S71AL016D02BFWTF2 [SPANSION]

Stacked Multi-Chip Product (MCP) Flash Memory and RAM; 堆叠式多芯片产品( MCP )闪存和RAM
S71AL016D02BFWTF2
型号: S71AL016D02BFWTF2
厂家: SPANSION    SPANSION
描述:

Stacked Multi-Chip Product (MCP) Flash Memory and RAM
堆叠式多芯片产品( MCP )闪存和RAM

闪存
文件: 总76页 (文件大小:1444K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S71AL016D based MCPs  
Stacked Multi-Chip Product (MCP) Flash Memory and  
RAM  
16 Megabit (1 M x 16-bit) CMOS 3.0 Volt-only  
Flash Memory and 2 Megabit (128K x 16-bit) Static RAM/  
Pseudo Static RAM  
ADVANCE  
INFORMATION  
Distinctive Characteristics  
„
„
Packages  
— 7 x 9 x 1.2 mm 56 ball FBGA  
MCP Features  
„
Power supply voltage of 2.7 to 3.1 volt  
Operating Temperature  
„
High performance  
— –25°C to +85°C (Wireless)  
— 70 ns  
General Description  
The S71AL series is a product line of stacked Multi-Chip Product (MCP) packages  
and consists of:  
„ One S29AL Flash memory die  
„ pSRAM or SRAM  
The products covered by this document are listed in the table below:  
Flash Memory Density  
16Mb  
SRAM Density  
2Mb  
S71AL016D02  
Publication Number S71AL016D_02_04_00 Revision A Amendment 1 Issue Date November 11, 2004  
P r e l i m i n a r y  
Product Selector Guide  
16 Mb Flash Memory  
Device-Model#  
S71AL016D02-TF  
S71AL016D02-BF  
S71AL016D02-T7  
S71AL016D02-B7  
Flash Access time (ns)  
SRAM density  
2 M SRAM  
2 M SRAM  
2 M SRAM  
2 M SRAM  
(p)SRAM Access time (ns) SRAM type  
Package  
TLC056  
TLC056  
TLC056  
TLC056  
70  
70  
70  
70  
70  
70  
70  
70  
SRAM2  
SRAM2  
SRAM1  
SRAM1  
2
S71AL016D based MCPs  
S71AL016D_02_04_00_A1 November 11, 2004  
A d v a n c e I n f o r m a t i o n  
TABLE OF CONTENTS  
Write Operation Status . . . . . . . . . . . . . . . . . . . . 34  
S71AL016D based MCPs  
DQ7: Data# Polling ............................................................................................34  
Figure 5. Data# Polling Algorithm........................................ 35  
RY/BY#: Ready/Busy# ....................................................................................... 35  
DQ6: Toggle Bit I ............................................................................................... 36  
DQ2: Toggle Bit II .............................................................................................. 36  
Reading Toggle Bits DQ6/DQ2 ..................................................................... 37  
Figure 6. Toggle Bit Algorithm............................................. 38  
DQ5: Exceeded Timing Limits ........................................................................38  
DQ3: Sector Erase Timer ................................................................................ 39  
Table 10. Write Operation Status ......................................... 39  
Figure 7. Maximum Negative Overshoot Waveform ................ 40  
Figure 8. Maximum Positive Overshoot Waveform.................. 40  
Distinctive Characteristics . . . . . . . . . . . . . . . . . . . 1  
MCP Features ........................................................................................................ 1  
General Description . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . .2  
16 Mb Flash Memory .............................................................................................2  
Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . .6  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . .8  
Valid Combinations . . . . . . . . . . . . . . . . . . . . . . . . .9  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 10  
TLC056—56-ball Fine-Pitch Ball Grid Array (FBGA)  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 9. ICC1 Current vs. Time (Showing Active and  
9 x 7 mm Package ...............................................................................................10  
Automatic Sleep Currents).................................................. 42  
Figure 10. Typical ICC1 vs. Frequency................................... 43  
Figure 11. Test Setup......................................................... 44  
Table 11. Test Specifications ............................................... 44  
Figure 12. Input Waveforms and Measurement Levels............ 45  
Read Operations .................................................................................................46  
Figure 13. Read Operations Timings..................................... 46  
Hardware Reset (RESET#) ..............................................................................47  
Figure 14. RESET# Timings................................................. 47  
Word/Byte Configuration (BYTE#) ...........................................................48  
Figure 15. BYTE# Timings for Read Operations...................... 48  
Figure 16. BYTE# Timings for Write Operations ..................... 49  
Erase/Program Operations ..............................................................................50  
Figure 17. Program Operation Timings ................................. 51  
Figure 18. Chip/Sector Erase Operation Timings .................... 52  
Figure 19. Data# Polling Timings (During Embedded Algorithms)..  
53  
S29AL016D  
General Description 12  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 1. S29AL016D Device Bus Operations .......................... 15  
Word/Byte Configuration .................................................................................15  
Requirements for Reading Array Data ..........................................................15  
Writing Commands/Command Sequences ................................................. 16  
Program and Erase Operation Status ........................................................... 16  
Standby Mode ....................................................................................................... 16  
Automatic Sleep Mode .......................................................................................17  
RESET#: Hardware Reset Pin ..........................................................................17  
Output Disable Mode .........................................................................................17  
Table 2. Sector Address Tables (Top Boot Device) ................. 18  
Table 3. Sector Address Tables (Bottom Boot Device) ............ 19  
Autoselect Mode ................................................................................................20  
Table 4. S29AL016D Autoselect Codes (High Voltage Method) . 20  
Sector Protection/Unprotection ...................................................................20  
Temporary Sector Unprotect ......................................................................... 21  
Figure 1. Temporary Sector Unprotect Operation.................... 21  
Figure 2. In-System Sector Protect/Unprotect Algorithms........ 22  
Figure 20. Toggle Bit Timings (During Embedded Algorithms).. 53  
Figure 21. DQ2 vs. DQ6 for Erase and Erase Suspend Operations .  
54  
Figure 22. Temporary Sector Unprotect/Timing Diagram......... 54  
Figure 23. Sector Protect/Unprotect Timing Diagram.............. 55  
Figure 24. Alternate CE# Controlled Write Operation Timings.. 57  
TSOP and BGA Pin Capacitance . . . . . . . . . . . . 58  
Common Flash Memory Interface (CFI) . . . . . . .23  
Table 5. CFI Query Identification String ................................ 23  
Table 6. System Interface String ......................................... 24  
Table 7. Device Geometry Definition .................................... 24  
Table 8. Primary Vendor-Specific Extended Query ................. 25  
Hardware Data Protection ..............................................................................25  
2Mbit Type 1 SRAM  
Common Features . . . . . . . . . . . . . . . . . . . . . . . . 59  
Functional Description . . . . . . . . . . . . . . . . . . . . . 60  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
These parameters are verified in device  
Low V Write Inhibit ..................................................................................25  
CC  
Write Pulse “Glitch” Protection ................................................................25  
Logical Inhibit .................................................................................................. 26  
Power-Up Write Inhibit ............................................................................... 26  
Reading Array Data ............................................................................................27  
Reset Command ..................................................................................................27  
Autoselect Command Sequence ....................................................................27  
Word/Byte Program Command Sequence ................................................28  
Unlock Bypass Command Sequence ........................................................ 28  
Figure 3. Program Operation................................................ 29  
Chip Erase Command Sequence ................................................................... 29  
Sector Erase Command Sequence ................................................................ 30  
Erase Suspend/Erase Resume Commands ....................................................31  
Figure 4. Erase Operation.................................................... 32  
Command Definitions ........................................................................................33  
Table 9. S29AL016D Command Definitions ........................... 33  
characterization and are not 100% tested. . . . . . 60  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 60  
Operating Characteristics (Over Specified  
Temperature Range) . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 1. Power Savings with Page Mode (WE# = VIH) ........... 62  
Timing Test Conditions . . . . . . . . . . . . . . . . . . . . 62  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 2. Timing of Read Cycle (CE# = OE# = VIL, WE# = CE2=  
VIH)................................................................................. 64  
Figure 3. Timing Waveform of Read Cycle (WE# = VIH).......... 64  
Figure 4. Timing Waveform of Write Cycle (WE# Control) ....... 65  
Figure 5. Timing Waveform of Write Cycle (CE1# Control) ...... 65  
November 11, 2004 S71AL016D_02_04_00_A1  
3
A d v a n c e I n f o r m a t i o n  
Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . 71  
2Mbit Type 2 SRAM  
Figure 3. Read Cycle 1 (Address Transition Controlled)........... 71  
Figure 4. Read Cycle 2 (OE# Controlled)............................... 71  
Figure 5. Write Cycle 1 (WE# Controlled).............................. 72  
Figure 6. Write Cycle 2 (CE# Controlled) .............................. 73  
Figure 7. Write Cycle 3 (WE# Controlled, OE# LOW).............. 73  
Figure 8. Write Cycle 4 (BHE#/BLE# Controlled, OE# Low)..... 74  
Common Features . . . . . . . . . . . . . . . . . . . . . . . . 66  
Functional Description . . . . . . . . . . . . . . . . . . . . . 66  
Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Operating Range ..................................................................................................67  
Product Portfolio ................................................................................................67  
Electrical Characteristics ..................................................................................67  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
AC Test Loads and Waveforms . . . . . . . . . . . . . 68  
Figure 1. AC Test Loads and Waveforms................................ 68  
Data Retention Characteristics (Over the  
Typical DC and AC Parameters . . . . . . . . . . . . . 74  
Figure 9. Operating Current vs. Supply Voltage ..................... 74  
Figure 10. Standby Current vs. Supply Voltage...................... 74  
Figure 11. Access Time vs. Supply Voltage............................ 75  
Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 1. Truth Table ........................................................... 75  
Operation Range) . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 2. Data Retention Waveform...................................... 69  
Switching Characteristics . . . . . . . . . . . . . . . . . . 70  
Revision Summary  
4
S71AL016D_02_04_00_A1 November 11, 2004  
P r e l i m i n a r y  
MCP Block Diagram  
VCC  
f
VCC  
CE#f  
RST#f  
Flash 1  
A19-A0  
Shared Address  
OE#  
WE#  
RY/BY#  
DQ15 to DQ0  
VCCS  
VCC  
A16-A0  
pSRAM/SRAM  
IO15-IO0  
CE1#s  
UB#  
CE1#  
UB#  
LB#  
LB#  
CE2s  
CE2  
November 11, 2004 S71AL016D_02_04_00_A1  
5
P r e l i m i n a r y  
Connection Diagram  
56-ball Fine-Pitch Ball Grid Array  
(Top View, Balls Facing Down)  
Legend  
A2  
A7  
A3  
LB#  
B3  
A4  
RFU  
B4  
A5  
WE#  
B5  
A6  
A8  
A7  
A11  
B7  
B1  
A3  
B2  
B6  
B8  
A15  
C8  
Flash only  
RAM only  
A6  
UB#  
C3  
RST#f  
C4  
CE2s  
C5  
A19  
C6  
A12  
C7  
C1  
C2  
A2  
A5  
A18  
D3  
RY/BY#  
RFU  
A9  
A13  
D7  
RFU  
D8  
D1  
D2  
D6  
A1  
A4  
A17  
E3  
A10  
E6  
A14  
E7  
RFU  
E8  
Reserved for  
Future Use  
E1  
E2  
A0  
VSS  
F2  
DQ1  
F3  
DQ6  
F6  
RFU  
F7  
A16  
F8  
F1  
F4  
DQ3  
G4  
F5  
DQ4  
G5  
CE1#f  
G1  
OE#  
G2  
DQ0  
H2  
DQ9  
G3  
DQ13  
G6  
DQ15  
G7  
RFU  
G8  
CE1#s  
DQ10  
H3  
VCCf  
H4  
VCCs  
H5  
DQ12  
H6  
DQ7  
H7  
VSS  
DQ8  
DQ2  
DQ11  
RFU  
DQ5  
DQ14  
MCP  
Flash Only Address  
Shared Addresses  
A16-A0  
S71AL016D02  
A19-A17  
6
S71AL016D_02_04_00_A1 November 11, 2004  
P r e l i m i n a r y  
Pin Description  
A –A  
=
=
=
=
=
=
=
=
=
=
=
=
=
17 Address Inputs (Common)  
3 Address Inputs (Flash)  
16 Data Inputs/Outputs (Common)  
Chip Enable 1 (Flash)  
Chip Enable 1 (SRAM)  
Chip Enable 2 (SRAM)  
Output Enable (Common)  
Write Enable (Common)  
Ready/Busy Output (Flash)  
Upper Byte Control (SRAM)  
Lower Byte Control (SRAM)  
Hardware Reset Pin, Active Low (Flash)  
Flash 3.0 volt-only single power supply (see Product  
Selector Guide for speed options and voltage supply  
tolerances)  
16  
0
A –A  
19  
17  
DQ –DQ  
15  
0
CE1#f  
CE1#s  
CE2s  
OE#  
WE#  
RY/BY#  
UB#  
LB#  
RST#f  
V
f
CC  
V
V
NC  
s
=
=
=
=
pSRAM Power Supply  
CC  
Device Ground (Common)  
Pin Not Connected Internally  
Reserved for Future Use  
SS  
RFU  
Logic Symbol  
20  
A19–A0  
16  
DQ15–DQ0  
CE#  
CE1#s  
CE2s  
RY/BY#  
OE#  
WE#  
RST#f  
UB#  
LB#  
November 11, 2004 S71AL016D_02_04_00_A1  
7
P r e l i m i n a r y  
Ordering Information  
The order number is formed by a valid combinations of the following:  
S71AL  
016  
D
02 BA  
W
T
F
0
PACKING TYPE  
0
2
3
=
=
=
Tray  
7” Tape and Reel  
13” Tape and Reel  
MODEL NUMBER  
See the Valid Combinations table.  
BOOT TYPE  
T
B
=
=
Top Boot  
Bottom Boot  
TEMPERATURE RANGE  
Wireless (-25 C to +85°C)  
W
=
°
PACKAGE TYPE  
BA  
BF  
=
=
Fine-pitch BGA Lead (Pb)-free compliant package  
Fine-pitch BGA Lead (Pb)-free package  
SRAM DENSITY  
02 2Mb SRAM  
=
PROCESS TECHNOLOGY  
200 nm, Floating Gate Technology  
D
=
FLASH DENSITY  
016 16Mb  
=
PRODUCT FAMILY  
S71AL Multi-chip Product (MCP)  
3.0-volt Flash Memory and RAM  
8
S71AL016D_02_04_00_A1 November 11, 2004  
P r e l i m i n a r y  
Valid Combinations  
S71AL016D Valid Combinations  
(p)SRAM  
Type/Access  
Time (ns)  
Base Ordering  
Part Number  
Package &  
Package Modifier/  
Model Number  
Speed Options  
(ns)  
Package  
Marking  
Temperature  
Packing Type  
S71AL016D02  
S71AL016D02  
S71AL016D02  
S71AL016D02  
TF  
BF  
T7  
B7  
SRAM2/ 70  
SRAM2 / 70  
SRAM1 / 70  
SRAM1 / 70  
(Note 2)  
BAW  
BFW  
0, 2, 3 (Note 1)  
70  
Notes:  
Valid Combinations  
1. Type 0 is standard. Specify other options as required.  
2. BGA package marking omits leading “S” and packing type  
designator from ordering part number.  
Valid Combinations list configurations planned to be supported in vol-  
ume for this device. Consult your local sales office to confirm avail-  
ability of specific valid combinations and to check on newly released  
combinations.  
November 11, 2004 S71AL016D_02_04_00_A1  
9
P r e l i m i n a r y  
Physical Dimensions  
TLC056—56-ball Fine-Pitch Ball Grid Array (FBGA)  
9 x 7 mm Package  
A
D1  
D
eD  
0.15  
(2X)  
C
8
7
6
5
4
3
2
1
SE  
7
E
B
E1  
eE  
H
G
F
E
D
C
B
A
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
BOTTOM VIEW  
0.20  
0.08  
C
C
A2  
A
C
A1  
SIDE VIEW  
6
56X  
b
0.15  
M
C
C
A
B
0.08  
M
NOTES:  
PACKAGE  
JEDEC  
TLC 056  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
9.00 mm x 7.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
1.20  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.20  
0.81  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
0.97  
BODY THICKNESS  
BODY SIZE  
D
9.00 BSC.  
7.00 BSC.  
5.60 BSC.  
5.60 BSC.  
8
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
8
56  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
φb  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
eE  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
SD / SE  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SOLDER BALL PLACEMENT  
A1,A8,D4,D5,E4,E5,H1,H8  
DEPOPULATED SOLDER BALLS  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3348 \ 16-038.22a  
10  
S71AL016D_02_04_00_A1 November 11, 2004  
S29AL016D  
16 Megabit (2 M x 8-Bit/1 M x 16-Bit)  
CMOS 3.0 Volt-only Boot Sector Flash Memory  
ADVANCE  
INFORMATION  
Datasheet  
Distinctive Characteristics  
Architectural Advantages  
Performance Characteristics  
„
„
„
Single power supply operation  
— Full voltage range: 2.7 to 3.6 volt read and write op-  
erations for battery-powered applications  
„
High performance  
— Access times as fast as 70 ns  
„
Ultra low power consumption (typical values  
at 5 MHz)  
— 200 nA Automatic Sleep mode current  
— 200 nA standby mode current  
— 9 mA read current  
Manufactured on 200nm process technology  
— Fully compatible with 0.23 µm Am29LV160D and  
MBM29LV160E devices  
Flexible sector architecture  
— One 16 Kbyte, two 8 Kbyte, one 32 Kbyte, and thirty-  
one 64 Kbyte sectors (byte mode)  
— 20 mA program/erase current  
„
„
Cycling endurance: 1,000,000 cycles per  
sector typical  
Data retention: 20 years typical  
— One 8 Kword, two 4 Kword, one 16 Kword, and thirty-  
one 32 Kword sectors (word mode)  
„
Sector Protection features  
Software Features  
— A hardware method of locking a sector to prevent any  
program or erase operations within that sector  
— Sectors can be locked in-system or via programming  
equipment  
„
„
„
CFI (Common Flash Interface) compliant  
— Provides device-specific information to the system,  
allowing host software to easily reconfigure for  
different Flash devices  
Temporary Sector Unprotect feature allows code  
changes in previously locked sectors  
Erase Suspend/Erase Resume  
„
Unlock Bypass Program Command  
— Reduces overall programming time when issuing  
multiple program command sequences  
— Suspends an erase operation to read data from, or  
program data to, a sector that is not being erased,  
then resumes the erase operation  
„
„
Top or bottom boot block configurations  
available  
Data# Polling and toggle bits  
— Provides a software method of detecting program or  
erase operation completion  
Compatibility with JEDEC standards  
— Pinout and software compatible with single-power  
supply Flash  
Hardware Features  
„
Ready/Busy# pin (RY/BY#)  
— Superior inadvertent write protection  
— Provides a hardware method of detecting program or  
erase cycle completion  
„
Hardware reset pin (RESET#)  
— Hardware method to reset the device to reading array  
data  
Publication Number S29AL016D_00 Revision A Amendment 1 Issue Date August 4, 2004  
A d v a n c e I n f o r m a t i o n  
General Description  
The S29AL016D is a 16 Mbit, 3.0 Volt-only Flash memory organized as 2,097,152  
bytes or 1,048,576 words. The device is offered in 48-ball FBGA, and 48-pin TSOP  
packages. The word-wide data (x16) appears on DQ15–DQ0; the byte-wide (x8)  
data appears on DQ7–DQ0. This device is designed to be programmed in-system  
with the standard system 3.0 volt V  
supply. A 12.0 V V or 5.0 V  
are not  
CC  
PP  
CC  
required for write or erase operations. The device can also be programmed in  
standard EPROM programmers.  
The device offers access times of 70 ns and 90 ns allowing high speed micropro-  
cessors to operate without wait states. To eliminate bus contention the device has  
separate chip enable (CE#), write enable (WE#) and output enable (OE#)  
controls.  
The device requires only a single 3.0 volt power supply for both read and write  
functions. Internally generated and regulated voltages are provided for the pro-  
gram and erase operations.  
The S29AL016D is entirely command set compatible with the JEDEC single-  
power-supply Flash standard. Commands are written to the command regis-  
ter using standard microprocessor write timings. Register contents serve as input  
to an internal state-machine that controls the erase and programming circuitry.  
Write cycles also internally latch addresses and data needed for the programming  
and erase operations. Reading data out of the device is similar to reading from  
other Flash or EPROM devices.  
Device programming occurs by executing the program command sequence. This  
initiates the Embedded Program algorithm—an internal algorithm that auto-  
matically times the program pulse widths and verifies proper cell margin. The  
Unlock Bypass mode facilitates faster programming times by requiring only two  
write cycles to program data instead of four.  
Device erasure occurs by executing the erase command sequence. This initiates  
the Embedded Erase algorithm—an internal algorithm that automatically pre-  
programs the array (if it is not already programmed) before executing the erase  
operation. During erase, the device automatically times the erase pulse widths  
and verifies proper cell margin.  
The host system can detect whether a program or erase operation is complete by  
observing the RY/BY# pin, or by reading the DQ7 (Data# Polling) and DQ6 (tog-  
gle) status bits. After a program or erase cycle has been completed, the device  
is ready to read array data or accept another command.  
The sector erase architecture allows memory sectors to be erased and repro-  
grammed without affecting the data contents of other sectors. The device is fully  
erased when shipped from the factory.  
Hardware data protection measures include a low V detector that automat-  
CC  
ically inhibits write operations during power transitions. The hardware sector  
protection feature disables both program and erase operations in any combina-  
tion of the sectors of memory. This can be achieved in-system or via  
programming equipment.  
The Erase Suspend/Erase Resume feature enables the user to put erase on  
hold for any period of time to read data from, or program data to, any sector that  
is not selected for erasure. True background erase can thus be achieved.  
12  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
The hardware RESET# pin terminates any operation in progress and resets the  
internal state machine to reading array data. The RESET# pin may be tied to the  
system reset circuitry. A system reset would thus also reset the device, enabling  
the system microprocessor to read the boot-up firmware from the Flash memory.  
The device offers two power-saving features. When addresses have been stable  
for a specified amount of time, the device enters the automatic sleep mode.  
The system can also place the device into the standby mode. Power consump-  
tion is greatly reduced in both these modes.  
Spansion’s Flash technology combines years of Flash memory manufacturing ex-  
perience to produce the highest levels of quality, reliability and cost effectiveness.  
The device electrically erases all bits within a sector simultaneously via  
Fowler-Nordheim tunneling. The data is programmed using hot electron  
injection.  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
13  
A d v a n c e I n f o r m a t i o n  
Product Selector Guide  
Family Part Number  
S29AL016D  
Speed Option  
Voltage Range: VCC = 2.7–3.6 V  
70  
70  
70  
30  
90  
90  
90  
35  
Max access time, ns (tACC  
)
Max CE# access time, ns (tCE  
)
Max OE# access time, ns (tOE  
)
Note: See “AC Characteristics” for full specifications.  
Block Diagram  
DQ0DQ15 (A-1)  
RY/BY#  
VCC  
Sector Switches  
VSS  
Erase Voltage  
Generator  
Input/Output  
RESET#  
Buffers  
State  
Control  
WE#  
BYTE#  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
STB  
CE#  
OE#  
Y-Decoder  
Y-Gating  
STB  
VCC Detector  
Timer  
Cell Matrix  
X-Decoder  
A0–A19  
14  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
Device Bus Operations  
This section describes the requirements and use of the device bus operations,  
which are initiated through the internal command register. The command register  
itself does not occupy any addressable memory location. The register is com-  
posed of latches that store the commands, along with the address and data  
information needed to execute the command. The contents of the register serve  
as inputs to the internal state machine. The state machine outputs dictate the  
function of the device. Table 1 lists the device bus operations, the inputs and con-  
trol levels they require, and the resulting output. The following subsections  
describe each of these operations in further detail.  
Table 1. S29AL016D Device Bus Operations  
DQ8–DQ15  
BYTE#  
= V  
Addresses  
(Note 1)  
DQ0– BYTE#  
Operation  
CE# OE# WE# RESET#  
DQ7  
DOUT  
DIN  
= V  
IH  
IL  
Read  
Write  
L
L
L
H
L
H
H
AIN  
AIN  
DOUT  
DIN  
DQ8–DQ14 = High-Z,  
DQ15 = A-1  
H
VCC  
0.3 V  
±
VCC ±  
0.3 V  
Standby  
X
X
X
High-Z High-Z  
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L
X
X
High-Z High-Z  
High-Z High-Z  
High-Z  
High-Z  
X
Sector Address,  
A6 = L, A1 = H,  
A0 = L  
Sector Protect (Note 2)  
L
H
L
VID  
DIN  
X
X
Sector Address,  
A6 = H, A1 = H,  
A0 = L  
Sector Unprotect (Note 2)  
L
H
X
L
VID  
VID  
DIN  
DIN  
X
X
Temporary Sector  
Unprotect  
X
X
AIN  
DIN  
High-Z  
Legend:  
L = Logic Low = VIL, H = Logic High = VIH, VID = 12.0 ± 0.5 V, X = Don’t Care, AIN = Address In, DIN = Data In, DOUT  
= Data Out  
Notes:  
1. Addresses are A19:A0 in word mode (BYTE# = VIH), A19:A-1 in byte mode (BYTE# = VIL).  
2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the  
“Sector Protection/Unprotection” section.  
Word/Byte Configuration  
The BYTE# pin controls whether the device data I/O pins DQ15–DQ0 operate in  
the byte or word configuration. If the BYTE# pin is set at logic ‘1, the device is in  
word configuration, DQ15–DQ0 are active and controlled by CE# and OE#.  
If the BYTE# pin is set at logic ‘0, the device is in byte configuration, and only  
data I/O pins DQ0–DQ7 are active and controlled by CE# and OE#. The data I/  
O pins DQ8–DQ14 are tri-stated, and the DQ15 pin is used as an input for the  
LSB (A-1) address function.  
Requirements for Reading Array Data  
To read array data from the outputs, the system must drive the CE# and OE# pins  
to V . CE# is the power control and selects the device. OE# is the output control  
IL  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
15  
A d v a n c e I n f o r m a t i o n  
and gates array data to the output pins. WE# should remain at V . The BYTE#  
IH  
pin determines whether the device outputs array data in words or bytes.  
The internal state machine is set for reading array data upon device power-up,  
or after a hardware reset. This ensures that no spurious alteration of the mem-  
ory content occurs during the power transition. No command is necessary in  
this mode to obtain array data. Standard microprocessor read cycles that as-  
sert valid addresses on the device address inputs produce valid data on the  
device data outputs. The device remains enabled for read access until the com-  
mand register contents are altered.  
See “Reading Array Data” for more information. Refer to the AC Read Operations  
table for timing specifications and to Figure 13 for the timing diagram. I  
in the  
CC1  
DC Characteristics table represents the active current specification for reading ar-  
ray data.  
Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data  
to the device and erasing sectors of memory), the system must drive WE# and  
CE# to V , and OE# to V .  
IL  
IH  
For program operations, the BYTE# pin determines whether the device accepts  
program data in bytes or words. Refer to “Word/Byte Configuration” for more  
information.  
The device features an Unlock Bypass mode to facilitate faster programming.  
Once the device enters the Unlock Bypass mode, only two write cycles are re-  
quired to program a word or byte, instead of four. The “Word/Byte Program  
Command Sequence” section has details on programming data to the device  
using both standard and Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device.  
Tables 2 and 3 indicate the address space that each sector occupies. A “sector  
address” consists of the address bits required to uniquely select a sector. The  
“Command Definitions” section has details on erasing a sector or the entire chip,  
or suspending/resuming the erase operation.  
After the system writes the autoselect command sequence, the device enters the  
autoselect mode. The system can then read autoselect codes from the internal  
register (which is separate from the memory array) on DQ7–DQ0. Standard read  
cycle timings apply in this mode. Refer to the “Autoselect Mode” and “Autoselect  
Command Sequence” sections for more information.  
I
in the DC Characteristics table represents the active current specification for  
CC2  
the write mode. The “AC Characteristics” section contains timing specification ta-  
bles and timing diagrams for write operations.  
Program and Erase Operation Status  
During an erase or program operation, the system may check the status of the  
operation by reading the status bits on DQ7–DQ0. Standard read cycle timings  
and I read specifications apply. Refer to “Write Operation Status” for more in-  
CC  
formation, and to “AC Characteristics” for timing diagrams.  
Standby Mode  
When the system is not reading or writing to the device, it can place the device  
in the standby mode. In this mode, current consumption is greatly reduced, and  
16  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
the outputs are placed in the high impedance state, independent of the OE#  
input.  
The device enters the CMOS standby mode when the CE# and RESET# pins are  
both held at V ± 0.3 V. (Note that this is a more restricted voltage range than  
CC  
V .) If CE# and RESET# are held at V , but not within V ± 0.3 V, the device  
IH  
IH  
CC  
will be in the standby mode, but the standby current will be greater. The device  
requires standard access time (t ) for read access when the device is in either  
CE  
of these standby modes, before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws ac-  
tive current until the operation is completed.  
In the DC Characteristics table, I  
specification.  
and I  
represents the standby current  
CC4  
CC3  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The de-  
vice automatically enables this mode when addresses remain stable for t + 30  
ACC  
ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control  
signals. Standard address access timings provide new data when addresses are  
changed. While in sleep mode, output data is latched and always available to the  
system. I  
in the DC Characteristics table represents the automatic sleep mode  
CC4  
current specification.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading  
array data. When the system drives the RESET# pin to V for at least a period of  
IL  
t , the device immediately terminates any operation in progress, tristates all  
RP  
data output pins, and ignores all read/write attempts for the duration of the RE-  
SET# pulse. The device also resets the internal state machine to reading array  
data. The operation that was interrupted should be reinitiated once the device is  
ready to accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held  
at V ±0.3 V, the device draws CMOS standby current (I  
). If RESET# is held  
SS  
CC4  
at V but not within V ±0.3 V, the standby current will be greater.  
IL  
SS  
The RESET# pin may be tied to the system reset circuitry. A system reset would  
thus also reset the Flash memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
If RESET# is asserted during a program or erase operation, the RY/BY# pin re-  
mains a “0” (busy) until the internal reset operation is complete, which requires  
a time of t  
(during Embedded Algorithms). The system can thus monitor RY/  
READY  
BY# to determine whether the reset operation is complete. If RESET# is asserted  
when a program or erase operation is not executing (RY/BY# pin is “1”), the reset  
operation is completed within a time of t  
(not during Embedded Algorithms).  
READY  
The system can read data t  
after the RESET# pin returns to V .  
IH  
RH  
Refer to the AC Characteristics tables for RESET# parameters and to Figure 14  
for the timing diagram.  
Output Disable Mode  
When the OE# input is at V , output from the device is disabled. The output pins  
IH  
are placed in the high impedance state.  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
17  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Tables (Top Boot Device)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range (in hexadecimal)  
Sector A19 A18 A17 A16 A15 A14 A13 A12  
Byte Mode (x8)  
000000–00FFFF  
010000–01FFFF  
020000–02FFFF  
030000–03FFFF  
040000–04FFFF  
050000–05FFFF  
060000–06FFFF  
070000–07FFFF  
080000–08FFFF  
090000–09FFFF  
0A0000–0AFFFF  
0B0000–0BFFFF  
0C0000–0CFFFF  
0D0000–0DFFFF  
0E0000–0EFFFF  
0F0000–0FFFFF  
100000–10FFFF  
110000–11FFFF  
120000–12FFFF  
130000–13FFFF  
140000–14FFFF  
150000–15FFFF  
160000–16FFFF  
170000–17FFFF  
180000–18FFFF  
190000–19FFFF  
1A0000–1AFFFF  
1B0000–1BFFFF  
1C0000–1CFFFF  
1D0000–1DFFFF  
1E0000–1EFFFF  
1F0000–1F7FFF  
1F8000–1F9FFF  
1FA000–1FBFFF  
1FC000–1FFFFF  
Word Mode (x16)  
00000–07FFF  
08000–0FFFF  
10000–17FFF  
18000–1FFFF  
20000–27FFF  
28000–2FFFF  
30000–37FFF  
38000–3FFFF  
40000–47FFF  
48000–4FFFF  
50000–57FFF  
58000–5FFFF  
60000–67FFF  
68000–6FFFF  
70000–77FFF  
78000–7FFFF  
80000–87FFF  
88000–8FFFF  
90000–97FFF  
98000–9FFFF  
A0000–A7FFF  
A8000–AFFFF  
B0000–B7FFF  
B8000–BFFFF  
C0000–C7FFF  
C8000–CFFFF  
D0000–D7FFF  
D8000–DFFFF  
E0000–E7FFF  
E8000–EFFFF  
F0000–F7FFF  
F8000–FBFFF  
FC000–FCFFF  
FD000–FDFFF  
FE000–FFFFF  
SA0  
SA1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
X
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
32/16  
8/4  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
8/4  
16/8  
Note: Address range is A19:A-1 in byte mode and A19:A0 in word mode. See “Word/Byte Configuration” section.  
18  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 3. Sector Address Tables (Bottom Boot Device)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range (in hexadecimal)  
Sector A19 A18 A17 A16 A15 A14 A13 A12  
Byte Mode (x8)  
000000–003FFF  
004000–005FFF  
006000–007FFF  
008000–00FFFF  
010000–01FFFF  
020000–02FFFF  
030000–03FFFF  
040000–04FFFF  
050000–05FFFF  
060000–06FFFF  
070000–07FFFF  
080000–08FFFF  
090000–09FFFF  
0A0000–0AFFFF  
0B0000–0BFFFF  
0C0000–0CFFFF  
0D0000–0DFFFF  
0E0000–0EFFFF  
0F0000–0FFFFF  
100000–10FFFF  
110000–11FFFF  
120000–12FFFF  
130000–13FFFF  
140000–14FFFF  
150000–15FFFF  
160000–16FFFF  
170000–17FFFF  
180000–18FFFF  
190000–19FFFF  
1A0000–1AFFFF  
1B0000–1BFFFF  
1C0000–1CFFFF  
1D0000–1DFFFF  
1E0000–1EFFFF  
1F0000–1FFFFF  
Word Mode (x16)  
00000–01FFF  
02000–02FFF  
03000–03FFF  
04000–07FFF  
08000–0FFFF  
10000–17FFF  
18000–1FFFF  
20000–27FFF  
28000–2FFFF  
30000–37FFF  
38000–3FFFF  
40000–47FFF  
48000–4FFFF  
50000–57FFF  
58000–5FFFF  
60000–67FFF  
68000–6FFFF  
70000–77FFF  
78000–7FFFF  
80000–87FFF  
88000–8FFFF  
90000–97FFF  
98000–9FFFF  
A0000–A7FFF  
A8000–AFFFF  
B0000–B7FFF  
B8000–BFFFF  
C0000–C7FFF  
C8000–CFFFF  
D0000–D7FFF  
D8000–DFFFF  
E0000–E7FFF  
E8000–EFFFF  
F0000–F7FFF  
F8000–FFFFF  
SA0  
SA1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
16/8  
8/4  
SA2  
8/4  
SA3  
32/16  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
19  
A d v a n c e I n f o r m a t i o n  
Note: Address range is A19:A-1 in byte mode and A19:A0 in word mode. See the “Word/Byte Configuration” section.  
Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector  
protection verification, through identifier codes output on DQ7–DQ0. This mode  
is primarily intended for programming equipment to automatically match a device  
to be programmed with its corresponding programming algorithm. However, the  
autoselect codes can also be accessed in-system through the command register.  
When using programming equipment, the autoselect mode requires V (11.5 V  
ID  
to 12.5 V) on address pin A9. Address pins A6, A1, and A0 must be as shown in  
Table 4. In addition, when verifying sector protection, the sector address must  
appear on the appropriate highest order address bits (see Tables 2 and 3). Table  
4 shows the remaining address bits that are don’t care. When all necessary bits  
have been set as required, the programming equipment may then read the cor-  
responding identifier code on DQ7-DQ0.  
To access the autoselect codes in-system, the host system can issue the autose-  
lect command via the command register, as shown in Table 9. This method does  
not require V . See “Command Definitions” for details on using the autoselect  
ID  
mode.  
Table 4. S29AL016D Autoselect Codes (High Voltage Method)  
A19 A11  
to to  
Mode CE# OE# WE# A12 A10 A9  
A8  
to  
A7  
A3  
to  
DQ8  
to  
DQ7  
to  
DQ0  
Description  
A6  
A2 A1 A0 DQ15  
Manufacturer ID  
:
Spansion  
Word  
L
L
L
L
H
H
X
X
VID  
X
L
L
L
L
X
01h  
C4h  
Device ID:  
S29AL016D  
(Top Boot Block)  
22h  
X
X
VID  
X
L
L
L
L
H
Byte  
L
L
L
L
H
H
X
C4h  
49h  
Device ID:  
S29AL016D  
(Bottom Boot  
Block)  
Word  
22h  
X
X
X
VID  
X
X
L
L
L
H
L
Byte  
L
L
H
X
49h  
01h  
(protected)  
X
X
Sector Protection Verification  
L
L
H
SA  
VID  
L
H
00h  
(unprotected)  
L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don’t care.  
Note: The autoselect codes may also be accessed in-system via command sequences. See Table 9.  
Sector Protection/Unprotection  
The hardware sector protection feature disables both program and erase opera-  
tions in any sector. The hardware sector unprotection feature re-enables both  
program and erase operations in previously protected sectors.  
The device is shipped with all sectors unprotected. Spansion offers the option of  
programming and protecting sectors at its factory prior to shipping the device  
through Spansion’s ExpressFlash™ Service. Contact a Spansion representative  
for details.  
20  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
It is possible to determine whether a sector is protected or unprotected. See “Au-  
toselect Mode” for details.  
Sector protection/unprotection can be implemented via two methods.  
The primary method requires V on the RESET# pin only, and can be imple-  
ID  
mented either in-system or via programming equipment. Figure 2 shows the  
algorithms and Figure 23 shows the timing diagram. This method uses standard  
microprocessor bus cycle timing. For sector unprotect, all unprotected sectors  
must first be protected prior to the first sector unprotect write cycle.  
The alternate method intended only for programming equipment requires V on  
ID  
address pin A9 and OE#. This method is compatible with programmer routines  
written for earlier 3.0 volt-only Spansion flash devices. Details on this method are  
provided in a supplement, publication number 21468. Contact a Spansion repre-  
sentative to request a copy.  
Temporary Sector Unprotect  
This feature allows temporary unprotection of previously protected sectors to  
change data in-system. The Sector Unprotect mode is activated by setting the  
RESET# pin to V . During this mode, formerly protected sectors can be pro-  
ID  
grammed or erased by selecting the sector addresses. Once V is removed from  
ID  
the RESET# pin, all the previously protected sectors are protected again. shows  
the algorithm, and Figure 22 shows the timing diagrams, for this feature.  
START  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sectors unprotected.  
2. All previously protected sectors are protected once  
again.  
Figure 1. Temporary Sector Unprotect Operation  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
21  
A d v a n c e I n f o r m a t i o n  
START  
START  
Protect all sectors:  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
RESET# = VID  
unprotected sectors  
prior to issuing the  
first sector  
Wait 4 µs  
Wait 4 µs  
unprotect address  
No  
No  
First Write  
Cycle = 60h?  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A7-A0 =  
Yes  
Set up first sector  
address  
00000010  
Sector Unprotect:  
Wait 100 µs  
Write 60h to sector  
address with  
A7-A0 =  
Verify Sector  
Protect: Write 40h  
to sector address  
with A7-A0 =  
01000010  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 1.2 ms  
00000010  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A7-A0 =  
Read from  
sector address  
with A7-A0 =  
00000010  
Increment  
PLSCNT  
No  
00000010  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A7-A0 =  
00000010  
Data = 01h?  
Yes  
No  
Yes  
Set up  
next sector  
address  
Yes  
Remove VID  
from RESET#  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
No  
Write reset  
command  
Yes  
Remove VID  
from RESET#  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Sector Protect  
complete  
Write reset  
command  
Yes  
Write reset  
command  
Remove VID  
from RESET#  
Device failed  
Sector Protect  
complete  
Sector Unprotect  
complete  
Write reset  
command  
Sector Protect  
Algorithm  
Device failed  
Sector Unprotect  
complete  
Sector Unprotect  
Algorithm  
Figure 2. In-System Sector Protect/Unprotect Algorithms  
22  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system  
software interrogation handshake, which allows specific vendor-specified soft-  
ware algorithms to be used for entire families of devices. Software support can  
then be device-independent, JEDEC ID-independent, and forward- and back-  
ward-compatible for the specified flash device families. Flash vendors can  
standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query  
command, 98h, to address 55h in word mode (or address AAh in byte mode), any  
time the device is ready to read array data. The system can read CFI information  
at the addresses given in Tables 58. In word mode, the upper address bits (A7–  
MSB) must be all zeros. To terminate reading CFI data, the system must write  
the reset command.  
The system can also write the CFI query command when the device is in the au-  
toselect mode. The device enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 58. The system must write the reset  
command to return the device to the autoselect mode.  
For further information, please refer to the CFI Specification and CFI Publication  
100, available via the World Wide Web at http://www.amd.com/products/nvd/  
overview/cfi.html. Alternatively, contact a Spansion representative for copies of  
these documents.  
Table 5. CFI Query Identification String  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
10h  
11h  
12h  
20h  
22h  
24h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
26h  
28h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
32h  
34h  
0000h  
0000h  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
23  
A d v a n c e I n f o r m a t i o n  
Table 6. System Interface String  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
1Ch  
36h  
38h  
0027h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
0036h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
0000h  
0004h  
0000h  
000Ah  
0000h  
0005h  
0000h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
Table 7. Device Geometry Definition  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
27h  
4Eh  
0015h  
Device Size = 2N byte  
28h  
29h  
50h  
52h  
0002h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
2Ch  
58h  
0004h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
5Ah  
5Ch  
5Eh  
60h  
0000h  
0000h  
0040h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
31h  
32h  
33h  
34h  
62h  
64h  
66h  
68h  
0001h  
0000h  
0020h  
0000h  
Erase Block Region 2 Information  
Erase Block Region 3 Information  
Erase Block Region 4 Information  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
0000h  
0000h  
0080h  
0000h  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
001Eh  
0000h  
0000h  
0001h  
24  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
Table 8. Primary Vendor-Specific Extended Query  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
40h  
41h  
42h  
80h  
82h  
84h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
86h  
88h  
0031h  
0030h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock  
0 = Required, 1 = Not Required  
45h  
46h  
47h  
48h  
8Ah  
8Ch  
8Eh  
90h  
0000h  
0002h  
0001h  
0001h  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
49h  
92h  
0004h  
01 = 29F040 mode, 02 = 29F016 mode,  
03 = 29F400 mode, 04 = 29LV800A mode  
Simultaneous Operation  
00 = Not Supported, 01 = Supported  
4Ah  
4Bh  
4Ch  
94h  
96h  
98h  
0000h  
0000h  
0000h  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing  
provides data protection against inadvertent writes (refer to Table 9 for command  
definitions). In addition, the following hardware data protection measures pre-  
vent accidental erasure or programming, which might otherwise be caused by  
spurious system level signals during V power-up and power-down transitions,  
CC  
or from system noise.  
Low V  
Write Inhibit  
CC  
When V is less than V  
, the device does not accept any write cycles. This pro-  
LKO  
CC  
tects data during V power-up and power-down. The command register and all  
CC  
internal program/erase circuits are disabled, and the device resets. Subsequent  
writes are ignored until V  
is greater than V  
. The system must provide the  
CC  
LKO  
proper signals to the control pins to prevent unintentional writes when V  
is  
CC  
greater than V  
.
LKO  
Write Pulse “Glitch” Protection  
Noise pulses of less than 5 ns (typical) on OE#, CE# or WE# do not initiate a write  
cycle.  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
25  
A d v a n c e I n f o r m a t i o n  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = V , CE# = V or WE# =  
IL  
IH  
V . To initiate a write cycle, CE# and WE# must be a logical zero while OE# is a  
IH  
logical one.  
Power-Up Write Inhibit  
If WE# = CE# = V and OE# = V during power up, the device does not accept  
IL  
IH  
commands on the rising edge of WE#. The internal state machine is automatically  
reset to reading array data on power-up.  
26  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
Command Definitions  
Writing specific address and data commands or sequences into the command  
register initiates device operations. Table 9 defines the valid register command  
sequences. Writing incorrect address and data values or writing them in the  
improper sequence resets the device to reading array data.  
All addresses are latched on the falling edge of WE# or CE#, whichever happens  
later. All data is latched on the rising edge of WE# or CE#, whichever happens  
first. Refer to the appropriate timing diagrams in the “AC Characteristics” section.  
Reading Array Data  
The device is automatically set to reading array data after device power-up. No  
commands are required to retrieve data. The device is also ready to read array  
data after completing an Embedded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the device enters the Erase  
Suspend mode. The system can read array data using the standard read timings,  
except that if it reads at an address within erase-suspended sectors, the device  
outputs status data. After completing a programming operation in the Erase Sus-  
pend mode, the system may once again read array data with the same exception.  
See “Erase Suspend/Erase Resume Commands” for more information on this  
mode.  
The system must issue the reset command to re-enable the device for reading  
array data if DQ5 goes high, or while in the autoselect mode. See the “Reset Com-  
mand” section, next.  
See also “Requirements for Reading Array Data” in the “Device Bus Operations”  
section for more information. The Read Operations table provides the read pa-  
rameters, and Figure 13 shows the timing diagram.  
Reset Command  
Writing the reset command to the device resets the device to reading array data.  
Address bits are don’t care for this command.  
The reset command may be written between the sequence cycles in an erase  
command sequence before erasing begins. This resets the device to reading array  
data. Once erasure begins, however, the device ignores reset commands until the  
operation is complete.  
The reset command may be written between the sequence cycles in a program  
command sequence before programming begins. This resets the device to read-  
ing array data (also applies to programming in Erase Suspend mode). Once  
programming begins, however, the device ignores reset commands until the op-  
eration is complete.  
The reset command may be written between the sequence cycles in an autoselect  
command sequence. Once in the autoselect mode, the reset command must be  
written to return to reading array data (also applies to autoselect during Erase  
Suspend).  
If DQ5 goes high during a program or erase operation, writing the reset command  
returns the device to reading array data (also applies during Erase Suspend).  
Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manu-  
facturer and devices codes, and determine whether or not a sector is protected.  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
27  
A d v a n c e I n f o r m a t i o n  
Table 9 shows the address and data requirements. This method is an alternative  
to that shown in Table 4, which is intended for PROM programmers and requires  
V
on address bit A9.  
ID  
The autoselect command sequence is initiated by writing two unlock cycles, fol-  
lowed by the autoselect command. The device then enters the autoselect mode,  
and the system may read at any address any number of times, without initiating  
another command sequence.  
A read cycle at address XX00h retrieves the manufacturer code. A read cycle at  
address XX01h returns the device code. A read cycle containing a sector address  
(SA) and the address 02h in word mode (or 04h in byte mode) returns 01h if that  
sector is protected, or 00h if it is unprotected. Refer to Tables 2 and 3 for valid  
sector addresses.  
The system must write the reset command to exit the autoselect mode and return  
to reading array data.  
Word/Byte Program Command Sequence  
The system may program the device by word or byte, depending on the state of  
the BYTE# pin. Programming is a four-bus-cycle operation. The program com-  
mand sequence is initiated by writing two unlock write cycles, followed by the  
program set-up command. The program address and data are written next, which  
in turn initiate the Embedded Program algorithm. The system is not required to  
provide further controls or timings. The device automatically generates the pro-  
gram pulses and verifies the programmed cell margin. Table 9 shows the address  
and data requirements for the byte program command sequence.  
When the Embedded Program algorithm is complete, the device then returns to  
reading array data and addresses are no longer latched. The system can deter-  
mine the status of the program operation by using DQ7, DQ6, or RY/BY#. See  
“Write Operation Status” for information on these status bits.  
Any commands written to the device during the Embedded Program Algorithm  
are ignored. Note that a hardware reset immediately terminates the program-  
ming operation. The Byte Program command sequence should be reinitiated once  
the device has reset to reading array data, to ensure data integrity.  
Programming is allowed in any sequence and across sector boundaries. A bit  
cannot be programmed from a “0” back to a “1”. Attempting to do so may  
halt the operation and set DQ5 to “1,or cause the Data# Polling algorithm to  
indicate the operation was successful. However, a succeeding read will show that  
the data is still “0. Only erase operations can convert a “0” to a “1.  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program bytes or words to the  
device faster than using the standard program command sequence. The unlock  
bypass command sequence is initiated by first writing two unlock cycles. This is  
followed by a third write cycle containing the unlock bypass command, 20h. The  
device then enters the unlock bypass mode. A two-cycle unlock bypass program  
command sequence is all that is required to program in this mode. The first cycle  
in this sequence contains the unlock bypass program command, A0h; the second  
cycle contains the program address and data. Additional data is programmed in  
the same manner. This mode dispenses with the initial two unlock cycles required  
in the standard program command sequence, resulting in faster total program-  
ming time. Table 9 shows the requirements for the command sequence.  
28  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock By-  
pass Reset commands are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset command sequence. The first cycle  
must contain the data 90h; the second cycle the data 00h. Addresses are don’t  
care for both cycles. The device then returns to reading array data.  
Figure 3 illustrates the algorithm for the program operation. See the Erase/Pro-  
gram Operations table in “AC Characteristics” for parameters, and to Figure 17  
for timing diagrams.  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
No  
Yes  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
NOTE: See Table 9 for program command sequence.  
Figure 3. Program Operation  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is ini-  
tiated by writing two unlock cycles, followed by a set-up command. Two  
additional unlock write cycles are then followed by the chip erase command,  
which in turn invokes the Embedded Erase algorithm. The device does not require  
the system to preprogram prior to erase. The Embedded Erase algorithm auto-  
matically preprograms and verifies the entire memory for an all zero data pattern  
prior to electrical erase. The system is not required to provide any controls or tim-  
ings during these operations. Table 9 shows the address and data requirements  
for the chip erase command sequence.  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
29  
A d v a n c e I n f o r m a t i o n  
Any commands written to the chip during the Embedded Erase algorithm are ig-  
nored. Note that a hardware reset during the chip erase operation immediately  
terminates the operation. The Chip Erase command sequence should be reiniti-  
ated once the device has returned to reading array data, to ensure data integrity.  
The system can determine the status of the erase operation by using DQ7, DQ6,  
DQ2, or RY/BY#. See “Write Operation Status” for information on these status  
bits. When the Embedded Erase algorithm is complete, the device returns to  
reading array data and addresses are no longer latched.  
Figure 4 illustrates the algorithm for the erase operation. See the Erase/Program  
Operations tables in “AC Characteristics” for parameters, and to Figure 18 for tim-  
ing diagrams.  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is  
initiated by writing two unlock cycles, followed by a set-up command. Two addi-  
tional unlock write cycles are then followed by the address of the sector to be  
erased, and the sector erase command. Table 9 shows the address and data re-  
quirements for the sector erase command sequence.  
The device does not require the system to preprogram the memory prior to erase.  
The Embedded Erase algorithm automatically programs and verifies the sector for  
an all zero data pattern prior to electrical erase. The system is not required to  
provide any controls or timings during these operations.  
After the command sequence is written, a sector erase time-out of 50 µs begins.  
During the time-out period, additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer may be done in any  
sequence, and the number of sectors may be from one sector to all sectors. The  
time between these additional cycles must be less than 50 µs, otherwise the last  
address and command might not be accepted, and erasure may begin. It is rec-  
ommended that processor interrupts be disabled during this time to ensure all  
commands are accepted. The interrupts can be re-enabled after the last Sector  
Erase command is written. If the time between additional sector erase commands  
can be assumed to be less than 50 µs, the system need not monitor DQ3. Any  
command other than Sector Erase or Erase Suspend during the time-out  
period resets the device to reading array data. The system must rewrite the  
command sequence and any additional sector addresses and commands.  
The system can monitor DQ3 to determine if the sector erase timer has timed  
out. (See the “DQ3: Sector Erase Timer” section.) The time-out begins from the  
rising edge of the final WE# pulse in the command sequence.  
Once the sector erase operation has begun, only the Erase Suspend command is  
valid. All other commands are ignored. Note that a hardware reset during the  
sector erase operation immediately terminates the operation. The Sector Erase  
command sequence should be reinitiated once the device has returned to reading  
array data, to ensure data integrity.  
When the Embedded Erase algorithm is complete, the device returns to reading  
array data and addresses are no longer latched. The system can determine the  
status of the erase operation by using DQ7, DQ6, DQ2, or RY/BY#. (Refer to  
“Write Operation Status” for information on these status bits.)  
Figure 4 illustrates the algorithm for the erase operation. Refer to the Erase/Pro-  
gram Operations tables in the “AC Characteristics” section for parameters, and to  
Figure 18 for timing diagrams.  
30  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command allows the system to interrupt a sector erase oper-  
ation and then read data from, or program data to, any sector not selected for  
erasure. This command is valid only during the sector erase operation, including  
the 50 µs time-out period during the sector erase command sequence. The Erase  
Suspend command is ignored if written during the chip erase operation or Em-  
bedded Program algorithm. Writing the Erase Suspend command during the  
Sector Erase time-out immediately terminates the time-out period and suspends  
the erase operation. Addresses are “don’t-cares” when writing the Erase Suspend  
command.  
When the Erase Suspend command is written during a sector erase operation, the  
device requires a maximum of 20 µs to suspend the erase operation. However,  
when the Erase Suspend command is written during the sector erase time-out,  
the device immediately terminates the time-out period and suspends the erase  
operation.  
After the erase operation has been suspended, the system can read array data  
from or program data to any sector not selected for erasure. (The device “erase  
suspends” all sectors selected for erasure.) Normal read and write timings and  
command definitions apply. Reading at any address within erase-suspended sec-  
tors produces status data on DQ7–DQ0. The system can use DQ7, or DQ6 and  
DQ2 together, to determine if a sector is actively erasing or is erase-suspended.  
See “Write Operation Status” for information on these status bits.  
After an erase-suspended program operation is complete, the system can once  
again read array data within non-suspended sectors. The system can determine  
the status of the program operation using the DQ7 or DQ6 status bits, just as in  
the standard program operation. See “Write Operation Status” for more  
information.  
The system may also write the autoselect command sequence when the device  
is in the Erase Suspend mode. The device allows reading autoselect codes even  
at addresses within erasing sectors, since the codes are not stored in the memory  
array. When the device exits the autoselect mode, the device reverts to the Erase  
Suspend mode, and is ready for another valid operation. See “Autoselect Com-  
mand Sequence” for more information.  
The system must write the Erase Resume command (address bits are “don’t  
care”) to exit the erase suspend mode and continue the sector erase operation.  
Further writes of the Resume command are ignored. Another Erase Suspend  
command can be written after the device has resumed erasing.  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
31  
A d v a n c e I n f o r m a t i o n  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 9 for erase command sequence.  
2. See “DQ3: Sector Erase Timer” for more information.  
Figure 4. Erase Operation  
32  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
Command Definitions  
Table 9. S29AL016D Command Definitions  
Bus Cycles (Notes 2–5)  
Command  
Sequence  
(Note 1)  
First  
Second  
Third  
Addr  
Fourth  
Data Addr Data  
Fifth  
Sixth  
Addr Data Addr Data  
Addr Data Addr Data  
Read (Note 6)  
Reset (Note 7)  
1
1
RA  
RD  
F0  
XXX  
555  
AAA  
555  
AAA  
555  
AAA  
Word  
2AA  
555  
2AA  
555  
2AA  
555  
555  
AAA  
555  
AAA  
555  
AAA  
4
4
4
AA  
AA  
AA  
55  
55  
55  
90  
90  
90  
X00  
01  
Manufacturer ID  
Byte  
Word  
Byte  
Word  
Byte  
X01  
X02  
X01  
X02  
22C4  
C4  
Device ID,  
Top Boot Block  
2249  
49  
Device ID,  
Bottom Boot Block  
XX00  
XX01  
00  
(SA)  
X02  
Word  
Byte  
555  
AAA  
2AA  
555  
555  
AAA  
Sector Protect Verify  
(Note 9)  
4
AA  
55  
90  
(SA)  
X04  
01  
Word  
Byte  
Word  
Byte  
Word  
Byte  
55  
CFI Query (Note 10)  
1
4
3
98  
AA  
AA  
AA  
555  
AAA  
555  
AAA  
XXX  
XXX  
555  
AAA  
555  
AAA  
XXX  
XXX  
2AA  
555  
2AA  
555  
PA  
555  
AAA  
555  
AAA  
Program  
55  
55  
A0  
20  
PA  
PD  
Unlock Bypass  
Unlock Bypass Program (Note 11)  
Unlock Bypass Reset (Note 12)  
2
2
A0  
90  
PD  
F0  
XXX  
2AA  
555  
2AA  
555  
Word  
555  
AAA  
555  
AAA  
555  
AAA  
555  
AAA  
2AA  
555  
2AA  
555  
555  
AAA  
Chip Erase  
6
6
AA  
AA  
55  
55  
80  
80  
AA  
AA  
55  
55  
10  
30  
Byte  
Word  
Byte  
Sector Erase  
SA  
Erase Suspend (Note 13)  
Erase Resume (Note 14)  
1
1
B0  
30  
Legend:  
X = Don’t care  
RA = Address of the memory location to be read.  
RD = Data read from location RA during read operation.  
PA = Address of the memory location to be programmed. Addresses latch on the falling edge of the WE# or CE# pulse, whichever  
happens later.  
PD = Data to be programmed at location PA. Data latches on the rising edge of WE# or CE# pulse, whichever happens first.  
SA = Address of the sector to be verified (in autoselect mode) or erased. Address bits A19–A12 uniquely select any sector.  
Note:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
3. Except for the read cycle and the fourth cycle of the autoselect command sequence, all bus cycles are write cycles.  
4. Data bits DQ15–DQ8 are don’t cares for unlock and command cycles.  
5. Address bits A19–A11 are don’t cares for unlock and command cycles, unless SA or PA required.  
6. No unlock or command cycles required when reading array data.  
7. The Reset command is required to return to reading array data when device is in the autoselect mode, or if DQ5 goes high (while the device  
is providing status data).  
8. The fourth cycle of the autoselect command sequence is a read cycle.  
9. The data is 00h for an unprotected sector and 01h for a protected sector. See “Autoselect Command Sequence” for more information.  
10. Command is valid when device is ready to read array data or when device is in autoselect mode.  
11. The Unlock Bypass command is required prior to the Unlock Bypass Program command.  
12. The Unlock Bypass Reset command is required to return to reading array data when the device is in the unlock bypass mode. F0 is also  
acceptable.  
13. The system may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase  
Suspend command is valid only during a sector erase operation.  
14. The Erase Resume command is valid only during the Erase Suspend mode.  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
33  
A d v a n c e I n f o r m a t i o n  
Write Operation Status  
The device provides several bits to determine the status of a write operation:  
DQ2, DQ3, DQ5, DQ6, DQ7, and RY/BY#. Table 10 and the following subsections  
describe the functions of these bits. DQ7, RY/BY#, and DQ6 each offer a method  
for determining whether a program or erase operation is complete or in progress.  
These three bits are discussed first.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded  
Algorithm is in progress or completed, or whether the device is in Erase Suspend.  
Data# Polling is valid after the rising edge of the final WE# pulse in the program  
or erase command sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the com-  
plement of the datum programmed to DQ7. This DQ7 status also applies to  
programming during Erase Suspend. When the Embedded Program algorithm is  
complete, the device outputs the datum programmed to DQ7. The system must  
provide the program address to read valid status information on DQ7. If a pro-  
gram address falls within a protected sector, Data# Polling on DQ7 is active for  
approximately 1 µs, then the device returns to reading array data.  
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7.  
When the Embedded Erase algorithm is complete, or if the device enters the  
Erase Suspend mode, Data# Polling produces a “1” on DQ7. This is analogous to  
the complement/true datum output described for the Embedded Program algo-  
rithm: the erase function changes all the bits in a sector to “1”; prior to this, the  
device outputs the “complement,or “0.The system must provide an address  
within any of the sectors selected for erasure to read valid status information on  
DQ7.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, Data# Polling on DQ7 is active for approximately 100 µs, then the  
device returns to reading array data. If not all selected sectors are protected, the  
Embedded Erase algorithm erases the unprotected sectors, and ignores the se-  
lected sectors that are protected.  
When the system detects DQ7 has changed from the complement to true data,  
it can read valid data at DQ7–DQ0 on the following read cycles. This is because  
DQ7 may change asynchronously with DQ0–DQ6 while Output Enable (OE#) is  
asserted low. Figure 19, Data# Polling Timings (During Embedded Algorithms),  
in the “AC Characteristics” section illustrates this.  
Table 10 shows the outputs for Data# Polling on DQ7. Figure 6 shows the Data#  
Polling algorithm.  
34  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
START  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a sector  
erase operation, a valid address is an address within  
any sector selected for erasure. During chip erase, a  
valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because  
Figure 5. Data# Polling Algorithm  
RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin that indicates whether an Em-  
bedded Algorithm is in progress or complete. The RY/BY# status is valid after the  
rising edge of the final WE# pulse in the command sequence. Since RY/BY# is an  
open-drain output, several RY/BY# pins can be tied together in parallel with a  
pull-up resistor to V  
.
CC  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
35  
A d v a n c e I n f o r m a t i o n  
If the output is low (Busy), the device is actively erasing or programming. (This  
includes programming in the Erase Suspend mode.) If the output is high (Ready),  
the device is ready to read array data (including during the Erase Suspend  
mode), or is in the standby mode.  
Table 10 shows the outputs for RY/BY#. Figures 13, 14, 17 and 18 shows RY/BY#  
for read, reset, program, and erase operations, respectively.  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm  
is in progress or complete, or whether the device has entered the Erase Suspend  
mode. Toggle Bit I may be read at any address, and is valid after the rising edge  
of the final WE# pulse in the command sequence (prior to the program or erase  
operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cy-  
cles to any address cause DQ6 to toggle. (The system may use either OE# or CE#  
to control the read cycles.) When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, DQ6 toggles for approximately 100 µs, then returns to reading  
array data. If not all selected sectors are protected, the Embedded Erase algo-  
rithm erases the unprotected sectors, and ignores the selected sectors that are  
protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is ac-  
tively erasing or is erase-suspended. When the device is actively erasing (that is,  
the Embedded Erase algorithm is in progress), DQ6 toggles. When the device en-  
ters the Erase Suspend mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing or erase-suspended. Alter-  
natively, the system can use DQ7 (see the subsection on “DQ7: Data# Polling”).  
If a program address falls within a protected sector, DQ6 toggles for approxi-  
mately 1 µs after the program command sequence is written, then returns to  
reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling  
once the Embedded Program algorithm is complete.  
Table 10 shows the outputs for Toggle Bit I on DQ6. Figure 6 shows the toggle bit  
algorithm in flowchart form, and the section “Reading Toggle Bits DQ6/DQ2” ex-  
plains the algorithm. Figure 20 in the “AC Characteristics” section shows the  
toggle bit timing diagrams. Figure 21 shows the differences between DQ2 and  
DQ6 in graphical form. See also the subsection on “DQ2: Toggle Bit II”.  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular  
sector is actively erasing (that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit II is valid after the rising  
edge of the final WE# pulse in the command sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have  
been selected for erasure. (The system may use either OE# or CE# to control the  
read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or  
is erase-suspended. DQ6, by comparison, indicates whether the device is actively  
erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected  
for erasure. Thus, both status bits are required for sector and mode information.  
Refer to Table 10 to compare outputs for DQ2 and DQ6.  
36  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
Figure 6 shows the toggle bit algorithm in flowchart form, and the section “Read-  
ing Toggle Bits DQ6/DQ2” explains the algorithm. See also the DQ6: Toggle Bit I  
subsection. Figure 20 shows the toggle bit timing diagram. Figure 21 shows the  
differences between DQ2 and DQ6 in graphical form.  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 6 for the following discussion. Whenever the system initially be-  
gins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically, the system would note and  
store the value of the toggle bit after the first read. After the second read, the  
system would compare the new value of the toggle bit with the first. If the toggle  
bit is not toggling, the device has completed the program or erase operation. The  
system can read array data on DQ7–DQ0 on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle  
bit is still toggling, the system also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should then determine again  
whether the toggle bit is toggling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer toggling, the device has suc-  
cessfully completed the program or erase operation. If it is still toggling, the  
device did not complete the operation successfully, and the system must write  
the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit  
is toggling and DQ5 has not gone high. The system may continue to monitor the  
toggle bit and DQ5 through successive read cycles, determining the status as de-  
scribed in the previous paragraph. Alternatively, it may choose to perform other  
system tasks. In this case, the system must start at the beginning of the algo-  
rithm when it returns to determine the status of the operation (top of Figure 6).  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
37  
A d v a n c e I n f o r m a t i o n  
START  
Read Byte  
(DQ7–DQ0)  
Address =VA  
Read Byte  
(DQ7–DQ0)  
Address =VA  
(Note 1)  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read Byte Twice  
(DQ7–DQ0)  
Address = VA  
(Notes  
1,2)  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Notes:  
1. Read toggle bit twice to determine whether or not it  
is toggling. See text.  
2. Recheck toggle bit because it may stop toggling as  
DQ5 changes to “1”. See text.  
Figure 6. Toggle Bit Algorithm  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified inter-  
nal pulse count limit. Under these conditions DQ5 produces a “1.This is a failure  
condition that indicates the program or erase cycle was not successfully  
completed.  
38  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
The DQ5 failure condition may appear if the system tries to program a “1” to a  
location that is previously programmed to “0.Only an erase operation can  
change a “0” back to a “1.” Under this condition, the device halts the opera-  
tion, and when the operation has exceeded the timing limits, DQ5 produces a “1.”  
Under both these conditions, the system must issue the reset command to return  
the device to reading array data.  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to de-  
termine whether or not an erase operation has begun. (The sector erase timer  
does not apply to the chip erase command.) If additional sectors are selected for  
erasure, the entire time-out also applies after each additional sector erase com-  
mand. When the time-out is complete, DQ3 switches from “0” to “1.The system  
may ignore DQ3 if the system can guarantee that the time between additional  
sector erase commands will always be less than 50 µs. See also the “Sector  
Erase Command Sequence” section.  
After the sector erase command sequence is written, the system should read the  
status on DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure the device has ac-  
cepted the command sequence, and then read DQ3. If DQ3 is “1, the internally  
controlled erase cycle has begun; all further commands (other than Erase Sus-  
pend) are ignored until the erase operation is complete. If DQ3 is “0, the device  
will accept additional sector erase commands. To ensure the command has been  
accepted, the system software should check the status of DQ3 prior to and fol-  
lowing each subsequent sector erase command. If DQ3 is high on the second  
status check, the last command might not have been accepted. Table 10 shows  
the outputs for DQ3.  
Table 10. Write Operation Status  
DQ7  
DQ5  
DQ2  
Operation  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
Reading within Erase  
Suspended Sector  
1
No toggle  
0
N/A  
Toggle  
1
Erase  
Suspend Reading within Non-Erase  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Mode  
Suspended Sector  
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing  
limits. See “DQ5: Exceeded Timing Limits” for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further  
details.  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
39  
A d v a n c e I n f o r m a t i o n  
Absolute Maximum Ratings  
Storage Temperature  
Plastic Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–65°C to +150°C  
Ambient Temperature  
with Power Applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–65°C to +125°C  
Voltage with Respect to Ground  
V
(Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to +4.0 V  
CC  
A9, OE#, and RESET# (Note 2) . . . . . . . . . . . . . . . .0.5 V to +12.5 V  
All other pins (Note 1). . . . . . . . . . . . . . . . . . . . . 0.5 V to V +0.5 V  
CC  
Output Short Circuit Current (Note 3). . . . . . . . . . . . . . . . . . . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions, input or I/O pins may overshoot VSS  
to –2.0 V for periods of up to 20 ns. See Figure 7. Maximum DC voltage on input or I/O pins is VCC +0.5 V. During  
voltage transitions, input or I/O pins may overshoot to VCC +2.0 V for periods up to 20 ns. See Figure 8.  
2. Minimum DC input voltage on pins A9, OE#, and RESET# is -0.5 V. During voltage transitions, A9, OE#, and  
RESET# may overshoot VSS to –2.0 V for periods of up to 20 ns. See Figure 7. Maximum DC input voltage on pin  
A9 is +12.5 V which may overshoot to 14.0 V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater  
than one second.  
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a  
stress rating only; functional operation of the device at these or any other conditions above those indicated in the op-  
erational sections of this data sheet is not implied. Exposure of the device to absolute maximum rating conditions for  
extended periods may affect device reliability.  
20 ns  
20 ns  
20 ns  
+0.8 V  
VCC  
+2.0 V  
–0.5 V  
–2.0 V  
VCC  
+0.5 V  
2.0 V  
20 ns  
20 ns  
Figure 7. Maximum Negative  
Overshoot Waveform  
Figure 8. Maximum Positive Overshoot Waveform  
Operating Ranges  
Industrial (I) Devices  
Ambient Temperature (T ) . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
A
V
Supply Voltages  
CC  
V
for standard voltage range . . . . . . . . . . . . . . . . . . . . . . . .2.7 V to 3.6 V  
CC  
Operating ranges define those limits between which the functionality of the device is  
guaranteed.  
40  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
CMOS Compatible  
Parameter  
Description  
Test Conditions  
VIN = VSS to VCC  
Min  
Typ  
Max  
1.0  
35  
Unit  
µA  
,
ILI  
ILIT  
ILO  
Input Load Current  
±
VCC = VCC max  
A9 Input Load Current  
Output Leakage Current  
VCC = VCC max; A9 = 12.5 V  
µA  
VOUT = VSS to VCC  
,
±
1.0  
µA  
VCC = VCC max  
10 MHz  
5 MHz  
1 MHz  
10 MHz  
5 MHz  
1 MHz  
15  
9
30  
16  
4
CE# = VIL, OE#= VIH,  
Byte Mode  
2
VCC Active Read Current  
(Notes 1, 2)  
ICC1  
mA  
18  
9
35  
16  
4
CE# = VIL, OE#= VIH,  
Word Mode  
2
VCC Active Write Current  
(Notes 2, 3, 5)  
ICC2  
ICC3  
ICC4  
CE# = VIL, OE# = VIH  
20  
0.2  
0.2  
35  
5
mA  
µA  
µA  
VCC Standby Current (Notes 2, 4) CE#, RESET# = VCC  
±0.3 V  
VCC Standby Current During Reset  
(Notes 2, 4)  
RESET# = VSS  
±
0.3 V  
5
Automatic Sleep Mode  
(Notes 2, 4, 6)  
VIH = VCC  
VIL = VSS  
±
0.3 V;  
ICC5  
0.2  
5
µA  
±
0.3 V  
VIL  
Input Low Voltage  
Input High Voltage  
–0.5  
0.8  
V
V
VIH  
0.7 x VCC  
VCC + 0.3  
Voltage for Autoselect and  
Temporary Sector Unprotect  
VID  
VCC = 3.3 V  
11.5  
12.5  
0.45  
V
VOL  
Output Low Voltage  
IOL = 4.0 mA, VCC = VCC min  
IOH = -2.0 mA, VCC = VCC min  
IOH = -100 µA, VCC = VCC min  
V
V
V
V
VOH1  
VOH2  
VLKO  
2.4  
VCC–0.4  
2.3  
Output High Voltage  
Low VCC Lock-Out Voltage (Note 4)  
2.5  
Notes:  
1. The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH. Typical VCC is 3.0 V.  
2. Maximum ICC specifications are tested with VCC = VCCmax.  
3. ICC active while Embedded Erase or Embedded Program is in progress.  
4. At extended temperature range (>+85°C), typical current is 5 µA and maximum current is 10 µA.  
5. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns. Typical sleep  
mode current is 200 nA.  
6. Not 100% tested.  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
41  
A d v a n c e I n f o r m a t i o n  
DC Characteristics (continued)  
Zero Power Flash  
25  
20  
15  
10  
5
0
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Time in ns  
Note: Addresses are switching at 1 MHz  
Figure 9. ICC1 Current vs. Time (Showing Active and Automatic Sleep Currents)  
42  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
10  
8
3.6 V  
2.7 V  
6
4
2
0
1
2
3
4
5
Frequency in MHz  
Note: T = 25 °C  
Figure 10. Typical ICC1 vs. Frequency  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
43  
A d v a n c e I n f o r m a t i o n  
Test Conditions  
3.3 V  
2.7 kΩ  
Device  
Under  
Test  
C
6.2 kΩ  
L
Note: Diodes are IN3064 or equivalent  
Figure 11. Te st Se tu p  
Table 11. Test Specifications  
Test Condition  
Output Load  
70  
90  
Unit  
1 TTL gate  
Output Load Capacitance, CL  
(including jig capacitance)  
30  
100  
5
pF  
Input Rise and Fall Times  
Input Pulse Levels  
ns  
V
0.0 or VCC  
Input timing measurement  
reference levels  
0.5 VCC  
0.5 VCC  
V
V
Output timing measurement  
reference levels  
44  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
Key to Switching Waveforms  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
VCC  
0.0 V  
0.5 VCC  
0.5 VCC  
Input  
Measurement Level  
Output  
Figure 12. Input Waveforms and Measurement Levels  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
45  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Read Operations  
Parameter  
Speed Options  
JEDEC  
Std  
Description  
Test Setup  
70  
90  
Unit  
tAVAV  
tRC  
Read Cycle Time (Note 1)  
Min  
70  
90  
ns  
CE# = VIL  
OE# = VIL  
tAVQV  
tACC  
Address to Output Delay  
Max  
70  
90  
ns  
tELQV  
tGLQV  
tEHQZ  
tGHQZ  
tCE  
tOE  
tDF  
tDF  
Chip Enable to Output Delay  
OE# = VIL  
Max  
Max  
Max  
Max  
Min  
70  
30  
25  
25  
90  
35  
30  
30  
ns  
ns  
ns  
ns  
ns  
Output Enable to Output Delay  
Chip Enable to Output High Z (Note 1)  
Output Enable to Output High Z (Note 1)  
Read  
0
Output Enable  
Hold Time (Note 1)  
tOEH  
Toggle and  
Data# Polling  
Min  
Min  
10  
ns  
ns  
Output Hold Time From Addresses, CE# or  
OE#, Whichever Occurs First (Note 1)  
tAXQX  
tOH  
0
Notes:  
1. Not 100% tested.  
2. See Figure 11 and Table 11 for test specifications.  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Figure 13. Read Operations Timings  
46  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std  
Description  
Test Setup  
Max  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read or Write (See Note)  
tREADY  
20  
µs  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read or Write (See Note)  
tREADY  
Max  
500  
ns  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
RESET# High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
Note: Not 100% tested.  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Figure 14. RESET# Timings  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
47  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Word/Byte Configuration (BYTE#)  
Parameter  
Speed Options  
JEDEC  
Std  
tELFL/ ELFH  
tFLQZ  
Description  
70  
90  
Unit  
ns  
t
CE# to BYTE# Switching Low or High  
BYTE# Switching Low to Output HIGH Z  
BYTE# Switching High to Output Active  
Max  
Max  
Min  
5
25  
70  
30  
90  
ns  
tFHQV  
ns  
CE#  
OE#  
BYTE#  
tELFL  
Data Output  
(DQ0–DQ14)  
Data Output  
(DQ0–DQ7)  
BYTE#  
DQ0–DQ14  
Switching  
from word  
to byte  
Address  
Input  
DQ15  
Output  
mode  
DQ15/A-1  
BYTE#  
tFLQZ  
tELFH  
BYTE#  
Switching  
from byte  
to word  
Data Output  
(DQ0–DQ7)  
Data Output  
DQ0–DQ14  
DQ15/A-1  
(DQ0–DQ14)  
mode  
Address  
Input  
DQ15  
Output  
tFHQV  
Figure 15. BYTE# Timings for Read Operations  
48  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
CE#  
The falling edge of the last WE# signal  
WE#  
BYTE#  
tSET  
(tAS  
)
tHOLD (tAH  
)
Note: Refer to the Erase/Program Operations table for tAS and tAH specifications.  
Figure 16. BYTE# Timings for Write Operations  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
49  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Erase/Program Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
tAH  
tDS  
tDH  
Description  
70  
90  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Min  
Min  
Min  
Min  
Min  
70  
90  
tAVWL  
tWLAX  
tDVWH  
tWHDX  
0
ns  
45  
35  
45  
45  
ns  
ns  
Data Hold Time  
0
0
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
Min  
ns  
tELWL  
tWHEH  
tWLWH  
tWHWL  
tCS  
tCH  
tWP  
tWPH  
CE# Setup Time  
CE# Hold Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Min  
Min  
Max  
0
0
ns  
ns  
ns  
ns  
Write Pulse Width  
Write Pulse Width High  
35  
35  
30  
5
Byte  
tWHWH1  
tWHWH2  
tWHWH1 Programming Operation (Note 2)  
µs  
Word  
7
tWHWH2 Sector Erase Operation (Note 2)  
0.7  
50  
0
sec  
µs  
ns  
tVCS  
tRB  
VCC Setup Time (Note 1)  
Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
tBUSY  
90  
ns  
Notes:  
1. Not 100% tested.  
2. See the “Erase and Programming Performance” section for more information.  
50  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
Data  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, DOUT is the true data at the program address.  
2. Illustration shows device in word mode.  
Figure 17. Program Operation Timings  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
51  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Erase Command Sequence (last two cycles)  
Read Status Data  
tAS  
SA  
tWC  
2AAh  
VA  
VA  
Addresses  
CE#  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
Data  
Status  
D
OUT  
55h  
30h  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”).  
2. Illustration shows device in word mode.  
Figure 18. Chip/Sector Erase Operation Timings  
52  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
tRC  
Addresses  
VA  
tACC  
tCE  
VA  
VA  
CE#  
tCH  
tOE  
OE#  
tOEH  
WE#  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ6–DQ0  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle  
after command sequence, last status read cycle, and array data read cycle.  
Figure 19. Data# Polling Timings (During Embedded Algorithms)  
tRC  
VA  
Addresses  
CE#  
VA  
VA  
VA  
tACC  
tCE  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
DQ6/DQ2  
RY/BY#  
Valid Status  
(first read)  
Valid Status  
Valid Status  
Valid Data  
(second read)  
(stops toggling)  
tBUSY  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last  
status read cycle, and array data read cycle.  
Figure 20. Toggle Bit Timings (During Embedded Algorithms)  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
53  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Enter  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Embedded  
Erase  
Resume  
Erasing  
Erase Erase Suspend  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
Read  
DQ6  
DQ2  
Note: The system may use CE# or OE# to toggle DQ2 and DQ6. DQ2 toggles only when read at an address within an  
erase-suspended sector.  
Figure 21. DQ2 vs. DQ6 for Erase and Erase Suspend Operations  
Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
Description  
All Speed Options  
Unit  
tVIDR  
VID Rise and Fall Time (See Note)  
Min  
Min  
500  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
4
µs  
Note: Not 100% tested.  
12 V  
RESET#  
0 or 3 V  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRSP  
RY/BY#  
Figure 22. Temporary Sector Unprotect/Timing Diagram  
54  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
V
ID  
V
IH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector Group Protect/Unprotect  
Verify  
40h  
Data  
60h  
60h  
1 µs  
Sector Group Protect: 150 µs  
Sector Group Unprotect: 15 ms  
CE#  
WE#  
OE#  
Note: For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
Figure 23. Sector Protect/Unprotect Timing Diagram  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
55  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Alternate CE# Controlled Erase/Program Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
tAVEL  
Std  
tWC  
tAS  
tAH  
tDS  
tDH  
Description  
70  
90  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Min  
Min  
Min  
Min  
Min  
70  
90  
0
ns  
tELAX  
45  
35  
45  
45  
ns  
tDVEH  
tEHDX  
ns  
Data Hold Time  
0
0
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
ns  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWS  
tWH  
tCP  
WE# Setup Time  
WE# Hold Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
CE# Pulse Width  
CE# Pulse Width High  
35  
35  
tCPH  
30  
5
Byte  
tWHWH1  
tWHWH2  
tWHWH1  
tWHWH2  
Programming Operation (Note 2)  
Sector Erase Operation (Note 2)  
µs  
Word  
7
0.7  
sec  
Notes:  
1. Not 100% tested.  
2. See the “Erase and Programming Performance” section for more information.  
56  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
555 for program  
PA for program  
2AA for erase  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. PA = program address, PD = program data, DQ7# = complement of the data written to the device, DOUT = data  
written to the device.  
2. Figure indicates the last two bus cycles of the command sequence.  
3. Word mode address used as an example.  
Figure 24. Alternate CE# Controlled Write Operation Timings  
August 4, 2004 S29AL016D_00_A1_E  
S29AL016D  
57  
A d v a n c e I n f o r m a t i o n  
Erase and Programming Performance  
Parameter  
Typ (Note 1)  
Max (Note 2)  
Unit  
s
Comments  
Sector Erase Time  
Chip Erase Time  
0.7  
25  
5
10  
Excludes 00h programming  
prior to erasure (Note 4)  
s
Byte Programming Time  
Word Programming Time  
150  
210  
33  
µs  
µs  
s
7
Excludes system level  
overhead (Note 5)  
Byte Mode  
Word Mode  
11  
7.2  
Chip Programming Time  
(Note 3)  
21.6  
s
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, VCC = 3.0 V, 100,000 cycles, checkerboard  
data pattern.  
2. Under worst case conditions of 90°C, VCC = 2.7 V, 1,000,000 cycles.  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most  
bytes program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program  
command. See Table 9 for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 100,000 cycles per sector.  
TSOP and BGA Pin Capacitance  
Parameter  
Symbol  
Parameter Description  
Test Setup  
Package  
TSOP  
BGA  
Typ  
6
Max  
7.5  
5.0  
12  
Unit  
pF  
CIN  
Input Capacitance  
VIN = 0  
4.2  
8.5  
5.4  
7.5  
3.9  
pF  
TSOP  
BGA  
pF  
COUT  
Output Capacitance  
VOUT = 0  
VIN = 0  
6.5  
9
pF  
TSOP  
BGA  
pF  
CIN2  
Control Pin Capacitance  
4.7  
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions TA = 25°C, f = 1.0 MHz.  
58  
S29AL016D  
S29AL016D_00_A1_E August 4, 2004  
P r e l i m i n a r y  
2Mbit Type 1 SRAM  
Common Features  
„ Single Wide Power Supply Range  
2.3 to 3.6 Volts  
„ Very low standby current  
2.0µA at 3.0V (Typical)  
„ Very low operating current  
2.0mA at 3.0V and 1µs (Typical)  
„ Very low Page Mode operating current  
0.8mA at 3.0V and 1µs (Typical)  
„ Simple memory control  
Dual Chip Enables (CE1# and CE2)  
Byte control for independent byte operation  
Output Enable (OE#) for memory expansion  
„ Low voltage data retention  
V
= 1.8V  
CC  
„ Very fast output enable access time  
30ns OE# access time  
„ Automatic power down to standby mode  
„ TTL compatible three-state output driver  
„ Tested wafers  
August 4, 2004 SRAM_Type01_03A0  
2Mbit Type 1 SRAM  
59  
P r e l i m i n a r y  
Functional Description  
CE# CE2 WE#  
OE#  
UB#  
LB#  
IO  
(Note 1)  
Mode  
Standby (Note 2)  
Standby (Note 2)  
Standby  
Power  
Standby  
Standby  
Standby  
Active  
0~15  
H
X
L
L
L
L
X
L
X
X
X
L
X
X
X
High-Z  
X
X
X
High-Z  
High-Z  
Data In  
H
H
H
H
X
H
H
X (Note 3)  
L (Note 1)  
L (Note 1)  
L (Note 1)  
L (Note 1)  
L (Note 1)  
L (Note 1)  
Write (Note 3)  
Read  
H
H
L
Data Out  
High-Z  
Active  
H
Active  
Active  
Notes:  
1. When UB# and LB# are in select mode (low), I/O0 - I/O15 are affected as shown. When only LB# is in the select mode, only  
I/O0 - I/O7 are affected as shown. When UB# is in the select mode only I/O8 - I/O15 are affected as shown.  
2. When the device is in standby mode, control inputs (WE#, OE#, UB#, and LB#), address inputs and data input/outputs are  
internally isolated from any external influence and disabled from exerting any influence externally.  
3. When WE# is invoked, the OE# input is internally disabled and has no effect on the circuit.  
Capacitance  
Item  
Symbol  
CIN  
Test Condition  
Min  
Max  
8
Unit  
pF  
Input Capacitance  
I/O Capacitance  
VIN = 0V, f = 1 MHz, TA = 25°C  
VIN = 0V, f = 1 MHz, TA = 25°C  
CI/O  
8
pF  
Note: These parameters are verified in device characterization and are not 100% tested.  
Absolute Maximum Ratings  
Item  
Symbol  
VIN,VOUT  
VCC  
Ratings  
–0.3 to VCC + 0.3  
-0.3 to 4.5V  
Unit  
V
Voltage on any pin relative to VSS  
Voltage on VCC supply relative to VSS  
Power Dissipation  
V
PD  
500  
W
Storage Temperature  
TSTG  
–40 to 125  
°
°
C
C
Operating Temperature  
TA  
-40 to 85  
Soldering Temperature and Time  
TSOLDER  
240°C, 10sec (Lead only)  
°C  
Note: Stresses greater than those listed above may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions above those indicated in the operating section of  
this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reli-  
ability.  
60  
2Mbit Type 1 SRAM  
SRAM_Type01_03A0 August 4, 2004  
P r e l i m i n a r y  
Operating Characteristics (Over Specified Temperature Range)  
Type  
Item  
Symbol  
VCC  
VDR  
VIH  
Test Conditions  
Min  
2.3  
(Note1)  
Max  
3.6  
Unit  
Supply Voltage  
3.0  
Data Retention Voltage  
Input High Voltage  
Chip Disabled (Note 3)  
1.8  
3.6  
1.8  
VCC + 0.3  
0.6  
V
Input Low Voltage  
VIL  
-0.3  
Output High Voltage  
Output Low Voltage  
Input Leakage Current  
Output Leakage Current  
VOH  
VOL  
ILI  
IOH = 0.2mA  
IOL = -0.2mA  
VCC - 0.2  
0.2  
0.5  
0.5  
VIN = 0 to VCC  
µA  
ILO  
OE# = VIH or Chip Disabled  
Read/Write Operating Supply Current  
at 1 µs Cycle Time (Note 2)  
VCC = 3.6 V, VIN = VIH or VIL  
Chip Enabled, IOUT = 0  
ICC1  
ICC2  
ICC3  
ICC4  
ISB1  
IDR  
2.0  
12.0  
4.0  
4.0  
Read/Write Operating Supply Current  
at 70 ns Cycle Time (Note 2)  
VCC = 3.6 V, VIN = VIH or VIL  
Chip Enabled, IOUT = 0  
16.0  
mA  
Page Mode Operating Supply Current  
at 70ns Cycle Time (Note 2) (Figure 1)  
VCC = 3.6 V, VIN = VIH or VIL  
Chip Enabled, IOUT = 0  
Read/Write Quiescent Operating  
Supply Current (Note 3)  
VCC = 3.6 V, VIN=VIH or VIL  
Chip Enabled, IOUT = 0, f = 0  
3.0  
VIN = VCC or 0V Chip Disabled  
tA = 85°C, VCC = 3.6 V  
Maximum Standby Current (Note 3)  
2.0  
20.0  
10.0  
µΑ  
Maximum Data Retention Current  
(Note 3)  
VCC = 1.8V, VIN = VCC or 0  
Chip Disabled, tA= 85°C  
Notes:  
1. Typical values are measured at VCC = VCC Typ., TA = 25°C and is not 100% tested.  
2. This parameter is specified with the outputs disabled to avoid external loading effects. The user must add current required to  
drive output capacitance expected in the actual system.  
3. This device assumes a standby mode if the chip is disabled (CE1# high or CE2 low). In order to achieve low standby current  
all inputs must be within 0.2 volts of either VCC or VSS  
.
August 4, 2004 SRAM_Type01_03A0  
2Mbit Type 1 SRAM  
61  
P r e l i m i n a r y  
Page Address (A4 -A16)  
WordAddress (A0 -A3)  
Openpage  
...  
Word 16  
Word 1  
Word 2  
CE1#  
CE2  
OE#  
LB#, UB#  
Figure 1. Power Savings with Page Mode (WE# = VIH  
)
Note: Page mode operation is a method of addressing the SRAM to save operating current. The internal  
organization of the SRAM is optimized to allow this unique operating mode to be used as a valuable power  
saving feature.  
The only thing that needs to be done is to address the SRAM in a manner that the internal page is left open  
and 16-bit words of data are read from the open page. By treating addresses A0-A3 as the least significant  
bits and addressing the 16 words within the open page, power is reduced to the page mode value which is  
considerably lower than standard operating currents for low power SRAMs.  
Timing Test Conditions  
Item  
Input Pulse Level  
0.1VCC to 0.9 VCC  
5ns  
Input Rise and Fall Time  
Input and Output Timing Reference Levels  
Output Load  
0.5 VCC  
CL = 30pF  
-40 to +85°C  
Operating Temperature  
62  
2Mbit Type 1 SRAM  
SRAM_Type01_03A0 August 4, 2004  
P r e l i m i n a r y  
Timing  
2.3 - 3.6 V  
Item  
Symbol  
tRC  
Min  
Max  
Units  
Read Cycle Time  
70  
Address Access Time  
tAA  
70  
70  
35  
70  
Chip Enable to Valid Output  
Output Enable to Valid Output  
Byte Select to Valid Output  
Chip Enable to Low-Z output  
Output Enable to Low-Z Output  
Byte Select to Low-Z Output  
Chip Disable to High-Z Output  
Output Disable to High-Z Output  
Byte Select Disable to High-Z Output  
Output Hold from Address Change  
Write Cycle Time  
tCO  
tOE  
tLB, tUB  
tLZ  
10  
5
tOLZ  
tLBLZ, tUBLZ  
tHZ  
10  
0
20  
20  
20  
tOHZ  
0
tLBHZ, tUBHZ  
tOH  
0
10  
70  
50  
50  
50  
40  
0
ns  
tWC  
Chip Enable to End of Write  
Address Valid to End of Write  
Byte Select to End of Write  
Write Pulse Width  
tCW  
tAW  
tLBW, tUBW  
tWP  
Address Setup Time  
tAS  
Write Recovery Time  
tWR  
0
Write to High-Z Output  
tWHZ  
tDW  
20  
Data to Write Time Overlap  
Data Hold from Write Time  
End Write to Low-Z Output  
40  
0
tDH  
tOW  
10  
August 4, 2004 SRAM_Type01_03A0  
2Mbit Type 1 SRAM  
63  
P r e l i m i n a r y  
Timing Diagrams  
t
RC  
Address  
t
AA  
t
OH  
DataValid  
Data Out  
Previous Data Valid  
Figure 2. Timing of Read Cycle (CE# = OE# = VIL, WE# = CE2= VIH  
)
t
RC  
Address  
t
AA  
t
HZ  
CE1#  
CE2  
t
CO  
t
LZ  
t
OHZ  
t
OE  
OE#  
t
OLZ  
t
t
LB, UB  
LB#, UB#  
Data Out  
t
t
t
t
LBLZ, UBLZ  
LBHZ, UBHZ  
High-Z  
Data Valid  
Figure 3. Timing Waveform of Read Cycle (WE# = VIH  
)
64  
2Mbit Type 1 SRAM  
SRAM_Type01_03A0 August 4, 2004  
P r e l i m i n a r y  
t
WC  
Address  
t
WR  
t
AW  
CE1#  
CE2  
t
CW  
t
, t  
LBW UBW  
LB#, UB#  
t
t
AS  
WP  
WE#  
t
t
DH  
DW  
High-Z  
Data Valid  
Data In  
Data Out  
t
WHZ  
t
OW  
High-Z  
Figure 4. Timing Waveform of Write Cycle (WE# Control)  
t
WC  
Address  
t
t
AW  
WR  
t
CE1#  
CW  
(for CE2 Control, use  
inverted signal)  
t
AS  
t
, t  
LBW UBW  
LB#, UB#  
WE#  
t
WP  
t
t
DH  
DW  
Data Valid  
Data In  
t
LZ  
t
WHZ  
High-Z  
Data Out  
Figure 5. Timing Waveform of Write Cycle (CE1# Control)  
August 4, 2004 SRAM_Type01_03A0  
2Mbit Type 1 SRAM  
65  
P r e l i m i n a r y  
2Mbit Type 2 SRAM  
128K x 16 Static RAM  
Common Features  
„ High Speed  
— 55ns and 70ns availability  
„ Ultra-low active power  
— Typical active current: 1.5 mA @ f = 1MHz  
— Typical active current: 7 mA @ f = fmax (70ns speed)  
„ Low standby power  
„ Easy memory expansion with CE and OE features  
„ Automatic power-down when deselected  
„ CMOS for optimum speed/power  
Functional Description  
The 2Mbit Type 2 SRAM is a family of high-performance CMOS static RAMs orga-  
nized as 128K words by 16 bits. These devices feature advanced circuit design to  
provide ultra-low active current. This is ideal for providing More Battery Life™  
(MoBL™) in portable applications such as cellular telephones. The devices also  
have an automatic power-down feature that significantly reduces power con-  
sumption by 80% when addresses are not toggling. The device can also be put  
into standby mode reducing power consumption by more than 99% when dese-  
lected (CE# High). The input/output pins (I/O0 through I/O15) are placed in a  
high-impedance state when: deselected (CE# High), outputs are disabled (OE#  
High), both Byte High Enable and Byte Low Enable are disabled (BHE#, BLE#  
High), or during a write operation (CE# Low, and WE# Low).  
Writing to the device is accomplished by taking Chip Enable (CE#) and Write En-  
able (WE#) inputs Low. If Byte Low Enable (BLE#) is Low, then data from I/O  
pins (I/O0 through I/O7), is written into the location specified on the address pins  
(A0 through A16). If Byte High Enable (BHE#) is Low, then data from I/O pins  
(I/O8 through I/O15) is written into the location specified on the address pins (A0  
through A16).  
Reading from the device is accomplished by taking Chip Enable (CE#) and Output  
Enable (OE#) Low while forcing the Write Enable (WE#) High. If Byte Low Enable  
(BLE#) is Low, then data from the memory location specified by the address pins  
will appear on I/O0 to I/O7. If Byte High Enable (BHE#) is Low, then data from  
memory will appear on I/O8 to I/O15. See Table 1 for a complete description of  
read and write modes.  
Maximum Ratings  
(Above which the useful life may be impaired. For user guidelines, not tested)  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65°C to +150°C  
Ambient Temperature with Power Applied . . . . . . . . . . . . . . -55°C to +125°C  
Supply Voltage to Ground Potential . . . . . . . . . . . . . . -0.5V to V  
+ 0.5V  
CCmax  
DC Voltage Applied to Outputs in High-Z State (note 2) . . -0.5V to V + 0.5V  
CC  
DC Input Voltage (note 2). . . . . . . . . . . . . . . . . . . . . . . -0.5V to V + 0.5V  
CC  
Output Current into Outputs (Low). . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
66  
2Mbit Type 2 SRAM  
SRAM_Type04_04A0 August 4, 2004  
P r e l i m i n a r y  
Operating Range  
Product Portfolio  
Range  
Industrial  
Ambient Temperature  
V
CC  
-40°C to +85°C  
2.7V to 3.3V  
Power Dissipation (Industrial)  
Operating, I  
CC  
V
Range  
f = 1 MHz  
f = f  
Standby (I  
)
CC  
max  
SB2  
V
V
(note 2)  
V
Speed Typ. (note 2)  
Max  
Typ. (note 2)  
12 mA  
Max  
Typ. (note 2)  
Max  
CC (min)  
CC (typ.)  
CC (max)  
55 ns  
70 ns  
1.5 mA  
1.5 mA  
3 mA  
3 mA  
25 mA  
15 mA  
2.7V  
3.0V  
3.3V  
2 µA  
10 µA  
7 mA  
Notes:  
1. VIL(min.) = –2.0V for pulse durations less than 20 ns.  
2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at VCC  
=
VCC(typ.), TA = 25°C.  
Electrical Characteristics  
Voltage Range 2.7V - 3.3V  
Test Conditions  
Typ.  
(note 1)  
Parameter  
Description  
Output High Voltage  
Min.  
Max  
Unit  
V
V
V
V
I
I
= –1.0 mA  
= 2.1mA  
V
V
= 2.7V  
= 2.7V  
2.4  
OH  
OL  
IH  
IL  
OH  
OL  
CC  
Output Low Voltage  
Input High Voltage  
0.4  
CC  
V
2.2  
-0.3  
-1  
V
+ 0.3V  
0.8  
+1  
CC  
Input Low Voltage  
I
I
Input Leakage Current  
Output Leakage Current  
GND < V < V  
I CC  
IX  
µA  
GND < V < V , Output Disabled  
-1  
+1  
OZ  
CC  
O
CC  
f = f  
= 1/t  
V
= 3.3V  
= 0 mA  
7
15  
MAX  
RC  
CC  
I
I
I
V
Operating Supply Current  
I
mA  
CC  
OUT  
f = 1 MHz  
CMOS Levels  
1.5  
3
CE# V – 0.2V  
CC  
Automatic CE Power-Down  
Current—CMOS Inputs  
V
V  
– 0.2V or V 0.2V,  
IN  
CC IN  
SB1  
SB2  
f = fmax (Address and Data Only),  
f=0 (OE#, WE#, BHE# and BLE#)  
2
10  
µA  
CE# V – 0.2V  
CC  
Automatic CE Power-Down  
Current—CMOS Inputs  
V
V  
– 0.2V or V 0.2V,  
IN  
CC IN  
f = 0, V = 3.3V  
CC  
Notes:  
1. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at VCC  
VCC(typ.), TA = 25°C.  
=
August 4, 2004 SRAM_Type04_04A0  
2Mbit Type 2 SRAM  
67  
P r e l i m i n a r y  
Capacitance  
Parameter  
Description  
Test Condition  
Max  
6
Unit  
CIN  
Input Capacitance  
Output Capacitance  
TA = 25°C, f = 1 MHz,  
pF  
VCC = VCC(typ.)  
COUT  
8
Note: Tested initially and after any design or process changes that may affect these parameters.  
AC Test Loads and Waveforms  
R1  
V
ALL INPUT PULSES  
90%  
10%  
CC  
V
Typ  
CC  
OUTPUT  
90%  
10%  
GND  
Rise Time: 1 V/ns  
R2  
30 pF  
Fall Time: 1 V/ns  
INCLUDING  
JIG AND  
SCOPE  
Equivalent to:  
THÉVENINEQUIVALENT  
R
TH  
OUTPUT  
V
TH  
Figure 1. AC Test Loads and Waveforms  
Parameters  
2.5V  
16.6  
15.4  
8
3.0V  
1.105  
1.550  
0.645  
1.75  
3.3V  
Unit  
K Ohms  
Volts  
R1  
R2  
1.216  
1.374  
0.645  
1.75  
RTH  
VTH  
1.20  
Data Retention Characteristics (Over the Operation Range)  
Typ  
Parameter  
VDR  
Description  
VCC for Data Retention  
Conditions  
Min. (note 1)  
Max.  
VCCMAX  
4
Unit  
1.5  
V
ICCDR  
Data Retention Current  
VCC = 1.5V CE#  
VCC – 0.2V  
1
µA  
tCDR (note 2)  
tR (note 3)  
Chip Deselect to Data Retention Time  
Operation Recovery Time  
0
ns  
tRC  
Notes:  
1. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at VCC  
VCC(typ.), TA = 25°C.  
=
2. Tested initially and after any design or process changes that may affect these parameters.  
3. Full Device AC operation requires linear VCC ramp from VDR to VCC(min.) > 100 ms or stable at VCC(min.) > 100 ms.  
68  
2Mbit Type 2 SRAM  
SRAM_Type04_04A0 August 4, 2004  
P r e l i m i n a r y  
DATA RETENTION MODE  
> 1.5 V  
VCC(min)  
VCC(min)  
V
V
DR  
CC  
t
t
R
CDR  
CE#or  
BHE#.BLE#  
Figure 2. Data Retention Waveform  
Note: BHE#.BLE# is the AND of both BHE# and BLE#. Chip can be deselected by either disabling the chip enable signals  
or by disabling both BHE# and BLE#.  
August 4, 2004 SRAM_Type04_04A0  
2Mbit Type 2 SRAM  
69  
P r e l i m i n a r y  
Switching Characteristics  
55 ns  
70 ns  
Parameter  
Read Cycle  
Description  
Unit  
Min  
Max  
Min  
Max  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Read Cycle Time  
55  
10  
70  
10  
RC  
Address to Data Valid  
55  
70  
AA  
Data Hold from Address Change  
CE# Low to Data Valid  
OHA  
ACE  
DOE  
LZOE  
HZOE  
LZCE  
HZCE  
PU  
55  
25  
70  
35  
OE# Low to Data Valid  
OE# Low to Low Z (note 2)  
OE# High to High Z (note 2, 4)  
CE# Low to Low Z (note 2)  
CE# High to High Z (note 2, 4)  
CE# Low to Power-Up  
5
10  
0
5
10  
0
20  
20  
25  
25  
ns  
CE# High to Power-Down  
55  
55  
70  
70  
PD  
BHE# / BLE# Low to Data Valid  
BHE# / BLE# Low to Low Z (note 2)  
BHE# / BLE# High to High Z (note 2, 4)  
DBE  
LZBE  
HZBE  
(note 3)  
5
5
20  
25  
Write Cycle (note 5)  
t
t
t
t
t
t
t
t
t
t
t
Write Cycle Time  
55  
45  
45  
0
70  
60  
60  
0
WC  
CE# Low to Write End  
SCE  
AW  
Address Set-Up to Write End  
Address Hold from Write End  
Address Set-Up to Write Start  
WE# Pulse Width  
HA  
0
0
SA  
45  
50  
25  
0
50  
60  
30  
0
ns  
PWE  
BW  
BHE# / BLE# Pulse Width  
Data Set-Up to Write End  
Data Hold from Write End  
WE# Low to High Z (note 2, 4)  
WE# High to Low Z (note 2)  
SD  
HD  
20  
25  
HZWE  
LZWE  
5
5
Notes:  
1. Test conditions assume signal transition time of 5 ns or less, timing reference levels of VCC(typ.) /2, input pulse levels of 0 to  
VCC(typ.), and output loading of the specified IOL/IOH and 30 pF load capacitance.  
2. At any given temperature and voltage condition, tHZCE is less than tLZCE, tHZBE is less than tLZBE, tHZOE is less than tLZOE, and  
tHZWE is less than tLZWE for any given device.  
3. If both byte enables are toggled together this value is 10ns.  
4. tHZOE, tHZCE, tHZBE, and tHZWE transitions are measured when the outputs enter a high impedance state.  
5. The internal write time of the memory is defined by the overlap of WE#, CE# = VIL, BHE# and/or BLE# = VIL. All signals  
must be Active to initiate a write, and any of these signals can terminate a write by going Inactive. The data input set-up and  
hold timing should be referenced to the edge of the signal that terminates the write.  
70  
2Mbit Type 2 SRAM  
SRAM_Type04_04A0 August 4, 2004  
P r e l i m i n a r y  
Switching Waveforms  
t
RC  
ADDRESS  
t
AA  
t
OHA  
DATA OUT  
PREVIOUS DATA VALID  
DATA VALID  
Figure 3. Read Cycle 1 (Address Transition Controlled)  
Notes:  
1. Device is continuously selected. OE#, CE# = VIL, BHE#, BLE# = VIL  
.
2. WE# is High for read cycle.  
ADDRESS  
t
RC  
CE#  
OE#  
tPD  
tHZCE  
tACE  
tHZOE  
t
DOE  
BHE#/BLE#  
t
Z
L OE
tHZBE  
tDBE  
tLZBE  
HIGH  
IMPEDANCE  
HIGH IMPEDANCE  
DATA OUT  
DATA VALID  
tLZCE  
tPU  
VCC  
SUPPLY  
CURRENT  
ICC  
ISB  
50%  
50%  
Figure 4. Read Cycle 2 (OE# Controlled)  
Notes:  
1. WE# is High for read cycle.  
2. Address valid prior to or coincident with CE#, BHE#, BLE# transition Low.  
August 4, 2004 SRAM_Type04_04A0  
2Mbit Type 2 SRAM  
71  
P r e l i m i n a r y  
tWC  
ADDRESS  
CE#  
tSCE  
tAW  
tHA  
tSA  
tPWE  
WE#  
t
BW  
BHE#/BLE#  
OE#  
t
SD  
tHD  
DATA I/O  
DATAIN VALID  
NOTE4  
tHZOE  
Figure 5. Write Cycle 1 (WE# Controlled)  
Notes:  
1. The internal write time of the memory is defined by the overlap of WE#, CE# = VIL, BHE# and/or BLE# = VIL. All signals  
must be Active to initiate a write, and any of these signals can terminate a write by going Inactive. The data input set-up and  
hold timing should be referenced to the edge of the signal that terminates the write.  
2. Data I/O is high-impedance if OE# = VIH  
.
3. If CE# goes High simultaneously with WE# High, the output remains in a high-impedance state.  
4. During this period, the I/Os are in output state and input signals should not be applied.  
72  
2Mbit Type 2 SRAM  
SRAM_Type04_04A0 August 4, 2004  
P r e l i m i n a r y  
t
WC  
ADDRESS  
CE#  
t
SCE  
tSA  
t
t
HA  
AW  
t
PWE  
WE#  
t
BW  
BHE#/BLE#  
OE#  
t
SD  
t
HD  
VALID  
DATA I/O  
DATA  
IN  
NOTE4  
t
HZOE  
Figure 6. Write Cycle 2 (CE# Controlled)  
Notes:  
1. The internal write time of the memory is defined by the overlap of WE#, CE# = VIL, BHE# and/or BLE# = VIL. All signals  
must be Active to initiate a write, and any of these signals can terminate a write by going Inactive. The data input set-up and  
hold timing should be referenced to the edge of the signal that terminates the write.  
2. Data I/O is high-impedance if OE# = VIH  
.
3. If CE# goes High simultaneously with WE# High, the output remains in a high-impedance state.  
4. During this period, the I/Os are in output state and input signals should not be applied.  
t
WC  
ADDRESS  
CE#  
t
SCE  
t
BW  
BHE#/BLE#  
t
AW  
t
HA  
t
t
PWE  
SA  
WE#  
t
SD  
t
HD  
NOTE 2  
DATAI/O  
DATA VALID  
IN  
t
LZWE  
t
HZWE  
Figure 7. Write Cycle 3 (WE# Controlled, OE# LOW)  
Notes:  
1. If CE# goes High simultaneously with WE# High, the output remains in a high-impedance state.  
2. During this period, the I/Os are in output state and input signals should not be applied.  
August 4, 2004 SRAM_Type04_04A0  
2Mbit Type 2 SRAM  
73  
P r e l i m i n a r y  
tWC  
ADDRESS  
CE#  
tSCE  
AW  
t
t
HA  
t
BW  
BHE#/BLE#  
t
SA  
t
PWE  
WE#  
t
t
HD  
SD  
DATA I/O  
VALID  
DATA  
NOTE 2  
IN  
Figure 8. Write Cycle 4 (BHE#/BLE# Controlled, OE# Low)  
Notes:  
1. If CE# goes High simultaneously with WE# High, the output remains in a high-impedance state.  
2. During this period, the I/Os are in output state and input signals should not be applied.  
Typical DC and AC Parameters  
14.0  
(f = f , 55ns)  
12.0  
10.0  
max  
MoBL  
8.0  
6.0  
(f = f , 70ns)  
max  
4.0  
2.0  
0.0  
(f = 1 MHz)  
3.0  
2.7  
3.3  
SUPPLY VOLTAGE (V)  
Figure 9. Operating Current vs. Supply Voltage  
12.0  
10.0  
MoBL  
8.0  
6.0  
4.0  
2.0  
0
3.3  
3.0  
2.7  
SUPPLY VOLTAGE (V)  
Figure 10. Standby Current vs. Supply Voltage  
74  
2Mbit Type 2 SRAM  
SRAM_Type04_04A0 August 4, 2004  
P r e l i m i n a r y  
60  
MoBL  
50  
40  
30  
20  
10  
0
3.0  
2.7  
3.3  
SUPPLY VOLTAGE (V)  
Figure 11. Access Time vs. Supply Voltage  
Truth Table  
Table 1. Truth Table  
CE# WE# OE# BHE#  
BLE#  
Inputs / Outputs  
Mode  
Power  
H
L
X
X
H
X
X
L
X
H
L
X
H
L
High-Z  
High-Z  
Deselect/Power-Down  
Output Disabled  
Read  
Standby (ISB)  
L
Data Out (I/OO–I/O15)  
Data Out (I/OO–I/O7);  
I/O8–I/O15 in High Z  
L
L
H
H
L
L
H
L
L
Read  
Read  
Data Out (I/O8–I/O15);  
I/O0–I/O7 in High Z  
H
L
L
L
L
H
H
H
L
H
H
H
X
L
H
L
L
L
High-Z  
Output Disabled  
Output Disabled  
Output Disabled  
Write  
Active (ICC  
)
High-Z  
H
L
High-Z  
L
Data In (I/OO–I/O15)  
Data In (I/OO–I/O7);  
I/O8–I/O15 in High Z  
L
L
L
L
X
X
H
L
L
Write  
Write  
Data In (I/O8–I/O15);  
I/O0–I/O7 in High Z  
H
August 4, 2004 SRAM_Type04_04A0  
2Mbit Type 2 SRAM  
75  
A d v a n c e I n f o r m a t i o n  
Revision Summary  
Revision A (September 27, 2004)  
Initial release.  
Revision A+1 (November 11, 2004)  
Deleted parameter "t  
" at page 50,56.  
OES  
Changed the symbol of " tLBZ, tUBZ" to " tLBLZ, tUBLZ" at page 63.  
Trademarks and Notice  
The contents of this document are subject to change without notice.This document may contain information on a SpansionTM product under development  
by Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided  
as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement  
of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the  
use of the information in this document.  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary  
industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that  
includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal  
injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control,  
medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable ( i.e., submersible repeater and  
artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-men-  
tioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other  
abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under  
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior au-  
thorization by the respective government entity will be required for export of those products.  
The contents of this document are subject to change without notice.This document may contain information on a SpansionTM product under development by  
Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided  
as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement  
of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the  
use of the information in this document.  
Copyright © 2004 Spansion LLC. All rights reserved.  
SpansionTM, the SpansionTM logo, MirrorBit, combinations thereof, and ExpressFlash are trademarks of Spansion LLC. Other company and product names used  
in this publication are for identification purposes only and may be trademarks of their respective companies.  
76  
Revision Summary  
S71AL016D_02_04_00_A0 November 11, 2004  

相关型号:

S71AL016D02BFWTF3

Stacked Multi-Chip Product (MCP) Flash Memory and RAM
SPANSION

S71AL016M

Stacked Multi-Chip Product (MCP) Flash Memory and RAM
SPANSION

S71AL016M40

Stacked Multi-Chip Product (MCP) Flash Memory and RAM
SPANSION

S71AL016M40BAW0B3

Memory Circuit, 1MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, VFBGA-56
SPANSION

S71AL016M40BAW0F3

Memory Circuit, 1MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, VFBGA-56
SPANSION

S71AL016M40BFW0F0

Memory Circuit, 1MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, VFBGA-56
SPANSION

S71AL016M40BFW0F2

Memory Circuit, 1MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, VFBGA-56
SPANSION

S71AL016M40BFW0F3

Memory Circuit, 1MX16, CMOS, PBGA56, 7 X 9 MM, 1.20 MM HEIGHT, LEAD FREE, VFBGA-56
SPANSION

S71GL-N

Stacked Multi-Chip Product (MCP) Flash Memory and RAM
SPANSION

S71GL-N_08

Stacked Multi-Chip Product (MCP) Flash Memory and RAM
SPANSION

S71GL016A

Stacked Multi-Chip Product (MCP) Flash Memory and RAM
SPANSION

S71GL016A40

Stacked Multi-Chip Product (MCP) Flash Memory and RAM
SPANSION