provides the read parameters, and Figure 13 shows the timing  
diagram.  
Reset Command  
Writing the reset command resets the device to the read or erase-suspend-read  
mode. Address bits are don’t cares for this command.  
The reset command may be written between the sequence cycles in an erase  
command sequence before erasing begins. This resets the device to the read  
mode. Once erasure begins, however, the device ignores reset commands until  
the operation is complete.  
The reset command may be written between the sequence cycles in a program  
command sequence before programming begins. This resets the device to the  
read mode. If the program command sequence is written while the device is in  
the Erase Suspend mode, writing the reset command returns the device to the  
erase-suspend-read mode. Once programming begins, however, the device ig-  
nores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect  
command sequence. Once in the autoselect mode, the reset command must be  
written to return to the read mode. If the device entered the autoselect mode  
while in the Erase Suspend mode, writing the reset command returns the device  
to the erase-suspend-read mode.  
44  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
If DQ5 goes high during a program or erase operation, writing the reset command  
returns the device to the read mode (or erase-suspend-read mode if the device  
was in Erase Suspend).  
Note that if DQ1 goes high during a Write Buffer Programming operation, the sys-  
tem must write the Write-to-Buffer-Abort Reset command sequence to reset the  
device for the next operation.  
Autoselect Command Sequence  
The autoselect command sequence allows the host system to read several iden-  
tifier codes at specific addresses:  
A7:A0  
(x16)  
A6:A-1  
(x8)  
Identifier Code  
Manufacturer ID  
Device ID, Cycle 1  
00h  
01h  
00h  
02h  
Device ID, Cycle 2  
0Eh  
1Ch  
Device ID, Cycle 3  
0Fh  
1Eh  
Secured Silicon Sector Factory Protect  
Sector Protect Verify  
03h  
06h  
(SA)02h  
(SA)04h  
Note: The device ID is read over three cycles. SA = Sector Address  
The autoselect command sequence is initiated by first writing two unlock cycles.  
This is followed by a third write cycle that contains the autoselect command. The  
device then enters the autoselect mode. The system may read at any address any  
number of times without initiating another autoselect command sequence:  
The system must write the reset command to return to the read mode (or erase-  
suspend-read mode if the device was previously in Erase Suspend).  
Enter Secured Silicon Sector/Exit Secured Silicon  
Sector Command Sequence  
The Secured Silicon Sector region provides a secured data area containing an 8-  
word random Electronic Serial Number (ESN). The system can access the Se-  
cured Silicon Sector region by issuing the three-cycle Enter Secured Silicon  
Sector command sequence. The device continues to access the Secured Silicon  
Sector region until the system issues the four-cycle Exit Secured Silicon Sector  
command sequence. The Exit Secured Silicon Sector command sequence returns  
the device to normal operation. Table 22 shows the address and data require-  
ments for both command sequences. See also “Secured Silicon Sector Flash  
Memory Region” for further information. Note that the ACC function and unlock  
bypass modes are not available when the Secured Silicon Sector is enabled.  
Word Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is  
initiated by writing two unlock write cycles, followed by the program set-up com-  
mand. The program address and data are written next, which in turn initiate the  
Embedded Program algorithm. The system is not required to provide further con-  
trols or timings. The device automatically provides internally generated program  
pulses and verifies the programmed cell margin. Table 22 shows the address and  
data requirements for the word program command sequence, respectively.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
45  
A d v a n c e I n f o r m a t i o n  
When the Embedded Program algorithm is complete, the device then returns to  
the read mode and addresses are no longer latched. The system can determine  
the status of the program operation by using DQ7 or DQ6. Refer to the Write Op-  
eration Status section for information on these status bits. Any commands  
written to the device during the Embedded Program Algorithm are ignored. Note  
that the Secured Silicon Sector, autoselect, and CFI functions are unavailable  
when a program operation is in progress. Note that a hardware reset immedi-  
ately terminates the program operation. The program command sequence should  
be reinitiated once the device has returned to the read mode, to ensure data  
integrity.  
Programming is allowed in any sequence of address locations and across sector  
boundaries. Programming to the same word address multiple times without in-  
tervening erases (incremental bit programming) requires a modified  
programming method. For such application requirements, please contact your  
local Spansion representative. Word programming is supported for backward  
compatibility with existing Flash driver software and for occasional writing of in-  
dividual words. Use of write buffer programming (see below) is strongly  
recommended for general programming use when more than a few words are to  
be programmed. The effective word programming time using write buffer pro-  
gramming is approximately four times shorter than the single word programming  
time.  
Any bit in a word cannot be programmed from “0” back to a “1.” Attempt-  
ing to do so may cause the device to set DQ5=1, or cause DQ7 and DQ6 status  
bits to indicate the operation was successful. However, a succeeding read will  
show that the data is still “0.Only erase operations can convert a “0” to a “1.”  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program words to the device  
faster than using the standard program command sequence. The unlock bypass  
command sequence is initiated by first writing two unlock cycles. This is followed  
by a third write cycle containing the unlock bypass command, 20h. The device  
then enters the unlock bypass mode. A two-cycle unlock bypass mode command  
sequence is all that is required to program in this mode. The first cycle in this se-  
quence contains the unlock bypass program command, A0h; the second cycle  
contains the program address and data. Additional data is programmed in the  
same manner. This mode dispenses with the initial two unlock cycles required in  
the standard program command sequence, resulting in faster total programming  
time.Table 22 shows the requirements for the command sequence.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock By-  
pass Reset commands are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset command sequence. The first cycle  
must contain the data 90h. The second cycle must contain the data 00h. The de-  
vice then returns to the read mode.  
Write Buffer Programming  
Write Buffer Programming allows the system write to a maximum of 16 in one  
programming operation. This results in faster effective programming time than  
the standard programming algorithms. The Write Buffer Programming command  
sequence is initiated by first writing two unlock cycles. This is followed by a third  
write cycle containing the Write Buffer Load command written at the Sector Ad-  
dress in which programming will occur. The fourth cycle writes the sector address  
and the number of word locations, minus one, to be programmed. For example,  
46  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
if the system will program 6 unique address locations, then 05h should be written  
to the device. This tells the device how many write buffer addresses will be loaded  
with data and therefore when to expect the Program Buffer to Flash command.  
The number of locations to program cannot exceed the size of the write buffer or  
the operation will abort.  
The fifth cycle writes the first address location and data to be programmed. The  
write-buffer-page is selected by address bits AMAX–A4. All subsequent address/  
data pairs must fall within the selected-write-buffer-page. The system then  
writes the remaining address/data pairs into the write buffer. Write buffer loca-  
tions may be loaded in any order.  
The write-buffer-page address must be the same for all address/data pairs loaded  
into the write buffer. (This means Write Buffer Programming cannot be performed  
across multiple write-buffer pages.) This also means that Write Buffer Program-  
ming cannot be performed across multiple sectors. If the system attempts to load  
programming data outside of the selected write-buffer page, the operation will  
abort.  
Note that if a Write Buffer address location is loaded multiple times, the address/  
data pair counter will be decremented for every data load operation. The host  
system must therefore account for loading a write-buffer location more than  
once. The counter decrements for each data load operation, not for each unique  
write-buffer-address location. Note also that if an address location is loaded more  
than once into the buffer, the final data loaded for that address will be  
programmed.  
Once the specified number of write buffer locations have been loaded, the system  
must then write the Program Buffer to Flash command at the sector address. Any  
other address and data combination aborts the Write Buffer Programming oper-  
ation. The device then begins programming. Data polling should be used while  
monitoring the last address location loaded into the write buffer. DQ7, DQ6, DQ5,  
and DQ1 should be monitored to determine the device status during Write Buffer  
Programming.  
The write-buffer programming operation can be suspended using the standard  
program suspend/resume commands. Upon successful completion of the Write  
Buffer Programming operation, the device is ready to execute the next command.  
The Write Buffer Programming Sequence can be aborted in the following ways:  
„
„
„
Load a value that is greater than the page buffer size during the Number of  
Locations to Program step.  
Write to an address in a sector different than the one specified during the  
Write-Buffer-Load command.  
Write an Address/Data pair to a different write-buffer-page than the one se-  
lected by the Starting Address during the write buffer data loading stage of  
the operation.  
„
Write data other than the Confirm Command after the specified number of  
data load cycles.  
The abort condition is indicated by DQ1 = 1, DQ7 = DATA# (for the last address  
location loaded), DQ6 = toggle, and DQ5=0. A Write-to-Buffer-Abort Reset com-  
mand sequence must be written to reset the device for the next operation.  
Note that the Secured Silicon Sector, autoselect, and CFI functions are unavail-  
able when a program operation is in progress.This flash device is capable of  
handling multiple write buffer programming operations on the same write buffer  
address range without intervening erases. For applications requiring incremental  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
47  
A d v a n c e I n f o r m a t i o n  
bit programming, a modified programming method is required; please contact  
your local Spansion representative. Any bit in a write buffer address range  
cannot be programmed from “0” back to a “1.” Attempting to do so may  
cause the device to set DQ5=1, of cause the DQ7 and DQ6 status bits to indicate  
the operation was successful. However, a succeeding read will show that the data  
is still “0.Only erase operations can convert a “0” to a “1.”  
Accelerated Program  
The device offers accelerated program operations through the WP#/ACC or ACC  
pin depending on the particular product. When the system asserts VHH on the  
WP#/ACC or ACC pin. The device uses the higher voltage on the WP#/ACC or ACC  
pin to accelerate the operation. Note that the WP#/ACC pin must not be at VHH  
for operations other than accelerated programming, or device damage may re-  
sult. WP# has an internal pullup; when unconnected, WP# is at VIH  
.
Figure 3 illustrates the algorithm for the program operation. Refer to the Erase  
and Program Operations–“AC Characteristics” section on page 67 section for pa-  
rameters, and Figure 14 for timing diagrams.  
48  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Write “Write to Buffer”  
command and  
Sector Address  
Part of “Write to Buffer”  
Command Sequence  
Write number of addresses  
to program minus 1(WC)  
and Sector Address  
Write first address/data  
Yes  
WC = 0 ?  
No  
Write to a different  
sector address  
Abort Write to  
Buffer Operation?  
Yes  
Write to buffer ABORTED.  
Must write “Write-to-buffer  
Abort Reset” command  
sequence to return  
No  
Write next address/data pair  
(Note 1)  
to read mode.  
WC = WC - 1  
Write program buffer to  
flash sector address  
Read DQ7 - DQ0 at  
Last Loaded Address  
Yes  
DQ7 = Data?  
No  
No  
No  
DQ1 = 1?  
DQ5 = 1?  
Yes  
Yes  
Read DQ7 - DQ0 with  
address = Last Loaded  
Address  
Yes  
(Note 2)  
DQ7 = Data?  
No  
FAIL or ABORT  
PASS  
(Note 3)  
Notes:  
1. When Sector Address is specified, any address in the selected sector is acceptable. However, when loading Write-Buffer  
address locations with data, all addresses must fall within the selected Write-Buffer Page.  
2. DQ7 may change simultaneously with DQ5. Therefore, DQ7 should be verified.  
3. If this flowchart location was reached because DQ5= “1”, then the device FAILED. If this flowchart location was reached  
because DQ1= “1”, then the Write to Buffer operation was ABORTED. In either case, the proper reset command must be  
written before the device can begin another operation. If DQ1=1, write the Write-Buffer-Programming-Abort-Reset  
command. if DQ5=1, write the Reset command.  
4. See Table 22 for command sequences required for write buffer programming.  
Figure 3. Write Buffer Programming Operation  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
49  
A d v a n c e I n f o r m a t i o n  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
No  
Yes  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note:See Table 22 for program command sequence  
.
Figure 4. Program Operation  
Program Suspend/Program Resume Command Sequence  
The Program Suspend command allows the system to interrupt a programming  
operation or a Write to Buffer programming operation so that data can be read  
from any non-suspended sector. When the Program Suspend command is written  
during a programming process, the device halts the program operation within 15  
µs maximum (5µs typical) and updates the status bits. Addresses are not re-  
quired when writing the Program Suspend command.  
After the programming operation has been suspended, the system can read array  
data from any non-suspended sector. The Program Suspend command may also  
be issued during a programming operation while an erase is suspended. In this  
case, data may be read from any addresses not in Erase Suspend or Program  
Suspend. If a read is needed from the Secured Silicon Sector area (One-time Pro-  
gram area), then user must use the proper command sequences to enter and exit  
this region. Note that the Secured Silicon Sector, autoselect, and CFI functions  
are unavailable when a program operation is in progress.  
The system may also write the autoselect command sequence when the device  
is in the Program Suspend mode. The system can read as many autoselect codes  
as required. When the device exits the autoselect mode, the device reverts to the  
Program Suspend mode, and is ready for another valid operation. See Autoselect  
Command Sequence for more information.  
50  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
After the Program Resume command is written, the device reverts to program-  
ming. The system can determine the status of the program operation using the  
DQ7 or DQ6 status bits, just as in the standard program operation. See Write Op-  
eration Status for more information.  
The system must write the Program Resume command (address bits are don’t  
care) to exit the Program Suspend mode and continue the programming opera-  
tion. Further writes of the Resume command are ignored. Another Program  
Suspend command can be written after the device has resumed programming.  
Program Operation  
or Write-to-Buffer  
Sequence in Progress  
Write Program Suspend  
Command Sequence  
Write address/data  
XXXh/B0h  
Command is also valid for  
Erase-suspended-program  
operations  
Wait 15 µs  
Autoselect and SecSi Sector  
read operations are also allowed  
Read data as  
required  
Data cannot be read from erase- or  
program-suspended sectors  
Done  
No  
reading?  
Yes  
Write Program Resume  
Command Sequence  
Write address/data  
XXXh/30h  
Device reverts to  
operation prior to  
Program Suspend  
Figure 5. Program Suspend/Program Resume  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is ini-  
tiated by writing two unlock cycles, followed by a set-up command. Two  
additional unlock write cycles are then followed by the chip erase command,  
which in turn invokes the Embedded Erase algorithm. The device does not require  
the system to preprogram prior to erase. The Embedded Erase algorithm auto-  
matically preprograms and verifies the entire memory for an all zero data pattern  
prior to electrical erase. The system is not required to provide any controls or tim-  
ings during these operations. Table 22 shows the address and data requirements  
for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, the device returns to the read  
mode and addresses are no longer latched. The system can determine the status  
of the erase operation by using DQ7, DQ6, or DQ2. Refer to the Write Operation  
Status section for information on these status bits.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
51  
A d v a n c e I n f o r m a t i o n  
Any commands written during the chip erase operation are ignored. However,  
note that a hardware reset immediately terminates the erase operation. If that  
occurs, the chip erase command sequence should be reinitiated once the device  
has returned to reading array data, to ensure data integrity.  
Figure 6 illustrates the algorithm for the erase operation. Refer to the Erase and  
Program Operations table in the AC Characteristics section for parameters, and  
Figure 18 section for timing diagrams.  
52  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is  
initiated by writing two unlock cycles, followed by a set-up command. Two addi-  
tional unlock cycles are written, and are then followed by the address of the  
sector to be erased, and the sector erase command. Table 22 shows the address  
and data requirements for the sector erase command sequence.  
The device does not require the system to preprogram prior to erase. The Em-  
bedded Erase algorithm automatically programs and verifies the entire memory  
for an all zero data pattern prior to electrical erase. The system is not required to  
provide any controls or timings during these operations.  
After the command sequence is written, a sector erase time-out of 50 µs occurs.  
During the time-out period, additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer may be done in any  
sequence, and the number of sectors may be from one sector to all sectors. The  
time between these additional cycles must be less than 50 µs, otherwise erasure  
may begin. Any sector erase address and command following the exceeded time-  
out may or may not be accepted. It is recommended that processor interrupts be  
disabled during this time to ensure all commands are accepted. The interrupts  
can be re-enabled after the last Sector Erase command is written. Any com-  
mand other than Sector Erase or Erase Suspend during the time-out  
period resets the device to the read mode. Note that the Secured Silicon  
Sector, autoselect, and CFI functions are unavailable when an erase op-  
eration is in progress. The system must rewrite the command sequence and  
any additional addresses and commands.  
The system can monitor DQ3 to determine if the sector erase timer has timed out  
(See the section on DQ3: Sector Erase Timer.). The time-out begins from the ris-  
ing edge of the final WE# pulse in the command sequence.  
When the Embedded Erase algorithm is complete, the device returns to reading  
array data and addresses are no longer latched. The system can determine the  
status of the erase operation by reading DQ7, DQ6, or DQ2 in the erasing sector.  
Refer to the Write Operation Status section for information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is  
valid. All other commands are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. If that occurs, the sector erase  
command sequence should be reinitiated once the device has returned to reading  
array data, to ensure data integrity.  
Figure 6 illustrates the algorithm for the erase operation. Refer to the Erase and  
Program Operations table in the AC Characteristics section for parameters, and  
Figure 18 section for timing diagrams.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
53  
A d v a n c e I n f o r m a t i o n  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 22 for program command sequence.  
2. See the section on DQ3 for information on the sector erase timer.  
Figure 6. Erase Operation  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase  
operation and then read data from, or program data to, any sector not selected  
for erasure. This command is valid only during the sector erase operation, includ-  
ing the 50 µs time-out period during the sector erase command sequence. The  
Erase Suspend command is ignored if written during the chip erase operation or  
Embedded Program algorithm.  
When the Erase Suspend command is written during the sector erase operation,  
the device requires a typical of 5 µs (maximum of 20 µs) to suspend the erase  
operation. However, when the Erase Suspend command is written during the sec-  
tor erase time-out, the device immediately terminates the time-out period and  
suspends the erase operation.  
After the erase operation has been suspended, the device enters the erase-sus-  
pend-read mode. The system can read data from or program data to any sector  
not selected for erasure. (The device “erase suspends” all sectors selected for  
erasure.) Reading at any address within erase-suspended sectors produces sta-  
tus information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2  
together, to determine if a sector is actively erasing or is erase-suspended. Refer  
to the Write Operation Status section for information on these status bits.  
After an erase-suspended program operation is complete, the device returns to  
the erase-suspend-read mode. The system can determine the status of the pro-  
gram operation using the DQ7 or DQ6 status bits, just as in the standard word  
54  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
program operation. Refer to the Write Operation Status section for more  
information.  
In the erase-suspend-read mode, the system can also issue the autoselect com-  
mand sequence. Refer to the “Autoselect Mode” section on page 31 and  
“Autoselect Command Sequence” section on page 45 sections for details.  
To resume the sector erase operation, the system must write the Erase Resume  
command. Further writes of the Resume command are ignored. Another Erase  
Suspend command can be written after the chip has resumed erasing.  
Note:During an erase operation, this flash device performs multiple internal operations which are invisible to the system. When an  
erase operation is suspended, any of the internal operations that were not fully completed must be restarted. As such, if this flash  
device is continually issued suspend/resume commands in rapid succession, erase progress will be impeded as a function of the  
number of suspends. The result will be a longer cumulative erase time than without suspends. Note that the additional suspends do  
not affect device reliability or future performance. In most systems rapid erase/suspend activity occurs only briefly. In such cases,  
erase performance will not be significantly impacted  
.
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
55  
A d v a n c e I n f o r m a t i o n  
Command Definitions  
Table 22. Command Definitions (x16 Mode)  
Bus Cycles (Notes 2–5)  
Command  
Sequence  
(Note 1)  
First  
Second  
Third  
Fourth  
Fifth  
Sixth  
Addr Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr Data Addr Data  
Read (Note 6)  
1
1
4
4
RA  
XXX  
555  
555  
RD  
F0  
Reset (Note 7)  
Manufacturer ID  
Device ID (Note 9)  
AA  
AA  
2AA  
2AA  
55  
55  
555  
555  
90  
90  
X00  
X01  
0001  
227E  
X0E  
X0F  
Secured SiliconSector Factory  
Protect (Note 10)  
4
555  
AA  
2AA  
55  
555  
90  
X03  
(Note 10)  
Sector Group Protect Verify (Note  
12)  
4
555  
AA  
2AA  
55  
555  
90  
(SA)X02  
00/01  
Enter Secured Silicon Sector Region  
Exit Secured Silicon Sector Region  
Program  
3
4
4
3
1
3
3
2
2
6
6
1
1
1
555  
555  
555  
555  
SA  
AA  
AA  
AA  
AA  
29  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
555  
555  
555  
SA  
88  
90  
A0  
25  
XXX  
PA  
00  
PD  
WC  
Write to Buffer (Note 11)  
Program Buffer to Flash  
Write to Buffer Abort Reset (Note 13)  
Unlock Bypass  
SA  
PA  
PD  
WBL  
PD  
555  
555  
XXX  
XXX  
555  
555  
XXX  
XXX  
55  
AA  
AA  
A0  
90  
2AA  
2AA  
PA  
55  
55  
PD  
00  
55  
55  
555  
555  
F0  
20  
Unlock Bypass Program (Note 14)  
Unlock Bypass Reset (Note 15)  
Chip Erase  
XXX  
2AA  
2AA  
AA  
AA  
B0  
30  
555  
555  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
Program/Erase Suspend (Note 16)  
Program/Erase Resume (Note 17)  
CFI Query (Note 18)  
98  
Legend:  
X = Don’t care  
RA = Read Address of memory location to be read.  
PD = Program Data for location PA. Data latches on rising edge of  
WE# or CE# pulse, whichever happens first.  
SA = Sector Address of sector to be verified (in autoselect mode) or  
erased. Address bits A21–A15 uniquely select any sector.  
WBL = Write Buffer Location. Address must be within same write  
buffer page as PA.  
RD = Read Data read from location RA during read operation.  
PA = Program Address. Addresses latch on falling edge of WE# or  
CE# pulse, whichever happens later.  
WC = Word Count. Number of write buffer locations to load minus 1.  
Notes:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
10. Data is 00h for an unprotected sector group and 01h for a  
protected sector group.  
11. Total number of cycles in command sequence is determined by  
number of words written to write buffer. Maximum number of  
cycles in command sequence is 21, including “Program Buffer to  
Flash” command.  
12. Command sequence resets device for next command after  
aborted write-to-buffer operation.  
3. Shaded cells indicate read cycles. All others are write cycles.  
4. During unlock and command cycles, when lower address bits are  
555 or 2AA as shown in table, address bits above A11 and data  
bits above DQ7 are don’t care.  
5. No unlock or command cycles required when device is in read  
mode.  
6. Reset command is required to return to read mode (or to erase-  
suspend-read mode if previously in Erase Suspend) when device  
is in autoselect mode, or if DQ5 goes high while device is  
providing status information.  
7. Fourth cycle of the autoselect command sequence is a read  
cycle. Data bits DQ15–DQ8 are don’t care. Except for RD, PD  
and WC. See Autoselect Command Sequence section for more  
information.  
13. Unlock Bypass command is required prior to Unlock Bypass  
Program command.  
14. Unlock Bypass Reset command is required to return to read  
mode when device is in unlock bypass mode.  
15. System may read and program in non-erasing sectors, or enter  
autoselect mode, when in Erase Suspend mode. Erase Suspend  
command is valid only during a sector erase operation.  
16. Erase Resume command is valid only during Erase Suspend  
mode.  
8. Device ID must be read in three cycles.  
17. Command is valid when device is ready to read array data or  
when device is in autoselect mode.  
9. If WP# protects highest address sector, data is 98h for factory  
locked and 18h for not factory locked. If WP# protects lowest  
address sector, data is 88h for factory locked and 08h for not  
factor locked.  
56  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Write Operation Status  
The device provides several bits to determine the status of a program or erase  
operation: DQ2, DQ3, DQ5, DQ6, and DQ7. Table 23 and the following subsec-  
tions describe the function of these bits. DQ7 and DQ6 each offer a method for  
determining whether a program or erase operation is complete or in progress.  
The device also provides a hardware-based output signal, RY/BY#, to determine  
whether an Embedded Program or Erase operation is in progress or has been  
completed.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded  
Program or Erase algorithm is in progress or completed, or whether the device is  
in Erase Suspend. Data# Polling is valid after the rising edge of the final WE#  
pulse in the command sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the com-  
plement of the datum programmed to DQ7. This DQ7 status also applies to  
programming during Erase Suspend. When the Embedded Program algorithm is  
complete, the device outputs the datum programmed to DQ7. The system must  
provide the program address to read valid status information on DQ7. If a pro-  
gram address falls within a protected sector, Data# Polling on DQ7 is active for  
approximately 1 µs, then the device returns to the read mode.  
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7.  
When the Embedded Erase algorithm is complete, or if the device enters the  
Erase Suspend mode, Data# Polling produces a “1” on DQ7. The system must  
provide an address within any of the sectors selected for erasure to read valid  
status information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, Data# Polling on DQ7 is active for approximately 100 µs, then the  
device returns to the read mode. If not all selected sectors are protected, the Em-  
bedded Erase algorithm erases the unprotected sectors, and ignores the selected  
sectors that are protected. However, if the system reads DQ7 at an address within  
a protected sector, the status may not be valid.  
Just prior to the completion of an Embedded Program or Erase operation, DQ7  
may change asynchronously with DQ0–DQ6 while Output Enable (OE#) is as-  
serted low. That is, the device may change from providing status information to  
valid data on DQ7. Depending on when the system samples the DQ7 output, it  
may read the status or valid data. Even if the device has completed the program  
or erase operation and DQ7 has valid data, the data outputs on DQ0–DQ6 may  
be still invalid. Valid data on DQ0–DQ7 will appear on successive read cycles.  
Table 23 shows the outputs for Data# Polling on DQ7. Figure 7 shows the Data#  
Polling algorithm. Figure 19 in the AC Characteristics section shows the Data#  
Polling timing diagram.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
57  
A d v a n c e I n f o r m a t i o n  
START  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a sector erase operation, a valid address is any sector address within the sector  
being erased. During chip erase, a valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because DQ7 may change simultaneously with DQ5.  
Figure 7. Data# Polling Algorithm  
RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin which indicates whether an  
Embedded Algorithm is in progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command sequence. Since RY/BY#  
is an open-drain output, several RY/BY# pins can be tied together in parallel with  
a pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively erasing or programming. (This  
includes programming in the Erase Suspend mode.) If the output is high (Ready),  
the device is in the read mode, the standby mode, or in the erase-suspend-read  
mode. Table 23 shows the outputs for RY/BY#.  
58  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm  
is in progress or complete, or whether the device has entered the Erase Suspend  
mode. Toggle Bit I may be read at any address, and is valid after the rising edge  
of the final WE# pulse in the command sequence (prior to the program or erase  
operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cy-  
cles to any address cause DQ6 to toggle. The system may use either OE# or CE#  
to control the read cycles. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, DQ6 toggles for approximately 100 µs, then returns to reading  
array data. If not all selected sectors are protected, the Embedded Erase algo-  
rithm erases the unprotected sectors, and ignores the selected sectors that are  
protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is ac-  
tively erasing or is erase-suspended. When the device is actively erasing (that is,  
the Embedded Erase algorithm is in progress), DQ6 toggles. When the device en-  
ters the Erase Suspend mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing or erase-suspended. Alter-  
natively, the system can use DQ7 (see the subsection on DQ7: Data# Polling).  
If a program address falls within a protected sector, DQ6 toggles for approxi-  
mately 1 µs after the program command sequence is written, then returns to  
reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling  
once the Embedded Program algorithm is complete.  
Table 23 shows the outputs for Toggle Bit I on DQ6. Figure 8 shows the toggle bit  
algorithm. Figure 20 in the “AC Characteristics” section shows the toggle bit tim-  
ing diagrams. Figure 21 shows the differences between DQ2 and DQ6 in graphical  
form. See also the subsection on DQ2: Toggle Bit II.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
59  
A d v a n c e I n f o r m a t i o n  
START  
Read Byte  
(DQ7–DQ0)  
Address =VA  
Read Byte  
(DQ7–DQ0)  
Address =VA  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read Byte Twice  
(DQ7–DQ0)  
Address = VA  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Notes:  
1. The system should recheck the toggle bit even if DQ5 = “1” because the toggle bit may stop toggling as DQ5 changes  
to “1.” See the subsections on DQ6 and DQ2 for more information.  
Figure 8. Toggle Bit Algorithm  
60  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular  
sector is actively erasing (that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit II is valid after the rising  
edge of the final WE# pulse in the command sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have  
been selected for erasure. (The system may use either OE# or CE# to control the  
read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or  
is erase-suspended. DQ6, by comparison, indicates whether the device is actively  
erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected  
for erasure. Thus, both status bits are required for sector and mode information.  
Refer to Table 23 to compare outputs for DQ2 and DQ6.  
Figure 8 shows the toggle bit algorithm in flowchart form, and the section “DQ2:  
Toggle Bit II” explains the algorithm. See also the RY/BY#: Ready/Busy# subsec-  
tion. Figure 20 shows the toggle bit timing diagram. Figure 21 shows the  
differences between DQ2 and DQ6 in graphical form.  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 8 for the following discussion. Whenever the system initially be-  
gins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically, the system would note and  
store the value of the toggle bit after the first read. After the second read, the  
system would compare the new value of the toggle bit with the first. If the toggle  
bit is not toggling, the device has completed the program or erase operation. The  
system can read array data on DQ7–DQ0 on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle  
bit is still toggling, the system also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should then determine again  
whether the toggle bit is toggling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer toggling, the device has suc-  
cessfully completed the program or erase operation. If it is still toggling, the  
device did not completed the operation successfully, and the system must write  
the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit  
is toggling and DQ5 has not gone high. The system may continue to monitor the  
toggle bit and DQ5 through successive read cycles, determining the status as de-  
scribed in the previous paragraph. Alternatively, it may choose to perform other  
system tasks. In this case, the system must start at the beginning of the algo-  
rithm when it returns to determine the status of the operation (top of Figure 8).  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program, erase, or write-to-buffer time has ex-  
ceeded a specified internal pulse count limit. Under these conditions DQ5  
produces a “1,indicating that the program or erase cycle was not successfully  
completed.  
The device may output a “1” on DQ5 if the system tries to program a “1” to a  
location that was previously programmed to “0.Only an erase operation can  
change a “0” back to a “1.” Under this condition, the device halts the opera-  
tion, and when the timing limit has been exceeded, DQ5 produces a “1.”  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
61  
A d v a n c e I n f o r m a t i o n  
In all these cases, the system must write the reset command to return the device  
to the reading the array (or to erase-suspend-read if the device was previously  
in the erase-suspend-program mode).  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to de-  
termine whether or not erasure has begun. (The sector erase timer does not  
apply to the chip erase command.) If additional sectors are selected for erasure,  
the entire time-out also applies after each additional sector erase command.  
When the time-out period is complete, DQ3 switches from a “0” to a “1.If the  
time between additional sector erase commands from the system can be as-  
sumed to be less than 50 µs, the system need not monitor DQ3. See also the  
Sector Erase Command Sequence section.  
After the sector erase command is written, the system should read the status of  
DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure that the device has accepted  
the command sequence, and then read DQ3. If DQ3 is “1,the Embedded Erase  
algorithm has begun; all further commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,the device will accept addi-  
tional sector erase commands. To ensure the command has been accepted, the  
system software should check the status of DQ3 prior to and following each sub-  
sequent sector erase command. If DQ3 is high on the second status check, the  
last command might not have been accepted.  
Table 23 shows the status of DQ3 relative to the other status bits.  
DQ1: Write-to-Buffer Abort  
DQ1 indicates whether a Write-to-Buffer operation was aborted. Under these  
conditions DQ1 produces a “1. The system must issue the Write-to-Buffer-Abort-  
Reset command sequence to return the device to reading array data. See Write  
Buffer section for more details.  
62  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Table 23. Write Operation Status  
DQ7  
(Note 2)  
DQ5  
(Note 1) DQ3  
DQ2  
(Note 2)  
RY/  
BY#  
Status  
DQ6  
DQ1  
0
Embedded Program Algorithm  
Embedded Erase Algorithm  
Program-Suspended  
DQ7#  
0
Toggle  
Toggle  
0
0
N/A  
1
No toggle  
Toggle  
0
0
Standard  
Mode  
N/A  
Invalid (not allowed)  
Data  
1
1
1
1
0
Program  
Suspend  
Mode  
Program-  
Suspend  
Read  
Sector  
Non-Program  
Suspended Sector  
Erase-Suspended  
Sector  
1
No toggle  
Toggle  
0
N/A  
Toggle  
N/A  
N/A  
N/A  
Erase-  
Suspend  
Read  
Erase  
Suspend  
Mode  
Non-Erase  
Suspended Sector  
Data  
Erase-Suspend-Program  
(Embedded Program)  
DQ7#  
0
N/A  
Busy (Note 3)  
Abort (Note 4)  
DQ7#  
DQ7#  
Toggle  
Toggle  
0
0
N/A  
N/A  
N/A  
N/A  
0
1
0
0
Write-to-  
Buffer  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program, Embedded Erase, or Write-to-Buffer operation has exceeded the  
maximum timing limits. Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for  
further details.  
3. The Data# Polling algorithm should be used to monitor the last loaded write-buffer address location.  
4. DQ1 switches to ‘1’ when the device has aborted the write-to-buffer operation.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
63  
A d v a n c e I n f o r m a t i o n  
Absolute Maximum Ratings  
Storage Temperature, Plastic Packages. . . . . . . . . . . . . . . . 65°C to +150°C  
Ambient Temperature with Power Applied . . . . . . . . . . . . . . –65°C to +125°C  
Voltage with Respect to Ground:  
VCC (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to +4.0 V  
ACC and RESET# (Note 2) . . . . . . . . . . . . . . . . . . . .0.5 V to +12.5 V  
All other pins (Note 1). . . . . . . . . . . . . . . . . . . . . 0.5 V to VCC+0.5 V  
Output Short Circuit Current (Note 3). . . . . . . . . . . . . . . . . . . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/Os is –0.5 V. During voltage transitions, inputs  
or I/Os may overshoot V to –2.0 V for periods of up to 20 ns. See Figure 9.  
SS  
Maximum DC voltage on input or I/Os is V + 0.5 V. During voltage transitions,  
CC  
input or I/O pins may overshoot to V + 2.0 V for periods up to 20 ns. See Figure  
CC  
10.  
2. Minimum DC input voltage on pins A9, OE#, ACC, and RESET# is –0.5 V. During  
voltage transitions, A9, OE#, ACC, and RESET# may overshoot V to –2.0 V for  
SS  
periods of up to 20 ns. See Figure 9. Maximum DC input voltage on pin A9, OE#,  
ACC, and RESET# is +12.5 V which may overshoot to +14.0V for periods up to  
20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the short  
circuit should not be greater than one second.  
4. Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only; functional operation  
of the device at these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied. Exposure of the device to  
absolute maximum rating conditions for extended periods may affect device  
reliability.  
20 ns  
20 ns  
20 ns  
VCC  
+2.0 V  
+0.8 V  
VCC  
–0.5 V  
–2.0 V  
+0.5 V  
2.0 V  
20 ns  
20 ns  
20 ns  
Figure 9. Maximum Negative  
Overshoot Waveform  
Figure 10. Maximum Positive  
Overshoot Waveform  
Operating Ranges  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Supply Voltages  
VCC for full voltage range . . . . . . . . . . . . . . . . . . . . . . . . . +2.7 V to +3.6 V  
VCC for regulated voltage range. . . . . . . . . . . . . . . . . . . . . +3.0 V to +3.6 V  
VIO  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC  
Note:Operating ranges define those limits between which the functionality of the device is guaranteed  
.
64  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
CMOS Compatible  
Parameter  
Symbol  
Parameter Description (Notes)  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
V
IN = VSS to VCC  
,
ILI  
Input Load Current (Note 1)  
A9, ACC Input Load Current  
±1.0  
µA  
CC = VCC max  
-40°C to 0°C  
0°C to 85°C  
250  
35  
V
CC = VCC max; A9 =  
ILIT  
µA  
12.5 V  
ILR  
ILO  
Reset Leakage Current  
Output Leakage Current  
VCC = VCC max; RESET# = 12.5 V  
35  
µA  
µA  
VOUT = VSS to VCC  
,
±1.0  
V
CC = VCC max  
1 MHz  
5
20  
25  
50  
20  
40  
60  
CE# = VIL, OE# =  
VIH  
ICC1  
VCC Initial Read Current (Notes 2, 3)  
5 MHz  
18  
35  
5
mA  
,
10 MHz  
10 MHz  
40 MHz  
ICC2  
VCC Intra-Page Read Current (Notes 2, 3) CE# = VIL, OE# = VIH  
mA  
10  
50  
ICC3  
ICC4  
ICC5  
ICC6  
VCC Active Write Current (Note 3)  
VCC Standby Current (Note 3)  
VCC Reset Current (Note 3)  
CE# = VIL, OE# = VIH  
mA  
µA  
µA  
µA  
CE#, RESET# = VCC ± 0.3 V,  
WP# = VIH  
1
1
1
5
5
5
RESET# = VSS ± 0.3 V, WP# = VIH  
V
IH = VCC ± 0.3 V;  
Automatic Sleep Mode (Notes 3, 5)  
-0.1< VIL 0.3 V, WP# = VIH  
VIL  
Input Low Voltage 1 (Note 6)  
Input High Voltage 1 (Note 6)  
–0.5  
0.8  
V
V
VIH  
0.7 VCC  
VCC + 0.5  
Voltage for ACC Program  
Acceleration  
VHH  
VCC = 2.7 –3.6 V  
VCC = 2.7 –3.6 V  
11.5  
11.5  
12.0  
12.0  
12.5  
V
V
Voltage for Autoselect and Temporary  
Sector Unprotect  
VID  
12.5  
0.45  
VOL  
Output Low Voltage (Note 6)  
IOL = 4.0 mA, VCC = VCC min  
IOH = –2.0 mA, VCC = VCC min  
IOH = –100 µA, VCC = VCC min  
V
V
V
V
VOH1  
VOH2  
VLKO  
0.85 VCC  
VCC–0.4  
2.3  
Output High Voltage  
Low VCC Lock-Out Voltage (Note 7)  
2.5  
Notes:  
1. On the WP#/ACC pin only, the maximum input load current when WP# = VIL is ± 5.0 µA.  
2. The ICC current listed is typically less than 3.5 mA/MHz, with OE# at VIH  
3. Maximum ICC specifications are tested with VCC = VCCmax.  
.
4. ICC active while Embedded Erase or Embedded Program is in progress.  
5. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns.  
6. VCC voltage requirements.  
7. Not 100% tested.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
65  
A d v a n c e I n f o r m a t i o n  
Test Conditions  
Table 24. Test Specifications  
3.3 V  
Test Condition  
Output Load  
All Speeds  
1 TTL gate  
Unit  
2.7 kΩ  
Device  
Under  
Test  
Output Load Capacitance, CL  
(including jig capacitance)  
30  
pF  
Input Rise and Fall Times  
Input Pulse Levels  
5
ns  
V
C
L
6.2 kΩ  
0.0 or VCC  
Input timing measurement  
reference levels (See Note)  
0.5 VCC  
0.5 VCC  
V
V
Output timing measurement  
reference levels  
Note: Diodes are IN3064 or equivalent.  
Figure 11. Test Setup  
Key to Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
V
CC  
0.5 V  
Input  
0.5 V  
Measurement Level  
Output  
CC  
CC  
0.0 V  
Figure 12. Input Waveforms and Measurement Levels  
66  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Read-Only Operations-S29GL064A only  
Parameter  
Speed Options  
JEDEC  
Std.  
Description  
Test Setup  
90  
10  
100  
100  
100  
30  
11  
110  
110  
110  
30  
Unit  
ns  
tAVAV  
tRC  
Read Cycle Time (Note 1)  
Address to Output Delay  
Min  
Max  
Max  
Max  
Max  
Max  
Max  
90  
90  
90  
25  
25  
tAVQV  
tELQV  
tACC  
tCE  
tPACC  
tOE  
CE#, OE# = VIL  
OE# = VIL  
ns  
Chip Enable to Output Delay  
Page Access Time  
ns  
ns  
tGLQV  
tEHQZ  
tGHQZ  
Output Enable to Output Delay  
Chip Enable to Output High Z (Note 1)  
Output Enable to Output High Z (Note 1)  
30  
30  
ns  
tDF  
16  
ns  
tDF  
16  
0
ns  
Output Hold Time From Addresses, CE# or OE#, Whichever Occurs  
First  
tAXQX  
tOH  
Min  
Min  
Min  
ns  
ns  
ns  
Read  
0
Output Enable Hold Time  
tOEH  
Toggle and  
(Note 1)  
10  
Data# Polling  
Notes:  
1. Not 100% tested.  
2. See Figure 11 and Table 24 for test specifications.  
Read-Only Operations-S29GL032A only  
Parameter  
Speed Options  
JEDEC  
Std.  
Description  
Test Setup  
90  
10  
100  
100  
100  
30  
11  
Unit  
ns  
tAVAV  
tRC  
Read Cycle Time (Note 1)  
Address to Output Delay  
Chip Enable to Output Delay  
Page Access Time  
Min  
Max  
Max  
Max  
Max  
Max  
Max  
90  
90  
90  
25  
25  
110  
110  
110  
30  
tAVQV  
tELQV  
tACC  
tCE  
tPACC  
tOE  
CE#, OE# = VIL  
OE# = VIL  
ns  
ns  
ns  
tGLQV  
tEHQZ  
tGHQZ  
Output Enable to Output Delay  
30  
30  
ns  
tDF  
Chip Enable to Output High Z (Note 1)  
Output Enable to Output High Z (Note 1)  
16  
ns  
tDF  
16  
ns  
Output Hold Time From Addresses, CE# or OE#,  
Whichever Occurs First  
tAXQX  
tOH  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
Read  
tOEH  
Output Enable Hold Time (Note 1)  
Toggle and  
Data# Polling  
10  
Notes:  
1. Not 100% tested.  
2. See Figure 11 and Table 24 for test specifications.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
67  
A d v a n c e I n f o r m a t i o n  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
Data  
tCE  
tOH  
HIGH Z  
HIGH Z  
Valid Data  
RESET#  
RY/BY#  
0 V  
Figure 13. Read Operation Timings  
Same Page  
A23-A2  
A1-A0*  
Ad  
Aa  
tACC  
Ab  
tPACC  
Ac  
tPACC  
tPACC  
Data Bus  
Qa  
Qb  
Qc  
Qd  
CE#  
OE#  
Note: * Figure shows device in word mode. Addresses are A1–A-1 for byte mode  
.
Figure 14. Page Read Timings  
68  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Hardware Reset (RESET#)  
Parameter  
JEDEC Std.  
Description  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read Mode (See Note)  
tReady  
Max  
Max  
20  
µs  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read Mode (See Note)  
tReady  
500  
ns  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
Reset High Time Before Read (See Note)  
RESET# Input Low to Standby Mode (See Note)  
RY/BY# Output High to CE#, OE# pin Low  
Note:Not 100% tested  
.
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Notes:  
1. Not 100% tested.  
2. See the “Erase and Programming Performance” section for more information.  
3. For 1–16 words/1–32 bytes programmed.  
Figure 15. Reset Timings  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
69  
A d v a n c e I n f o r m a t i o n  
Erase and Program Operations-S29GL064A Only  
Parameter  
JEDEC  
Speed Options  
Std.  
Description  
90  
10  
11  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVAV  
tWC  
Write Cycle Time (Note 1)  
Address Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
90  
100  
110  
tAVWL  
tAS  
tASO  
tAH  
0
15  
45  
0
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
tWLAX  
tAHT  
tDS  
Address Hold Time From CE# or OE# high during toggle bit polling  
Data Setup Time  
tDVWH  
tWHDX  
35  
0
tDH  
Data Hold Time  
tCEPH  
tOEPH  
tGHWL  
tCS  
CE# High during toggle bit polling  
OE# High during toggle bit polling  
Read Recovery Time Before Write (OE# High to WE# Low)  
CE# Setup Time  
20  
20  
0
tGHWL  
tELWL  
0
tWHEH  
tWLWH  
tWHDL  
tCH  
CE# Hold Time  
0
tWP  
Write Pulse Width  
35  
tWPH  
Write Pulse Width High  
Min  
Typ  
Typ  
Typ  
Typ  
30  
240  
60  
Write Buffer Program Operation (Notes 2, 3)  
Single Word Program Operation (Note 2)  
Accelerated Single Word Program Operation (Note 2)  
Sector Erase Operation (Note 2)  
tWHWH1  
tWHWH1  
µs  
54  
tWHWH2  
tWHWH2  
tVHH  
0.5  
sec  
ns  
µs  
ns  
µs  
VHH Rise and Fall Time (Note 1)  
VCC Setup Time (Note 1)  
Min  
Min  
Min  
Max  
250  
50  
tVCS  
tBUSY  
tPOLL  
WE# High to RY/BY# Low  
90  
100  
4
110  
Program Valid before Status Polling  
Notes:  
1. Not 100% tested.  
2. See the “Erase and Programming Performance” section for more information.  
3. For 1–16 words/1–32 bytes programmed.  
4. If a program suspend command is issued within tPOLL, the device requires tPOLL before reading status data, once  
programming has resumed (that is, the program resume command has been written). If the suspend command was issued  
after tPOLL, status data is available immediately after programming has resumed. See Figure 16.  
70  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Erase and Program Operations-S29GL032A Only  
Parameter  
Speed Options  
JEDEC  
Std.  
Description  
90  
10  
100  
0
11  
110  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVAV  
tWC  
Write Cycle Time (Note 1)  
Address Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
90  
tAVWL  
tAS  
tASO  
tAH  
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
15  
45  
0
tWLAX  
tAHT  
tDS  
Address Hold Time From CE# or OE# high during toggle bit polling  
Data Setup Time  
tDVWH  
tWHDX  
35  
0
tDH  
Data Hold Time  
tCEPH  
tOEPH  
tGHWL  
tCS  
CE# High during toggle bit polling  
OE# High during toggle bit polling  
Read Recovery Time Before Write (OE# High to WE# Low)  
CE# Setup Time  
20  
20  
0
tGHWL  
tELWL  
0
tWHEH  
tWLWH  
tWHDL  
tCH  
CE# Hold Time  
0
tWP  
Write Pulse Width  
35  
tWPH  
Write Pulse Width High  
Min  
Typ  
Typ  
Typ  
Typ  
30  
240  
60  
Write Buffer Program Operation (Notes 2, 3)  
Single Word Program Operation (Note 2)  
Accelerated Single Word Program Operation (Note 2)  
Sector Erase Operation (Note 2)  
tWHWH1  
tWHWH1  
µs  
54  
tWHWH2  
tWHWH2  
tVHH  
0.5  
sec  
ns  
µs  
ns  
µs  
VHH Rise and Fall Time (Note 1)  
VCC Setup Time (Note 1)  
Min  
Min  
Min  
Max  
250  
50  
tVCS  
tBUSY  
tPOLL  
WE# High to RY/BY# Low  
90  
100  
4
110  
Program Valid before Status Polling  
Notes:  
1. Not 100% tested.  
2. See “Erase And Programming Performance” for more information  
3. For 1–16 words/1–32 bytes programmed.  
4. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation.  
5. If a program suspend command is issued within tPOLL, the device requires tPOLL before reading status data, once  
programming resumes (that is, the program resume command has been written). If the suspend command was issued after  
POLL, status data is available immediately after programming resumes. See Figure 16.  
t
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
71  
A d v a n c e I n f o r m a t i o n  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
tWC  
Addresses  
555h  
PA  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tPOLL  
tWP  
WE#  
Data  
tWPH  
tCS  
tWHWH1  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, D  
is the true data at the program address.  
OUT  
2. Illustration shows device in word mode.  
Figure 16. Program Operation Timings  
V
HH  
V
or V  
IL IH  
V
or V  
IL IH  
ACC  
t
t
VHH  
VHH  
Figure 17. Accelerated Program Timing Diagram  
72  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
SA  
tWC  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
Data  
Status  
D
OUT  
55h  
30h  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”.)  
2. Illustration shows device in word mode.  
Figure 18. Chip/Sector Erase Operation Timings  
tRC  
Addresses  
CE#  
VA  
tACC  
tCE  
VA  
VA  
tPOLL  
tCH  
tOE  
OE#  
WE#  
tDF  
tOH  
tOEH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ0–DQ6  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array  
data read cycle.  
Figure 19. Data# Polling Timings (During Embedded Algorithms)  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
73  
A d v a n c e I n f o r m a t i o n  
tAHT  
tAS  
Addresses  
CE#  
tAHT  
tASO  
tCEPH  
tOEH  
WE#  
OE#  
tOEPH  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6/DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last  
status read cycle, and array data read cycle.  
Figure 20. Toggle Bit Timings (During Embedded Algorithms)  
Enter  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Embedded  
Erasing  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE#  
to toggle DQ2 and DQ6.  
Figure 21. DQ2 vs. DQ6  
74  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
tVIDR  
Description  
VID Rise and Fall Time (See Note)  
All Speed Options  
Unit  
Min  
Min  
500  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
4
µs  
Notes:  
1. Not 100% tested.  
VID  
VID  
RESET#  
VIL or VIH  
VIL or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRRB  
tRSP  
RY/BY#  
Figure 22. Temporary Sector Group Unprotect Timing Diagram  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
75  
A d v a n c e I n f o r m a t i o n  
V
V
ID  
IH  
RESET#  
SA, A6,  
A3, A2,  
A1, A0  
Valid*  
Sector Group Protect or Unprotect  
60h 60h  
Valid*  
Valid*  
Status  
Verify  
40h  
Data  
Sector Group Protect: 150 µs,  
Sector Group Unprotect: 15 ms  
1 µs  
CE#  
WE#  
OE#  
Note: For sector group protect, A6:A0 = 0xx0010. For sector group unprotect, A6:A0 = 1xx0010.  
Figure 23. Sector Group Protect and Unprotect Timing Diagram  
76  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Alternate CE# Controlled Erase and Program Operations-S29GL064A  
Parameter  
Speed Options  
Unit  
JEDEC  
Std.  
tWC  
tAS  
Description  
Write Cycle Time (Note 1)  
90  
10  
100  
0
11  
tAVAV  
tAVWL  
tELAX  
tDVEH  
tEHDX  
tGHEL  
tWLEL  
tEHWH  
tELEH  
tEHEL  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Typ  
Min  
Max  
90  
110  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Setup Time  
tAH  
Address Hold Time  
45  
35  
0
tDS  
Data Setup Time  
tDH  
Data Hold Time  
tGHEL  
tWS  
tWH  
tCP  
Read Recovery Time Before Write (OE# High to WE# Low)  
WE# Setup Time  
0
0
WE# Hold Time  
0
CE# Pulse Width  
35  
25  
240  
60  
54  
0.5  
50  
4
tCPH  
CE# Pulse Width High  
Write Buffer Program Operation (Notes 2, 3)  
Single Word Program Operation (Note 2)  
Accelerated Single Word Program Operation (Note 2)  
Sector Erase Operation (Note 2)  
RESET# High Time Before Write  
Program Valid before Status Polling (Note 5)  
tWHWH1  
tWHWH1  
µs  
tWHWH2  
tWHWH2  
tRH  
sec  
ns  
tPOLL  
µs  
Notes:  
1. Not 100% tested.  
2. See the “Erase and Programming Performance” section for more information.  
3. For 1–16 words/1–32 bytes programmed.  
4. If a program suspend command is issued within tPOLL, the device requires tPOLL before reading status data, once  
programming has resumed (that is, the program resume command has been written). If the suspend command was issued  
after tPOLL, status data is available immediately after programming has resumed. See Figure 24.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
77  
A d v a n c e I n f o r m a t i o n  
Alternate CE# Controlled Erase and Program Operations-S29GL032A  
Parameter  
JEDEC  
Speed Options  
Std.  
Description  
90  
10  
100  
0
11  
Unit  
ns  
tAVAV  
tAVWL  
tELAX  
tDVEH  
tEHDX  
tWC  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Min  
Min  
Min  
Min  
Min  
90  
110  
tAS  
tAH  
tDS  
tDH  
ns  
45  
ns  
35  
0
ns  
Data Hold Time  
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
0
ns  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWS  
tWH  
tCP  
WE# Setup Time  
WE# Hold Time  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
ns  
CE# Pulse Width  
CE# Pulse Width High  
35  
tCPH  
Min  
Typ  
Typ  
Typ  
Typ  
25  
240  
60  
Write Buffer Program Operation (Notes 2, 3)  
Single Word Program Operation (Note 2)  
Accelerated Single Word Program Operation (Note 2)  
Sector Erase Operation (Note 2)  
tWHWH1  
tWHWH1  
µs  
54  
tWHWH2  
tWHWH2  
tRH  
0.5  
sec  
ns  
RESET# High Time Before Write  
Min  
50  
4
tPOLL  
Program Valid before Status Polling (Note 4)  
Max  
µs  
Notes:  
1. Not 100% tested.  
2. See “Erase And Programming Performance” for more information  
3. For 1–16 words/1–32 bytes programmed.  
4. If a program suspend command is issued within tPOLL, the device requires tPOLL before reading status data, once  
programming resumes (that is, the program resume command has been written). If the suspend command was issued after  
tPOLL, status data is available immediately after programming resumes. See Figure 24.  
78  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
PBA for program  
2AA for erase  
SA for program buffer to flash  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tPOLL  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
PBD for program 29 for program buffer to flash  
55 for erase  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. D  
4. Illustration shows device in word mode.  
is the data written to the device.  
OUT  
Figure 24. Alternate CE# Controlled Write (Erase/Program) Operation Timings  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
79  
A d v a n c e I n f o r m a t i o n  
Erase And Programming Performance  
Max  
Parameter  
Typ (Note 1)  
(Note 2)  
Unit  
Comments  
Sector Erase Time  
0.5  
32  
3.5  
64  
Excludes 00h  
programming  
prior to erasure  
(Note 6)  
S29GL032A  
S29GL064A  
sec  
Chip Erase Time  
64  
128  
Total Write Buffer Program Time (Notes 3, 5)  
240  
µs  
µs  
Total Accelerated Effective Write Buffer Program Time  
(Notes 4, 5)  
Excludes system  
level overhead  
(Note 7)  
200  
S29GL032A  
S29GL064A  
31.5  
63  
Chip Program Time  
sec  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, V = 3.0V, 10,000 cycles; checkerboard  
CC  
data pattern.  
2. Under worst case conditions of 90°C; Worst case V , 100,000 cycles.  
CC  
3. Effective programming time (typ) is 15 µs (per word), 7.5 µs (per byte).  
4. Effective accelerated programming time (typ) is 12.5 µs (per word), 6.3 µs (per byte).  
5. Effective write buffer specification is calculated on a per-word/per-byte basis for a 16-word/32-byte write buffer  
operation.  
6. In the pre-programming step of the Embedded Erase algorithm, all bits are programmed to 00h before erasure.  
7. System-level overhead is the time required to execute the command sequence(s) for the program command. See  
Table 22 for further information on command definitions.  
80  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Type 4 pSRAM  
4 Mbit (256K x 16)  
Features  
„
„
„
„
Wide voltage range: 2.7V to 3.3V  
Typical active current: 3 mA @ f = 1 MHz  
Low standby power  
Automatic power-down when deselected  
Functional Description  
The Type 4 pSRAM is a high-performance CMOS pseudo static RAM (pSRAM) or-  
ganized as 256K words by 16 bits that supports an asynchronous memory  
interface. This device features advanced circuit design to provide ultra-low active  
current. The device can be put into standby mode reducing power consumption  
dramatically when deselected (CE1# Low, CE2 High or both BHE# and BLE# are  
High). The input/output pins (I/O0 through I/O15) are placed in a high-imped-  
ance state when: deselected (CE1# High, CE2 Low, OE# is deasserted High), or  
during a write operation (Chip Enabled and Write Enable WE# Low). Reading  
from the device is accomplished by asserting the Chip Enables (CE1# Low and  
CE2 High) and Output Enable (OE#) Low while forcing the Write Enable (WE#)  
High. If Byte Low Enable (BLE#) is Low, then data from the memory location  
specified by the address pins will appear on I/O0 to I/O7. If Byte High Enable  
(BHE#) is Low, then data from memory will appear on I/O8 to I/O15. See Table  
27 for a complete description of read and write modes.  
Product Portfolio  
Power Dissipation  
Operating, ICC (mA)  
f = 1 MHz f = fmax  
Typ. (note 1) Typ. (note 1)  
TBD  
VCC Range (V)  
Typ  
Standby (ISB2) (µA)  
Speed  
(ns)  
Min  
Max  
Max  
Max  
Typ. (note 1)  
Max  
2.7V  
3.0V  
3.3V  
70 ns  
3
5
25 mA  
15  
40  
Notes:  
1. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at VCC = VCC  
(typ) and TA = 25°C.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
81  
A d v a n c e I n f o r m a t i o n  
Maximum Ratings  
(Above which the useful life may be impaired. For user guidelines, not tested)  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65°C to +150°C  
Ambient Temperature with Power Applied . . . . . . . . . . . . . . . -40°C to +85°C  
Supply Voltage to Ground Potential . . . . . . . . . . . . . . . . . . . . . -0.4V to 4.6V  
DC Voltage Applied to Outputs in High-Z  
State (note 1, 2, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to 3.7V  
DC Input Voltage (note 1, 2, 3) . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to 3.7V  
Output Current into Outputs (Low). . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Static Discharge Voltage. . . . . . . . . >2001V (per MIL-STD-883, Method 3015)  
Latch-up Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . >200 mA  
Notes:  
1. IH(MAX) = VCC + 0.5V for pulse durations less than 20 ns.  
V
2. VIL(MIN) = –0.5V for pulse durations less than 20 ns.  
3. Overshoot and undershoot specifications are characterized and are not 100% tested.  
Operating Range  
Ambient Temperature (TA)  
VCC  
-25°C to +85°C  
2.7V to 3.3V  
Table 25. DC Electrical Characteristics (Over the Operating Range)  
Typ.  
(note 1)  
Parameter  
VCC  
Description  
Supply Voltage  
Test Conditions  
Min.  
Max  
Unit  
2.7  
3.3  
VOH  
VOL  
VIH  
VIL  
IIX  
Output High Voltage  
Output Low Voltage  
Input High Voltage  
Input Low Voltage  
IOH = –1.0 mA  
VCC - 0.4  
IOL = 0.1 mA  
0.4  
V
0.8 * VCC  
VCC + 0.4  
F = 0  
-0.4  
-1  
0.4  
+1  
+1  
15  
3
Input Leakage Current  
Output Leakage Current  
GND VIN VCC  
µA  
IOZ  
GND VOUT VCC, Output Disabled  
-1  
f = fMAX = 1/tRC  
f = 1 MHz  
VCC = 3.3V  
IOUT = 0 mA  
CMOS Levels  
TBD  
ICC  
VCC Operating Supply Current  
mA  
CE# VCC – 0.2V, CE2 0.2V  
VIN VCC – 0.2V, VIN 0.2V,  
f = fmax (Address and Data Only),  
f=0 (OE#, WE#, BHE# and BLE#)  
Automatic CE# Power-Down  
Current—CMOS Inputs  
ISB1  
250  
40  
µA  
CE# VCC – 0.2V, CE2 0.2V  
VIN VCC – 0.2V or VIN 0.2V,  
f = 0, VCC = 3.3V  
Automatic CE# Power-Down  
Current—CMOS Inputs  
ISB2  
Notes:  
1. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at VCC  
CC(typ.), TA = 25°C.  
=
V
82  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Capacitance  
Parameter  
Description  
Te st Co nd i ti on  
Max  
8
Unit  
CIN  
Input Capacitance  
Output Capacitance  
TA = 25°C, f = 1 MHz,  
VCC = VCC(typ.)  
pF  
COUT  
8
Note: Tested initially and after any design or process changes that may affect these parameters.  
Thermal Resistance  
Parameter  
Description  
Test Conditions  
VFBGA  
Unit  
θ JA  
Thermal Resistance (Junction to Ambient) Test conditions follow standard test methods  
and procedures for measuring thermal  
55  
°C/W  
θ JC  
Thermal Resistance (Junction to Case)  
17  
impedance, per EIA / JESD51.  
Note: Tested initially and after any design or process changes that may affect these parameters.  
AC Test Loads and Waveforms  
R1  
VCC  
ALL INPUT PULSES  
90%  
10%  
Fall Time: 1 V/ns  
V
CC  
OUTPUT  
90%  
10%  
GND  
Rise Time: 1 V/ns  
R2  
30 pF  
INCLUDING  
JIG AND  
SCOPE  
Equivalent to:  
THÉVENINEQUIVALENT  
RTH  
OUTPUT  
VTH  
Figure 25. AC Test Loads and Waveforms  
Parameters  
3.0V VCC  
22000  
22000  
11000  
1.50  
Unit  
R1  
R2  
RTH  
VTH  
V
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
83  
A d v a n c e I n f o r m a t i o n  
Table 26. Switching Characteristics  
Min  
Max  
Parameter  
Read Cycle  
Description  
Unit  
tRC  
Read Cycle Time  
70  
10  
tAA  
Address to Data Valid  
70  
tOHA  
Data Hold from Address Change  
CE#1 Low and CE2 High to Data Valid  
OE# Low to Data Valid  
tACE  
70  
35  
tDOE  
tLZOE  
tHZOE  
tLZCE  
tHZCE  
tDBE  
OE# Low to Low Z (note 2, 3)  
5
5
OE# High to High Z (note 2, 3)  
CE#1 Low and CE2 High to Low Z (note 2, 3)  
CE#1 High and CE2 Low to High Z (note 2, 3)  
BHE# / BLE# Low to Data Valid  
BHE# / BLE# Low to Low Z (note 2, 3)  
BHE# / BLE# High to High Z (note 2, 3)  
Address Skew  
25  
ns  
25  
70  
tLZBE  
tHZBE  
tSK (note 4)  
5
25  
10  
Write Cycle (note 5)  
tWC  
tSCE  
tAW  
Write Cycle Time  
70  
55  
55  
0
CE#1 Low an CE2 High to Write End  
Address Set-Up to Write End  
Address Hold from Write End  
Address Set-Up to Write Start  
WE# Pulse Width  
tHA  
tSA  
0
tPWE  
tBW  
55  
55  
25  
0
ns  
BLE# / BHE# LOW to Write End  
Data Set-up to Write End  
tSD  
tHD  
Data Hold from Write End  
tHZWE  
tLZWE  
WE# Low to High Z (note 2, 3)  
WE# High to Low Z (note 2, 3)  
25  
5
Notes:  
1. Test conditions assume signal transition time of 1V/ns or higher, timing reference levels of VCC(typ.) /2, input pulse levels of  
0 to VCC(typ.), and output loading of the specified IOL/IOH and 30 pF load capacitance.  
2. tHZOE, tHZCE, tHZBE and tHZWE transitions are measured when the outputs enter a high-impedance state.  
3. High-Z and Low-Z parameters are characterized and are not 100% tested.  
4. To achieve 55-ns performance, the read access should be CE# controlled. In this case tACE is the critical parameter and tSK is  
satisfied when the addresses are stable prior to chip enable going active. For the 70-ns cycle, the addresses must be stable  
within 10 ns after the start of the read cycle.  
5. The internal write time of the memory is defined by the overlap of WE#, CE#1 = VIL, CE2 = VIH, BHE and/or BLE =VIL. All  
signals must be Active to initiate a write and any of these signals can terminate a write by going Inactive. The data input set-  
up and hold timing should be referenced to the edge of the signal that terminates write.  
84  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Switching Waveforms  
t
RC  
ADDRESS  
DATA OUT  
t
AA  
t
t
SK  
OHA  
PREVIOUS DATA VALID  
DATA VALID  
Figure 26. Read Cycle 1 (Address Transition Controlled)  
Notes:  
1. To achieve 55-ns performance, the read access should be CE# controlled. In this case tACE is the critical parameter and tSK is  
satisfied when the addresses are stable prior to chip enable going active. For the 70-ns cycle, the addresses must be stable  
within 10 ns after the start of the read cycle.  
2. Device is continuously selected. OE#, CE# = VIL  
.
3. WE# is High for Read Cycle.  
ADDRESS  
tRC  
tSK  
CE#1  
tHZCE  
CE  
2
tACE  
BHE#/BLE#  
OE#  
tDBE  
tHZBE  
t
LZBE  
tHZOE  
tDOE  
t
HIGH  
LZOE  
IMPEDENCE  
HIGH IMPEDENCE  
DATA OUT  
DATA VALID  
t
LZCE  
Figure 27. Read Cycle 2 (OE# Controlled)  
Notes:  
1. To achieve 55-ns performance, the read access should be CE# controlled. In this case tACE is the critical parameter and tSK is  
satisfied when the addresses are stable prior to chip enable going active. For the 70-ns cycle, the addresses must be stable  
within 10 ns after the start of the read cycle.  
2. WE# is High for Read Cycle.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
85  
A d v a n c e I n f o r m a t i o n  
Figure 28. Write Cycle 1 (WE# Controlled)  
Notes:  
1. High-Z and Low-Z parameters are characterized and are not 100% tested.  
2. The internal write time of the memory is defined by the overlap of WE#, CE#1 = VIL, CE2 = VIH, BHE and/or BLE =VIL. All  
signals must be Active to initiate a write and any of these signals can terminate a write by going Inactive. The data input set-  
up and hold timing should be referenced to the edge of the signal that terminates write.  
3. Data I/O is high impedance if OE# VIH  
.
4. If Chip Enable goes Inactive simultaneously with WE# = High, the output remains in a high-impedance state.  
5. During the Don’t Care period in the Data I/O waveform, the I/Os are in output state and input signals should not be applied.  
86  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
t
WC  
ADDRESS  
CE#1  
t
SCE  
CE  
2
t
SA  
t
t
HA  
AW  
t
PWE  
WE#  
t
BHE#/BLE#  
BW  
OE#  
t
t
SD  
HD  
DATAI/O  
VALID DATA  
DON’T CARE  
t
HZOE  
Figure 29. Write Cycle 2 (CE#1 or CE2 Controlled)  
Notes:  
1. High-Z and Low-Z parameters are characterized and are not 100% tested.  
2. The internal write time of the memory is defined by the overlap of WE#, CE#1 = VIL, CE2 = VIH, BHE and/or BLE =VIL. All  
signals must be Active to initiate a write and any of these signals can terminate a write by going Inactive. The data input set-  
up and hold timing should be referenced to the edge of the signal that terminates write.  
3. Data I/O is high impedance if OE# VIH  
.
4. If Chip Enable goes Inactive simultaneously with WE# = High, the output remains in a high-impedance state.  
5. During the Don’t Care period in the Data I/O waveform, the I/Os are in output state and input signals should not be applied.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
87  
A d v a n c e I n f o r m a t i o n  
tWC  
ADDRESS  
CE#1  
tSCE  
CE2  
tBW  
tAW  
BHE#/BLE#  
tHA  
tSA  
t
PWE  
WE#  
t
HD  
tSD  
DON’T CARE  
DATA I/O  
VALID DATA  
t
tHZWE  
LZWE  
Figure 30. Write Cycle 3 (WE# Controlled, OE# Low)  
Notes:  
1. If Chip Enable goes Inactive simultaneously with WE# = High, the output remains in a high-impedance state.  
2. During the Don’t Care period in the Data I/O waveform, the I/Os are in output state and input signals should not be applied.  
CE#1  
CE2  
BHE#/BLE#  
WE#  
Figure 31. Write Cycle 4 (BHE#/BLE# Controlled, OE# Low)  
Notes:  
1. If Chip Enable goes Inactive simultaneously with WE# = High, the output remains in a high-impedance state.  
2. During the Don’t Care period in the Data I/O waveform, the I/Os are in output state and input signals should not be applied.  
88  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Truth Table  
Table 27. Truth Table  
CE#1  
CE2  
X
WE# OE# BHE# BLE#  
Inputs / Outputs  
High-Z  
Mode  
Power  
H
X
X
L
X
X
X
H
X
X
X
L
X
X
H
L
X
X
H
L
L
High-Z  
Deselect/Power-Down  
Standby (ISB)  
X
High-Z  
H
Data Out (I/O0–I/O15)  
Read (Upper Byte and Lower Byte)  
Read (Upper Byte only)  
Data Out (I/O0 –I/O7);  
I/O8–I/O15 in High Z  
L
L
H
H
H
H
L
L
H
L
L
Data Out (I/O8–I/O15);  
I/O0–I/O7 in High Z  
H
Read (Lower Byte only)  
L
L
L
L
H
H
H
H
H
H
H
L
H
H
H
X
L
H
L
L
L
High-Z  
Output Disabled  
High-Z  
Output Disabled  
Active (ICC)  
H
L
High-Z  
Output Disabled  
L
Data In (I/O0–I/O15)  
Write (Upper Byte and Lower Byte)  
Data In (I/O0–I/O7);  
I/O8–I/O15 in High Z  
L
L
H
H
L
L
X
X
H
L
L
Write (Lower Byte Only)  
Write (Upper Byte Only)  
Data In (I/O8–I/O15);  
I/O0 –I/O7 in High Z  
H
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
89  
A d v a n c e I n f o r m a t i o n  
Type 1 SRAM  
4/8 Megabit CMOS SRAM  
Common Features  
„
„
„
Process Technology: Full CMOS  
Power Supply Voltage: 2.7~3.3V  
Three state outputs  
Organization  
Standby  
Version  
Density  
4Mb  
(ISB1, Max.)  
x8 or x16 (note 1)  
x8 or x16 (note 1)  
x8 or x16 (note 1)  
X16  
(ICC2, Max.)  
Operating  
22 mA  
22 mA  
22 mA  
TBD  
Mode  
F
G
C
D
10 µA  
10 µA  
15 µA  
TBD  
Dual CS, UB# / LB# (tCS)  
Dual CS, UB# / LB# (tCS)  
Dual CS, UB# / LB# (tCS)  
Dual CS, UB# / LB# (tCS)  
4Mb  
8Mb  
8Mb  
Notes:  
1. UB#, LB# swapping is available only at x16. x8 or x16 select by BYTE# pin.  
Pin Description  
Pin Name  
CS1#, CS2  
OE#  
Description  
I/O  
Chip Selects  
I
I
I
I
Output Enable  
WE#  
Write Enable  
BYTE#  
Word (VCC)/Byte (VSS) Select  
A0~A17 (4M)  
A0~A18 (8M)  
Address Inputs  
I
SA  
Address Input for Byte Mode  
Data Inputs/Outputs  
Power Supply  
I
I/O  
-
I/O0~I/O15  
VCC  
VSS  
Ground  
-
DNU  
Do Not Use  
-
NC  
No Connection  
-
90  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Functional Description  
4M Version F, 4M version G, 8M version C  
CS1# CS2 OE# WE# BYTE#  
SA  
X
X
X
X
X
X
X
X
X
X
X
LB#  
X
X
H
L
UB#  
X
IO0~7  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
IO8~15  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
Mode  
Power  
Standby  
Standby  
Standby  
Active  
H
X
X
L
L
L
L
L
L
L
L
X
L
X
X
X
H
H
L
X
X
X
H
H
H
H
H
L
X
Deselected  
X
X
Deselected  
X
H
H
H
H
H
H
H
H
X
H
X
Deselected  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Output Disabled  
Output Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
X
L
L
Active  
H
L
Active  
L
H
L
High-Z  
Dout  
Active  
L
L
Dout  
Active  
X
X
X
L
H
L
Din  
High-Z  
Din  
Lower Byte Write  
Upper Byte Write  
Word Write  
Active  
L
H
L
High-Z  
Din  
Active  
L
L
Din  
Active  
Note: X means don’t care (must be low or high state).  
Byte Mode  
CS1# CS2 OE# WE# BYTE#  
SA  
X
LB#  
X
UB#  
X
IO0~7  
IO8~15  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Mode  
Power  
Standby  
Standby  
Standby  
Active  
H
X
L
X
L
X
X
H
L
X
X
H
L
X
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Deselected  
X
X
X
Deselected  
H
H
H
X
X
H
H
Deselected  
L
VCC  
VCC  
X
L
X
Output Disabled  
Output Disabled  
L
X
L
X
X
L
Active  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
91  
A d v a n c e I n f o r m a t i o n  
Functional Description  
8M Version D  
CS1# CS2 OE# WE#  
LB#  
X
X
H
L
UB#  
X
IO0~8  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
IO9~16  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
Mode  
Power  
Standby  
Standby  
Standby  
Active  
H
X
X
L
L
L
L
L
L
L
L
X
L
X
X
X
H
H
L
X
X
X
H
H
H
H
H
L
Deselected  
X
Deselected  
X
H
H
H
H
H
H
H
H
H
X
Deselected  
Output Disabled  
Output Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
X
L
L
Active  
H
L
Active  
L
H
L
High-Z  
Dout  
Active  
L
L
Dout  
Active  
X
X
X
L
H
L
Din  
High-Z  
Din  
Lower Byte Write  
Upper Byte Write  
Word Write  
Active  
L
H
L
High-Z  
Din  
Active  
L
L
Din  
Active  
Note: X means don’t care (must be low or high state).  
Absolute Maximum Ratings (4M Version F)  
Item  
Symbol  
VIN,VOUT  
VCC  
Ratings  
Unit  
Voltage on any pin relative to VSS  
Voltage on VCC supply relative to VSS  
Power Dissipation  
-0.2 to VCC+0.3V  
V
V
-0.2 to 4.0V  
1.0  
PD  
W
Operating Temperature  
TA  
-40 to 85  
°C  
Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Functional  
operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
Absolute Maximum Ratings (4M Version G, 8M Version C, 8M Version D)  
Item  
Symbol  
VIN,VOUT  
VCC  
Ratings  
-0.2 to VCC+0.3V (Max. 3.6V)  
-0.2 to 3.6V  
Unit  
V
Voltage on any pin relative to VSS  
Voltage on VCC supply relative to VSS  
Power Dissipation  
V
PD  
1.0  
W
Operating Temperature  
TA  
-40 to 85  
°C  
Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Functional  
operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
92  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
Recommended DC Operating Conditions (Note 1)  
Item  
Symbol  
VCC  
Min  
Typ  
3.0  
0
Max  
Unit  
V
Supply voltage  
Ground  
2.7  
3.3  
VSS  
0
2.2  
0
VCC+0.2 (Note 2)  
0.6  
V
Input high voltage  
Input low voltage  
VIH  
-
V
VIL  
-0.2 (Note 3)  
-
V
Notes:  
1. T = -40 to 85°C, unless otherwise specified.  
A
2. Overshoot: Vcc+1.0V in case of pulse width 20ns.  
3. Undershoot: -1.0V in case of pulse width 20ns.  
4. Overshoot and undershoot are sampled, not 100% tested.  
Capacitance (f=1MHz, TA=25°C)  
Item  
Symbol  
CIN  
Test Condition  
Min  
Max  
8
Unit  
Input capacitance  
VIN=0V  
VIO=0V  
-
-
pF  
pF  
Input/Output capacitance  
CIO  
10  
Note: Capacitance is sampled, not 100% tested  
DC Operating Characteristics  
Common  
Typ  
Min (Note) Max  
Item  
Symbol  
Test Conditions  
Unit  
Input leakage current  
ILI  
VIN=VSS to VCC  
CS1#=VIH or CS2=VIL or OE#=VIH or  
-1  
-1  
-
-
1
1
µ
A
A
Output leakage current  
ILO  
µ
WE#=VIL or LB#=UB#=VIH, VIO=Vss to VCC  
Output low voltage  
Output high voltage  
VOL  
VOH  
IOL = 2.1mA  
-
-
-
0.4  
-
V
IOH = -1.0mA  
2.4  
V
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
93  
A d v a n c e I n f o r m a t i o n  
DC Operating Characteristics  
4M Version F  
Typ  
Item  
Symbol  
Test Conditions  
Min  
(Note)  
Max  
Unit  
Cycle time=1µs, 100% duty, IIO=0mA, CS1#  
CS2 VCC-0.2V,  
BYTE#=VSS or VCC, VIN  
0.2V or/and UB# 0.2V  
0.2V,  
ICC1  
-
-
-
3
mA  
0.2V or VIN VCC-0.2V, LB#  
Average operating current  
Cycle time=Min, IIO=0mA, 100% duty, CS1# = VIL,  
CS2=VIH,  
ICC2  
-
-
22  
10  
mA  
µA  
BYTE# = VSS or VCC, VIN=VIL or VIH, LB#  
and UB# 0.2V  
0.2V or/  
CS1#  
VCC-0.2V, CS2 VCC-0.2V (CS1# controlled)  
ISB1  
(Note)  
1.0  
(Note)  
or CS2 0.2V (CS2 controlled), BYTE# = VSS or VCC  
,
Standby Current (CMOS)  
Other input =0~VCC  
Note: Typical values are not 100% tested.  
DC Operating Characteristics  
4M Version G  
Typ  
Item  
Symbol  
Test Conditions  
Min  
(Note)  
Max  
Unit  
Cycle time=1µs, 100% duty, IIO=0mA, CS1# 0.2V,  
CS2  
BYTE#=VSS or VCC, VIN  
0.2V or/and UB# 0.2V  
VCC-0.2V,  
ICC1  
-
-
-
4
mA  
0.2V or VIN VCC-0.2V, LB#  
Average operating current  
Cycle time=Min, IIO=0mA, 100% duty, CS1# = VIL,  
CS2=VIH,  
ICC2  
-
-
22  
10  
mA  
µA  
BYTE# = VSS or VCC, VIN=VIL or VIH, LB#  
and UB# 0.2V  
0.2V or/  
CS1#  
VCC-0.2V, CS2 VCC-0.2V (CS1# controlled)  
ISB1  
(Note)  
3.0  
(Note)  
or CS2 0.2V (CS2 controlled), BYTE# = VSS or VCC  
,
Standby Current (CMOS)  
Other input = 0~VCC  
Note: Typical values are not 100% tested.  
94  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
DC Operating Characteristics  
8M Version C  
Typ  
Item  
Symbol  
Test Conditions  
Min  
(Note)  
Max  
Unit  
Cycle time=1µs, 100% duty, IIO=0mA, CS1# 0.2V,  
CS2  
BYTE#=VSS or VCC, VIN  
0.2V or/and UB# 0.2V  
VCC-0.2V,  
ICC1  
-
-
3
mA  
0.2V or VIN VCC-0.2V, LB#  
Average operating current  
Standby Current (CMOS)  
Cycle time=Min, IIO=0mA, 100% duty, CS1# = VIL,  
CS2=VIH,  
ICC2  
-
-
-
-
22  
15  
mA  
µA  
BYTE# = VSS or VCC, VIN=VIL or VIH, LB#  
and UB# 0.2V  
0.2V or/  
CS1#  
VCC-0.2V, CS2 VCC-0.2V (CS1# controlled)  
ISB1  
(Note)  
or CS2 0.2V (CS2 controlled), BYTE# = VSS or VCC  
,
Other input = 0~VCC  
Note: Typical values are not 100% tested.  
DC Operating Characteristics  
8M Version D  
Typ  
Item  
Symbol  
Test Conditions  
Min  
(Note)  
Max  
Unit  
Cycle time=1µs, 100% duty, IIO=0mA, CS1# 0.2V,  
CS2  
BYTE#=VSS or VCC, VIN  
0.2V or/and UB# 0.2V  
VCC-0.2V,  
ICC1  
-
-
TBD  
mA  
0.2V or VIN VCC-0.2V, LB#  
Average operating current  
Cycle time=Min, IIO=0mA, 100% duty, CS1# = VIL,  
CS2=VIH,  
ICC2  
-
-
-
-
TBD  
TBD  
mA  
µA  
BYTE# = VSS or VCC, VIN=VIL or VIH, LB#  
and UB# 0.2V  
0.2V or/  
CS1#  
VCC-0.2V, CS2 VCC-0.2V (CS1# controlled)  
ISB1  
(Note)  
or CS2 0.2V (CS2 controlled), BYTE# = VSS or VCC  
,
Standby Current (CMOS)  
Other input = 0~VCC  
Note: Typical values are not 100% tested.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
95  
A d v a n c e I n f o r m a t i o n  
AC Operating Conditions  
Test Conditions  
Test Load and Test Input/Output Reference  
„
„
„
„
Input pulse level: 0.4 to 2.2V  
Input rising and falling time: 5ns  
Input and output reference voltage: 1.5V  
Output load (See Figure 32): CL= 30pF+1TTL  
V
(note 3)  
TM  
R2 (note 2)  
R1 (note 2)  
CL (note 1)  
Figure 32. AC Output Load  
Notes:  
1. Including scope and jig capacitance.  
2. R1=3070, R2=3150Ω.  
3. VTM =2.8V.  
AC Characteristics  
Read/Write Characteristics (VCC=2.7-3.3V)  
Speed Bins  
70ns  
Parameter List  
Read cycle time  
Symbol  
tRC  
tAA  
tCO1, tCO2  
tOE  
Min  
Max  
-
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
70  
-
Address access time  
70  
70  
35  
70  
-
Chip select to output  
-
Output enable to valid output  
LB#, UB# Access Time  
-
tBA  
-
Chip select to low-Z output  
LB#, UB# enable to low-Z output  
Output enable to low-Z output  
Chip disable to high-Z output  
UB#, LB# disable to high-Z output  
Output disable to high-Z output  
Output hold from address change  
tLZ1, tLZ2  
tBLZ  
10  
10  
5
-
tOLZ  
-
tHZ1, tHZ2  
tBHZ  
0
25  
25  
25  
-
0
tOHZ  
0
tOH  
10  
96  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
Speed Bins  
70ns  
Parameter List  
Write cycle time  
Symbol  
tWC  
tCW  
tAS  
Min  
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
70  
60  
0
-
-
Chip select to end of write  
Address set-up time  
-
Address valid to end of write  
LB#, UB# valid to end of write  
Write pulse width  
tAW  
60  
60  
50  
0
-
tBW  
-
tWP  
-
Write recovery time  
tWR  
tWHZ  
tDW  
tDH  
-
Write to output high-Z  
Data to write time overlap  
Data hold from write time  
End write to output low-Z  
0
20  
-
30  
0
-
tOW  
5
-
Data Retention Characteristics (4M Version F)  
Item  
Symbol  
Test Condition  
Min  
Typ  
Max Unit  
VCC for data retention  
VDR  
CS1#  
VCC-0.2V (Note 1), VIN 0V. BYTE# = VSS or VCC 1.5  
-
3.3  
10  
V
1.0  
(Note 2)  
Data retention current  
IDR  
VCC=3.0V, CS1#  
VCC-0.2V (Note 1), VIN  
0V  
-
µA  
Data retention set-up time  
Recovery time  
tSDR  
tRDR  
0
-
-
-
-
See data retention waveform  
ns  
tRC  
Notes:  
1. CS1 controlled:CS1#VCC-0.2V. CS2 controlled: CS2 0.2V.  
2. Typical values are not 100% tested.  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
97  
A d v a n c e I n f o r m a t i o n  
Data Retention Characteristics (4M Version G)  
Item  
Symbol  
VDR  
Test Condition  
VCC-0.2V (Note 1), VIN 0V. BYTE# = VSS or VCC 1.5  
VCC=1.5V, CS1# VCC-0.2V (Note 1), VIN  
Min  
Typ  
Max Unit  
VCC for data retention  
Data retention current  
Data retention set-up time  
Recovery time  
CS1#  
-
-
-
-
3.3  
3
V
IDR  
0V  
-
0
µA  
tSDR  
tRDR  
-
See data retention waveform  
ns  
tRC  
-
Notes:  
1. CS1 controlled:CS1#V -0.2V. CS2 controlled: CS2 0.2V.  
CC  
Data Retention Characteristics (8M Version C)  
Item  
Symbol  
VDR  
Test Condition  
VCC-0.2V (Note 1). BYTE# = VSS or VCC  
VCC=3.0V, CS1# VCC-0.2V (Note 1)  
Min  
1.5  
-
Typ  
Max Unit  
VCC for data retention  
Data retention current  
Data retention set-up time  
Recovery time  
CS1#  
-
-
-
-
3.3  
15  
-
V
IDR  
µA  
tSDR  
tRDR  
0
See data retention waveform  
ns  
tRC  
-
Notes:  
1. CS1 controlled:CS1#VCC-0.2V. CS2 controlled: CS2 0.2V.  
Data Retention Characteristics (8M Version D)  
Item  
Symbol  
VDR  
Test Condition  
Min  
1.5  
-
Typ  
Max Unit  
VCC for data retention  
Data retention current  
Data retention set-up time  
Recovery time  
CS1#  
VCC-0.2V (Note 1), BYTE# = VSS or VCC  
-
-
-
-
3.3  
TBD  
-
V
IDR  
VCC=3.0V, CS1#  
VCC-0.2V (Note 1)  
µA  
tSDR  
tRDR  
0
See data retention waveform  
ns  
tRC  
-
Notes:  
1. CS1 controlled:CS1#VCC-0.2V. CS2 controlled: CS2 0.2V.  
Timing Diagrams  
tRC  
Address  
tAA  
tOH  
Data Out  
Previous Data Valid  
Data Valid  
Figure 33. Timing Waveform of Read Cycle(1) (Address Controlled, CS#1=OE#=VIL, CS2=WE#=VIH, UB#  
and/or LB#=VIL)  
98  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
tRC  
Address  
tOH  
tAA  
tCO1  
CS1#  
CS2  
tCO2  
tBA  
tHZ  
UB#, LB#  
tBHZ  
tOHZ  
tOE  
OE#  
tOLZ  
tBLZ  
tLZ  
Data out  
High-Z  
Data Valid  
Notes:  
1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to  
output voltage levels.  
2. At any given temperature and voltage condition, t (Max.) is less than t (Min.) both for a given device and from  
HZ  
LZ  
device to device interconnection.  
Figure 34. Timing Waveform of Read Cycle(2) (WE#=VIH, if BYTE# is Low, Ignore UB#/LB# Timing)  
tWC  
Address  
tCW(2)  
tWR(4)  
CS1#  
tAW  
CS2  
tCW(2)  
tBW  
UB#, LB#  
tWP(1)  
WE#  
tAS(3)  
tDW  
Data Valid  
tDH  
High-Z  
High-Z  
Data in  
tWHZ  
tOW  
Data out  
Data Undefined  
Figure 35. Timing Waveform of Write Cycle(1) (WE# controlled, if BYTE# is Low, Ignore UB#/LB# Timing)  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
99  
A d v a n c e I n f o r m a t i o n  
tWC  
Address  
CS1#  
tAS(3)  
tCW(2)  
tAW  
tWR(4)  
CS2  
UB#, LB#  
WE#  
tBW  
tWP(1)  
tDW  
Data Valid  
tDH  
Data in  
Data out  
High-Z  
High-Z  
Figure 36. Timing Waveform of Write Cycle(2) (CS# controlled, if BYTE# is Low, Ignore UB#/LB# Timing)  
tWC  
Address  
tCW(2)  
tWR(4)  
CS1#  
tAW  
CS2  
tCW(2)  
tBW  
UB#, LB#  
tAS(3)  
tWP(1)  
WE#  
tDH  
tDW  
Data Valid  
Data in  
Data out  
High-Z  
High-Z  
Notes:  
1. A write occurs during the overlap (t ) of low CS1# and low WE#. A write begins when CS1# goes low and WE#  
WP  
goes low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double  
byte operation. A write ends at the earliest transition when CS1# goes high and WE# goes high. The t  
measured from the beginning of write to the end of write.  
is  
WP  
2. t  
is measured from the CS1# going low to the end of write.  
CW  
3. t is measured from the address valid to the beginning of write.  
AS  
4. t  
is measured from the end of write to the address change. t  
applied in case a write ends as CS1# or WE#  
WR  
WR  
going high.  
Figure 37. Timing Waveform of Write Cycle(3) (UB#, LB# controlled)  
100  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  
A d v a n c e I n f o r m a t i o n  
CS1# Controlled  
Data Retention Mode  
tSDR  
tRDR  
V
CC  
2.7V  
2.2V  
V
DR  
CS1# V  
CC  
- 0.2V  
CS1#  
GND  
CS2 Controlled  
Data Retention Mode  
V
CC  
2.7V  
CS2  
tSDR  
tRDR  
V
DR  
CS2 0.2V  
0.4V  
GND  
Figure 38. Data Retention Waveform  
March 31, 2005 S71GL032A_00_A0  
S71GL032A Based MCPs  
101  
A d v a n c e I n f o r m a t i o n  
Revision Summary  
Revision A (March 31, 2005)  
Initial release.  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary  
industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that  
includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal  
injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control,  
medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and  
artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-men-  
tioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other  
abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under  
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior au-  
thorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion LLC product under development  
by Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided  
as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement  
of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the  
use of the information in this document.  
Copyright ©2005 Spansion LLC. All rights reserved. Spansion, the Spansion logo, and MirrorBit are trademarks of Spansion LLC. Other company and product  
names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
102  
S71GL032A Based MCPs  
S71GL032A_00_A0 March 31, 2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY