MB9BF129SA [SPANSION]

This document states the current technical specifications regarding;
MB9BF129SA
型号: MB9BF129SA
厂家: SPANSION    SPANSION
描述:

This document states the current technical specifications regarding

文件: 总137页 (文件大小:3461K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The following document contains information on Cypress products.  
MB9B120TA Series  
32-bit ARM® Cortex®-M3 based Microcontroller  
MB9BF129SA/TA, MB9BF128SA/TA  
Data Sheet (Full Production)  
Notice to Readers: This document states the current technical specifications regarding the Spansion  
product(s) described herein. Spansion Inc. deems the products to have been in sufficient production  
volume such that subsequent versions of this document are not expected to change. However,  
typographical or specification corrections, or modifications to the valid combinations offered may occur.  
Publication Number MB9B120TA_DS706-00063  
Revision 2.0  
Issue Date January 30, 2015  
D a t a S h e e t  
Notice On Data Sheet Designations  
Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers  
of product information or intended specifications throughout the product life cycle, including development,  
qualification, initial production, and full production. In all cases, however, readers are encouraged to  
verify that they have the latest information before finalizing their design. The following descriptions of  
Spansion data sheet designations are presented here to highlight their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion Inc. is developing one or more specific  
products, but has not committed any design to production. Information presented in a document with this  
designation is likely to change, and in some cases, development on the product may discontinue.  
Spansion Inc. therefore places the following conditions upon Advance Information content:  
“This document contains information on one or more products under development at Spansion  
Inc. The information is intended to help you evaluate this product. Do not design in this product  
without contacting the factory. Spansion Inc. reserves the right to change or discontinue work on  
this proposed product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a  
commitment to production has taken place. This designation covers several aspects of the product life  
cycle, including product qualification, initial production, and the subsequent phases in the manufacturing  
process that occur before full production is achieved. Changes to the technical specifications presented  
in a Preliminary document should be expected while keeping these aspects of production under  
consideration. Spansion places the following conditions upon Preliminary content:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. The Preliminary status of this document indicates that product qualification  
has been completed, and that initial production has begun. Due to the phases of the  
manufacturing process that require maintaining efficiency and quality, this document may be  
revised by subsequent versions or modifications due to changes in technical specifications.”  
Combination  
Some data sheets contain a combination of products with different designations (Advance Information,  
Preliminary, or Full Production). This type of document distinguishes these products and their  
designations wherever necessary, typically on the first page, the ordering information page, and pages  
with the DC Characteristics table and the AC Erase and Program table (in the table notes). The  
disclaimer on the first page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal  
changes are expected, the Preliminary designation is removed from the data sheet. Nominal changes  
may include those affecting the number of ordering part numbers available, such as the addition or  
deletion of a speed option, temperature range, package type, or VIO range. Changes may also include  
those needed to clarify a description or to correct a typographical error or incorrect specification.  
Spansion Inc. applies the following conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. Spansion Inc. deems the products to have been in sufficient production  
volume such that subsequent versions of this document are not expected to change. However,  
typographical or specification corrections, or modifications to the valid combinations offered may  
occur.”  
Questions regarding these document designations may be directed to your local sales office.  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
MB9B120TA Series  
32-bit ARM® Cortex®-M3 based Microcontroller  
MB9BF129SA/TA, MB9BF128SA/TA  
Data Sheet (Full Production)  
Description  
The MB9B120TA Series are highly integrated 32-bit microcontrollers dedicated for embedded controllers  
with low-power consumption mode and competitive cost.  
These series are based on the ARM Cortex-M3 Processor with on-chip Flash memory and SRAM, and have  
peripheral functions such as various timers, ADCs, DACs and Communication Interfaces ( UART, CSIO,  
I2C, LIN).  
The products which are described in this data sheet are placed into TYPE12 product categories in "FM3  
Family PERIPHERAL MANUAL".  
Note: ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.  
Publication Number MB9B120TA_DS706-00063  
Revision 2.0  
Issue Date January 30, 2015  
This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient  
production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the  
valid combinations offered may occur.  
D a t a S h e e t  
Features  
32-bit ARM Cortex-M3 Core  
Processor version: r2p1  
Up to 60 MHz Frequency Operation  
Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and  
48 peripheral interrupts and 16 priority levels  
24-bit System timer (Sys Tick): System timer for OS task management  
On-chip Memories  
[Flash memory]  
Dual operation Flash memory  
Main area:  
Up to 1.5Mbytes(1008Kbytes(ROM0) + 512Kbytes(ROM1) of Upper bank and 16Kbytes(ROM0)  
of Lower bank.)  
Work area  
64 Kbytes(ROM1) of Lower bank  
Read cycle: 0 wait-cycle  
Security function for code protection  
[SRAM]  
This Series on-chip SRAM is composed of two independent SRAM (SRAM0, SRAM1). SRAM0 is  
connected to I-code bus and D-code bus of Cortex-M3 core. SRAM1 is connected to System bus.  
SRAM0: Up to 96 Kbytes  
SRAM1: Up to 96 Kbytes  
External Bus Interface  
Supports SRAM, NOR NAND Flash memory device  
Up to 8 chip selects  
8/16-bit Data width  
Up to 25-bit Address bit  
Maximum area size : Up to 256 Mbytes  
Supports Address/Data multiplex  
Supports external RDY function  
2
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Multi-function Serial Interface (Max 16channels)  
16 channels with 16steps×9-bit FIFO  
Operation mode is selectable from the followings for each channel.  
UART  
CSIO  
LIN  
I2C  
[UART]  
Full duplex double buffer  
Selection with or without parity supported  
Built-in dedicated baud rate generator  
External clock available as a serial clock  
Hardware Flow control: Automatically control the transmission/reception by CTS/RTS (only ch.4)  
Various error detection functions available (parity errors, framing errors, and overrun errors)  
[CSIO]  
Full duplex double buffer  
Built-in dedicated baud rate generator  
Overrun error detection function available  
[LIN]  
LIN protocol Rev.2.1 supported  
Full duplex double buffer  
Master/Slave mode supported  
LIN break field generation (can be changed to 13 to 16-bit length)  
LIN break delimiter generation (can be changed to 1 to 4-bit length)  
Various error detection functions available (parity errors, framing errors, and overrun errors)  
[I2C]  
Standard - mode (Max 100kbps) / Fast - mode (Max 400kbps) supported  
DMA Controller (8channels)  
The DMA Controller has an independent bus from the CPU, so CPU and DMA Controller can process  
simultaneously.  
8 independently configured and operated channels  
Transfer can be started by software or request from the built-in peripherals  
Transfer address area: 32-bit (4 Gbytes)  
Transfer mode: Block transfer/Burst transfer/Demand transfer  
Transfer data type: byte/half-word/word  
Transfer block count: 1 to 16  
Number of transfers: 1 to 65536  
A/D Converter (Max 24channels)  
[12-bit A/D Converter]  
Successive Approximation type  
Built-in 2units  
Conversion time: 1.0μs @ 2.7V to 5.5V  
Priority conversion available (priority at 2levels)  
Scanning conversion mode  
Built-in FIFO for conversion data storage (for SCAN conversion: 16steps, for Priority conversion: 4steps)  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
3
D a t a S h e e t  
D/A Converter (Max 2channels)  
R-2R type  
10-bit resolution  
Base Timer (Max 16channels)  
Operation mode is selectable from the followings for each channel.  
16-bit PWM timer  
16-bit PPG timer  
16/32-bit reload timer  
16/32-bit PWC timer  
General-Purpose I/O Port  
This series can use its pins as general-purpose I/O ports when they are not used for external bus or  
peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function  
can be allocated to.  
Capable of pull-up control per pin  
Capable of reading pin level directly  
Built-in the port relocate function  
Up to 154 high-speed general-purpose I/O Ports@176pin Package  
Some ports are 5V tolerant.  
See "List of Pin Functions" and "I/O Circuit Type" to confirm the corresponding pins.  
Dual Timer (32/16-bit Down Counter)  
The Dual Timer consists of two programmable 32/16-bit down counters.  
Operation mode is selectable from the followings for each channel.  
Free-running  
Periodic (=Reload)  
One-shot  
Quadrature Position/Revolution Counter (QPRC) (Max 2channels)  
The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position  
encoder. Moreover, it is possible to use as the up/down counter.  
The detection edge of the three external event input pins AIN, BIN and ZIN is configurable.  
16-bit position counter  
16-bit revolution counter  
Two 16-bit compare registers  
HDMI-CEC/Remote Control Reception (Up to 2channels)  
HDMI-CEC transmission  
Header block automatic transmission by judging Signal free  
Generating status interrupt by detecting Arbitration lost  
Generating START, EOM, ACK automatically to output CEC transmission by setting 1 byte data  
Generating transmission status interrupt when transmitting 1 block (1 byte data and EOM/ACK)  
HDMI-CEC reception  
Automatic ACK reply function available  
Line error detection function available  
Remote control reception  
4 bytes reception buffer  
Repeat code detection function available  
4
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Multi-function Timer  
The Multi-function timer is composed of the following blocks.  
16-bit free-run timer × 3ch./unit  
Input capture × 4ch./unit  
Output compare × 6ch./unit  
A/D activation compare × 2ch./unit  
Waveform generator × 3ch./unit  
16-bit PPG timer × 3ch./unit  
The following function can be used to achieve the motor control.  
PWM signal output function  
DC chopper waveform output function  
Dead time function  
Input capture function  
A/D convertor activate function  
DTIF (Motor emergency stop) interrupt function  
Real-time clock (RTC)  
The Real-time clock can count Year/Month/Day/Hour/Minute/Second/A day of the week from 01 to 99.  
The interrupt function with specifying date and time (Year/Month/Day/Hour/Minute/Second/A day of the  
week.) is available. This function is also available by specifying only Year, Month, Day, Hour or Minute.  
Timer interrupt function after set time or each set time.  
Capable of rewriting the time with continuing the time count.  
Leap year automatic count is available.  
Watch Counter  
The Watch counter is used for wake up from sleep and timer mode.  
Interval timer: up to 64s (Max) @ Sub Clock : 32.768 kHz  
External Interrupt Controller Unit  
Up to 32 external interrupt input pins @ 176pin Package  
Include one non-maskable interrupt (NMI) input pin  
Watchdog Timer (2channels)  
A watchdog timer can generate interrupts or a reset when a time-out value is reached.  
This series consists of two different watchdogs, a "Hardware" watchdog and a "Software" watchdog.  
The "Hardware" watchdog timer is clocked by the built-in low-speed CR oscillator. Therefore, the  
"Hardware" watchdog is active in any low-power consumption modes except RTC, STOP, Deep standby  
RTC, Deep standby STOP modes.  
CRC (Cyclic Redundancy Check) Accelerator  
The CRC accelerator calculates the CRC which has a heavy software processing load, and achieves a  
reduction of the integrity check processing load for reception data and storage.  
CCITT CRC16 and IEEE-802.3 CRC32 are supported.  
CCITT CRC16 Generator Polynomial: 0x1021  
IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
5
D a t a S h e e t  
Clock and Reset  
[Clocks]  
Selectable from five clock sources (2 external oscillators, 2 built-in CR oscillators, and Main PLL).  
Main Clock  
Sub Clock  
Built-in high-speed CR Clock  
Built-in low-speed CR Clock  
Main PLL Clock  
: 4 MHz to 48 MHz  
: 32.768 kHz  
: 4 MHz  
: 100 kHz  
[Resets]  
Reset requests from INITX pin  
Power-on reset  
Software reset  
Watchdog timers reset  
Low-voltage detection reset  
Clock Super Visor reset  
Clock Super Visor (CSV)  
Clocks generated by built-in CR oscillators are used to supervise abnormality of the external clocks.  
If external clock failure (clock stop) is detected, reset is asserted.  
If external frequency anomaly is detected, interrupt or reset is asserted.  
Low-Voltage Detector (LVD)  
This Series includes 2-stage monitoring of voltage on the VCC pins. When the voltage falls below the  
voltage that has been set, Low-Voltage Detector generates an interrupt or reset.  
LVD1: error reporting via interrupt  
LVD2: auto-reset operation  
Low-Power Consumption Mode  
Six low-power consumption modes supported.  
SLEEP  
TIMER  
RTC  
STOP  
Deep standby RTC (selectable between keeping the value of RAM and not)  
Deep standby STOP (selectable between keeping the value of RAM and not)  
Debug  
Serial Wire JTAG Debug Port (SWJ-DP)  
Embedded Trace Macrocell (ETM)  
Unique ID  
Unique value of the device (41-bit) is set.  
Power Supply  
Wide range voltage : VCC  
= 2.7V to 5.5V  
6
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Product Lineup  
Memory size  
Product name  
MB9BF128SA/TA  
MB9BF129SA/TA  
On-chip  
Flash  
memory  
Main area  
1 Mbytes  
1.5 Mbytes  
Work area  
64 Kbytes  
64 Kbytes  
SRAM0  
SRAM1  
Total  
80 Kbytes  
80 Kbytes  
160 Kbytes  
96 Kbytes  
96 Kbytes  
192 Kbytes  
On-chip  
SRAM  
Function  
MB9BF128SA  
MB9BF129SA  
144  
MB9BF128TA  
MB9BF129TA  
176/192  
Product name  
Pin count  
CPU  
Cortex-M3  
60 MHz  
Freq.  
Power supply voltage range  
DMAC  
2.7V to 5.5V  
8ch.  
Addr: 25 bit (Max)  
R/Wdata : 8/16 bit (Max)  
External Bus Interface  
CS: 8 (Max)  
SRAM , NOR Flash memory , NAND Flash memory  
Multi-function Serial Interface  
(UART/CSIO/LIN/I2C)  
Base Timer  
(PWC/Reload timer/PWM/PPG)  
A/D activation  
16ch. (Max) with 16steps×9-bit FIFO  
16ch. (Max)  
2ch.  
compare  
Input capture  
Free-run timer  
Output compare  
4ch.  
3ch.  
6ch.  
MF-  
Timer  
1 unit  
Waveform generator 3ch.  
PPG 3ch.  
QPRC  
1ch.(Max)  
2ch. (Max)  
Dual Timer  
1 unit  
HDMI-CEC/ Remote Control  
Reception  
2ch. (Max)  
Real-Time Clock  
Watch Counter  
1 unit  
1 unit  
CRC Accelerator  
Watchdog timer  
External Interrupts  
I/O ports  
Yes  
1ch. (SW) + 1ch. (HW)  
32pins (Max) + NMI × 1  
122pins (Max)  
154pins (Max)  
12-bit A/D converter  
10-bit D/A converter  
CSV (Clock Super Visor)  
LVD (Low-Voltage Detector)  
24ch. (2 units)  
2ch. (Max)  
Yes  
2ch.  
High-speed  
Low-speed  
4 MHz (± 2%)  
100 kHz (Typ)  
SWJ-DP / ETM  
Yes  
Built-in CR  
Debug Function  
Unique ID  
Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.  
It is necessary to use the port relocate function of the I/O port according to your function use.  
See "Electrical Characteristics 4.AC Characteristics (3)Built-in CR Oscillation Characteristics" for  
accuracy of built-in CR.  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
7
D a t a S h e e t  
Packages  
Product name  
MB9BF128SA  
MB9BF129SA  
MB9BF128TA  
MB9BF129TA  
Package  
LQFP: FPT-144P-M08 (0.5mm pitch)  
LQFP: FPT-176P-M07 (0.5mm pitch)  
BGA: BGA-192P-M06 (0.8mm pitch)  
-  
-
  
  
-
: Supported  
Note: See "Package Dimensions" for detailed information on each package.  
8
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin Assignment  
FPT-176P-M07  
(TOP VIEW)  
VCC  
PA0/SIN8_0/TIOA08_0/MAD21_0  
PA1/SOT8_0/TIOA09_0/MAD22_0  
PA2/SCK8_0/TIOA10_0/MAD23_0  
PA3/SIN9_0/TIOA11_0/MAD24_0  
PA4/SOT9_0/TIOA12_0/INT03_0  
PA5/SCK9_0/TIOA13_0/INT10_2  
P05/TRACED0/SIN4_2/TIOA05_2/INT00_1  
P06/TRACED1/SOT4_2/TIOB05_2/INT01_1  
1
2
3
4
5
6
7
8
9
132 VSS  
131 VCC  
130 P83/MCSX6_0  
129 P82/MCSX7_0  
128 PF6/NMIX/WKUP0  
127 P20/AIN1_1/INT05_0/CROUT_0  
126 P21/SIN0_0/BIN1_1/INT06_1  
125 P22/AN23/SOT0_0/ZIN1_1/TIOB07_1  
124 P23/AN22/SCK0_0/RTO00_1/TIOA07_1  
123 P24/AN21/SIN2_1/RTO01_1/INT01_2  
122 P25/AN20/SOT2_1/RTO02_1  
121 P26/AN19/SCK2_1/RTO03_1  
120 P27/AN18/SCK12_0/RTO04_1/INT02_2  
119 P28/AN17/ADTG_4/SOT12_0/RTO05_1/INT09_0  
118 P29/AN16/SIN12_0  
P07/TRACED2/ADTG_0/SCK4_2  
P08/TRACED3/CTS4_2/TIOA00_2  
P09/TRACECLK/RTS4_2/TIOB00_2  
P50/SIN3_1/AIN0_2/INT00_0/MOEX_0  
P51/SOT3_1/BIN0_2/INT01_0/MWEX_0  
P52/SCK3_1/ZIN0_2/INT02_0/MDQM0_0  
P53/SIN6_0/TIOA01_2/INT07_2/MDQM1_0  
P54/SOT6_0/TIOB01_2/MALE_0  
P55/ADTG_1/SCK6_0/MRDY_0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
117 AVRH  
116 AVRL  
115 AVSS  
P56/SIN1_0/TIOA09_2/INT08_2/CEC1_1/MNALE_0  
P57/SOT1_0/TIOB09_2/INT16_1/MNCLE_0  
P58/SCK1_0/TIOA11_2/INT17_1/MNWEX_0  
P59/SIN7_0/TIOB11_2/INT09_2/MNREX_0  
P5A/SOT7_0/TIOA13_1/INT18_1/MCSX0_0  
P5B/SCK7_0/TIOB13_1/INT19_1/MCSX1_0  
P5C/TIOA06_2/INT28_0  
114 AVCC  
113 PB7/TIOB12_1/INT23_0  
112 PB6/SCK0_2/TIOA12_1/INT22_0  
111 PB5/SOT0_2/TIOB11_1/INT21_0  
110 PB4/SIN0_2/TIOA11_1/INT20_0  
109 PB3/TIOB10_1/INT19_0  
LQFP - 176  
108 PB2/SCK7_2/TIOA10_1/INT18_0  
107 PB1/SOT7_2/TIOB09_1/INT17_0  
106 PB0/SIN7_2/TIOA09_1/INT16_0  
105 P1F/AN15/ADTG_5/FRCK0_1/TIOB15_2/INT29_1  
104 P1E/AN14/RTS4_1/DTTI0X_1/TIOA15_2/INT28_1  
103 P1D/AN13/CTS4_1/IC03_1/TIOB14_2/INT27_1  
102 P1C/AN12/SCK4_1/IC02_1/TIOA14_2/INT26_1  
101 P1B/AN11/SOT4_1/IC01_1/TIOB13_2/INT25_1  
100 P1A/AN10/SIN4_1/IC00_1/TIOA13_2/INT05_1  
P5D/TIOB06_2/INT29_0  
VSS  
P30/AIN0_0/TIOB00_1/INT03_2/WKUP4  
P31/SCK6_1/BIN0_0/TIOB01_1/INT04_2  
P32/SOT6_1/ZIN0_0/TIOB02_1/INT05_2  
P33/ADTG_6/SIN6_1/TIOB03_1/INT04_0  
P34/FRCK0_0/TIOB04_1  
P35/IC03_0/TIOB05_1/INT08_1  
P36/SIN5_2/IC02_0/TIOA12_2/INT09_1  
P37/SOT5_2/IC01_0/TIOB12_2/INT10_1  
P38/SCK5_2/IC00_0/INT11_1  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
P19/AN09/SCK2_2/INT22_1  
P18/AN08/SOT2_2/INT21_1  
P17/AN07/SIN2_2/INT04_1  
P16/AN06/SCK0_1/INT20_1  
P15/AN05/SOT0_1/IC03_2  
P14/AN04/SIN0_1/IC02_2/INT03_1  
P13/AN03/SCK1_1/IC01_2/RTCCO_1/SUBOUT_1  
P12/AN02/SOT1_1/IC00_2  
P11/AN01/SIN1_1/FRCK0_2/INT02_1/WKUP1  
P10/AN00  
P39/ADTG_2/DTTI0X_0/RTCCO_2/SUBOUT_2  
P3A/RTO00_0/TIOA00_1  
P3B/RTO01_0/TIOA01_1  
P3C/RTO02_0/TIOA02_1  
P3D/RTO03_0/TIOA03_1  
P3E/RTO04_0/TIOA04_1  
P3F/RTO05_0/TIOA05_1  
VSS  
VCC  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
9
D a t a S h e e t  
FPT-144P-M08  
(TOP VIEW)  
VCC  
1
108 VSS  
PA0/SIN8_0/TIOA08_0/MAD21_0  
PA1/SOT8_0/TIOA09_0/MAD22_0  
PA2/SCK8_0/TIOA10_0/MAD23_0  
PA3/SIN9_0/TIOA11_0/MAD24_0  
PA4/SOT9_0/TIOA12_0/INT03_0  
PA5/SCK9_0/TIOA13_0/INT10_2  
P05/TRACED0/SIN4_2/TIOA05_2/INT00_1  
P06/TRACED1/SOT4_2/TIOB05_2/INT01_1  
P07/TRACED2/ADTG_0/SCK4_2  
2
107 VCC  
3
106 P83/MCSX6_0  
4
105 P82/MCSX7_0  
5
104 PF6/NMIX/WKUP0  
6
103 P20/AIN1_1/INT05_0/CROUT_0  
102 P21/SIN0_0/BIN1_1/INT06_1  
101 P22/AN23/SOT0_0/ZIN1_1/TIOB07_1  
100 P23/AN22/SCK0_0/RTO00_1/TIOA07_1  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
P24/AN21/SIN2_1/RTO01_1/INT01_2  
P25/AN20/SOT2_1/RTO02_1  
P26/AN19/SCK2_1/RTO03_1  
P27/AN18/SCK12_0/RTO04_1/INT02_2  
P28/AN17/ADTG_4/SOT12_0/RTO05_1/INT09_0  
P29/AN16/SIN12_0  
P08/TRACED3/CTS4_2/TIOA00_2  
P09/TRACECLK/RTS4_2/TIOB00_2  
P50/SIN3_1/AIN0_2/INT00_0/MOEX_0  
P51/SOT3_1/BIN0_2/INT01_0/MWEX_0  
P52/SCK3_1/ZIN0_2/INT02_0/MDQM0_0  
P53/SIN6_0/TIOA01_2/INT07_2/MDQM1_0  
P54/SOT6_0/TIOB01_2/MALE_0  
P55/ADTG_1/SCK6_0/MRDY_0  
AVRH  
AVRL  
AVSS  
LQFP - 144  
P56/SIN1_0/TIOA09_2/INT08_2/CEC1_1/MNALE_0  
P57/SOT1_0/TIOB09_2/INT16_1/MNCLE_0  
P58/SCK1_0/TIOA11_2/INT17_1/MNWEX_0  
P59/SIN7_0/TIOB11_2/INT09_2/MNREX_0  
P5A/SOT7_0/TIOA13_1/INT18_1/MCSX0_0  
P5B/SCK7_0/TIOB13_1/INT19_1/MCSX1_0  
VSS  
AVCC  
P1F/AN15/ADTG_5/FRCK0_1/TIOB15_2/INT29_1  
P1E/AN14/RTS4_1/DTTI0X_1/TIOA15_2/INT28_1  
P1D/AN13/CTS4_1/IC03_1/TIOB14_2/INT27_1  
P1C/AN12/SCK4_1/IC02_1/TIOA14_2/INT26_1  
P1B/AN11/SOT4_1/IC01_1/TIOB13_2/INT25_1  
P1A/AN10/SIN4_1/IC00_1/TIOA13_2/INT05_1  
P19/AN09/SCK2_2/INT22_1  
P18/AN08/SOT2_2/INT21_1  
P17/AN07/SIN2_2/INT04_1  
P16/AN06/SCK0_1/INT20_1  
P15/AN05/SOT0_1/IC03_2  
P36/SIN5_2/IC02_0/TIOA12_2/INT09_1  
P37/SOT5_2/IC01_0/TIOB12_2/INT10_1  
P38/SCK5_2/IC00_0/INT11_1  
P39/ADTG_2/DTTI0X_0/RTCCO_2/SUBOUT_2  
P3A/RTO00_0/TIOA00_1  
P3B/RTO01_0/TIOA01_1  
P14/AN04/SIN0_1/IC02_2/INT03_1  
P13/AN03/SCK1_1/IC01_2/RTCCO_1/SUBOUT_1  
P12/AN02/SOT1_1/IC00_2  
P3C/RTO02_0/TIOA02_1  
P3D/RTO03_0/TIOA03_1  
P3E/RTO04_0/TIOA04_1  
P11/AN01/SIN1_1/FRCK0_2/INT02_1/WKUP1  
P10/AN00  
P3F/RTO05_0/TIOA05_1  
VSS  
VCC  
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
10  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
BGA-192P-M06  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
P81  
P80  
PF5  
PA2  
P05  
P08  
P53  
P58  
P30  
P36  
P3A  
P3E  
P42  
P41  
VSS  
VCC  
PF3  
PF4  
P06  
P09  
P54  
P59  
P31  
P35  
P3B  
P43  
P44  
P45  
VCC  
VSS  
P61  
P60  
PA3  
P50  
P55  
P5A  
P32  
P34  
P4A  
P49  
P48  
INITX  
X0A  
PCD  
PD1  
PD2  
PD3  
P62  
P56  
P5B  
P33  
P70  
P4E  
P4D  
P4C  
P4B  
X1A  
PCB  
PCA  
PCC  
PCE  
PCF  
PD0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
PC1  
PC5  
PC6  
PC7  
PC9  
VSS  
VSS  
P76  
P74  
P73  
P72  
P71  
P75  
VCC  
P95  
PC0  
PC2  
PC3  
PC4  
PB7  
P1F  
P1D  
P7B  
P7A  
P79  
P78  
P77  
PC8  
P92  
P93  
P94  
P25  
P29  
PB6  
P1E  
P1C  
P7F  
P7E  
PF0  
P7D  
P7C  
VSS  
TDO  
P90  
P91  
P24  
P28  
PB5  
PB2  
P1B  
P18  
P14  
PF2  
PF1  
VSS  
TCK  
VCC  
A
VSS  
VCC  
PA5  
VSS  
P51  
PA0  
PA1  
PA4  
P07  
P52  
P57  
P5D  
P37  
P39  
P3D  
P3F  
P40  
C
TMS TRSTX VSS  
B
C
D
E
F
TDI  
P21  
P23  
P27  
PB4  
PB1  
P1A  
P16  
P13  
P11  
MD0  
X0  
PF6  
P20  
P22  
P26  
PB3  
PB0  
P19  
P15  
P12  
P10  
MD1  
X1  
VCC  
P83  
P82  
AVRH  
AVRL  
AVSS  
AVCC  
P17  
VSS  
P5C  
VSS  
P38  
G
H
J
K
L
P3C  
VSS  
VCC  
VSS  
VCC  
VSS  
M
N
P
<Note>  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
11  
D a t a S h e e t  
List of Pin Functions  
List of pin numbers  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated  
port number. For these pins, there are multiple pins that provide the same function for the same channel.  
Use the extended port function register (EPFR) to select the pin.  
Pin No  
LQFP-144  
1
I/O circuit  
type  
Pin state  
type  
Pin Name  
LQFP-176  
BGA-192  
1
C1  
VCC  
PA0  
-
SIN8_0  
TIOA08_0  
MAD21_0  
PA1  
SOT8_0  
TIOA09_0  
MAD22_0  
PA2  
SCK8_0  
TIOA10_0  
MAD23_0  
PA3  
SIN9_0  
TIOA11_0  
MAD24_0  
PA4  
SOT9_0  
TIOA12_0  
INT03_0  
PA5  
SCK9_0  
TIOA13_0  
INT10_2  
P05  
2
3
4
5
6
7
2
3
4
5
6
7
B2  
C2  
C3  
D5  
D2  
D1  
I*  
I*  
I*  
I*  
I*  
I*  
J
J
J
J
K
K
TRACED0  
SIN4_2  
TIOA05_2  
8
9
8
9
D3  
D4  
E
E
Q
Q
INT00_1  
P06  
TRACED1  
SOT4_2  
TIOB05_2  
INT01_1  
12  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No  
LQFP-144  
I/O circuit  
type  
Pin state  
type  
Pin Name  
LQFP-176  
BGA-192  
P07  
TRACED2  
ADTG_0  
SCK4_2  
P08  
TRACED3  
CTS4_2  
TIOA00_2  
P09  
TRACECLK  
RTS4_2  
TIOB00_2  
P50  
10  
10  
11  
12  
E2  
E
E
E
P
P
P
11  
12  
E3  
E4  
SIN3_1  
AIN0_2  
INT00_0  
MOEX_0  
P51  
SOT3_1  
BIN0_2  
INT01_0  
MWEX_0  
P52  
13  
14  
15  
13  
14  
15  
E5  
F1  
F2  
E
E
E
K
K
K
SCK3_1  
ZIN0_2  
INT02_0  
MDQM0_0  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
13  
D a t a S h e e t  
Pin Name  
Pin No  
LQFP-144  
I/O circuit  
type  
Pin state  
type  
LQFP-176  
BGA-192  
P53  
SIN6_0  
16  
16  
F3  
TIOA01_2  
INT07_2  
MDQM1_0  
P54  
E
K
SOT6_0  
TIOB01_2  
MALE_0  
P55  
ADTG_1  
SCK6_0  
MRDY_0  
P56  
17  
18  
17  
18  
F4  
F5  
E
E
J
J
SIN1_0  
TIOA09_2  
INT08_2  
CEC1_1  
MNALE_0  
P57  
19  
19  
F6  
I*  
S
SOT1_0  
TIOB09_2  
INT16_1  
MNCLE_0  
P58  
SCK1_0  
TIOA11_2  
INT17_1  
MNWEX_0  
P59  
20  
21  
22  
20  
21  
22  
G2  
G3  
G4  
I*  
I*  
E
K
K
K
SIN7_0  
TIOB11_2  
INT09_2  
MNREX_0  
14  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No  
LQFP-144  
I/O circuit  
type  
Pin state  
type  
Pin name  
LQFP-176  
BGA-192  
P5A  
SOT7_0  
TIOA13_1  
INT18_1  
MCSX0_0  
P5B  
SCK7_0  
TIOB13_1  
INT19_1  
MCSX1_0  
P5C  
TIOA06_2  
INT28_0  
P5D  
TIOB06_2  
INT29_0  
VSS  
23  
23  
G5  
E
E
K
K
24  
25  
24  
-
G6  
H1  
E
E
K
K
26  
27  
-
H2  
A5  
25  
-
P30  
AIN0_0  
TIOB00_1  
INT03_2  
WKUP4  
P31  
SCK6_1  
BIN0_0  
TIOB01_1  
INT04_2  
P32  
SOT6_1  
ZIN0_0  
TIOB02_1  
INT05_2  
P33  
ADTG_6  
SIN6_1  
TIOB03_1  
INT04_0  
28  
29  
30  
31  
-
-
-
-
H3  
H4  
H5  
H6  
E
E
E
E
U
K
K
K
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
15  
D a t a S h e e t  
Pin name  
Pin No  
LQFP-144  
I/O circuit  
type  
Pin state  
type  
LQFP-176  
BGA-192  
P34  
FRCK0_0  
TIOB04_1  
P35  
32  
-
-
J5  
E
J
IC03_0  
33  
34  
J4  
J3  
E
K
TIOB05_1  
INT08_1  
P36  
SIN5_2  
IC02_0  
26  
E
K
TIOA12_2  
INT09_1  
P37  
SOT5_2  
IC01_0  
TIOB12_2  
INT10_1  
P38  
SCK5_2  
IC00_0  
INT11_1  
P39  
ADTG_2  
DTTI0X_0  
RTCCO_2  
SUBOUT_2  
P3A  
35  
36  
37  
27  
28  
29  
J2  
K1  
K2  
E
E
E
K
K
J
38  
39  
40  
30  
31  
32  
K3  
K4  
L1  
RTO00_0  
TIOA00_1  
P3B  
RTO01_0  
TIOA01_1  
P3C  
F
F
F
J
J
J
RTO02_0  
TIOA02_1  
16  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No  
LQFP-144  
I/O circuit  
type  
Pin state  
type  
Pin name  
LQFP-176  
BGA-192  
P3D  
RTO03_0  
TIOA03_1  
P3E  
RTO04_0  
TIOA04_1  
P3F  
RTO05_0  
TIOA05_1  
VSS  
41  
33  
34  
35  
L2  
F
F
F
J
J
J
42  
43  
L3  
M2  
44  
45  
36  
37  
A8  
N1  
-
-
VCC  
P40  
SIN10_0  
TIOA00_0  
INT12_1  
MCSX2_0  
P41  
SOT10_0  
TIOA01_0  
INT13_1  
MCSX3_0  
P42  
46  
47  
38  
39  
N2  
N3  
E
E
K
K
SCK10_0  
TIOA02_0  
MCLKOUT_0  
P43  
ADTG_7  
SIN11_0  
TIOA03_0  
P44  
48  
49  
40  
41  
M3  
L4  
E
J
J
I*  
50  
51  
42  
43  
M4  
N4  
SOT11_0  
TIOA04_0  
P45  
SCK11_0  
TIOA05_0  
C
I*  
I*  
J
J
52  
53  
54  
44  
45  
46  
P2  
A11  
P4  
-
-
-
VSS  
VCC  
P46  
X0A  
55  
47  
P5  
D
F
P47  
X1A  
INITX  
56  
57  
48  
49  
P6  
D
B
G
C
N5  
P48  
58  
50  
M5  
SIN3_2  
INT14_1  
E
K
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
17  
D a t a S h e e t  
Pin name  
Pin No  
LQFP-144  
I/O circuit  
type  
Pin state  
type  
LQFP-176  
BGA-192  
P49  
SOT3_2  
AIN0_1  
TIOB00_0  
P4A  
SCK3_2  
59  
51  
52  
L5  
E
J
60  
61  
62  
63  
K5  
N6  
M6  
L6  
BIN0_1  
E
J
TIOB01_0  
MADATA00_0  
P4B  
IGTRG0_0  
ZIN0_1  
TIOB02_0  
MADATA01_0  
P4C  
SCK7_1  
AIN1_2  
TIOB03_0  
MADATA02_0  
P4D  
53  
54  
55  
E
E
E
J
J
J
SOT7_1  
BIN1_2  
TIOB04_0  
MADATA03_0  
P4E  
SIN7_1  
ZIN1_2  
64  
56  
K6  
E
K
TIOB05_0  
INT06_2  
MADATA04_0  
P70  
65  
66  
57  
58  
J6  
TIOA04_2  
MADATA05_0  
P71  
TIOB04_2  
INT13_2  
MADATA06_0  
E
E
J
N8  
K
18  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No  
LQFP-144  
I/O circuit  
type  
Pin state  
type  
Pin name  
LQFP-176  
BGA-192  
P72  
SIN2_0  
67  
59  
M8  
INT14_2  
WKUP2  
MADATA07_0  
P73  
E
U
SOT2_0  
INT15_2  
MADATA08_0  
P74  
SCK2_0  
MADATA09_0  
P75  
68  
69  
60  
61  
L8  
E
E
K
J
K8  
ADTG_8  
SIN3_0  
INT07_1  
MADATA10_0  
P76  
SOT3_0  
TIOA07_2  
INT11_2  
MADATA11_0  
P77  
70  
71  
62  
63  
P8  
J8  
E
E
K
K
SCK3_0  
TIOB07_2  
INT12_2  
MADATA12_0  
P78  
72  
73  
74  
64  
65  
66  
P9  
N9  
M9  
E
E
E
K
J
AIN1_0  
TIOA15_0  
MADATA13_0  
P79  
BIN1_0  
TIOB15_0  
INT23_1  
MADATA14_0  
VSS  
K
-
-
-
-
M1  
P3  
-
-
VSS  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
19  
D a t a S h e e t  
Pin name  
Pin No  
LQFP-144  
I/O circuit  
type  
Pin state  
type  
LQFP-176  
BGA-192  
P7A  
ZIN1_0  
INT24_1  
MADATA15_0  
P7B  
75  
67  
L9  
E
K
76  
77  
78  
79  
80  
-
-
-
-
-
K9  
P10  
N10  
L10  
K10  
TIOB07_0  
INT10_0  
P7C  
TIOA07_0  
INT11_0  
P7D  
TIOA14_1  
INT12_0  
P7E  
TIOB14_1  
INT24_0  
P7F  
E
E
E
E
E
K
K
K
K
K
TIOA15_1  
INT25_0  
PF0  
SIN1_2  
TIOB15_1  
INT13_0  
CEC0_0  
PF1  
81  
-
M10  
I*  
S
SOT1_2  
TIOA08_1  
INT14_0  
PF2  
SCK1_2  
TIOB08_1  
INT15_0  
PE0  
82  
83  
-
-
N11  
M11  
I*  
I*  
K
K
84  
85  
86  
68  
69  
70  
N13  
N12  
P12  
C
J
E
D
A
MD1  
MD0  
PE2  
X0  
A
PE3  
X1  
87  
71  
P13  
A
B
88  
89  
-
72  
73  
-
E1  
M14  
P7  
VSS  
VCC  
VSS  
VSS  
-
-
-
-
-
-
N7  
20  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No  
LQFP-144  
I/O circuit  
type  
Pin state  
type  
Pin name  
LQFP-176  
BGA-192  
P10  
AN00  
90  
74  
M13  
G
L
P11  
AN01  
SIN1_1  
FRCK0_2  
INT02_1  
WKUP1  
P12  
91  
92  
93  
75  
M12  
L13  
L12  
G
N
AN02  
76  
77  
G
G
L
L
SOT1_1  
IC00_2  
P13  
AN03  
SCK1_1  
IC01_2  
RTCCO_1  
SUBOUT_1  
P14  
AN04  
94  
78  
L11  
SIN0_1  
IC02_2  
INT03_1  
P15  
G
M
AN05  
95  
96  
97  
79  
80  
81  
K13  
K12  
K14  
G
G
G
L
SOT0_1  
IC03_2  
P16  
AN06  
M
M
SCK0_1  
INT20_1  
P17  
AN07  
SIN2_2  
INT04_1  
VSS  
VSS  
VSS  
-
-
-
-
-
-
M7  
L7  
K7  
-
-
-
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
21  
D a t a S h e e t  
Pin name  
Pin No  
LQFP-144  
I/O circuit  
type  
Pin state  
type  
LQFP-176  
BGA-192  
P18  
AN08  
SOT2_2  
INT21_1  
P19  
98  
82  
83  
K11  
G
G
M
M
AN09  
99  
J13  
J12  
SCK2_2  
INT22_1  
P1A  
AN10  
SIN4_1  
IC00_1  
TIOA13_2  
INT05_1  
P1B  
100  
84  
85  
86  
87  
G
G
G
G
M
M
M
M
AN11  
SOT4_1  
IC01_1  
TIOB13_2  
INT25_1  
P1C  
101  
102  
103  
J11  
J10  
J9  
AN12  
SCK4_1  
IC02_1  
TIOA14_2  
INT26_1  
P1D  
AN13  
CTS4_1  
IC03_1  
TIOB14_2  
INT27_1  
P1E  
AN14  
RTS4_1  
DTTI0X_1  
TIOA15_2  
INT28_1  
104  
88  
H10  
G
M
22  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No  
LQFP-144  
I/O circuit  
type  
Pin state  
type  
Pin name  
LQFP-176  
BGA-192  
P1F  
AN15  
ADTG_5  
FRCK0_1  
TIOB15_2  
INT29_1  
PB0  
105  
89  
H9  
G
M
SIN7_2  
TIOA09_1  
INT16_0  
PB1  
SOT7_2  
TIOB09_1  
INT17_0  
PB2  
106  
107  
-
-
H13  
H12  
E
E
K
K
SCK7_2  
TIOA10_1  
INT18_0  
PB3  
TIOB10_1  
INT19_0  
PB4  
SIN0_2  
TIOA11_1  
INT20_0  
PB5  
108  
109  
110  
-
-
-
H11  
G13  
G12  
E
E
E
K
K
K
SOT0_2  
TIOB11_1  
INT21_0  
PB6  
111  
-
G11  
E
K
SCK0_2  
TIOA12_1  
INT22_0  
PB7  
TIOB12_1  
INT23_0  
AVCC  
AVSS  
VSS  
VSS  
112  
113  
-
-
G10  
G9  
E
E
K
K
114  
115  
-
90  
91  
-
J14  
H14  
J7  
-
-
-
-
-
-
P11  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
23  
D a t a S h e e t  
Pin name  
Pin No  
LQFP-144  
92  
I/O circuit  
type  
Pin state  
type  
LQFP-176  
116  
BGA-192  
G14  
AVRL  
AVRH  
P29  
-
-
117  
93  
F14  
118  
94  
F10  
AN16  
SIN12_0  
P28  
G
G
L
AN17  
ADTG_4  
SOT12_0  
RTO05_1  
INT09_0  
P27  
119  
95  
F11  
M
AN18  
120  
96  
F12  
SCK12_0  
RTO04_1  
INT02_2  
P26  
G
M
AN19  
121  
122  
97  
98  
F13  
E10  
G
G
L
L
SCK2_1  
RTO03_1  
P25  
AN20  
SOT2_1  
RTO02_1  
P24  
AN21  
123  
99  
E11  
SIN2_1  
RTO01_1  
INT01_2  
G
M
24  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No  
LQFP-144  
I/O circuit  
type  
Pin state  
type  
Pin name  
LQFP-176  
BGA-192  
P23  
AN22  
124  
100  
E12  
SCK0_0  
RTO00_1  
TIOA07_1  
P22  
G
L
AN23  
125  
126  
101  
102  
E13  
D12  
SOT0_0  
ZIN1_1  
TIOB07_1  
P21  
SIN0_0  
BIN1_1  
INT06_1  
P20  
G
E
L
K
AIN1_1  
INT05_0  
CROUT_0  
PF6  
NMIX  
WKUP0  
P82  
MCSX7_0  
P83  
MCSX6_0  
VCC  
127  
128  
103  
104  
D13  
C13  
E
K
H
I*  
129  
130  
105  
106  
E14  
D14  
E
E
J
J
131  
132  
133  
107  
108  
109  
C14  
G7  
A13  
-
-
-
VSS  
VCC  
P00  
TRSTX  
P01  
TCK  
SWCLK  
P02  
TDI  
P03  
TMS  
134  
135  
136  
137  
110  
111  
112  
113  
B13  
A12  
C12  
B12  
E
E
E
E
I
I
I
I
SWDIO  
P04  
138  
114  
B11  
TDO  
SWO  
P90  
E
E
I
139  
-
-
-
C11  
N14  
TIOB08_0  
INT30_0  
VSS  
K
-
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
25  
D a t a S h e e t  
Pin name  
Pin No  
LQFP-144  
I/O circuit  
type  
Pin state  
type  
LQFP-176  
BGA-192  
P91  
140  
-
-
-
D11  
TIOB09_0  
INT31_0  
P92  
SIN5_1  
TIOB10_0  
P93  
SOT5_1  
TIOB11_0  
P94  
E
E
E
K
J
141  
142  
B10  
C10  
J
SCK5_1  
TIOB12_0  
INT26_0  
P95  
TIOB13_0  
INT27_0  
PC0  
143  
144  
145  
-
-
D10  
B9  
E
E
H
K
K
O
DA0_0  
115  
C9  
SIN13_0  
MCSX5_0  
PC1  
DA1_0  
146  
116  
B8  
H
O
SOT13_0  
MCSX4_0  
PC2  
147  
148  
117  
118  
D9  
E9  
SCK13_0  
MAD00_0  
PC3  
TIOA06_1  
MAD01_0  
PC4  
E
E
J
J
SIN14_0  
TIOA08_2  
CEC0_1  
MAD02_0  
PC5  
SOT14_0  
TIOA10_2  
MAD03_0  
VSS  
149  
119  
F9  
I*  
I*  
R
J
150  
-
120  
-
C8  
L14  
-
26  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No  
LQFP-144  
I/O circuit  
type  
Pin state  
type  
Pin name  
LQFP-176  
BGA-192  
PC6  
SCK14_0  
TIOA14_0  
MAD04_0  
PC7  
CROUT_1  
RTCCO_0  
SUBOUT_0  
MAD05_0  
PC8  
151  
121  
122  
D8  
I*  
J
152  
E8  
E
J
153  
154  
155  
123  
124  
125  
A10  
F8  
SIN15_0  
MAD06_0  
PC9  
SOT15_0  
MAD07_0  
PCA  
SCK15_0  
MAD08_0  
VCC  
E
E
E
J
J
J
B7  
156  
157  
126  
127  
A9  
G8  
-
-
VSS  
PCB  
MAD09_0  
PCC  
MAD10_0  
PCD  
MAD11_0  
PCE  
158  
159  
160  
128  
129  
130  
A7  
C7  
A6  
E
E
E
J
J
J
RTS4_0  
TIOB06_1  
MAD12_0  
PCF  
CTS4_0  
TIOB08_2  
MAD13_0  
PD0  
161  
162  
131  
132  
D7  
E7  
E
E
J
J
SCK4_0  
TIOB10_2  
INT30_1  
MAD14_0  
PD1  
SOT4_0  
TIOB14_0  
INT31_1  
MAD15_0  
VSS  
163  
164  
133  
134  
F7  
E
E
K
K
B6  
-
-
-
-
-
-
-
-
B14  
H7  
B1  
-
-
-
-
VSS  
VSS  
VSS  
G1  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
27  
D a t a S h e e t  
Pin name  
Pin No  
LQFP-144  
I/O circuit  
type  
Pin state  
type  
LQFP-176  
BGA-192  
PD2  
SIN4_0  
TIOA03_2  
INT00_2  
MAD16_0  
PD3  
165  
135  
C6  
E
K
166  
167  
136  
137  
D6  
E6  
TIOB03_2  
MAD17_0  
P62  
ADTG_3  
SCK5_0  
MAD18_0  
P61  
E
E
J
J
SOT5_0  
TIOB02_2  
MAD19_0  
P60  
SIN5_0  
TIOA02_2  
INT15_1  
WKUP5  
MAD20_0  
PF3  
168  
169  
138  
139  
B5  
C5  
E
E
J
U
SIN6_2  
TIOA06_0  
INT06_0  
PF4  
SOT6_2  
TIOB06_0  
INT07_0  
PF5  
170  
171  
-
-
B4  
C4  
I*  
I*  
K
K
IGTRG0_1  
INT08_0  
WKUP3  
CEC1_0  
SCK6_2  
VCC  
140  
172  
B3  
I*  
T
-
173  
174  
175  
176  
141  
142  
143  
144  
-
A4  
A3  
A2  
H8  
J1  
-
P80  
P81  
VSS  
VSS  
K
K
V
V
-
-
-
*: 5V tolerant I/O  
28  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
List of pin functions  
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port  
number. For these pins, there are multiple pins that provide the same function for the same channel. Use the  
extended port function register (EPFR) to select the pin.  
Pin No  
LQFP-144BGA-192  
Pin  
function  
ADC  
Pin name  
Function description  
LQFP-176  
10  
ADTG_0  
ADTG_1  
ADTG_2  
ADTG_3  
ADTG_4  
ADTG_5  
ADTG_6  
ADTG_7  
ADTG_8  
AN00  
AN01  
AN02  
AN03  
AN04  
AN05  
AN06  
AN07  
AN08  
AN09  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
10  
18  
29  
137  
95  
89  
-
E2  
F5  
K2  
E6  
F11  
H9  
H6  
L4  
P8  
M13  
M12  
L13  
L12  
L11  
K13  
K12  
K14  
K11  
J13  
J12  
J11  
J10  
J9  
18  
37  
167  
119  
105  
31  
49  
70  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
118  
119  
120  
121  
122  
123  
124  
125  
A/D converter external trigger input  
pin  
41  
62  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
94  
95  
96  
97  
98  
99  
100  
101  
A/D converter analog input pin.  
ANxx describes ADC ch.xx.  
H10  
H9  
F10  
F11  
F12  
F13  
E10  
E11  
E12  
E13  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
29  
D a t a S h e e t  
Pin No  
LQFP-144BGA-192  
Pin  
function  
Base Timer  
0
Pin name  
Function description  
LQFP-176  
46  
TIOA00_0  
TIOA00_1  
TIOA00_2  
TIOB00_0  
TIOB00_1  
TIOB00_2  
TIOA01_0  
TIOA01_1  
TIOA01_2  
TIOB01_0  
TIOB01_1  
TIOB01_2  
TIOA02_0  
TIOA02_1  
TIOA02_2  
TIOB02_0  
TIOB02_1  
TIOB02_2  
TIOA03_0  
TIOA03_1  
TIOA03_2  
TIOB03_0  
TIOB03_1  
TIOB03_2  
TIOA04_0  
TIOA04_1  
TIOA04_2  
TIOB04_0  
TIOB04_1  
TIOB04_2  
TIOA05_0  
TIOA05_1  
TIOA05_2  
TIOB05_0  
TIOB05_1  
TIOB05_2  
TIOA06_0  
TIOA06_1  
TIOA06_2  
TIOB06_0  
38  
30  
11  
51  
-
12  
39  
31  
16  
52  
-
17  
40  
32  
139  
53  
-
138  
41  
33  
135  
54  
-
136  
42  
34  
57  
55  
-
58  
43  
35  
8
N2  
K3  
E3  
L5  
H3  
E4  
N3  
K4  
F3  
Base timer ch.0 TIOA pin  
Base timer ch.0 TIOB pin  
Base timer ch.1 TIOA pin  
Base timer ch.1 TIOB pin  
Base timer ch.2 TIOA pin  
Base timer ch.2 TIOB pin  
Base timer ch.3 TIOA pin  
Base timer ch.3 TIOB pin  
Base timer ch.4 TIOA pin  
Base timer ch.4 TIOB pin  
Base timer ch.5 TIOA pin  
Base timer ch.5 TIOB pin  
Base timer ch.6 TIOA pin  
38  
11  
59  
28  
12  
47  
39  
16  
60  
29  
17  
48  
40  
169  
61  
30  
168  
49  
41  
165  
62  
31  
166  
50  
42  
65  
63  
32  
66  
51  
43  
8
64  
33  
9
Base Timer  
1
K5  
H4  
F4  
Base Timer  
2
M3  
L1  
C5  
N6  
H5  
B5  
L4  
L2  
C6  
M6  
H6  
D6  
M4  
L3  
J6  
Base Timer  
3
Base Timer  
4
L6  
J5  
N8  
N4  
M2  
D3  
K6  
J4  
D4  
B4  
E9  
H1  
C4  
Base Timer  
5
56  
-
9
Base Timer  
6
170  
148  
25  
-
118  
-
-
171  
TIOB06_1  
TIOB06_2  
Base timer ch.6 TIOB pin  
161  
26  
131  
-
D7  
H2  
30  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No  
LQFP-144BGA-192  
Pin  
function  
Base Timer  
7
Pin name  
Function description  
LQFP-176  
77  
TIOA07_0  
TIOA07_1  
TIOA07_2  
TIOB07_0  
TIOB07_1  
TIOB07_2  
TIOA08_0  
TIOA08_1  
TIOA08_2  
TIOB08_0  
TIOB08_1  
TIOB08_2  
TIOA09_0  
TIOA09_1  
TIOA09_2  
TIOB09_0  
TIOB09_1  
TIOB09_2  
TIOA10_0  
TIOA10_1  
TIOA10_2  
TIOB10_0  
TIOB10_1  
TIOB10_2  
TIOA11_0  
TIOA11_1  
TIOA11_2  
TIOB11_0  
TIOB11_1  
TIOB11_2  
TIOA12_0  
TIOA12_1  
TIOA12_2  
TIOB12_0  
TIOB12_1  
TIOB12_2  
TIOA13_0  
TIOA13_1  
TIOA13_2  
TIOB13_0  
TIOB13_1  
TIOB13_2  
-
100  
63  
-
101  
64  
2
P10  
E12  
J8  
K9  
E13  
P9  
B2  
N11  
F9  
C11  
M11  
E7  
C2  
H13  
F6  
D11  
H12  
G2  
C3  
H11  
C8  
B10  
G13  
F7  
D5  
G12  
G3  
C10  
G11  
G4  
D2  
G10  
J3  
D10  
G9  
J2  
D1  
G5  
J12  
B9  
G6  
Base timer ch.7 TIOA pin  
Base timer ch.7 TIOB pin  
Base timer ch.8 TIOA pin  
Base timer ch.8 TIOB pin  
Base timer ch.9 TIOA pin  
Base timer ch.9 TIOB pin  
Base timer ch.10 TIOA pin  
Base timer ch.10 TIOB pin  
Base timer ch.11 TIOA pin  
Base timer ch.11 TIOB pin  
Base timer ch.12 TIOA pin  
Base timer ch.12 TIOB pin  
Base timer ch.13 TIOA pin  
Base timer ch.13 TIOB pin  
124  
71  
76  
125  
72  
2
Base Timer  
8
82  
-
149  
139  
83  
162  
3
106  
19  
140  
107  
20  
119  
-
-
132  
3
-
19  
-
-
20  
4
-
120  
-
-
133  
5
-
21  
-
-
22  
6
-
Base Timer  
9
Base Timer  
10  
4
108  
150  
141  
109  
163  
5
110  
21  
142  
111  
22  
6
112  
34  
143  
113  
35  
Base Timer  
11  
Base Timer  
12  
26  
-
-
27  
7
23  
84  
-
Base Timer  
13  
7
23  
100  
144  
24  
24  
85  
101  
J11  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
31  
D a t a S h e e t  
Pin No  
LQFP-144BGA-192  
Pin  
function  
Base Timer  
14  
Pin name  
Function description  
LQFP-176  
151  
78  
TIOA14_0  
TIOA14_1  
TIOA14_2  
TIOB14_0  
TIOB14_1  
TIOB14_2  
TIOA15_0  
TIOA15_1  
TIOA15_2  
TIOB15_0  
TIOB15_1  
TIOB15_2  
SWCLK  
121  
-
86  
134  
-
87  
65  
-
88  
66  
-
D8  
N10  
J10  
B6  
L10  
J9  
Base timer ch.14 TIOA pin  
102  
164  
79  
103  
73  
80  
104  
74  
Base timer ch.14 TIOB pin  
Base timer ch.15 TIOA pin  
Base timer ch.15 TIOB pin  
Base Timer  
15  
N9  
K10  
H10  
M9  
M10  
H9  
81  
105  
135  
89  
111  
Debugger  
Serial wire debug interface clock input  
Serial wire debug interface data input /  
output  
A12  
SWDIO  
137  
113  
B12  
SWO  
TCK  
TDI  
TDO  
TMS  
Serial wire viewer output  
J-TAG test clock input  
J-TAG test data input  
J-TAG debug data output  
J-TAG test mode state input/output  
Trace CLK output of ETM  
138  
135  
136  
138  
137  
12  
8
9
10  
11  
114  
111  
112  
114  
113  
12  
8
9
10  
11  
B11  
A12  
C12  
B11  
B12  
E4  
D3  
D4  
E2  
E3  
TRACECLK  
TRACED0  
TRACED1  
TRACED2  
TRACED3  
TRSTX  
Trace data output of ETM  
J-TAG test reset Input  
134  
110  
B13  
32  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No  
Pin  
function  
External  
Bus  
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
MAD00_0  
MAD01_0  
MAD02_0  
MAD03_0  
MAD04_0  
MAD05_0  
MAD06_0  
MAD07_0  
MAD08_0  
MAD09_0  
MAD10_0  
MAD11_0  
MAD12_0  
MAD13_0  
MAD14_0  
MAD15_0  
MAD16_0  
MAD17_0  
MAD18_0  
MAD19_0  
MAD20_0  
MAD21_0  
MAD22_0  
MAD23_0  
MAD24_0  
MCSX0_0  
MCSX1_0  
MCSX2_0  
MCSX3_0  
MCSX4_0  
MCSX5_0  
MCSX6_0  
MCSX7_0  
MDQM0_0  
MDQM1_0  
147  
148  
149  
150  
151  
152  
153  
154  
155  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
2
3
4
5
23  
24  
46  
47  
146  
145  
130  
129  
15  
117  
118  
119  
120  
121  
122  
123  
124  
125  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
2
3
4
5
23  
24  
38  
39  
116  
115  
106  
105  
15  
D9  
E9  
F9  
C8  
D8  
E8  
A10  
F8  
B7  
A7  
C7  
A6  
D7  
E7  
F7  
B6  
C6  
D6  
E6  
B5  
C5  
B2  
C2  
C3  
D5  
G5  
G6  
N2  
N3  
B8  
C9  
D14  
E14  
F2  
External bus interface address bus  
External bus interface chip select  
output pin  
External bus interface byte mask  
signal output  
16  
16  
F3  
External bus interface read enable  
signal for SRAM  
External bus interface write enable  
signal for SRAM  
MOEX_0  
MWEX_0  
13  
14  
13  
14  
E5  
F1  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
33  
D a t a S h e e t  
Pin No  
Pin  
function  
External  
Bus  
Pin name  
MNALE_0  
MNCLE_0  
MNREX_0  
MNWEX_0  
Function description  
LQFP-176 LQFP-144 BGA-192  
External bus interface ALE signal to  
control NAND Flash output pin  
External bus interface CLE signal to  
control NAND Flash output pin  
External bus interface read enable  
signal to control NAND Flash  
19  
20  
22  
21  
19  
20  
22  
21  
F6  
G2  
G4  
G3  
External bus interface write enable  
signal to control NAND Flash  
MADATA00_0  
MADATA01_0  
MADATA02_0  
MADATA03_0  
MADATA04_0  
MADATA05_0  
MADATA06_0  
MADATA07_0  
MADATA08_0  
MADATA09_0  
MADATA10_0  
MADATA11_0  
MADATA12_0  
MADATA13_0  
MADATA14_0  
MADATA15_0  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
K5  
N6  
M6  
L6  
K6  
J6  
N8  
M8  
L8  
K8  
P8  
J8  
P9  
N9  
M9  
L9  
External bus interface data bus  
(Address / data multiplex bus)  
External bus interface Address Latch  
enable output signal for multiplex  
External bus interface external RDY  
input signal  
External bus interface external clock  
output  
MALE_0  
MRDY_0  
17  
18  
48  
17  
18  
40  
F4  
F5  
MCLKOUT_0  
M3  
34  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No  
Pin  
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
function  
External  
Interrupt  
INT00_0  
INT00_1  
INT00_2  
INT01_0  
INT01_1  
INT01_2  
INT02_0  
INT02_1  
INT02_2  
INT03_0  
INT03_1  
INT03_2  
INT04_0  
INT04_1  
INT04_2  
INT05_0  
INT05_1  
INT05_2  
INT06_0  
INT06_1  
INT06_2  
INT07_0  
INT07_1  
INT07_2  
INT08_0  
INT08_1  
INT08_2  
INT09_0  
INT09_1  
INT09_2  
INT10_0  
INT10_1  
INT10_2  
INT11_0  
INT11_1  
INT11_2  
INT12_0  
INT12_1  
INT12_2  
INT13_0  
INT13_1  
INT13_2  
INT14_0  
INT14_1  
INT14_2  
13  
8
165  
14  
9
123  
15  
91  
120  
6
13  
8
135  
14  
9
99  
15  
75  
96  
6
78  
-
-
81  
-
103  
84  
-
E5  
D3  
C6  
External interrupt request 00 input  
pin  
F1  
External interrupt request 01 input  
pin  
D4  
E11  
F2  
External interrupt request 02 input  
pin  
M12  
F12  
D2  
L11  
H3  
H6  
K14  
H4  
D13  
J12  
H5  
B4  
D12  
K6  
C4  
P8  
F3  
External interrupt request 03 input  
pin  
94  
28  
31  
97  
29  
127  
100  
30  
170  
126  
64  
171  
70  
16  
172  
33  
19  
119  
34  
22  
76  
35  
7
77  
36  
71  
78  
46  
72  
81  
47  
66  
82  
58  
67  
External interrupt request 04 input  
pin  
External interrupt request 05 input  
pin  
-
External interrupt request 06 input  
pin  
102  
56  
-
62  
16  
140  
-
19  
95  
26  
22  
-
27  
7
-
28  
63  
-
38  
64  
-
External interrupt request 07 input  
pin  
B3  
J4  
F6  
F11  
J3  
External interrupt request 08 input  
pin  
External interrupt request 09 input  
pin  
G4  
K9  
J2  
D1  
P10  
K1  
J8  
N10  
N2  
P9  
M10  
N3  
N8  
N11  
M5  
M8  
External interrupt request 10 input  
pin  
External interrupt request 11 input  
pin  
External interrupt request 12 input  
pin  
External interrupt request 13 input  
pin  
39  
58  
-
50  
59  
External interrupt request 14 input  
pin  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
35  
D a t a S h e e t  
Pin No  
Pin  
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
function  
External  
Interrupt  
INT15_0  
INT15_1  
INT15_2  
INT16_0  
INT16_1  
INT17_0  
INT17_1  
INT18_0  
INT18_1  
INT19_0  
INT19_1  
INT20_0  
INT20_1  
INT21_0  
INT21_1  
INT22_0  
INT22_1  
INT23_0  
INT23_1  
INT24_0  
INT24_1  
INT25_0  
INT25_1  
INT26_0  
INT26_1  
INT27_0  
INT27_1  
INT28_0  
INT28_1  
INT29_0  
INT29_1  
INT30_0  
INT30_1  
INT31_0  
INT31_1  
NMIX  
83  
169  
68  
106  
20  
107  
21  
108  
23  
109  
24  
110  
96  
111  
98  
112  
99  
113  
74  
79  
75  
80  
101  
143  
102  
144  
103  
25  
-
139  
60  
-
20  
-
21  
-
23  
-
24  
-
80  
-
82  
-
83  
-
66  
-
67  
-
85  
-
86  
-
87  
-
88  
-
89  
-
133  
-
M11  
C5  
L8  
H13  
G2  
H12  
G3  
H11  
G5  
G13  
G6  
G12  
K12  
G11  
K11  
G10  
J13  
G9  
M9  
L10  
L9  
K10  
J11  
D10  
J10  
B9  
External interrupt request 15 input  
pin  
External interrupt request 16 input  
pin  
External interrupt request 17 input  
pin  
External interrupt request 18 input  
pin  
External interrupt request 19 input  
pin  
External interrupt request 20 input  
pin  
External interrupt request 21 input  
pin  
External interrupt request 22 input  
pin  
External interrupt request 23 input  
pin  
External interrupt request 24 input  
pin  
External interrupt request 25 input  
pin  
External interrupt request 26 input  
pin  
External interrupt request 27 input  
pin  
J9  
H1  
H10  
H2  
H9  
C11  
F7  
D11  
B6  
External interrupt request 28 input  
pin  
104  
26  
External interrupt request 29 input  
pin  
105  
139  
163  
140  
164  
128  
External interrupt request 30 input  
pin  
External interrupt request 31 input  
pin  
Non-Maskable Interrupt input  
134  
104  
C13  
36  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No  
Pin  
function  
GPIO  
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P08  
P09  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P1A  
P1B  
P1C  
P1D  
P1E  
P1F  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
134  
135  
136  
137  
138  
8
9
10  
11  
12  
90  
91  
92  
93  
94  
95  
96  
97  
110  
111  
112  
113  
114  
8
9
10  
11  
B13  
A12  
C12  
B12  
B11  
D3  
D4  
E2  
E3  
E4  
M13  
M12  
L13  
L12  
L11  
K13  
K12  
K14  
K11  
J13  
J12  
J11  
General-purpose I/O port 0  
General-purpose I/O port 1  
General-purpose I/O port 2  
12  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
98  
99  
100  
101  
102  
103  
104  
105  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
J10  
J9  
H10  
H9  
D13  
D12  
E13  
E12  
E11  
E10  
F13  
F12  
F11  
F10  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
37  
D a t a S h e e t  
Pin No  
Pin  
function  
GPIO  
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
P38  
P39  
P3A  
P3B  
P3C  
P3D  
P3E  
P3F  
P40  
P41  
P42  
P43  
P44  
P45  
P46  
P47  
P48  
P49  
P4A  
P4B  
P4C  
P4D  
P4E  
P50  
P51  
P52  
P53  
P54  
P55  
P56  
P57  
P58  
P59  
P5A  
P5B  
P5C  
P5D  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
46  
47  
48  
49  
50  
51  
55  
56  
58  
59  
60  
61  
62  
63  
64  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
-
-
-
-
-
-
H3  
H4  
H5  
H6  
J5  
J4  
J3  
J2  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
38  
39  
40  
41  
42  
43  
47  
48  
50  
51  
52  
53  
54  
55  
56  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
-
General-purpose I/O port 3  
K1  
K2  
K3  
K4  
L1  
L2  
L3  
M2  
N2  
N3  
M3  
L4  
M4  
N4  
P5  
P6  
M5  
L5  
K5  
N6  
M6  
L6  
K6  
E5  
F1  
General-purpose I/O port 4  
F2  
F3  
F4  
F5  
F6  
General-purpose I/O port 5  
G2  
G3  
G4  
G5  
G6  
H1  
H2  
-
38  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No  
Pin  
function  
GPIO  
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
P60  
P61  
P62  
P70  
P71  
P72  
P73  
P74  
P75  
P76  
P77  
P78  
P79  
P7A  
P7B  
P7C  
P7D  
P7E  
P7F  
P80  
P81  
P82  
P83  
P90  
P91  
P92  
P93  
P94  
P95  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
169  
168  
167  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
139  
138  
137  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
-
C5  
B5  
E6  
J6  
N8  
M8  
L8  
K8  
P8  
J8  
P9  
N9  
M9  
L9  
K9  
P10  
N10  
L10  
K10  
A3  
General-purpose I/O port 6  
General-purpose I/O port 7  
-
-
-
-
80  
174  
175  
129  
130  
139  
140  
141  
142  
143  
144  
2
142  
143  
105  
106  
-
-
-
-
-
-
2
3
4
5
6
7
-
-
-
-
-
-
-
-
A2  
General-purpose I/O port 8  
General-purpose I/O port 9  
E14  
D14  
C11  
D11  
B10  
C10  
D10  
B9  
B2  
C2  
C3  
D5  
3
4
5
6
General-purpose I/O port A  
General-purpose I/O port B  
D2  
D1  
7
106  
107  
108  
109  
110  
111  
112  
113  
H13  
H12  
H11  
G13  
G12  
G11  
G10  
G9  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
39  
D a t a S h e e t  
Pin No  
Pin  
function  
GPIO  
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PC8  
PC9  
PCA  
PCB  
PCC  
PCD  
PCE  
PCF  
PD0  
PD1  
PD2  
PD3  
PE0  
PE2  
PE3  
PF0  
PF1  
PF2  
PF3  
PF4  
PF5  
PF6  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
158  
159  
160  
161  
162  
163  
164  
165  
166  
84  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
128  
129  
130  
131  
132  
133  
134  
135  
136  
68  
C9  
B8  
D9  
E9  
F9  
C8  
D8  
E8  
A10  
F8  
B7  
A7  
C7  
General-purpose I/O port C  
A6  
D7  
E7  
F7  
B6  
General-purpose I/O port D  
General-purpose I/O port E  
C6  
D6  
N13  
P12  
P13  
M10  
N11  
M11  
B4  
86  
87  
81  
82  
70  
71  
-
-
-
-
-
83  
General-purpose I/O port F*  
170  
171  
172  
128  
C4  
B3  
C13  
140  
104  
40  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No.  
Pin  
function  
Multi  
Function  
Serial  
0
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
SIN0_0  
SIN0_1  
SIN0_2  
SOT0_0  
(SDA0_0)  
SOT0_1  
(SDA0_1)  
126  
94  
110  
102  
78  
-
D12  
L11  
G12  
Multifunction serial interface ch.0  
input pin  
Multifunction serial interface ch.0  
output pin.  
125  
95  
101  
79  
E13  
K13  
This pin operates as SOT0 when it is  
used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA0 when it is used in an I2C  
(operation mode 4).  
SOT0_2  
(SDA0_2)  
111  
-
G11  
SCK0_0  
(SCL0_0)  
SCK0_1  
(SCL0_1)  
SCK0_2  
(SCL0_2)  
SIN1_0  
SIN1_1  
SIN1_2  
SOT1_0  
(SDA1_0)  
SOT1_1  
(SDA1_1)  
Multifunction serial interface ch.0  
clock I/O pin.  
This pin operates as SCK0 when it is  
used in a UART/CSIO (operation  
modes 0 to 2) and as SCL0 when it is  
used in an I2C (operation mode 4).  
124  
96  
100  
80  
-
E12  
K12  
G10  
112  
Multi  
Function  
Serial  
1
19  
91  
81  
19  
75  
-
F6  
M12  
M10  
Multifunction serial interface ch.1  
input pin  
Multifunction serial interface ch.1  
output pin.  
20  
92  
20  
76  
G2  
This pin operates as SOT1 when it is  
used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA1 when it is used in an I2C  
(operation mode 4).  
L13  
SOT1_2  
(SDA1_2)  
82  
-
N11  
SCK1_0  
(SCL1_0)  
SCK1_1  
(SCL1_1)  
SCK1_2  
(SCL1_2)  
Multifunction serial interface ch.1  
clock I/O pin.  
This pin operates as SCK1 when it is  
used in a UART/CSIO (operation  
modes 0 to 2) and as SCL1 when it is  
used in an I2C (operation mode 4).  
21  
93  
83  
21  
77  
-
G3  
L12  
M11  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
41  
D a t a S h e e t  
Pin No.  
Pin  
function  
Multi  
Function  
Serial  
2
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
SIN2_0  
SIN2_1  
SIN2_2  
SOT2_0  
(SDA2_0)  
SOT2_1  
(SDA2_1)  
67  
123  
97  
59  
99  
81  
M8  
E11  
K14  
Multifunction serial interface ch.2  
input pin  
Multifunction serial interface ch.2  
output pin.  
68  
60  
98  
L8  
This pin operates as SOT2 when it is  
used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA2 when it is used in an I2C  
(operation mode 4).  
122  
E10  
SOT2_2  
(SDA2_2)  
98  
82  
K11  
SCK2_0  
(SCL2_0)  
SCK2_1  
(SCL2_1)  
SCK2_2  
(SCL2_2)  
Multifunction serial interface ch.2  
clock I/O pin.  
This pin operates as SCK2 when it is  
used in a UART/CSIO (operation  
modes 0 to 2) and as SCL2 when it is  
used in an I2C (operation mode 4).  
69  
121  
99  
61  
97  
83  
K8  
F13  
J13  
Multi  
Function  
Serial  
3
SIN3_0  
SIN3_1  
SIN3_2  
70  
13  
58  
62  
13  
50  
P8  
E5  
Multifunction serial interface ch.3  
input pin  
M5  
SOT3_0  
(SDA3_0)  
SOT3_1  
Multifunction serial interface ch.3  
output pin.  
71  
14  
63  
14  
J8  
This pin operates as SOT3 when it is  
used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA3 when it is used in an I2C  
(operation mode 4).  
F1  
(SDA3_1)  
SOT3_2  
(SDA3_2)  
59  
51  
L5  
SCK3_0  
(SCL3_0)  
SCK3_1  
(SCL3_1)  
SCK3_2  
(SCL3_2)  
Multifunction serial interface ch.3  
clock I/O pin.  
This pin operates as SCK3 when it is  
used in a UART/CSIO (operation  
modes 0 to 2) and as SCL3 when it is  
used in an I2C (operation mode 4).  
72  
15  
60  
64  
15  
52  
P9  
F2  
K5  
42  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No.  
Pin  
function  
Multi  
Function  
Serial  
4
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
SIN4_0  
SIN4_1  
SIN4_2  
SOT4_0  
(SDA4_0)  
SOT4_1  
(SDA4_1)  
165  
100  
8
135  
84  
8
C6  
J12  
D3  
Multifunction serial interface ch.4  
input pin  
Multifunction serial interface ch.4  
output pin.  
164  
101  
134  
85  
B6  
This pin operates as SOT4 when it is  
used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA4 when it is used in an I2C  
(operation mode 4).  
J11  
SOT4_2  
(SDA4_2)  
9
9
D4  
SCK4_0  
(SCL4_0)  
SCK4_1  
(SCL4_1)  
SCK4_2  
(SCL4_2)  
RTS4_0  
RTS4_1  
RTS4_2  
CTS4_0  
CTS4_1  
CTS4_2  
SIN5_0  
Multifunction serial interface ch.4  
clock I/O pin.  
This pin operates as SCK4 when it is  
used in a UART/CSIO (operation  
modes 0 to 2) and as SCL4 when it is  
used in an I2C (operation mode 4).  
163  
102  
10  
133  
86  
F7  
J10  
E2  
10  
161  
104  
12  
162  
103  
11  
169  
141  
34  
131  
88  
12  
132  
87  
11  
139  
-
26  
D7  
H10  
E4  
E7  
J9  
Multifunction serial interface ch.4  
RTS output pin  
Multifunction serial interface ch.4  
CTS input pin  
E3  
Multi  
Function  
Serial  
5
C5  
B10  
J3  
Multifunction serial interface ch.5  
input pin  
SIN5_1  
SIN5_2  
Multifunction serial interface ch.5  
output pin.  
SOT5_0  
(SDA5_0)  
168  
142  
138  
-
B5  
This pin operates as SOT5 when it is  
used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA5 when it is used in an I2C  
(operation mode 4).  
SOT5_1  
(SDA5_1)  
C10  
SOT5_2  
(SDA5_2)  
35  
27  
J2  
SCK5_0  
(SCL5_0)  
Multifunction serial interface ch.5  
clock I/O pin.  
This pin operates as SCK5 when it is  
used in a UART/CSIO (operation  
modes 0 to 2) and as SCL5 when it is  
used in an I2C (operation mode 4).  
167  
143  
36  
137  
-
E6  
D10  
K1  
SCK5_1  
(SCL5_1)  
SCK5_2  
(SCL5_2)  
28  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
43  
D a t a S h e e t  
Pin No.  
Pin  
function  
Multi  
Function  
Serial  
6
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
SIN6_0  
SIN6_1  
SIN6_2  
SOT6_0  
(SDA6_0)  
SOT6_1  
(SDA6_1)  
16  
31  
170  
16  
-
-
F3  
H6  
B4  
Multifunction serial interface ch.6  
input pin  
Multifunction serial interface ch.6  
output pin.  
17  
30  
17  
-
F4  
This pin operates as SOT6 when it is  
used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA6 when it is used in an I2C  
(operation mode 4).  
H5  
SOT6_2  
(SDA6_2)  
171  
-
C4  
SCK6_0  
(SCL6_0)  
SCK6_1  
(SCL6_1)  
SCK6_2  
(SCL6_2)  
SIN7_0  
SIN7_1  
SIN7_2  
SOT7_0  
(SDA7_0)  
Multifunction serial interface ch.6  
clock I/O pin.  
This pin operates as SCK6 when it is  
used in a UART/CSIO (operation  
modes 0 to 2) and as SCL6 when it is  
used in an I2C (operation mode 4).  
18  
29  
18  
-
F5  
H4  
B3  
172  
-
Multi  
Function  
Serial  
7
22  
64  
106  
22  
56  
-
G4  
K6  
H13  
Multifunction serial interface ch.7  
input pin  
Multifunction serial interface ch.7  
output pin.  
23  
63  
23  
55  
G5  
L6  
This pin operates as SOT7 when it is  
used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA7 when it is used in an I2C  
(operation mode 4).  
SOT7_1  
(SDA7_1)  
SOT7_2  
(SDA7_2)  
107  
-
H12  
SCK7_0  
(SCL7_0)  
Multifunction serial interface ch.7  
clock I/O pin.  
This pin operates as SCK7 when it is  
used in a UART/CSIO (operation  
modes 0 to 2) and as SCL7 when it is  
used in an I2C (operation mode 4).  
24  
62  
24  
54  
-
G6  
M6  
H11  
SCK7_1  
(SCL7_1)  
SCK7_2  
(SCL7_2)  
108  
44  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No.  
Pin  
function  
Multi  
Function  
Serial  
8
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
Multifunction serial interface ch.8  
input pin  
Multifunction serial interface ch.6  
output pin.  
SIN8_0  
2
2
B2  
This pin operates as SOT8 when it is  
used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA8 when it is used in an I2C  
(operation mode 4).  
SOT8_0  
(SDA8_0)  
3
3
C2  
Multifunction serial interface ch.7  
clock I/O pin.  
SCK8_0  
(SCL8_0)  
This pin operates as SCK8 when it is  
used in a UART/CSIO (operation  
modes 0 to 2) and as SCL8 when it is  
used in an I2C (operation mode 4).  
Multifunction serial interface ch.9  
input pin  
4
5
4
5
C3  
D5  
Multi  
Function  
Serial  
9
SIN9_0  
Multifunction serial interface ch.9  
output pin.  
This pin operates as SOT9 when it is  
used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA9 when it is used in an I2C  
(operation mode 4).  
Multifunction serial interface ch.9  
clock I/O pin.  
This pin operates as SCK9 when it is  
used in a UART/CSIO (operation  
modes 0 to 2) and as SCL9 when it is  
used in an I2C (operation mode 4).  
SOT9_0  
(SDA9_0)  
6
7
6
7
D2  
D1  
SCK9_0  
(SCL9_0)  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
45  
D a t a S h e e t  
Pin No.  
Pin  
function  
Multi  
Function  
Serial  
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
Multifunction serial interface ch.10  
input pin  
Multifunction serial interface ch.10  
output pin.  
SIN10_0  
46  
38  
N2  
10  
This pin operates as SOT10 when it  
is used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA10 when it is used in an I2C  
(operation mode 4).  
SOT10_0  
(SDA10_0)  
47  
39  
N3  
Multifunction serial interface ch.10  
clock I/O pin.  
SCK10_0  
(SCL10_0)  
This pin operates as SCK10 when it  
is used in a UART/CSIO (operation  
modes 0 to 2) and as SCL10 when it  
is used in an I2C (operation mode 4).  
Multifunction serial interface ch.11  
input pin  
48  
49  
40  
41  
M3  
L4  
Multi  
Function  
Serial  
11  
SIN11_0  
Multifunction serial interface ch.11  
output pin.  
This pin operates as SOT11 when it  
is used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA11 when it is used in an I2C  
(operation mode 4).  
Multifunction serial interface ch.11  
clock I/O pin.  
This pin operates as SCK11 when it  
is used in a UART/CSIO (operation  
modes 0 to 2) and as SCL11 when it  
is used in an I2C (operation mode 4).  
SOT11_0  
(SDA11_0)  
50  
51  
42  
43  
M4  
N4  
SCK11_0  
(SCL11_0)  
46  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No.  
Pin  
function  
Multi  
Function  
Serial  
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
Multifunction serial interface ch.12  
input pin  
Multifunction serial interface ch.12  
output pin.  
SIN12_0  
118  
94  
F10  
12  
This pin operates as SOT12 when it  
is used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA12 when it is used in an I2C  
(operation mode 4).  
SOT12_0  
(SDA12_0)  
119  
95  
F11  
Multifunction serial interface ch.12  
clock I/O pin.  
SCK12_0  
(SCL12_0)  
This pin operates as SCK12 when it  
is used in a UART/CSIO (operation  
modes 0 to 2) and as SCL12 when it  
is used in an I2C (operation mode 4).  
Multifunction serial interface ch.13  
input pin  
120  
145  
96  
F12  
C9  
Multi  
Function  
Serial  
13  
SIN13_0  
115  
Multifunction serial interface ch.13  
output pin.  
This pin operates as SOT13 when it  
is used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA13 when it is used in an I2C  
(operation mode 4).  
Multifunction serial interface ch.13  
clock I/O pin.  
This pin operates as SCK13 when it  
is used in a UART/CSIO (operation  
modes 0 to 2) and as SCL13 when it  
is used in an I2C (operation mode 4).  
SOT13_0  
(SDA13_0)  
146  
147  
116  
117  
B8  
D9  
SCK13_0  
(SCL13_0)  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
47  
D a t a S h e e t  
Pin No.  
Pin  
function  
Multi  
Function  
Serial  
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
Multifunction serial interface ch.14  
input pin  
Multifunction serial interface ch.14  
output pin.  
SIN14_0  
149  
119  
F9  
14  
This pin operates as SOT14 when it  
is used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA14 when it is used in an I2C  
(operation mode 4).  
SOT14_0  
(SDA14_0)  
150  
120  
C8  
Multifunction serial interface ch.14  
clock I/O pin.  
SCK14_0  
(SCL14_0)  
This pin operates as SCK14 when it  
is used in a UART/CSIO (operation  
modes 0 to 2) and as SCL14 when it  
is used in an I2C (operation mode 4).  
Multifunction serial interface ch.15  
input pin  
151  
153  
121  
123  
D8  
Multi  
Function  
Serial  
15  
SIN15_0  
A10  
Multifunction serial interface ch.15  
output pin.  
This pin operates as SOT15 when it  
is used in a UART/CSIO/LIN  
(operation modes 0 to 3) and as  
SDA15 when it is used in an I2C  
(operation mode 4).  
Multifunction serial interface ch.15  
clock I/O pin.  
This pin operates as SCK15 when it  
is used in a UART/CSIO (operation  
modes 0 to 2) and as SCL15 when it  
is used in an I2C (operation mode 4).  
SOT15_0  
(SDA15_0)  
154  
155  
124  
125  
F8  
SCK15_0  
(SCL15_0)  
B7  
48  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No  
Pin  
function  
Multi  
Function  
Timer  
0
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
Input signal controlling wave form  
generator outputs RTO00 to RTO05  
of multi-function timer 0.  
DTTI0X_0  
DTTI0X_1  
37  
29  
88  
K2  
104  
H10  
FRCK0_0  
FRCK0_1  
FRCK0_2  
IC00_0  
IC00_1  
IC00_2  
IC01_0  
IC01_1  
IC01_2  
IC02_0  
32  
105  
91  
36  
100  
92  
35  
101  
93  
34  
102  
94  
-
J5  
H9  
M12  
K1  
J12  
L13  
J2  
J11  
L12  
J3  
16-bit free-run timer ch.0 external  
clock input pin  
89  
75  
28  
84  
76  
27  
85  
77  
26  
86  
78  
-
16-bit input capture ch.0 input pin of  
multi-function timer 0.  
ICxx describes channel number.  
IC02_1  
IC02_2  
IC03_0  
J10  
L11  
J4  
33  
IC03_1  
IC03_2  
103  
95  
87  
79  
J9  
K13  
RTO00_0  
(PPG00_0)  
RTO00_1  
(PPG00_1)  
RTO01_0  
(PPG00_0)  
RTO01_1  
(PPG00_1)  
RTO02_0  
(PPG02_0)  
RTO02_1  
(PPG02_1)  
RTO03_0  
(PPG02_0)  
RTO03_1  
(PPG02_1)  
RTO04_0  
(PPG04_0)  
RTO04_1  
(PPG04_1)  
RTO05_0  
(PPG04_0)  
RTO05_1  
(PPG04_1)  
IGTRG0_0  
IGTRG0_1  
Wave form generator output of  
multi-function timer 0.  
This pin operates as PPG00 when it  
is used in PPG0 output modes.  
Wave form generator output of  
multi-function timer 0.  
This pin operates as PPG00 when it  
is used in PPG0 output modes.  
Wave form generator output of  
multi-function timer 0.  
This pin operates as PPG02 when it  
is used in PPG0 output modes.  
Wave form generator output of  
multi-function timer 0.  
This pin operates as PPG02 when it  
is used in PPG0 output modes.  
Wave form generator output of  
multi-function timer 0.  
This pin operates as PPG04 when it  
is used in PPG0 output modes.  
Wave form generator output of  
multi-function timer 0.  
This pin operates as PPG04 when it  
is used in PPG0 output modes.  
PPG IGBT mode external trigger  
input pin  
38  
124  
39  
30  
100  
31  
99  
32  
98  
33  
97  
34  
96  
35  
95  
K3  
E12  
K4  
123  
40  
E11  
L1  
122  
41  
E10  
L2  
121  
42  
F13  
L3  
120  
43  
F12  
M2  
F11  
119  
61  
172  
53  
140  
N6  
B3  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
49  
D a t a S h e e t  
Pin No  
LQFP-144BGA-192  
Pin  
function  
Quadrature  
Position/  
Revolution  
Counter  
0
Pin name  
Function description  
LQFP-176  
AIN0_0  
AIN0_1  
28  
-
H3  
L5  
QPRC ch.0 AIN input pin  
QPRC ch.0 BIN input pin  
QPRC ch.0 ZIN input pin  
QPRC ch.1 AIN input pin  
QPRC ch.1 BIN input pin  
QPRC ch.1 ZIN input pin  
59  
13  
51  
13  
-
AIN0_2  
E5  
BIN0_0  
29  
H4  
K5  
F1  
BIN0_1  
60  
52  
14  
-
BIN0_2  
14  
ZIN0_0  
30  
H5  
N6  
F2  
ZIN0_1  
61  
53  
15  
65  
103  
54  
66  
102  
55  
67  
101  
56  
122  
77  
29  
122  
77  
29  
ZIN0_2  
15  
Quadrature  
Position/  
Revolution  
Counter  
1
AIN1_0  
73  
N9  
D13  
M6  
M9  
D12  
L6  
AIN1_1  
127  
62  
AIN1_2  
BIN1_0  
74  
BIN1_1  
126  
63  
BIN1_2  
ZIN1_0  
75  
L9  
ZIN1_1  
125  
64  
E13  
K6  
E8  
ZIN1_2  
Real-time  
clock  
RTCCO_0  
RTCCO_1  
RTCCO_2  
SUBOUT_0  
SUBOUT_1  
SUBOUT_2  
152  
93  
0.5 seconds pulse output pin of Real-  
time clock  
L12  
K2  
E8  
37  
152  
93  
Sub clock output pin  
L12  
K2  
37  
50  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin No  
Pin  
function  
RESET  
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
External Reset Input. A reset is valid  
when INITX="L".  
INITX  
57  
49  
N5  
Mode  
Mode 0 Pin.  
During normal operation, MD0="L"  
must be input. During serial  
programming to Flash memory,  
MD0="H" must be input.  
Mode 1 Pin.  
MD0  
MD1  
85  
69  
N12  
During serial programming to Flash  
memory, MD1="L" must be input.  
84  
68  
N13  
POWER  
1
1
C1  
N1  
P4  
45  
54  
89  
37  
46  
73  
M14  
VCC  
Power supply Pin  
131  
107  
109  
126  
C14  
A13  
A9  
133  
156  
Low-Power  
Consumption  
Mode  
Deep standby mode return signal  
input pin 0  
Deep standby mode return signal  
input pin 1  
Deep standby mode return signal  
input pin 2  
Deep standby mode return signal  
input pin 3  
Deep standby mode return signal  
input pin 4  
Deep standby mode return signal  
input pin 5  
WKUP0  
WKUP1  
WKUP2  
WKUP3  
WKUP4  
WKUP5  
128  
91  
104  
75  
C13  
M12  
M8  
B3  
67  
59  
172  
28  
140  
-
H3  
169  
139  
C5  
HDMI-  
CEC/  
Remote  
Control  
Reception  
DAC  
CEC0_0  
CEC0_1  
CEC1_0  
CEC1_1  
81  
149  
172  
19  
-
M10  
F9  
HDMI-CEC/Remote Control  
Reception ch.0 input/output pin  
119  
140  
19  
B3  
HDMI-CEC/Remote Control  
Reception ch.1 input/output pin  
F6  
DA0_0  
DA1_0  
D/A converter ch.0 analog output pin  
D/A converter ch.1 analog output pin  
145  
146  
115  
116  
C9  
B8  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
51  
D a t a S h e e t  
Pin No  
Pin  
function  
GND  
Pin name  
Function description  
LQFP-176 LQFP-144 BGA-192  
27  
44  
25  
36  
45  
A5  
A8  
A11  
53  
72  
E1  
G7  
G8  
H8  
M1  
P3  
88  
108  
132  
127  
157  
144  
176  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P7  
N7  
M7  
L7  
VSS  
GND Pin  
K7  
J7  
P11  
N14  
L14  
B14  
H7  
B1  
G1  
J1  
P12  
P5  
CLOCK  
X0  
X0A  
X1  
Main clock (oscillation) input pin  
Sub clock (oscillation) input pin  
Main clock (oscillation) I/O pin  
Sub clock (oscillation) I/O pin  
Built-in high-speed CR-osc clock  
output port  
86  
55  
70  
47  
87  
56  
71  
48  
P13  
P6  
X1A  
CROUT_0  
CROUT_1  
127  
152  
103  
122  
D13  
E8  
Analog  
POWER  
A/D converter, D/A converter analog  
power pin  
A/D converter analog reference  
voltage input pin  
A/D converter, D/A converter GND  
pin  
A/D converter analog reference  
voltage input pin  
AVCC  
AVRH  
AVSS  
AVRL  
C
114  
117  
115  
116  
52  
90  
93  
91  
92  
44  
J14  
F14  
H14  
G14  
P2  
Analog  
GND  
C pin  
Power supply stabilization capacity  
pin  
* : 5V tolerant I/O  
52  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
I/O Circuit Type  
Type  
Circuit  
Remarks  
A
It is possible to select the main  
oscillation / GPIO function  
Pull-up  
resistor  
When the main oscillation is  
selected.  
Oscillation feedback resistor  
: Approximately 1 MΩ  
With Standby mode control  
Digital output  
Digital output  
P-ch  
P-ch  
X1  
When the GPIO is selected.  
CMOS level output.  
CMOS level hysteresis input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
N-ch  
R
: Approximately 50 kΩ  
IOH= -4 mA, IOL= 4 mA  
Pull-up resistor control  
Digital input  
Standby mode control  
Clock input  
Feedback  
resistor  
Standby mode control  
Digital input  
Standby mode control  
Pull-up  
resistor  
R
Digital output  
P-ch  
N-ch  
P-ch  
X0  
Digital output  
Pull-up resistor control  
B
CMOS level hysteresis input  
Pull-up resistor  
: Approximately 50 kΩ  
Pull-up resistor  
Digital input  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
53  
D a t a S h e e t  
Type  
Circuit  
Remarks  
C
Open drain output  
CMOS level hysteresis input  
Digital input  
Digital output  
N-ch  
D
It is possible to select the sub  
oscillation / GPIO function  
Pull-up  
resistor  
When the sub oscillation is  
selected.  
Oscillation feedback resistor  
: Approximately 5 MΩ  
With Standby mode control  
P-ch  
P-ch  
Digital output  
Digital output  
X1A  
When the GPIO is selected.  
CMOS level output.  
N-ch  
CMOS level hysteresis input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
: Approximately 50 kΩ  
IOH= -4 mA, IOL= 4 mA  
R
Pull-up resistor control  
Digital input  
Standby mode control  
Clock input  
Feedback  
resistor  
Standby mode control  
Digital input  
Standby mode control  
Pull-up  
resistor  
R
Digital output  
P-ch  
N-ch  
P-ch  
X0A  
Digital output  
Pull-up resistor control  
54  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Type  
Circuit  
Remarks  
E
CMOS level output  
CMOS level hysteresis input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
P-ch  
P-ch  
: Approximately 50 kΩ  
Digital output  
Digital output  
IOH= -4 mA, IOL= 4 mA  
When this pin is used as an  
I2C pin, the digital output  
P-ch transistor is always off  
+B input available  
N-ch  
R
Pull-up resistor control  
Digital input  
Standby mode control  
F
CMOS level output  
CMOS level hysteresis input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
: Approximately 50 kΩ  
P-ch  
P-ch  
IOH= -12 mA, IOL= 12 mA  
+B input available  
Digital output  
Digital output  
N-ch  
R
Pull-up resistor control  
Digital input  
Standby mode control  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
55  
D a t a S h e e t  
Type  
Circuit  
Remarks  
G
CMOS level output  
CMOS level hysteresis input  
With input control  
Analog input  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
: Approximately 50 kΩ  
IOH= -4 mA, IOL= 4 mA  
When this pin is used as an  
I2C pin, the digital output  
P-ch transistor is always off  
+B input available  
Digital output  
Digital output  
P-ch  
P-ch  
N-ch  
Pull-up resistor control  
Digital input  
R
Standby mode control  
Analog input  
Input control  
H
CMOS level output  
CMOS level hysteresis input  
With input control  
Analog output  
P-ch  
P-ch  
Digital output  
Digital output  
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
: Approximately 50 kΩ  
IOH = -4 mA, IOL = 4 mA  
N-ch  
Pull-up resistor control  
Digital input  
R
Standby mode Control  
Analog output  
56  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Type  
Circuit  
Remarks  
CMOS level output  
CMOS level hysteresis input  
5 V tolerant  
I
With pull-up resistor control  
With standby mode control  
Pull-up resistor  
: Approximately 50 kΩ  
IOH= -4 mA, IOL= 4 mA  
Available to control PZR  
registers.  
When this pin is used as an  
I2C pin, the digital output  
P-ch transistor is always off  
P-ch  
P-ch  
Digital output  
Digital output  
N-ch  
R
Pull-up resistor control  
Digital input  
Standby mode control  
J
CMOS level hysteresis input  
Mode input  
K
CMOS level output  
CMOS level hysteresis input  
With standby mode control  
IOH= -18.0 mA, IOL= 16.5 mA  
P-ch  
Digital output  
Digital output  
N-ch  
R
Digital input  
Standby mode Control  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
57  
D a t a S h e e t  
Handling Precautions  
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly  
affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This  
page describes precautions that must be observed to minimize the chance of failure and to obtain higher  
reliability from your Spansion semiconductor devices.  
1. Precautions for Product Design  
This section describes precautions when designing electronic equipment using semiconductor devices.  
Absolute Maximum Ratings  
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,  
etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.  
Recommended Operating Conditions  
Recommended operating conditions are normal operating ranges for the semiconductor device. All the  
device's electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside these  
ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data  
sheet. Users considering application outside the listed conditions are advised to contact their sales  
representative beforehand.  
Processing and Protection of Pins  
These precautions must be followed when handling the pins which connect semiconductor devices to power  
supply and input/output functions.  
(1) Preventing Over-Voltage and Over-Current Conditions  
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause  
deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to  
prevent such overvoltage or over-current conditions at the design stage.  
(2) Protection of Output Pins  
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can  
cause large current flows. Such conditions if present for extended periods of time can damage the  
device.  
Therefore, avoid this type of connection.  
(3) Handling of Unused Input Pins  
Unconnected input pins with very high impedance levels can adversely affect stability of operation.  
Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.  
Latch-up  
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When  
subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may  
be formed, causing large current levels in excess of several hundred mA to flow continuously at the power  
supply pin. This condition is called latch-up.  
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but  
can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the  
following:  
(1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should  
include attention to abnormal noise, surge levels, etc.  
(2) Be sure that abnormal current flows do not occur during the power-on sequence.  
Code: DS00-00004-3E  
58  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Observance of Safety Regulations and Standards  
Most countries in the world have established standards and regulations regarding safety, protection from  
electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards  
in the design of products.  
Fail-Safe Design  
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury,  
damage or loss from such failures by incorporating safety design measures into your facility and equipment  
such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating  
conditions.  
Precautions Related to Usage of Devices  
Spansion semiconductor devices are intended for use in standard applications (computers, office automation  
and other office equipment, industrial, communications, and measurement equipment, personal or  
household devices, etc.).  
CAUTION: Customers considering the use of our products in special applications where failure or  
abnormal operation may directly affect human lives or cause physical injury or property damage, or where  
extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea  
floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult  
with sales representatives before such use. The company will not be responsible for damages arising from  
such use without prior approval.  
2. Precautions for Package Mounting  
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance  
during soldering, you should only mount under Spansion's recommended conditions. For detailed  
information about mount conditions, contact your sales representative.  
Lead Insertion Type  
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct  
soldering on the board, or mounting by using a socket.  
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the  
board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the  
soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for  
storage temperature. Mounting processes should conform to Spansion recommended mounting conditions.  
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can  
lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment  
of socket contacts and IC leads be verified before mounting.  
Surface Mount Type  
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are  
more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in  
increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.  
You must use appropriate mounting techniques. Spansion recommends the solder reflow method, and has  
established a ranking of mounting conditions for each product. Users are advised to mount packages in  
accordance with Spansion ranking of recommended conditions.  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
59  
D a t a S h e e t  
Lead-Free Packaging  
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic  
soldering, junction strength may be reduced under some conditions of use.  
Storage of Semiconductor Devices  
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions  
will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed  
moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent,  
do the following:  
(1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product.  
Store products in locations where temperature changes are slight.  
(2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at  
temperatures between 5°C and 30°C.  
When you open Dry Package that recommends humidity 40% to 70% relative humidity.  
(3) When necessary, Spansion packages semiconductor devices in highly moisture-resistant aluminum  
laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags  
for storage.  
(4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.  
Baking  
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion  
recommended conditions for baking.  
Condition: 125°C/24 h  
Static Electricity  
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take  
the following precautions:  
(1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus  
for ion generation may be needed to remove electricity.  
(2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.  
(3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high  
resistance (on the level of 1 MΩ).  
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to  
minimize shock loads is recommended.  
(4) Ground all fixtures and instruments, or protect with anti-static measures.  
(5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board  
assemblies.  
60  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
3. Precautions for Use Environment  
Reliability of semiconductor devices depends on ambient temperature and other conditions as described  
above.  
For reliable performance, do the following:  
(1) Humidity  
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high  
humidity levels are anticipated, consider anti-humidity processing.  
(2) Discharge of Static Electricity  
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal  
operation. In such cases, use anti-static measures or processing to prevent discharges.  
(3) Corrosive Gases, Dust, or Oil  
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will  
adversely affect the device. If you use devices in such conditions, consider ways to prevent such  
exposure or to protect the devices.  
(4) Radiation, Including Cosmic Radiation  
Most devices are not designed for environments involving exposure to radiation or cosmic radiation.  
Users should provide shielding as appropriate.  
(5) Smoke, Flame  
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible  
substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.  
Customers considering the use of Spansion products in other special environmental conditions should  
consult with sales representatives.  
Please check the latest handling precautions at the following URL.  
http://www.spansion.com/fjdocuments/fj/datasheet/e-ds/DS00-00004.pdf  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
61  
D a t a S h e e t  
Handling Devices  
Power supply pins  
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected  
within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be  
connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels,  
to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the  
total output current rating.  
Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low  
impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass  
capacitor between each Power supply pin and GND pin near this device.  
Stabilizing power supply voltage  
A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is  
within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage  
stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at  
the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended  
operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a momentary  
fluctuation on switching the power supply.  
Crystal oscillator circuit  
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit  
board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as  
close to the device as possible.  
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins  
are surrounded by ground plane as this is expected to produce stable operation.  
Evaluate oscillation of your using crystal oscillator by your mount board.  
Sub crystal oscillator  
This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to  
fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation.  
Surface mount type  
Size : More than 3.2mm × 1.5mm  
Load capacitance : Approximately 6 pF to 7 pF  
Lead type  
Load capacitance : Approximately 6 pF to 7 pF  
62  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Using an external clock  
When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input  
the clock to X0. X1(PE3) can be used as a general-purpose I/O port.  
Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock  
input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port.  
Example of Using an External Clock  
Device  
X0(X0A)  
Set as  
Can be used as  
general-purpose  
I/O ports.  
External clock  
input  
X1(PE3),  
X1A (P47)  
Handling when using Multi-function serial pin as I2C pin  
If it is using the multi-function serial pin as I2C pins, P-ch transistor of digital output is always disabled.  
However, I2C pins need to keep the electrical characteristic like other pins and not to connect to the external  
I2C bus system with power OFF.  
C Pin  
This series contains the regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between  
the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency  
characteristics as a smoothing capacitor.  
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to  
thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the  
specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor.  
A smoothing capacitor of about 4.7μF would be recommended for this series.  
C
Device  
CS  
VSS  
GND  
Mode pins (MD0)  
Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the  
pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins  
is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for  
switching the pin level and rewriting the Flash memory data. It is because of preventing the device  
erroneously switching to test mode due to noise.  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
63  
D a t a S h e e t  
Notes on power-on  
Turn power on/off in the following order or at the same time.  
If not using the A/D converter and D/A converter, connect AVCC = VCC and AVSS = VSS.  
Turning on : VCC AVCC AVRH  
Turning off : AVRH AVCC VCC  
Serial Communication  
There is a possibility to receive wrong data due to the noise or other causes on the serial communication.  
Therefore, design a printed circuit board so as to avoid noise.  
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a  
checksum of data at the end. If an error is detected, retransmit the data.  
Differences in features among the products with different memory sizes and between  
Flash memory products and MASK products  
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and  
oscillation characteristics among the products with different memory sizes and between Flash memory  
products and MASK products are different because chip layout and memory structures are different.  
If you are switching to use a different product of the same series, please make sure to evaluate the electric  
characteristics.  
Pull-Up function of 5V tolerant I/O  
Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5V tolerant I/O.  
Adjoining wiring on circuit board  
If wiring of the crystal oscillation circuit (X0/X1 and X0A/X1A) adjoins and also runs in parallel with the  
wiring of GPIO, there is a possibility that the oscillation erroneously counts because oscillation wave has  
noise with the change of GPIO. Keep as much distance as possible between both wirings and insert the  
ground pattern between them in order to avoid this possibility.  
64  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Block Diagram  
TRSTX,TCK,  
TDI,TMS  
SWJ-DP  
ETM  
SRAM0  
80/96 Kbytes  
TDO  
ROM  
Table  
TRACEDx,  
TRACECLK  
TPIU  
I
SRAM1  
80/96 Kbytes  
D
NVIC  
Sys  
Flash I/F  
Security  
On-Chip Flash  
1 Mbytes+64 Kbytes/  
1.5 Mbytes+64 Kbytes  
Dual-Timer  
WatchDog Timer  
(Software)  
Clock Reset  
Generator  
INITX  
WatchDog Timer  
(Hardware)  
DMAC  
8ch.  
CSV  
CLK  
X0  
X1  
Main  
Source Clock  
CR  
PLL  
CR  
Osc  
Sub  
Osc  
X0A  
X1A  
4 MHz 100 kHz  
CROUT  
MADx  
AVCC,  
AVSS,  
AVRH  
MADATAx  
External Bus I/F  
12-bit A/D Converter  
Unit 0  
MCSXx,MDQMx,  
MOEX,MWEX,  
MALE,MRDY,  
MNALE,MNCLE,  
MNWEX,MNREX,  
MCLKOUT  
ANxx  
Unit 1  
ADTGx  
10-bit D/Aconverter  
2 Units  
DAx  
Power-On  
Reset  
Base Timer  
16-bit 16ch./  
32-bit 8ch.  
LVD  
TIOAx  
TIOBx  
LVD Ctrl  
Regulator  
C
IRQ-Monitor  
CRC Accelerator  
Watch Counter  
AINx  
BINx  
ZINx  
QPRC  
2ch.  
WKUPx  
Deep Standby Ctrl  
A/D Activation Compare  
2ch.  
CEC0_x,  
CEC1_x  
HDMI-CEC/  
Remote Reciver Control  
16-bit Input Capture  
4ch.  
IC0x  
RTCCO,  
SUBOUT  
Real-Time Clock  
External Interrupt  
Controller  
32pin + NMI  
16-bit Free-run Timer  
3ch.  
FRCK0  
INTx  
NMIX  
16-bit Output Compare  
6ch.  
MD0,  
MD1  
P0x,  
P1x,  
DTTI0X  
RTO0x  
MODE-Ctrl  
GPIO  
Waveform Generator  
3ch.  
.
.
.
PIN-Function-Ctrl  
PFx  
SCKx  
SINx  
SOTx  
CTS4  
RTS4  
16-bit PPG  
3ch.  
IGTRGx  
Multi-function Serial I/F  
16ch.  
HW flow control(ch.4)  
Multi-function Timer × 1  
Memory Size  
See " Memory size" in "Product Lineup" to confirm the memory size.  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
65  
D a t a S h e e t  
Memory Map  
Memory Map (1)  
Peripherals Area  
0x41FF_FFFF  
Reserved  
0xFFFF_FFFF  
Reserved  
0xE010_0000  
0xE000_0000  
Cortex-M3 Private  
Peripherals  
0x4006_1000  
0x4006_0000  
DMAC  
Reserved  
Reserved  
0x4004_0000  
0x4003_F000  
0x4003_C000  
0x4003_B000  
0x4003_A000  
0x4003_9000  
0x4003_8000  
EXT-bus I/F  
Reserved  
RTC  
0x7000_0000  
0x6000_0000  
External Device  
Area  
Watch Counter  
CRC  
MFS  
Reserved  
Reserved  
0x4400_0000  
0x4003_6000  
0x4003_5000  
LVD/DS mode  
HDMI-CEC/  
0x4003_4000 Remote Control Receiver  
32Mbytes  
Bit band alias  
0x4200_0000  
0x4000_0000  
0x2400_0000  
0x2200_0000  
GPIO  
Reserved  
Int-Req.Read  
EXTI  
0x4003_3000  
0x4003_2000  
0x4003_1000  
0x4003_0000  
0x4002_F000  
0x4002_E000  
0x4002_9000  
0x4002_8000  
0x4002_7000  
0x4002_6000  
0x4002_5000  
0x4002_4000  
Peripherals  
Reserved  
32Mbytes  
Bit band alias  
Reserved  
CR Trim  
Reserved  
D/AC  
Reserved  
0x2001_8000  
0x2000_0000  
0x1FFE_8000  
SRAM1  
SRAM0  
A/DC  
QPRC  
Base Timer  
PPG  
Reserved  
0x0051_8000  
0x0050_8000  
0x0040_4000  
0x0040_0000  
Flash(Work area)  
Reserved  
Reserved  
See "Memory map(2)" for  
the memory size details.  
Security/CR Trim  
0x4002_1000  
0x4002_0000  
MFT unit0  
Reserved  
0x4001_6000  
0x4001_5000  
Flash(Main area)  
Dual Timer  
Reserved  
0x0000_0000  
0x4001_3000  
0x4001_2000  
SW WDT  
HW WDT  
0x4001_1000  
0x4001_0000  
Clock/Reset  
Reserved  
Flash I/F  
0x4000_1000  
0x4000_0000  
66  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Memory Map (2)  
MB9BF129SA/TA  
MB9BF128SA/TA  
0x2008_0000  
0x2008_0000  
0x2001_4000  
Reserved  
Reserved  
0x2001_8000  
SRAM1  
80Kbytes  
SRAM1  
64Kbytes  
0x2000_4000  
0x2000_0000  
0x1FFF_C000  
0x2000_4000  
0x2000_0000  
0x1FFF_C000  
SRAM116Kbytes*  
SRAM016Kbytes*  
SRAM116Kbytes*  
SRAM016Kbytes*  
SRAM0  
64Kbytes  
SRAM0  
80Kbytes  
0x1FFE_C000  
0x1FFE_8000  
Reserved  
Reserved  
ROM1_SA0-7(8KBx8)  
Reserved  
0x0051_8000  
0x0050_8000  
0x0051_8000  
0x0050_8000  
ROM1_SA0-7(8KBx8)  
Reserved  
0x0040_4000  
0x0040_2000  
0x0040_0000  
0x0040_4000  
0x0040_2000  
0x0040_0000  
CR trimming  
Security  
CR trimming  
Security  
Reserved  
Reserved  
0x0018_0000  
0x0010_0000  
ROM1_SA8-15(8KBx8)  
0x0010_0000  
ROM0_SA9-23(64KBx15)  
ROM0_SA9-23(64KBx15)  
ROM0_SA8(48KB)  
ROM0_SA8(48KB)  
ROM0_SA2-3(8KBx2)  
ROM0_SA2-3(8KBx2)  
0x0000_0000  
0x0000_0000  
* : The content of SRAM can be retained at the deep standby modes by the setting of Deep Standby RAM  
Retention Register (DSRAMR).  
See "MB9B520T/420T/320T/120T Series Flash programming Manual" for sector structure of Flash.  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
67  
D a t a S h e e t  
Peripheral Address Map  
Start address  
End address  
Bus  
Peripherals  
0x4000_0000  
0x4000_1000  
0x4001_0000  
0x4001_1000  
0x4001_2000  
0x4001_3000  
0x4001_5000  
0x4001_6000  
0x4002_0000  
0x4002_1000  
0x4002_4000  
0x4002_5000  
0x4002_6000  
0x4002_7000  
0x4002_8000  
0x4002_9000  
0x4002_E000  
0x4002_F000  
0x4003_0000  
0x4003_1000  
0x4003_2000  
0x4003_3000  
0x4003_4000  
0x4003_5000  
0x4003_5800  
0x4003_6000  
0x4003_8000  
0x4003_9000  
0x4003_A000  
0x4003_B000  
0x4003_C000  
0x4003_F000  
0x4004_0000  
0x4006_0000  
0x4006_1000  
0x4000_0FFF  
0x4000_FFFF  
0x4001_0FFF  
0x4001_1FFF  
0x4001_2FFF  
0x4001_4FFF  
0x4001_5FFF  
0x4001_FFFF  
0x4002_0FFF  
0x4002_3FFF  
0x4002_4FFF  
0x4002_5FFF  
0x4002_6FFF  
0x4002_7FFF  
0x4002_8FFF  
0x4002_DFFF  
0x4002_EFFF  
0x4002_FFFF  
0x4003_0FFF  
0x4003_1FFF  
0x4003_2FFF  
0x4003_3FFF  
0x4003_4FFF  
0x4003_57FF  
0x4003_5FFF  
0x4003_7FFF  
0x4003_8FFF  
0x4003_9FFF  
0x4003_AFFF  
0x4003_BFFF  
0x4003_EFFF  
0x4003_FFFF  
0x4005_FFFF  
0x4006_0FFF  
0x41FF_FFFF  
Flash Memory I/F register  
Reserved  
AHB  
Clock/Reset Control  
Hardware Watchdog timer  
Software Watchdog timer  
Reserved  
APB0  
Dual-Timer  
Reserved  
Multi-function timer unit0  
Reserved  
PPG  
Base Timer  
Quadrature Position/Revolution Counter (QPRC)  
A/D Converter  
APB1  
D/A Converter  
Reserved  
Built-in CR trimming  
Reserved  
External Interrupt  
Interrupt Source Check Resister  
Reserved  
GPIO  
HDMI-CEC/Remote control Reception  
Low-Voltage Detector  
Deep standby mode Controller  
Reserved  
APB2  
Multi-function serial Interface  
CRC  
Watch Counter  
Real-time clock  
Reserved  
External bus interface  
Reserved  
AHB  
DMAC register  
Reserved  
68  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Pin Status in Each CPU State  
The terms used for pin status have the following meanings.  
INITX=0  
This is the period when the INITX pin is the "L" level.  
INITX=1  
This is the period when the INITX pin is the "H" level.  
SPL=0  
This is the status that the standby pin level setting bit (SPL) in the standby mode control register  
(STB_CTL) is set to "0".  
SPL=1  
This is the status that the standby pin level setting bit (SPL) in the standby mode control register  
(STB_CTL) is set to "1".  
Input enabled  
Indicates that the input function can be used.  
Internal input fixed at "0"  
This is the status that the input function cannot be used. Internal input is fixed at "L".  
Hi-Z  
Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.  
Setting disabled  
Indicates that the setting is disabled.  
Maintain previous state  
Maintains the state that was immediately prior to entering the current mode.  
If a built-in peripheral function is operating, the output follows the peripheral function.  
If the pin is being used as a port, that output is maintained.  
Analog input is enabled  
Indicates that the analog input is enabled.  
Trace output  
Indicates that the trace function can be used.  
GPIO selected  
In Deep standby mode, pins switch to the general-purpose I/O port.  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
69  
D a t a S h e e t  
List of Pin Status  
Power-on  
Deep standby  
RTC mode or Deep  
standby STOP mode  
state  
Return from  
Deep  
standby  
reset or  
low-voltage  
detection  
state  
Device Run mode  
internal or SLEEP  
reset state mode state STOP mode state  
Timer mode,  
RTC mode, or  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
A
Main crystal  
oscillator input  
pin/  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
External main  
clock input  
selected  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
External main  
clock input  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
disabled  
disabled  
disabled  
B
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Hi-Z /  
Internal  
input  
state/When state/When state/When state/When state/When state/When  
oscillation oscillation oscillation oscillation oscillation oscillation  
Hi-Z /  
Hi-Z /  
Main crystal  
oscillator output  
pin  
Internal  
Internal  
fixed at  
"0"/  
stops*1,  
stops*1,  
stops*1,  
stops*1,  
stops*1,  
stops*1,  
input fixed input fixed  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
at "0"  
at "0"  
or Input  
enable  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed input fixed  
at "0"  
at "0"  
at "0"  
at "0"  
at "0"  
at "0"  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
Pull-up /  
Input  
INITX  
C
D
input pin  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Mode  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
input pin  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Mode  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
input pin  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
E
Maintain  
previous  
state  
Maintain  
previous  
state  
Hi-Z /  
Input  
Hi-Z /  
Input  
GPIO  
Setting  
Setting  
Setting  
GPIO  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
selected  
enabled  
enabled  
70  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Power-on  
reset or  
low-voltage  
detection  
state  
Deep standby  
RTC mode or Deep  
standby STOP mode  
state  
Return from  
Deep  
standby  
Device Run mode  
internal or SLEEP  
reset state mode state STOP mode state  
Timer mode,  
RTC mode, or  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
F
Sub crystal  
oscillator input  
pin /  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
External sub  
clock input  
selected  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Setting  
Setting  
Setting  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z/  
Internal  
input fixed  
at "0"  
External sub  
clock input  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
disabled  
disabled  
disabled  
G
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Maintain  
previous  
Hi-Z /  
Internal  
input  
state/When state/When state/When state/When state/When  
Maintain oscillation oscillation oscillation oscillation oscillation  
Hi-Z /  
Hi-Z /  
Sub crystal  
oscillator output  
pin  
Internal  
Internal  
fixed at  
"0"/  
previous  
state  
stops*2,  
stops*2,  
stops*2,  
stops*2,  
stops*2,  
input fixed input fixed  
Hi-Z /  
Hi-Z /  
Hi-Z/  
Hi-Z/  
Hi-Z/  
at "0"  
at "0"  
or Input  
enable  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed  
at "0"  
at "0"  
at "0"  
at "0"  
at "0"  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
NMIX selected  
disabled  
disabled  
disabled  
Hi-Z /  
WKUP  
input  
Maintain  
previous  
state  
Maintain  
previous  
state  
WKUP  
input  
GPIO  
H
Hi-Z /  
selected  
Hi-Z /  
Input  
Hi-Z /  
Input  
enabled  
GPIO  
Internal  
input fixed  
at "0"  
enabled  
Hi-Z  
Hi-Z  
selected  
enabled  
enabled  
Pull-up /  
Input  
Pull-up /  
Input  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
JTAG  
selected  
enabled  
enabled  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
selected  
Internal  
input fixed  
at "0"  
I
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
GPIO  
Setting  
Setting  
Setting  
GPIO  
selected  
disabled  
disabled  
disabled  
selected  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
71  
D a t a S h e e t  
Power-on  
reset or  
low-voltage  
detection  
state  
Deep standby  
RTC mode or Deep  
standby STOP mode  
state  
Return from  
Deep  
standby  
Device Run mode  
internal or SLEEP  
reset state mode state STOP mode state  
Timer mode,  
RTC mode, or  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Resource selected  
Hi-Z /  
Input  
Hi-Z /  
Input  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
J
Hi-Z  
selected  
GPIO  
enabled  
enabled  
selected  
Maintain  
previous  
state  
External interrupt  
enabled selected  
Setting  
Setting  
Setting  
disabled  
disabled  
disabled  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
Resource other  
than above  
selected  
GPIO  
K
Hi-Z /  
Internal  
input fixed  
at "0"  
selected  
Hi-Z /  
Input  
Hi-Z /  
Input  
Hi-Z  
Hi-Z  
enabled  
enabled  
GPIO  
selected  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed input fixed input fixed input fixed  
Analog input  
selected  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
L
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Resource other  
than above  
selected  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
GPIO  
disabled  
disabled  
disabled  
selected  
GPIO  
selected  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed input fixed input fixed input fixed  
Analog input  
selected  
Hi-Z  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
M
Maintain  
previous  
state  
External interrupt  
enabled selected  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
Resource other  
than above  
selected  
Setting  
Setting  
Setting  
GPIO  
disabled  
disabled  
disabled  
selected  
Hi-Z /  
Internal  
input fixed  
at "0"  
GPIO  
selected  
72  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Power-on  
reset or  
low-voltage  
detection  
state  
Deep standby  
RTC mode or Deep  
standby STOP mode  
state  
Return from  
Deep  
standby  
Device Run mode  
internal or SLEEP  
reset state mode state STOP mode state  
Timer mode,  
RTC mode, or  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Hi-Z /  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
input fixed input fixed input fixed input fixed input fixed input fixed input fixed input fixed  
Analog input  
selected  
Hi-Z  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
at "0" /  
Analog  
input  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
Hi-Z /  
WKUP  
input  
WKUP  
input  
WKUP  
enabled  
enabled  
Maintain  
previous  
state  
enabled  
N
External interrupt  
enabled selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
GPIO  
disabled  
disabled  
disabled  
selected  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Resource other  
than above  
selected  
Hi-Z /  
Internal  
input fixed  
at "0"  
GPIO  
selected  
Analog output  
selected  
Setting  
Setting  
Setting  
*3  
*4  
disabled  
disabled  
disabled  
GPIO  
Hi-Z /  
Internal  
input fixed  
at "0"  
Resource other  
than above  
selected  
Maintain  
previous  
state  
selected  
Internal  
GPIO  
O
Hi-Z /  
Hi-Z /  
Input  
Hi-Z /  
Input  
Maintain  
previous  
state  
selected  
Internal input fixed  
Hi-Z  
input fixed  
at "0"  
at "0"  
enabled  
enabled  
GPIO  
selected  
Setting  
Setting  
Setting  
Trace  
Trace selected  
disabled  
disabled  
disabled  
output  
GPIO  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
selected  
Internal  
Resource other  
than above  
selected  
GPIO  
P
Hi-Z /  
Hi-Z /  
Input  
Hi-Z /  
Input  
selected  
Internal input fixed  
Hi-Z  
input fixed  
at "0"  
at "0"  
enabled  
enabled  
GPIO  
selected  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
73  
D a t a S h e e t  
Power-on  
reset or  
low-voltage  
detection  
state  
Deep standby  
RTC mode or Deep  
standby STOP mode  
state  
Return from  
Deep  
standby  
Device Run mode  
internal or SLEEP  
reset state mode state STOP mode state  
Timer mode,  
RTC mode, or  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
Trace  
Trace selected  
output  
Setting  
Setting  
Setting  
Maintain  
previous  
state  
disabled  
disabled  
disabled  
GPIO  
selected  
Internal  
input fixed  
at "0"  
External interrupt  
enabled selected  
Hi-Z /  
Internal  
input fixed  
at "0"  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Q
R
S
selected  
Resource other  
than above  
selected  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Input  
Hi-Z /  
Input  
Hi-Z  
enabled  
enabled  
GPIO  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
CEC  
Setting  
Setting  
Setting  
enabled  
disabled  
disabled  
disabled  
Maintain  
previous  
state  
Maintain  
previous  
state  
Resource other  
than above  
selected  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Input  
Hi-Z /  
Input  
GPIO  
Hi-Z  
selected  
enabled  
enabled  
GPIO  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
CEC  
enabled  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
disabled  
disabled  
disabled  
External interrupt  
enabled selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
Hi-Z /  
Internal  
input fixed  
at "0"  
selected  
Internal  
Resource other  
than above  
selected  
GPIO  
Hi-Z /  
Hi-Z /  
Input  
Hi-Z /  
Input  
selected  
Internal input fixed  
Hi-Z  
input fixed  
at "0"  
at "0"  
enabled  
enabled  
GPIO  
selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
Maintain  
previous  
state  
CEC  
enabled  
Hi-Z /  
WKUP  
input  
Maintain  
previous  
state  
WKUP  
input  
Setting  
Setting  
Setting  
WKUP  
enabled  
disabled  
disabled  
disabled  
enabled  
Maintain  
previous  
state  
Maintain  
previous  
state  
enabled  
T
External interrupt  
enabled selected  
GPIO  
GPIO  
selected  
Internal  
input fixed  
at "0"  
selected  
Hi-Z /  
Internal  
input fixed  
at "0"  
Resource other  
than above  
selected  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Input  
Hi-Z /  
Input  
Hi-Z  
enabled  
enabled  
GPIO  
selected  
74  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Power-on  
reset or  
low-voltage  
detection  
state  
Deep standby  
RTC mode or Deep  
standby STOP mode  
state  
Return from  
Deep  
standby  
Device Run mode  
internal or SLEEP  
reset state mode state STOP mode state  
Timer mode,  
RTC mode, or  
INITX  
input state  
mode state  
Function  
group  
Power  
supply  
unstable  
Power  
supply  
stable  
Power  
supply  
stable  
INITX = 1  
-
Power supply stable  
Power supply stable Power supply stable  
INITX = 1 INITX = 1  
-
-
INITX = 0 INITX = 1 INITX = 1  
-
-
-
SPL = 0  
SPL = 1  
SPL = 0  
SPL = 1  
Hi-Z /  
WKUP  
input  
WKUP  
input  
WKUP  
enabled  
Maintain  
previous  
state  
Setting  
Setting  
Setting  
enabled  
enabled  
disabled  
disabled  
disabled  
External interrupt  
enabled selected  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
U
GPIO  
selected  
Hi-Z /  
Internal  
input fixed  
at "0"  
selected  
Internal  
Resource other  
than above  
selected  
Hi-Z /  
Hi-Z /  
Input  
Hi-Z /  
Input  
Internal input fixed  
Hi-Z  
Hi-Z  
input fixed  
at "0"  
at "0"  
enabled  
enabled  
GPIO  
selected  
GPIO  
selected  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Internal  
input fixed  
at "0"  
Hi-Z /  
Input  
Hi-Z /  
Input  
Maintain  
previous  
state  
Maintain  
previous  
state  
GPIO  
GPIO  
V
selected  
selected  
enabled  
enabled  
*1 : Oscillation is stopped at Sub timer mode, Low-speed CR timer mode, RTC mode, STOP mode, Deep  
standby RTC mode, and Deep standby STOP mode.  
*2 : Oscillation is stopped at STOP mode and Deep standby STOP mode.  
*3 : Maintain previous state at timer mode. GPIO selected Internal input fixed at "0" at RTC mode, STOP mode.  
*4 : Maintain previous state at timer mode. Hi-Z/Internal input fixed at "0" at RTC mode, STOP mode.  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
75  
D a t a S h e e t  
Electrical Characteristics  
1. Absolute Maximum Ratings  
Parameter  
Rating  
Symbol  
Unit  
Remarks  
Min  
Max  
Power supply voltage*1, *2  
VCC  
AVCC  
AVRH  
VSS - 0.5  
VSS - 0.5  
VSS - 0.5  
VSS + 6.5  
VSS + 6.5  
VSS + 6.5  
V
V
V
Analog power supply voltage*1, *3  
Analog reference voltage*1, *3  
VCC + 0.5  
(6.5V)  
VSS - 0.5  
V
Input voltage*1  
VI  
VSS - 0.5  
VSS - 0.5  
VSS + 6.5  
VSS + 3.63  
AVCC + 0.5  
(6.5V)  
VCC + 0.5  
(6.5V)  
+2  
V
V
5V tolerant  
5V tolerant*8  
Analog pin input voltage*1  
Output voltage*1  
VIA  
VSS - 0.5  
V
V
VO  
VSS - 0.5  
-2  
Clamp maximum current  
ICLAMP  
mA *8  
Clamp total maximum current  
Σ[ICLAMP  
]
+20  
mA *8  
10  
20  
39  
4
12  
16.5  
100  
50  
mA 4mA type  
mA 12mA type  
mA P80/P81  
mA 4mA type  
mA 12mA type  
mA P80/P81  
mA  
"L" level maximum output current*4  
IOL  
-
-
"L" level average output current*5  
IOLAV  
"L" level total maximum output current  
"L" level total average output current*6  
IOL  
IOLAV  
-
-
mA  
- 10  
- 20  
- 39  
- 4  
- 12  
- 18  
mA 4mA type  
mA 12mA type  
mA P80/P81  
mA 4mA type  
mA 12mA type  
mA P80/P81  
"H" level maximum output current*4  
IOH  
-
"H" level average output current*5  
IOHAV  
-
-
"H" level total maximum output  
current  
IOH  
- 100  
mA  
"H" level total average output current*6 IOHAV  
-
-
- 50  
390  
+ 150  
mA  
mW  
°C  
Power consumption  
Storage temperature  
PD  
TSTG  
- 55  
*1 : These parameters are based on the condition that VSS = AVSS = 0V.  
*2 : VCC must not drop below VSS - 0.5V.  
*3 : Ensure that the voltage does not exceed VCC + 0.5 V, for example, when the power is turned on.  
*4 : The maximum output current is defined as the value of the peak current flowing through any one of the  
corresponding pins.  
*5 : The average output current is defined as the average current value flowing through any one of the  
corresponding pins for a 100 ms period.  
*6 : The total average output current is defined as the average current value flowing through all of  
corresponding pins for a 100ms.  
*7: VCC = AVCC = AVRH = VSS = AVSS = AVRL = 0.0V  
76  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
*8 :  
See "List of Pin Functions" and "I/O Circuit Type" about +B input available pin.  
Use within recommended operating conditions.  
Use at DC voltage (current) the +B input.  
The +B signal should always be applied a limiting resistance placed between the +B signal  
and the device.  
The value of the limiting resistance should be set so that when the +B signal is applied the  
input current to the device pin does not exceed rated values, either instantaneously or for  
prolonged periods.  
Note that when the device drive current is low, such as in the low-power consumpsion modes,  
the +B input potential may pass through the protective diode and increase the potential at  
the VCC and AVCC pin, and this may affect other devices.  
Note that if a +B signal is input when the device power supply is off (not fixed at 0V), the  
power supply is provided from the pins, so that incomplete operation may result.  
The following is a recommended circuit example (I/O equivalent circuit).  
Protection Diode  
VCC  
VCC  
P-ch  
Limiting  
resistor  
Digital output  
Digital input  
+B input (0V to 16V)  
N-ch  
R
AVCC  
Analog input  
<WARNING>  
Semiconductor devices may be permanently damaged by application of stress (including, without limitation,  
voltage, current or temperature) in excess of absolute maximum ratings.  
Do not exceed any of these ratings.  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
77  
D a t a S h e e t  
2. Recommended Operating Conditions  
(VSS = AVSS = 0.0V)  
Value  
Parameter  
Symbol Conditions  
Unit  
Remarks  
Min  
2.7*2  
2.7  
Max  
5.5  
Power supply voltage  
Analog power supply voltage  
VCC  
-
-
-
-
V
V
V
V
AVCC  
5.5  
AVCC = VCC  
AVRH  
AVRL  
2.7  
AVCC  
AVSS  
Analog reference voltage  
AVSS  
For built-in  
Regulator*1  
Smoothing capacitor  
Operating temperature  
CS  
-
1
10  
μF  
Ta  
-
- 40  
+ 105  
°C  
*1 : See " C Pin" in "Handling Devices" for the connection of the smoothing capacitor.  
*2 : In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage  
or more, instruction execution and low voltage detection function by built-in High-speed CR(including  
Main PLL is used) or built-in Low-speed CR is possible to operate only.  
<WARNING>  
The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device's electrical characteristics are warranted when the device is  
operated under these conditions.  
Any use of semiconductor devices will be under their recommended operating condition.  
Operation under any conditions other than these conditions may adversely affect reliability of device and  
could result in device failure.  
No warranty is made with respect to any use, operating conditions or combinations not represented on this  
data sheet. If you are considering application under any conditions other than listed herein, please contact  
sales representatives beforehand.  
78  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
3. DC Characteristics  
(1) Current Rating  
Symbol  
Value  
Parameter (Pin  
name)  
Conditions  
Unit Remarks  
Typ*1 Max*2  
CPU : 60 MHz,  
Peripheral : 30 MHz  
29  
19  
37  
26  
mA  
mA  
*3,*5  
PLL  
RUN mode  
CPU:60 MHz,  
Peripheral clock stops  
*3,*5  
High-speed CR  
RUN mode  
CPU/ Peripheral : 4 MHz  
*4,*3  
ICC  
3.1  
6.4  
mA  
µA  
Sub  
RUN mode  
CPU/ Peripheral : 32 kHz  
*3,*6  
170  
2300  
Low-speed CR  
RUN mode  
CPU/ Peripheral : 100 kHz  
*
210  
2300  
µA  
3
PLL  
Peripheral : 30 MHz  
*3,*5  
19  
2.1  
160  
190  
20  
-
26  
5.1  
2200  
2200  
75  
mA  
mA  
µA  
µA  
μA  
SLEEP mode  
High-speed CR  
SLEEP mode  
Sub  
SLEEP mode  
Low-speed CR  
SLEEP mode  
Peripheral : 4 MHz*4  
3
*
ICCS  
ICCH  
ICCT  
ICCR  
Power  
supply  
current  
Peripheral : 32 kHz  
*3,*6  
Peripheral : 100 kHz  
3
*
Ta = + 25°C  
3
*
STOP mode  
Ta = + 105°C  
1.3  
5.5  
6.5  
95  
mA  
mA  
mA  
μA  
3
*
Ta = + 25°C  
2.8  
-
*3,*6  
Main  
TIMER mode  
Ta = + 105°C  
*3,*6  
Ta = + 25°C  
24  
-
*3,*6  
Sub  
TIMER mode  
Ta = + 105°C  
*3,*6  
1.7  
89  
mA  
μA  
Ta = + 25°C  
21  
-
*3,*6  
RTC mode  
Ta = + 105°C  
*3,*6  
1.7  
mA  
*1 : Ta=+25,VCC= 3.3V  
*2 : Ta=+105,VCC=5.5V  
*3 : When all ports are fixed.  
*4 : When setting it to 4MHz by trimming.  
*5 : When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)  
*6 : When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
79  
D a t a S h e e t  
Symbol  
Parameter (Pin  
name)  
Value  
Typ*1 Max*2  
Conditions  
Unit Remarks  
Ta = + 25°C,  
When RAM is off  
*
Ta = + 25°C,  
1.9  
4.8  
5.5  
13  
17  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
3
When RAM is on(16 KB)  
*4,*3  
Ta = + 25°C,  
When RAM is on(32 KB)  
20  
*4,*3  
Deep Standby  
STOP mode  
ICCHD  
Ta = + 105°C,  
When RAM is off  
300  
320  
330  
14  
3
*
Ta = + 105°C,  
When RAM is on(16 KB)  
*4,*3  
Ta = + 105°C,  
When RAM is on(32 KB)  
*4,*3  
-
Power  
supply  
current  
Ta = + 25°C,  
When RAM is off  
2.5  
5.4  
6.1  
*3,*5  
Ta = + 25°C,  
When RAM is on(16 KB)  
18  
*4,*3,*5  
Ta = + 25°C,  
When RAM is on(32 KB)  
21  
*4,*3,*5  
Deep Standby  
RTC mode  
ICCRD  
Ta = + 105°C,  
When RAM is off  
*3,*5  
Ta = + 105°C,  
When RAM is on(16 KB)  
*4,*3,*5  
Ta = + 105°C,  
When RAM is on(32 KB)  
*4,*3,*5  
305  
325  
335  
-
*1 : VCC=3.3V  
*2 : VCC=5.5V  
*3 : When all ports are fixed and LVD off.  
*4 : For more information about RAM retention area, see "Memory Map (2)" in "Memory Map".  
*5 : When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)  
80  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Low-Voltage Detection Current  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Remarks  
(Pin name)  
Min  
Max  
For occurrence of  
reset  
-
0.13  
0.3  
μA  
Low-Voltage  
detection circuit  
(LVD) power  
supply current  
ICCLVD  
(VCC)  
At operation  
For occurrence of  
interrupt  
-
0.13  
0.3  
μA  
Flash Memory Current  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Typ  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Max  
At ROM0  
Write/Erase  
-
9.9  
11.8  
mA *1  
Flash memory  
write/erase  
current  
ICCFLASH  
(VCC)  
VCC  
At ROM1  
Write/Erase  
-
9.5  
11.2  
mA *1  
*1 : When programming or erase in flash memory, Flash Memory Write/Erase current (ICCFLASH) is added to  
the Power supply current (ICC).  
In addition, When programming or erase in flash memory ROM0 and ROM1 at the same time, Flash  
Memory Write/Erase current (ICCFLASH) of both ROM0 and ROM1 are added to the Power supply current  
(ICC).  
A/D Converter Current  
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, Ta = - 40°C to + 105°C)  
Value  
Typ  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
mA  
μA  
Remarks  
Min  
Max  
At 1unit  
operation  
-
0.69  
0.9  
Power supply  
current  
ICCAD  
(VCC)  
AVCC  
AVRH  
At stop  
-
-
-
0.6  
35  
1.97  
3.4  
At 1unit  
operation  
AVRH=5.5V  
Reference  
power supply  
current  
1.1  
0.2  
mA  
ICCAVRH  
(VCC)  
(AVRH)  
At stop  
μA  
D/A Converter Current  
(VCC = AVCC = 2.7V to 5.5V, VSS = AV SS = 0V, Ta = - 40°C to + 105°C)  
Value  
Typ  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Max  
At 1unit  
operation  
AVCC=3.3V  
At 1unit  
operation  
AVCC=5.0V  
250  
315  
380  
μA  
IDDA*2  
(VCC)  
Power supply  
current*1  
AVCC  
380  
-
475  
-
580  
30  
μA  
μA  
IDSA  
(VCC)  
At stop  
*1 : No-load  
*2 : Generates the max current by the CODE about 0x200  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
81  
D a t a S h e e t  
(2) Pin Characteristics  
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, Ta = - 40°C to + 105°C)  
Value  
Typ  
Parameter Symbol Pin name  
Conditions  
Unit Remarks  
Min  
Max  
CMOS  
"H" level  
hysteresis  
input  
-
-
-
-
VCC × 0.8  
-
VCC + 0.3  
V
V
V
V
input pin,  
voltage  
(hysteresis  
input)  
VIHS  
MD0, MD1  
5V tolerant  
input pin  
VCC × 0.8  
VSS - 0.3  
VSS - 0.3  
-
-
-
VSS + 5.5  
VCC × 0.2  
VCC × 0.2  
CMOS  
"L" level  
input  
voltage  
(hysteresis  
input)  
hysteresis  
input pin,  
MD0, MD1  
5V tolerant  
input pin  
VILS  
VCC 4.5 V,  
IOH = - 4 mA  
4mA type  
12mA type  
P80/P81  
VCC - 0.5  
VCC - 0.5  
VCC - 0.4  
VSS  
-
-
-
-
-
-
VCC  
VCC  
VCC  
0.4  
V
V
V
V
V
V
VCC < 4.5 V,  
IOH = - 2 mA  
VCC 4.5 V,  
IOH = - 12 mA  
VCC < 4.5 V,  
IOH = - 8 mA  
VCC 4.5 V,  
IOH = - 18.0 mA  
VCC < 4.5 V,  
IOH = - 12.0 mA  
VCC 4.5 V,  
IOL = 4 mA  
"H" level  
output  
VOH  
voltage  
4mA type  
12mA type  
P80/P81  
VCC < 4.5 V,  
IOL = 2 mA  
VCC 4.5 V,  
IOL = 12 mA  
VCC < 4.5 V,  
IOL = 8 mA  
VCC 4.5 V,  
IOL = 16.5 mA  
VCC < 4.5 V,  
IOL = 10.5 mA  
"L" level  
output  
VOL  
VSS  
0.4  
voltage  
VSS  
0.4  
82  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Value  
Typ  
Parameter Symbol Pin name  
Conditions  
Unit Remarks  
Min  
Max  
-
-
- 5  
-
+ 5  
μA  
CEC0_0,  
CEC0_1,  
CEC1_0,  
CEC1_1  
VCC = AVCC  
AVRH = VSS  
AVSS = AVRL =  
0.0V  
=
=
Input leak  
current  
IIL  
-
-
+1.8  
μA  
kΩ  
Pull-up  
resistance  
value  
VCC 4.5 V  
33  
-
50  
-
90  
RPU  
Pull-up pin  
VCC < 4.5 V  
180  
Other than  
VCC,  
VSS,  
Input  
capacitance  
CIN  
AVCC,  
AVSS,  
AVRH,  
AVRL  
-
-
5
15  
pF  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
83  
D a t a S h e e t  
4. AC Characteristics  
(1) Main Clock Input Characteristics  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Pin  
name  
Parameter  
Input frequency  
Input clock cycle  
Symbol  
Conditions  
Unit  
MHz  
MHz  
ns  
Remarks  
Min  
4
Max  
48  
VCC 4.5V  
VCC < 4.5V  
When crystal oscillator  
is connected  
When using external  
clock  
When using external  
clock  
When using external  
clock  
4
20  
FCH  
-
-
4
48  
250  
55  
X0,  
X1  
tCYLH  
-
20.83  
45  
Input clock pulse  
width  
PWH/tCYLH,  
PWL/tCYLH  
%
Input clock rising  
time and falling  
time  
When using external  
clock  
tCF,  
tCR  
-
-
5
ns  
FCM  
FCC  
-
-
-
-
-
-
60  
60  
MHz Master clock  
Base clock  
(HCLK/FCLK)  
MHz  
Internal operating  
clock*1 frequency  
FCP0  
FCP1  
FCP2  
-
-
-
-
-
-
-
-
-
32  
32  
32  
MHz APB0 bus clock*2  
MHz APB1 bus clock*2  
MHz APB2 bus clock*2  
Base clock  
tCYCC  
-
-
16.7  
-
ns  
(HCLK/FCLK)  
Internal operating  
clock*1 cycle time  
tCYCP0  
tCYCP1  
tCYCP2  
-
-
-
-
-
-
31.25  
31.25  
31.25  
-
-
-
ns  
ns  
ns  
APB0 bus clock*2  
APB1 bus clock*2  
APB2 bus clock*2  
*1 : For more information about each internal operating clock, see "CHAPTER 2-1: Clock" in "FM3 Family  
PERIPHERAL MANUAL".  
*2 : For about each APB bus which each peripheral is connected to, see "Block Diagram" in this data sheet.  
X0  
84  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
(2) Sub Clock Input Characteristics  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Typ  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Max  
When crystal  
-
-
32.768  
-
kHz oscillator is  
connected*  
Input frequency  
1/ tCYLL  
When using  
external clock  
When using  
external clock  
When using  
external clock  
-
-
32  
10  
45  
-
-
-
100  
31.25  
55  
kHz  
X0A,  
X1A  
Input clock cycle  
tCYLL  
-
μs  
Input clock pulse  
width  
PWH/tCYLL,  
PWL/tCYLL  
%
* : For more information about crystal oscillator, see "Sub crystal oscillator" in "Handling Devices".  
X0A  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
85  
D a t a S h e e t  
(3) Built-in CR Oscillation Characteristics  
Built-in High-speed CR  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Min Typ Max  
Parameter  
Symbol  
Conditions  
Unit  
MHz  
μs  
Remarks  
Ta = + 25°C,  
3.6V < VCC 5.5V  
Ta = 0°C to + 85°C,  
3.6V < VCC 5.5V  
Ta = -40°C to + 105°C,  
3.6V < VCC 5.5V  
Ta = + 25°C,  
2.7V ≤ VCC 3.6V  
Ta = - 20°C to + 85°C,  
2.7V ≤ VCC 3.6V  
Ta = - 20°C to + 105°C,  
2.7V ≤ VCC 3.6V  
Ta = -40°C to + 105°C,  
2.7V ≤ VCC 3.6V  
3.92  
4
4
4
4
4
4
4
4
-
4.08  
3.9  
4.1  
3.88  
3.94  
3.92  
3.9  
4.12  
4.06  
4.08  
4.1  
When trimming*1  
Clock frequency  
FCRH  
3.88  
2.8  
4.12  
5.2  
Ta = - 40°C to + 105°C  
-
When not trimming  
Frequency  
stability time  
2
tCRWT  
-
30  
*
*1 : In the case of using the values in CR trimming area of Flash memory at shipment for frequency/temperature  
trimming.  
*2 : Frequency stable time is time to stable of the frequency of the High-speed CR.  
clock after the trim value is set. After setting the trim value, the period when the frequency stability  
time passes can use the High-speed CR clock as a source clock.  
Built-in Low-speed CR  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Typ Max  
Parameter  
Symbol  
Conditions  
Unit  
Remarks  
Min  
Clock frequency  
FCRL  
-
50  
100  
150  
kHz  
86  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
(4-1) Operating Conditions of Main PLL (In the case of using main clock for input of PLL)  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min Typ Max  
PLL oscillation stabilization wait time*1  
(LOCK UP time)  
tLOCK  
100  
-
-
μs  
PLL input clock frequency  
PLL multiplication rate  
FPLLI  
-
FPLLO  
FCLKPLL  
4
5
75  
-
-
-
-
-
16  
MHz  
37 multiplier  
150  
60  
PLL macro oscillation clock frequency  
MHz  
MHz  
Main PLL clock frequency*2  
*1 : Time from when the PLL starts operating until the oscillation stabilizes.  
*2 : For more information about Main PLL clock (CLKPLL), see "CHAPTER 2-1: Clock" in "FM3 Family  
PERIPHERAL MANUAL".  
(4-2) Operating Conditions of Main PLL (In the case of using built-in high-speed CR for input clock  
of main PLL)  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min Typ Max  
PLL oscillation stabilization wait time*1  
(LOCK UP time)  
tLOCK  
100  
-
-
μs  
PLL input clock frequency  
PLL multiplication rate  
FPLLI  
-
FPLLO  
FCLKPLL  
3.8  
19  
72  
-
4
-
-
4.2  
MHz  
35 multiplier  
150  
60  
PLL macro oscillation clock frequency  
MHz  
MHz  
Main PLL clock frequency*2  
-
*1 : Time from when the PLL starts operating until the oscillation stabilizes.  
*2 : For more information about Main PLL clock (CLKPLL), see "CHAPTER 2-1: Clock" in "FM3 Family  
PERIPHERAL MANUAL".  
Note: Make sure to input to the main PLL source clock, the high-speed CR clock (CLKHC) that the  
frequency/temperature has been trimmed.  
Main PLL connection  
Main PLL  
clock  
(CLKPLL)  
PLL input  
clock  
PLL macro  
oscillation clock  
Main clock (CLKMO)  
K
M
divider  
Main  
PLL  
divider  
High-speed CR clock (CLKHC)  
N
divider  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
87  
D a t a S h e e t  
(5) Reset Input Characteristics  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Pin  
name  
Parameter  
Symbol  
Conditions  
Unit Remarks  
Min  
Max  
Reset input time  
tINITX  
INITX  
-
500  
-
ns  
(6) Power-on Reset Timing  
Parameter  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Pin  
name  
Symbol  
Unit  
Remarks  
Min  
0
Max  
Power supply rising time  
Tr  
-
-
ms  
ms  
Power supply shut down time  
Toff  
1
VCC  
Time until releasing  
Power-on reset  
Tprt  
1.34  
18.6  
ms  
VCC_minimum  
VDH_minimum  
VCC  
0.2V  
0.2V  
0.2V  
Tr  
Tprt  
Toff  
Internal RST  
RST Active  
Release  
start  
CPU Operation  
Glossary  
VCC_minimum : Minimum VCC of recommended operating conditions  
VDH_minimum : Minimum release voltage (when SVHR=00000) of Low-Voltage detection reset.  
See "7. Low-Voltage Detection Characteristics"  
88  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
(7) External Bus Timing  
External bus clock output characteristics  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
Pin name  
Conditions  
Unit  
Min  
Max  
50  
VCC 4.5V  
VCC < 4.5V  
-
-
MHz  
MHz  
Output frequency  
tCYCLE  
MCLKOUT*  
32  
* : The external bus clock (MCLKOUT) is a divided clock of HCLK.  
For more information about setting of clock divider, see "CHAPTER 12: External Bus Interface" in "FM3  
Family PERIPHERAL MANUAL".  
When external bus clock is not output, this characteristics does not give any effect on external bus operation.  
MCLKOUT  
External bus signal input/output characteristics  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Parameter  
Symbol Conditions  
Value  
Unit  
Remarks  
VIH  
0.8 × VCC  
0.2 × VCC  
0.8 × VCC  
0.2 × VCC  
V
V
V
V
Signal input characteristics  
VIL  
-
VOH  
Signal output characteristics  
VOL  
VIH  
VIL  
VIH  
VIL  
Input signal  
VOH  
VOL  
VOH  
VOL  
Output signal  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
89  
D a t a S h e e t  
Separate Bus Access Asynchronous SRAM Mode  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
tOEW  
Pin name  
Conditions  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Min  
Max  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
MOEX  
MOEX  
MCLK×n-3  
-
Min pulse width  
MCSX ↓ → Address  
output delay time  
MOEX ↑ →  
Address hold time  
MCSX ↓ →  
MOEX delay time  
MOEX ↑ →  
MCSX time  
MCSX[7:0],  
MAD[24:0]  
MOEX,  
-9  
-12  
+9  
+12  
tCSL AV  
tOEH - AX  
tCSL - OEL  
tOEH - CSH  
tCSL - RDQML  
tDS - OE  
MCLK×m+9  
MCLK×m+12  
MCLK×m-9 MCLK×m+9  
0
MAD[24:0]  
VCC < 4.5V MCLK×m-12 MCLK×m+12  
MOEX,  
MCSX[7:0]  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
MCLK×m+9  
MCLK×m+12  
MCLK×m-9 MCLK×m+9  
0
MCSX ↓ →  
MCSX,  
MDQM[1:0]  
MOEX,  
MADATA[15:0]  
MOEX,  
MDQM delay time  
Data set up →  
MOEX time  
MOEX ↑ →  
Data hold time  
MWEX  
Min pulse width  
MWEX ↑ → Address  
output delay time  
MCSX ↓ →  
MWEX delay time  
MWEX ↑ →  
MCSX delay time  
MCSX ↓→  
MDQM delay time  
MCSX ↓→  
Data output time  
MWEX ↑ →  
VCC < 4.5V MCLK×m-12 MCLK×m+12  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
20  
38  
-
-
tDH - OE  
0
-
-
MADATA[15:0]  
tWEW  
MWEX  
MCLK×n-3  
MWEX,  
MAD[24:0]  
MCLK×m+9  
MCLK×m+12  
MCLK×n+9  
tWEH - AX  
tCSL - WEL  
tWEH - CSH  
tCSL-WDQML  
tCSL-DV  
0
MCLK×n-9  
MWEX,  
MCSX[7:0]  
MCLK×n-12 MCLK×n+12  
MCLK×m+9  
MCLK×m+12  
0
MCSX,  
MDQM[1:0]  
MCSX,  
MADATA[15:0]  
MWEX,  
MADATA[15:0]  
MCLK×n-9  
MCLK×n+9  
MCLK×n-12 MCLK×n+12  
MCLK-9  
MCLK+9  
MCLK-12  
MCLK+12  
tWEH - DX  
0
MCLK×m+12 ns  
Data hold time  
Note: When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16).  
90  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
tCYCLE  
MCLK  
tOEH-CSH  
tWEH-CSH  
tWEH-AX  
MCSX[7:0]  
MAD[24:0]  
MOEX  
tCSL-AV  
tOEH-AX  
tCSL-AV  
Address  
Address  
tCSL-OEL  
tOEW  
tCSL-WDQML  
tCSL-RDQML  
MDQM[1:0]  
tCSL-WEL  
tWEW  
MWEX  
tDS-OE  
tDH-OE  
tWEH-DX  
Invalid  
RD  
WD  
MADATA[15:0]  
tCSL-DV  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
91  
D a t a S h e e t  
Separate Bus Access Synchronous SRAM Mode  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
tAV  
Pin name  
Conditions  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Min  
Max  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
MCLK,  
MAD[24:0]  
Address delay time  
1
12  
9
12  
9
12  
9
12  
9
12  
tCSL  
1
1
1
1
MCLK,  
MCSX[7:0]  
MCSX delay time  
MOEX delay time  
tCSH  
tREL  
MCLK,  
MOEX  
tREH  
tDS  
19  
37  
Data set up →  
MCLK time  
MCLK ↑ →  
MCLK,  
MADATA[15:0]  
MCLK,  
-
tDH  
0
-
Data hold time  
MADATA[15:0]  
9
12  
9
12  
9
12  
9
12  
tWEL  
tWEH  
tDQML  
tDQMH  
tODS  
tOD  
1
MCLK,  
MWEX  
MWEX delay time  
1
1
MDQM[1:0]  
delay time  
MCLK,  
MDQM[1:0]  
1
MCLK+1  
1
MCLK+18  
MCLK+24  
18  
MCLK ↑ →  
Data output time  
MCLK ↑ →  
MCLK,  
MADATA[15:0]  
MCLK,  
Data hold time  
MADATA[15:0]  
24  
Note: When the external load capacitance CL = 30 pF.  
tCYCLE  
MCLK  
tCSL  
tCSH  
MCSX[7:0]  
tAV  
tAV  
Address  
Address  
MAD[24:0]  
MOEX  
tREL  
tREH  
tDQML  
tDQMH  
tDQML  
tDQMH  
tWEH  
tOD  
MDQM[1:0]  
tWEL  
MWEX  
tDS  
tDH  
RD  
Invalid  
WD  
MADATA[15:0]  
tODS  
92  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Multiplexed Bus Access Asynchronous SRAM Mode  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
tALE-CHMADV  
tCHMADH  
Pin name  
Conditions  
Unit  
ns  
Min  
Max  
+10  
+20  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
Multiplexed  
address delay time  
Multiplexed  
0
MALE,  
MADATA[15:0]  
MCLK×n+0 MCLK×n+12  
MCLK×n+0 MCLK×n+20  
ns  
address hold time  
Note: When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16).  
MCLK  
MCSX[7:0]  
MALE  
MAD [24:0]  
MOEX  
MDQM [1:0]  
MWEX  
MADATA[15:0]  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
93  
D a t a S h e e t  
Multiplexed Bus Access Synchronous SRAM Mode  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
tCHAL  
Pin name  
Conditions  
Unit Remarks  
Min  
Max  
9
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
ns  
ns  
ns  
ns  
1
12  
9
12  
MCLK,  
ALE  
MALE delay time  
tCHAH  
1
1
MCLK ↑ →  
Multiplexed  
Address delay time  
MCLK ↑ →  
Multiplexed  
Data output time  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
tCHMADV  
tOD  
ns  
ns  
MCLK,  
MADATA[15:0]  
tCHMADX  
1
tOD  
Note: When the external load capacitance CL = 30 pF.  
MCLK  
MCSX[7:0]  
MALE  
MAD [24:0]  
MOEX  
MDQM [1:0]  
MWEX  
MADATA[15:0]  
94  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
NAND Flash Memory Mode  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
tNREW  
Pin name  
Conditions  
Unit  
ns  
Min  
Max  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
MNREX  
Min pulse width  
Data setup →  
MNREX↑time  
MNREX↑→  
Data hold time  
MNREX  
MCLK×n-3  
-
MNREX,  
MADATA[15:0]  
MNREX,  
20  
38  
-
-
tDS NRE  
ns  
tDH NRE  
0
-
ns  
MADATA[15:0]  
VCC 4.5V MCLK×m-9  
MCLK×m+9  
MNALE↑→  
MNWEX delay time  
MNALE↓→  
MNWEX delay time  
MNCLE↑→  
MNWEX delay time  
MNWEX↑→  
MNCLE delay time  
MNWEX  
Min pulse width  
MNWEX↓→  
Data output time  
MNALE,  
MNWEX  
MNALE,  
MNWEX  
MNCLE,  
MNWEX  
MNCLE,  
MNWEX  
tALEH - NWEL  
tALEL - NWEL  
tCLEH - NWEL  
tNWEH - CLEL  
tNWEW  
ns  
VCC < 4.5V MCLK×m-12 MCLK×m+12  
VCC 4.5V MCLK×m-9  
MCLK×m+9  
VCC < 4.5V MCLK×m-12 MCLK×m+12  
VCC 4.5V MCLK×m-9  
MCLK×m+9  
VCC < 4.5V MCLK×m-12 MCLK×m+12  
ns  
ns  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
MCLK×m+9  
MCLK×m+12  
0
ns  
MNWEX  
MCLK×n-3  
-
ns  
MNWEX,  
MADATA[15:0]  
MNWEX,  
- 9  
-12  
+ 9  
+12  
MCLK×m+11  
MCLK×m+12  
tNWEL DV  
tNWEH DX  
ns  
MNWEX↑→  
Data hold time  
0
ns  
MADATA[15:0]  
Note: When the external load capacitance CL = 30 pF (m=0 to 15, n=1 to 16).  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
95  
D a t a S h e e t  
NAND Flash Memory Read  
MCLK  
MNREX  
MADATA[15:0]  
Read  
NAND Flash Memory Address Write  
MCLK  
MNALE  
MNCLE  
MNWEX  
MADATA[15:0]  
Write  
96  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
NAND Flash Memory Command Write  
MCLK  
MNALE  
MNCLE  
MNWEX  
MADATA[15:0]  
Write  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
97  
D a t a S h e e t  
External Ready Input Timing  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Symbol Pin name Conditions  
Unit Remarks  
Min  
Max  
MCLK ↑  
MRDY input  
setup time  
VCC 4.5V  
19  
MCLK,  
MRDY  
tRDYI  
-
ns  
VCC < 4.5V  
37  
When RDY is input  
···  
MCLK  
Over 2cycles  
Original  
MOEX  
MWEX  
tRDYI  
MRDY  
When RDY is released  
·· · ·· ·  
MCLK  
2 cycles  
Extended  
MOEX  
MWEX  
tRDYI  
0.5×VCC  
MRDY  
98  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
(8) Base Timer Input Timing  
Timer input timing  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
Pin name  
Conditions  
Unit Remarks  
Min  
Max  
TIOAn/TIOBn  
(when using as  
ECK, TIN)  
tTIWH  
tTIWL  
,
Input pulse width  
-
2tCYCP  
-
ns  
tTIWH  
tTIWL  
ECK  
TIN  
VIHS  
VIHS  
VILS  
VILS  
Trigger input timing  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Symbol Pin name Conditions  
Unit Remarks  
Min  
Max  
TIOAn/TIOBn  
(when using as  
TGIN)  
tTRGH  
tTRGL  
,
Input pulse width  
-
2tCYCP  
-
ns  
tTRGH  
tTRGL  
VIHS  
VIHS  
TGIN  
VILS  
VILS  
Note: tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which the Base Timer is connected to, see "Block Diagram" in this data  
sheet.  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
99  
D a t a S h e e t  
(9) CSIO/UART Timing  
CSIO (SPI = 0, SCINV = 0)  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
VCC < 4.5V  
Pin  
VCC 4.5V  
Parameter  
Serial clock cycle time  
SCK ↓ → SOT delay time  
Symbol  
Conditions  
Unit  
ns  
name  
SCKx  
SCKx,  
SOTx  
SCKx,  
SINx  
Min  
Max  
Min  
Max  
tSCYC  
4tCYCP  
-
4tCYCP  
-
tSLOVI  
- 30  
50  
0
+ 30  
- 20  
30  
0
+ 20  
ns  
Master mode  
SIN SCK setup time  
SCK ↑ → SIN hold time  
Serial clock "L" pulse width  
Serial clock "H" pulse width  
SCK ↓ → SOT delay time  
SIN SCK setup time  
SCK ↑ → SIN hold time  
tIVSHI  
tSHIXI  
tSLSH  
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx,  
SINx  
2tCYCP  
10  
-
2tCYCP  
10  
-
SCKx  
SCKx  
-
-
tCYCP  
10  
+
tCYCP  
10  
+
tSHSL  
-
-
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSLOVE  
tIVSHE  
tSHIXE  
-
50  
-
-
33  
-
Slave mode  
10  
20  
10  
20  
-
-
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes:  
The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function Serial is connected to, see "Block Diagram"  
in this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
100  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
tSCYC  
VOH  
SCK  
VOL  
VOL  
tSLOVI  
SOT  
SIN  
VOH  
VOL  
tIVSHI  
VIH  
VIL  
tSHIXI  
VIH  
VIL  
Master mode  
tSLSH  
tSHSL  
VIH  
VIH  
tR  
VIH  
SCK  
VIL  
VIL  
F
t
tSLOVE  
VOH  
VOL  
SOT  
SIN  
tIVSHE  
VIH  
VIL  
tSHIXE  
VIH  
VIL  
Slave mode  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
101  
D a t a S h e e t  
CSIO (SPI = 0, SCINV = 1)  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
VCC < 4.5V  
Pin  
VCC 4.5V  
Parameter  
Serial clock cycle time  
SCK ↑ → SOT delay time  
Symbol  
Conditions  
Unit  
ns  
name  
SCKx  
SCKx,  
SOTx  
SCKx,  
SINx  
Min  
Max  
Min  
Max  
tSCYC  
4tCYCP  
-
4tCYCP  
-
tSHOVI  
- 30  
50  
0
+ 30  
- 20  
30  
0
+ 20  
ns  
Master mode  
SIN SCK setup time  
SCK ↓ → SIN hold time  
Serial clock "L" pulse width  
Serial clock "H" pulse width  
SCK ↑ → SOT delay time  
SIN SCK setup time  
SCK ↓ → SIN hold time  
tIVSLI  
tSLIXI  
tSLSH  
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx,  
SINx  
2tCYCP  
10  
-
2tCYCP  
10  
-
SCKx  
SCKx  
-
-
tCYCP  
10  
+
tCYCP  
10  
+
tSHSL  
-
-
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSHOVE  
tIVSLE  
tSLIXE  
-
50  
-
-
33  
-
Slave mode  
10  
20  
10  
20  
-
-
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes:  
The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function Serial is connected to, see "Block Diagram"  
in this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
102  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
tSCYC  
VOH  
VOH  
SCK  
VOL  
tSHOVI  
SOT  
SIN  
VOH  
VOL  
tIVSLI  
VIH  
VIL  
tSLIXI  
VIH  
VIL  
Master mode  
tSHSL  
tSLSH  
VIH  
VIH  
tF  
SCK  
VIL  
VIL  
tR  
VIL  
tSHOVE  
VOH  
VOL  
SOT  
SIN  
tIVSLE  
tSLIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
103  
D a t a S h e e t  
CSIO (SPI = 1, SCINV = 0)  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
VCC < 4.5V  
Pin  
VCC 4.5V  
Parameter  
Serial clock cycle time  
SCK ↑ → SOT delay time  
Symbol  
Conditions  
Unit  
ns  
name  
SCKx  
SCKx,  
SOTx  
SCKx,  
SINx Master mode  
SCKx,  
SINx  
Min  
Max  
Min  
Max  
tSCYC  
4tCYCP  
-
4tCYCP  
-
tSHOVI  
- 30  
50  
0
+ 30  
- 20  
30  
0
+ 20  
ns  
SIN SCK setup time  
SCK ↓→ SIN hold time  
SOT SCK delay time  
Serial clock "L" pulse width  
Serial clock "H" pulse width  
SCK ↑ → SOT delay time  
SIN SCK setup time  
SCK ↓→ SIN hold time  
tIVSLI  
tSLIXI  
tSOVLI  
tSLSH  
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx,  
SOTx  
2tCYCP  
30  
-
2tCYCP  
30  
-
-
-
2tCYCP  
10  
-
2tCYCP  
10  
-
SCKx  
-
-
tCYCP  
10  
+
tCYCP  
10  
+
tSHSL  
SCKx  
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
-
-
tSHOVE  
tIVSLE  
tSLIXE  
-
50  
-
-
33  
-
Slave mode  
10  
20  
10  
20  
-
-
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes:  
The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function Serial is connected to, see "Block Diagram"  
in this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
104  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
tSCYC  
VOH  
VOL  
VOL  
SCK  
tSHOVI  
tSOVLI  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tIVSLI  
tSLIXI  
VIH  
VIL  
VIH  
VIL  
Master mode  
tSLSH  
tSHSL  
SCK  
VIH  
tF  
VIH  
VIL  
VIH  
VIL  
tSHOVE  
tR  
*
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tIVSLE  
tSLIXE  
VIH  
VIL  
VIH  
VIL  
Slave mode  
* : Changes when writing to TDR register  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
105  
D a t a S h e e t  
CSIO (SPI = 1, SCINV = 1)  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
VCC < 4.5V  
Pin  
name  
SCKx  
VCC 4.5V  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
Min  
Max  
Serial clock cycle time  
tSCYC  
4tCYCP  
-
4tCYCP  
-
ns  
SCKx,  
SOTx  
SCK ↓ → SOT delay time  
tSLOVI  
- 30  
+ 30  
- 20  
+ 20  
ns  
SCKx,  
SINx  
SCKx,  
SINx  
SCKx,  
SOTx  
SIN SCK setup time  
SCK ↑ → SIN hold time  
SOT SCK delay time  
Serial clock "L" pulse width  
Serial clock "H" pulse width  
SCK ↓ → SOT delay time  
SIN SCK setup time  
SCK ↑ → SIN hold time  
tIVSHI  
tSHIXI  
tSOVHI  
tSLSH  
50  
0
-
-
30  
0
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Master mode  
2tCYCP  
30  
2tCYCP  
10  
tCYCP  
10  
-
2tCYCP  
30  
2tCYCP  
10  
tCYCP  
10  
-
-
-
-
-
SCKx  
SCKx  
-
-
+
+
tSHSL  
-
-
SCKx,  
SOTx  
SCKx,  
SINx  
SCKx,  
SINx  
tSLOVE  
tIVSHE  
tSHIXE  
-
50  
-
-
33  
-
Slave mode  
10  
20  
10  
20  
-
-
SCK falling time  
SCK rising time  
tF  
tR  
SCKx  
SCKx  
-
-
5
5
-
-
5
5
ns  
ns  
Notes:  
The above characteristics apply to CLK synchronous mode.  
tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which Multi-function Serial is connected to, see "Block Diagram"  
in this data sheet.  
These characteristics only guarantee the same relocate port number.  
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.  
When the external load capacitance CL = 30 pF.  
106  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
tSCYC  
VOL  
VOH  
VOH  
SCK  
tSOVHI  
tSLOVI  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tSHIXI  
tIVSHI  
VIH  
VIL  
VIH  
VIL  
Master mode  
tSLSH  
tSHSL  
tR  
V
SCK  
V
V
IH  
V
IH  
IH  
V
V
IL  
IL  
IL  
tF  
tSLOVE  
VOH  
VOL  
VOH  
VOL  
SOT  
SIN  
tSHIXE  
tIVSHE  
V
IL  
V
IL  
IH  
V
IH  
V
Slave mode  
UART external clock input (EXT = 1)  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Symbol Conditions  
Unit Remarks  
Min  
Max  
Serial clock "L" pulse width  
Serial clock "H" pulse width  
SCK falling time  
tSLSH  
tSHSL  
tF  
tCYCP + 10  
tCYCP + 10  
-
-
5
5
ns  
ns  
ns  
ns  
CL = 30pF  
-
-
SCK rising time  
tR  
tF  
tR  
t
t
SLSH  
SHSL  
SCK  
V
V
V
IH  
IH  
IH  
VIL  
VIL  
V
IL  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
107  
D a t a S h e e t  
(10) External Input Timing  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Min  
Parameter Symbol Pin name Conditions  
Unit  
Remarks  
Max  
A/D converter  
trigger input  
ns Free-run timer input  
clock  
ADTG  
1
-
2tCYCP  
*
-
FRCKx  
ICxx  
DTTIxX  
Input capture  
ns Waveform generator  
tINH,  
tINL  
Input pulse width  
1
-
*2  
*3  
2tCYCP  
*
-
-
-
2tCYCP + 100*1  
500  
ns  
ns  
External interrupt,  
NMI  
INTxx  
Deep standby wake  
up  
WKUPx  
*4  
500  
-
ns  
*1 : tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which the A/D converter, Multi-function Timer, External interrupt are connected  
to, see "Block Diagram" in this data sheet.  
*2 : When in RUN mode, in SLEEP mode.  
*3 : When in STOP mode, in TIMER mode.  
*4 : When in Deep standby RTC mode, in Deep standby STOP mode.  
108  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
(11) Quadrature Position/Revolution Counter timing  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
AIN pin "H" width  
AIN pin "L" width  
BIN pin "H" width  
BIN pin "L" width  
Time from AIN pin "H"  
level to BIN rise  
Time from BIN pin "H"  
level to AIN fall  
Time from AIN pin "L"  
level to BIN fall  
Time from BIN pin "L"  
level to AIN rise  
Time from BIN pin "H"  
level to AIN rise  
Time from AIN pin "H"  
level to BIN fall  
Time from BIN pin "L"  
level to AIN fall  
tAHL  
tALL  
tBHL  
tBLL  
-
-
-
-
PC_Mode2 or  
PC_Mode3  
PC_Mode2 or  
PC_Mode3  
PC_Mode2 or  
PC_Mode3  
PC_Mode2 or  
PC_Mode3  
PC_Mode2 or  
PC_Mode3  
PC_Mode2 or  
PC_Mode3  
PC_Mode2 or  
PC_Mode3  
PC_Mode2 or  
PC_Mode3  
QCR:CGSC="0"  
QCR:CGSC="0"  
tAUBU  
tBUAD  
tADBD  
tBDAU  
tBUAU  
tAUBD  
tBDAD  
tADBU  
2tCYCP  
*
-
ns  
Time from AIN pin "L"  
level to BIN rise  
ZIN pin "H" width  
ZIN pin "L" width  
Time from determined ZIN  
level to AIN/BIN rise and  
fall  
Time from AIN/BIN rise  
and fall time to determined  
ZIN level  
tZHL  
tZLL  
tZABE  
QCR:CGSC="1"  
QCR:CGSC="1"  
tABEZ  
* : tCYCP indicates the APB bus clock cycle time.  
About the APB bus number which the Quadrature Position/Revolution Counter is connected to, see "Block  
Diagram" in this data sheet.  
tALL  
tAHL  
AIN  
BIN  
tADBD  
tAUBU  
tBUAD  
tBDAU  
tBHL  
tBLL  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
109  
D a t a S h e e t  
tBLL  
tBHL  
BIN  
AIN  
tBDAD  
tBUAU  
tAUBD  
tADBU  
tAHL  
tALL  
ZIN  
ZIN  
AIN/BIN  
110  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
(12) I2C Timing  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Standard-mode Fast-mode  
Parameter  
Symbol Conditions  
Unit Remarks  
Min  
Max  
Min Max  
SCL clock frequency  
(Repeated) START condition  
hold time  
FSCL  
0
100  
0
400 kHz  
tHDSTA  
4.0  
-
0.6  
-
μs  
SDA ↓ → SCL ↓  
SCLclock "L" width  
SCLclock "H" width  
(Repeated) START condition  
setup time  
tLOW  
tHIGH  
4.7  
4.0  
-
-
1.3  
0.6  
-
-
μs  
μs  
tSUSTA  
4.7  
-
0.6  
-
μs  
SCL ↑ → SDA ↓  
Data hold time  
CL = 30 pF,  
R = (Vp/IOL)*1  
tHDDAT  
0
3.45*2  
0
0.9*3 μs  
SCL ↓ → SDA ↓ ↑  
Data setup time  
SDA ↓ ↑ → SCL ↑  
STOP condition setup time  
SCL ↑ → SDA ↑  
tSUDAT  
tSUSTO  
250  
4.0  
-
-
100  
0.6  
-
-
ns  
μs  
Bus free time between  
"STOP condition" and  
"START condition"  
Noise filter  
tBUF  
4.7  
-
-
1.3  
-
-
μs  
4
4
tSP  
-
2 tCYCP  
*
2 tCYCP  
*
ns  
*1 : R and CL represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively.  
Vp indicates the power supply voltage of the pull-up resistor and IOL indicates VOL guaranteed current.  
*2 : The maximum tHDDAT must satisfy that it does not extend at least "L" period (tLOW) of device's SCL signal.  
*3 : Fast-mode I2C bus device can be used on Standard-mode I2C bus system as long as the device  
satisfies the requirement of "tSUDAT ≥ 250 ns".  
*4 : tCYCP is the APB bus clock cycle time.  
About the APB bus number that I2C is connected to, see "Block Diagram" in this data sheet.  
To use Standard-mode, set the APB bus clock at 2 MHz or more.  
To use Fast-mode, set the APB bus clock at 8 MHz or more.  
SDA  
SCL  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
111  
D a t a S h e e t  
(13) ETM Timing  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Min Max  
Parameter  
Symbol  
Pin name  
Conditions  
Unit  
Remarks  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
2
10  
TRACECLK,  
TRACED[3:0]  
Data hold  
tETMH  
ns  
2
15  
-
40 MHz  
20 MHz  
TRACECLK  
frequency  
1/ tTRACE  
-
TRACECLK  
25  
50  
-
-
ns  
ns  
TRACECLK  
clock cycle  
tTRACE  
Note: When the external load capacitance CL = 30 pF.  
HCLK  
TRACECLK  
TRACED[3:0]  
112  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
(14) JTAG Timing  
Parameter  
(VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Symbol Pin name Conditions  
Unit  
ns  
Remarks  
Min  
Max  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
VCC < 4.5V  
VCC 4.5V  
TMS, TDI setup  
time  
TCK,  
TMS, TDI  
tJTAGS  
15  
-
TCK,  
TMS, TDI  
TMS, TDI hold time tJTAGH  
TDO delay time tJTAGD  
15  
-
ns  
-
-
25  
45  
TCK,  
TDO  
ns  
VCC < 4.5V  
Note: When the external load capacitance CL = 30 pF.  
TCK  
TMS/TDI  
TDO  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
113  
D a t a S h e e t  
5. 12-bit A/D Converter  
Electrical characteristics for the A/D converter  
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, Ta = - 40°C to + 105°C)  
Value  
Typ  
-
± 1.5  
± 2.2  
± 6  
Pin  
name  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
12  
± 4.5  
± 2.5  
± 15  
Resolution  
-
-
-
-
-
-
-
-
-
-
bit  
Integral Nonlinearity  
Differential Nonlinearity  
Zero transition voltage  
Full-scale transition  
voltage  
LSB  
LSB  
mV  
AVRH = 2.7V  
to 5.5V  
VZT  
ANxx  
VFST  
-
ANxx  
-
1.0*1  
0.3  
50  
AVRH ± 5 AVRH ± 15 mV  
Conversion time  
-
-
-
-
-
-
-
-
-
μs  
μs  
ns  
μs  
Sampling time*2  
Ts  
10  
Compare clock cycle*3  
State transition time to  
operation permission  
Tcck  
Tstt  
1000  
1.0  
-
Analog input capacity  
Analog input resistor  
CAIN  
RAIN  
-
-
-
-
-
-
9.5  
pF  
1.62  
2.35  
4
AVCC 4.5V  
AVCC < 4.5V  
kΩ  
Interchannel disparity  
Analog port input current  
Analog input voltage  
-
-
-
-
-
-
-
-
-
-
-
-
-
LSB  
μA  
V
V
V
ANxx  
ANxx  
AVRH  
AVRL  
5
AVRL  
2.7  
AVSS  
AVRH  
AVCC  
AVSS  
Reference voltage  
*1 : The conversion time is the value of sampling time (Ts) + compare time (Tc).  
The condition of the minimum conversion time is when the value of sampling time: 300ns, the value of  
compare time:700ns (AVCC 4.5V).  
Ensure that it satisfies the value of the sampling time (Ts) and compare clock cycle (Tcck).  
For setting of the sampling time and compare clock cycle, see "CHAPTER 1-1: A/D Converter" in "FM3  
Family PERIPHERAL MANUAL Analog Macro Part".  
The register setting of the A/D Converter are reflected in the operation according to the APB bus clock  
timing.  
The sampling clock and compare clock is generated from the Base clock (HCLK).  
About the APB bus number which the A/D Converter is connected to, see "Block Diagram" in this data  
sheet.  
*2 : A necessary sampling time changes by external impedance.  
Ensure that it sets the sampling time to satisfy (Equation 1).  
*3 : The compare time (Tc) is the value of (Equation 2).  
114  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Comparator  
ANxx  
Analog input pin  
Rext  
RAIN  
Analog  
signal source  
CAIN  
(Equation 1) Ts ( RAIN + Rext ) × CAIN × 9  
Ts : Sampling time  
RAIN : input resistor of A/D = 1.62 kΩ ch.0 to ch.7  
input resistor of A/D = 1.58 kΩ ch.8 to ch.15  
at 4.5V < AVCC < 5.5V  
at 4.5V < AVCC < 5.5V  
input resistor of A/D = 1.56 kΩ ch.16 to ch.23 at 4.5V < AVCC < 5.5V  
input resistor of A/D = 2.35 kΩ ch.0 to ch.7  
input resistor of A/D = 2.3 kΩ ch.8 to ch.15  
at 2.7V < AVCC < 4.5V  
at 2.7V < AVCC < 4.5V  
input resistor of A/D = 2.25 kΩ ch.16 to ch.23 at 2.7V < AVCC < 4.5V  
CAIN : input capacity of A/D = 9.5pF at 2.7V < AVCC < 5.5V  
Rext : Output impedance of external circuit  
(Equation 2) Tc = Tcck × 14  
Tc : Compare time  
Tcck : Compare clock cycle  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
115  
D a t a S h e e t  
Definition of 12-bit A/D Converter Terms  
Resolution  
Integral Nonlinearity  
: Analog variation that is recognized by an A/D converter.  
: Deviation of the line between the zero-transition point  
(0b000000000000 ←→ 0b000000000001) and the full-scale transition point  
(0b111111111110 ←→ 0b111111111111) from the actual conversion  
characteristics.  
Differential Nonlinearity : Deviation from the ideal value of the input voltage that is required to change  
the output code by 1 LSB.  
Integral Nonlinearity  
Differential Nonlinearity  
0xFFF  
Actual conversion  
Actual conversion  
characteristics  
characteristics  
0xFFE  
0xFFD  
0x(N+1)  
0xN  
{1 LSB(N-1) + VZT}  
VFST  
Ideal characteristics  
(Actually-  
measured  
value)  
VNT  
0x004  
(Actually-measured  
value)  
V(N+1)T  
(Actually-measured  
value)  
0x(N-1)  
0x(N-2)  
0x003  
0x002  
Actual conversion  
characteristics  
VNT  
(Actually-measured  
value)  
Ideal characteristics  
0x001  
(Actually-measured value)  
Analog input  
VZT  
Actual conversion characteristics  
AVRL  
AVRH  
AVRL  
AVRH  
Analog input  
VNT - {1LSB × (N - 1) + VZT}  
1LSB  
Integral Nonlinearity of digital output N =  
Differential Nonlinearity of digital output N =  
[LSB]  
V(N + 1) T - VNT  
- 1 [LSB]  
1LSB  
VFST VZT  
1LSB =  
4094  
N
VZT  
: A/D converter digital output value.  
: Voltage at which the digital output changes from 0x000 to 0x001.  
VFST : Voltage at which the digital output changes from 0xFFE to 0xFFF.  
VNT : Voltage at which the digital output changes from 0x(N − 1) to 0xN.  
116  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
6. 10-bit D/A Converter  
Electrical Characteristics for the D/A Converter  
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, Ta = - 40°C to + 105°C)  
Value  
Typ Max  
Parameter  
Symbol Pin name  
Unit  
Remarks  
Min  
-
0.47  
2.37  
- 4.0  
Resolution  
-
-
10  
0.69  
3.43  
bit  
μs  
μs  
tc20  
tc100  
INL  
0.58  
2.90  
-
Load 20 pF  
Load 100 pF  
Conversion time  
Integral Nonlinearity*1  
Differential  
+ 4.0 LSB  
DNL  
DAx  
- 0.9  
-
+ 0.9 LSB  
Nonlinearity*1,*2  
-
- 20.0  
3.10  
2.0  
-
-
10.0  
mV Code is 0x000  
Output Voltage offset  
VOFF  
+ 5.4 mV Code is 0x3FF  
4.50  
-
3.80  
-
-
kΩ D/A operation  
MΩ D/A stop  
ns  
Analog output  
impedance  
Output undefined period  
RO  
tR  
-
70  
*1 : No-load  
*2 : Generates the max current by the CODE about 0x200  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
117  
D a t a S h e e t  
7. Low-Voltage Detection Characteristics  
(1) Low-Voltage Detection Reset  
(Ta = - 40°C to + 105°C)  
Value  
Unit  
Remarks  
Parameter  
Symbol  
Conditions  
Min  
2.25  
2.30  
2.39  
Typ  
2.45  
2.50  
2.60  
Max  
2.65  
2.70  
2.81  
When voltage  
drops  
When voltage rises  
When voltage  
drops  
When voltage rises  
When voltage  
drops  
When voltage rises  
When voltage  
drops  
When voltage rises  
When voltage  
drops  
When voltage rises  
When voltage  
drops  
When voltage rises  
When voltage  
drops  
When voltage rises  
When voltage  
drops  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SVHR*1 = 00000  
SVHR*1 = 00001  
SVHR*1 = 00010  
SVHR*1 = 00011  
SVHR*1 = 00100  
SVHR*1 = 00101  
SVHR*1 = 00110  
SVHR*1 = 00111  
SVHR*1 = 01000  
SVHR*1 = 01001  
SVHR*1 = 01010  
Same as SVHR = 0000 value  
2.48 2.70 2.92  
Same as SVHR = 0000 value  
2.58 2.80 3.02  
Same as SVHR = 0000 value  
2.76 3.00 3.24  
Same as SVHR = 0000 value  
2.94 3.20 3.46  
Same as SVHR = 0000 value  
3.31 3.60 3.89  
Same as SVHR = 0000 value  
3.40 3.70 4.00  
Same as SVHR = 0000 value  
3.68 4.00 4.32  
Same as SVHR = 0000 value  
3.77 4.10 4.43  
Same as SVHR = 0000 value  
3.86 4.20 4.54  
When voltage rises  
When voltage  
drops  
When voltage rises  
When voltage  
drops  
When voltage rises  
When voltage  
drops  
Released voltage  
LVD  
stabilization wait  
time  
LVD detection  
delay time  
Same as SVHR = 0000 value  
6432 ×  
When voltage rises  
TLVDW  
-
-
-
-
μs  
*2  
tCYCP  
TLVDDL  
-
-
200  
μs  
*1 : The SVHR bit of Low-voltage Detection Voltage Control Register (LVD_CTL) is initialized to 0000by  
low-voltage detection reset.  
*2 : tCYCP indicates the APB2 bus clock cycle time.  
118  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
(2) Interrupt of Low-Voltage Detection  
(Ta = - 40°C to + 105°C)  
Value  
Typ  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
3.60  
3.70  
3.70  
3.80  
4.00  
4.10  
4.10  
4.20  
4.20  
4.30  
Parameter  
Symbol Conditions  
Unit  
Remarks  
Min  
2.58  
2.67  
2.76  
2.85  
2.94  
3.04  
3.31  
3.40  
3.40  
3.50  
3.68  
3.77  
3.77  
3.86  
3.86  
3.96  
Max  
3.02  
3.13  
3.24  
3.35  
3.46  
3.56  
3.89  
4.00  
4.00  
4.10  
4.32  
4.43  
4.43  
4.54  
4.54  
4.64  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
Detected voltage  
Released voltage  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
VDL  
VDH  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
When voltage drops  
When voltage rises  
SVHI = 00011  
SVHI = 00100  
SVHI = 00101  
SVHI = 00110  
SVHI = 00111  
SVHI = 01000  
SVHI = 01001  
SVHI = 01010  
LVD stabilization  
wait time  
6432 ×  
tCYCP  
TLVDW  
-
-
-
-
-
-
μs  
μs  
*
LVD detection  
delay time  
TLVDDL  
200  
* : tCYCP indicates the APB2 bus clock cycle time.  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
119  
D a t a S h e e t  
8. Flash Memory Write/Erase Characteristics  
(1) Write / Erase time  
(VCC = 2.7V to 5.5V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Unit  
Remarks  
Typ  
Max  
Large Sector  
Small Sector  
1.1  
2.7  
Sector erase  
time  
Includes write time prior to internal  
erase  
s
0.3  
20  
0.9  
Not including system-level overhead  
time  
Includes write time prior to internal  
erase  
Half word (16-bit) write time  
Chip erase time  
317  
μs  
31  
79  
s
* : The typical value is immediately after shipment, the maximam value is guarantee value under 10,000 cycle  
of erase/write.  
(2)Write cycles and data hold time  
Erase/write cycles (cycle) Data hold time (year)  
Remarks  
1,000  
10,000  
20*  
10*  
* : At average + 85C  
120  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
9. Return Time from Low-Power Consumption Mode  
(1) Return Factor: Interrupt/WKUP  
The return time from Low-Power consumption mode is indicated as follows. It is from receiving the  
return factor to starting the program operation.  
Return Count Time  
(VCC = 2.7V to 5.5V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Typ  
Max*  
SLEEP mode  
tCYCC  
ns  
High-speed CR TIMER mode,  
Main TIMER mode,  
43  
83  
μs  
PLL TIMER mode  
Low-speed CR TIMER mode  
Sub TIMER mode  
310  
534  
620  
724  
μs  
μs  
Ticnt  
RTC mode,  
STOP mode  
278  
479  
μs  
298  
288  
543  
523  
μs  
μs  
When RAM is off  
When RAM is on  
Deep Standby RTC mode,  
Deep Standby STOP mode  
* : The maximum value depends on the accuracy of built-in CR.  
Operation example of return from Low-Power consumption mode (by external interrupt*)  
Ext.INT  
Interrupt factor  
Active  
accept  
Ticnt  
Interrupt factor  
clear by CPU  
CPU  
Operation  
Start  
* : External interrupt is set to detecting fall edge.  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
121  
D a t a S h e e t  
Operation example of return from Low-Power consumption mode (by internal resource interrupt*)  
Internal  
Resource INT  
Interrupt factor  
Active  
accept  
Ticnt  
Interrupt factor  
clear by CPU  
CPU  
Operation  
Start  
* : Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.  
Notes:  
The return factor is different in each Low-Power consumption modes.  
See "CHAPTER 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3  
Family PERIPHERAL MANUAL about the return factor from Low-Power consumption mode.  
When interrupt recoveries, the operation mode that CPU recoveries depends on the state before  
the Low-Power consumption mode transition. See "CHAPTER 6: Low Power Consumption  
Mode" in "FM3 Family PERIPHERAL MANUAL".  
122  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
(2) Return Factor: Reset  
The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to  
starting the program operation.  
Return Count Time  
(VCC = 2.7V to 5.5V, Ta = - 40°C to + 105°C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Typ  
Max*  
SLEEP mode  
149  
264  
μs  
High-speed CR TIMER mode,  
Main TIMER mode,  
149  
264  
μs  
PLL TIMER mode  
Low-speed CR TIMER mode  
Sub TIMER mode  
318  
308  
248  
298  
288  
603  
583  
443  
543  
523  
μs  
μs  
μs  
μs  
μs  
Trcnt  
RTC/STOP mode  
When RAM is off  
When RAM is on  
Deep Standby RTC mode,  
Deep Standby STOP mode  
* : The maximum value depends on the accuracy of built-in CR.  
Operation example of return from Low-Power consumption mode (by INITX)  
INITX  
Internal RST  
RST Active  
Release  
Trcnt  
CPU  
Operation  
Start  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
123  
D a t a S h e e t  
Operation example of return from low power consumption mode (by internal resource reset*)  
Internal  
Resource RST  
Internal RST  
RST Active  
Release  
Trcnt  
CPU  
Operation  
Start  
* : Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.  
Notes:  
The return factor is different in each Low-Power consumption modes.  
See "CHAPTER 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3  
Family PERIPHERAL MANUAL.  
When interrupt recoveries, the operation mode that CPU recoveries depends on the state before  
the Low-Power consumption mode transition. See "CHAPTER 6: Low Power Consumption  
Mode" in "FM3 Family PERIPHERAL MANUAL".  
The time during the power-on reset/low-voltage detection reset is excluded. See "(6) Power-on  
Reset Timing in 4. AC Characteristics in Electrical Characteristics" for the detail on the time  
during the power-on reset/low -voltage detection reset.  
When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main  
clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or  
the main PLL clock stabilization wait time.  
The internal resource reset means the watchdog reset and the CSV reset.  
124  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t ( P r e l i m i n a r y )  
Ordering Information  
On-chip  
Flash  
memory  
On-chip  
SRAM  
Part number  
Package  
Packing  
Main: 1 Mbyte  
Work: 64 Kbyte  
MB9BF128SAPMC-GE1  
MB9BF129SAPMC-GE1  
MB9BF128TAPMC-GE1  
MB9BF129TAPMC-GE1  
MB9BF128TABGL-GE1  
MB9BF129TABGL-GE1  
160 Kbyte  
192 Kbyte  
160 Kbyte  
192 Kbyte  
160 Kbyte  
192 Kbyte  
PlasticLQFP,  
144-pin (0.5 mm pitch)  
(FPT-144P-M08)  
Main: 1.5 Mbyte  
Work: 64 Kbyte  
Main: 1 Mbyte  
Work: 64 Kbyte  
PlasticLQFP,  
176-pin (0.5 mm pitch)  
(FPT-176P-M07)  
Tray  
Main: 1.5 Mbyte  
Work: 64 Kbyte  
Main: 1 Mbyte  
Work: 64 Kbyte  
PlasticFBGA,  
192-pin (0.8 mm pitch)  
(BGA-192P-M06)  
Main: 1.5 Mbyte  
Work: 64 Kbyte  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
125  
D a t a S h e e t  
Package Dimensions  
176-pin plastic LQFP  
Lead pitch  
0.50 mm  
24.0 × 24.0 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Plastic mold  
1.70 mm MAX  
P-LQFP-0176-2424-0.50  
Code  
(Reference)  
(FPT-176P-M07)  
176-pin plastic LQFP  
(FPT-176P-M07)  
Note 1) * : Values do not include resin protrusion.  
Resin protrusion is +0.25(.010)Max(each side).  
Note 2) Pins width and pins thickness include plating thickness  
Note 3) Pins width do not include tie bar cutting remainder.  
26.00±0.20(1.024±.008)SQ  
*24.00±0.10(.945±.004)SQ  
0.145±0.055  
(.006±.002)  
132  
89  
133  
88  
0.08(.003)  
Details of "A" part  
1.50+00.210  
(Mounting height)  
.059+..000084  
0.10±0.10  
(.004±.004)  
(Stand off)  
0°~8°  
INDEX  
0.25(.010)  
0.50±0.20  
176  
45  
(.020±.008)  
0.60±0.15  
"A"  
(.024±.006)  
1
44  
LEAD No.  
0.50(.020)  
0.22±0.05  
(.009±.002)  
M
0.08(.003)  
Dimensions in mm (inches).  
C
Note: The values in parentheses are reference values.  
2004-2010 FUJITSU SEMICONDUCTOR LIMITED F176013S-c-1-3  
126  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
144-pin plastic LQFP  
Lead pitch  
0.50 mm  
20.0 × 20.0 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
1.70 mm MAX  
1.20 g  
Code  
(Reference)  
(FPT-144P-M08)  
P-LFQFP144-20×20-0.50  
144-pin plastic LQFP  
(FPT-144P-M08)  
Note 1) *:Values do not include resin protrusion.  
Resin protrusion is +0.25(.010)Max(each side).  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
22.00±0.20(.866±.008)SQ  
20.00±0.10(.787±.004)SQ  
*
0.145±0.055  
(.006±.002)  
108  
73  
109  
72  
0.08(.003)  
Details of "A" part  
1.50+00.210  
(Mounting height)  
.059+..000048  
0.10±0.10  
(.004±.004)  
(Stand off)  
0°~8°  
INDEX  
144  
37  
0.25(.010)  
0.50±0.20  
(.020±.008)  
"A"  
0.60±0.15  
(.024±.006)  
1
36  
LEAD No.  
0.50(.020)  
0.22±0.05  
(.009±.002)  
M
0.08(.003)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2003-2010 FUJITSU SEMICONDUCTOR LIMITED F144019S-c-4-8  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
127  
D a t a S h e e t  
192-ball plastic FBGA  
Ball pitch  
0.80 mm  
12.00 mm × 12.00 mm  
Ball  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
1.45 mm Max.  
0.34 g  
(BGA-192P-M06)  
192-ball plastic FBGA  
(BGA-192P-M06)  
10.40(.409)REF  
12.00±0.10(.472±.004)  
0.20(.008) S  
B
B
0.80(.031)  
REF  
14  
13  
12  
11  
10  
9
0.80(.031)  
REF  
A
8
7
6
12.00±0.10  
(.472±.004)  
10.40(.409)  
REF  
5
4
3
2
1
P
N M L  
K
J
H G F  
E
D C B A  
INDEX  
(INDEX AREA)  
0.20(.008) S  
A
192-ø0.45±0.10  
(192-ø.018±.004)  
M
ø0.08(.003)  
S A B  
1.25±0.20  
(.049±.008)  
(Seated height)  
0.35±0.10  
(.014±.004)  
(Stand off)  
S
0.10(.004) S  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2008-2010 FUJITSU SEMICONDUCTOR LIMITED B192006S-c-1-3  
128  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
Major Changes  
Page  
Section  
Change Results  
Revision 0.1  
-
-
Initial release  
Revision 0.2  
-
-
-
Company name and layout design change  
Revision 1.0  
-
Preliminary Full Production  
FEATURES  
External Bus Interface  
Added the descriptions as follows  
Maximum area size : Up to 256 Mbytes  
2
FEATURES  
A/D Converter  
FEATURES  
Multi-function Timer  
PRODUCT LINEUP  
Function  
3
5
7
Corrected conversion time  
Corrected the channel count of "A/D activation compare"  
Added the footnote  
HANDLING DEVICES  
Power supply pins  
BLOCK DIAGRAM  
MEMORY MAP  
63  
65  
66  
Added the description  
Corrected the figure  
Corrected the Address of External Device Area”  
Memory Map(1)  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
2. Recommended Operating Conditions  
76  
78  
Added the Item of Input Voltage”  
Added the footnote  
Corrected the Condition  
3.DC Characteristics  
(1) Current Rating  
Corrected the Value  
Corrected the Remarks  
79 - 81  
Added the footnote  
83  
88  
(2) Pin Characteristics  
Added the Item of Inputleak current”  
Revised the values of “Time until releasing Power-on reset”  
Corrected the figure  
4. AC Characteristics  
(6) Power-on Reset Timing  
Corrected the Glossary  
(9) CSIO Timing  
Synchronous serial (SPI=1, SCINV=1)  
Corrected the figure of MS bit=1”  
107  
114  
External clock (EXT=1):asynchronous onlyCorrected the figure  
Corrected the Pins name  
AN00 - AN23 ANxx  
Corrected the Min Vale of Conversion time”  
5.12-bit A/D Converter  
Electrical characteristics for the A/D converter  
Corrected the Min Vale of Sampling time”  
Corrected the Min Value of Compare clock cycle”  
Corrected the State Transitontime to operation permission”  
Corrected the footnote  
9. Electrical characteristics for the A/D  
converter  
(1) Write / Erase time  
10. Return Time from Low-Power  
Consumption Mode  
(1) Return Factor: Interrupt/WKUP  
Return Count Time  
119  
120  
Revised the values of “TBD”  
Revised the values of “TBD”  
Revised the values of “TBD”  
(2) Return Factor: Reset  
Return Count Time  
122  
Revision 2.0  
-
Changed the series name.  
MB9B120T Series -> MB9B120TA Series  
Changed the product name as follows.  
MB9BF128SA, MB9BF129SA, MB9BF128TA, MB9BF129TA  
-
-
-
List of Pin Functions  
· List of pin functions  
I/O Circuit Type  
Memory Map  
· Memory map(2)  
41 to 48  
55, 56  
67  
Added LIN to the description of SOTxx  
Added about +B input  
Added the summary of Flash memory sector  
Electrical Characteristics  
1. Absolute Maximum Ratings  
Electrical Characteristics  
3. DC Characteristics  
(1) Current rating  
· Added the Clamp maximum current  
· Added about +B input  
76, 77  
79, 80  
· Changed the expression of condition  
· Added Main TIMER mode current  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
129  
D a t a S h e e t  
Page  
Section  
Change Results  
Electrical Characteristics  
4. AC Characteristics  
(4-1) Operating Conditions of Main PLL  
(4-2) Operating Conditions of Main PLL  
Electrical Characteristics  
4. AC Characteristics  
(7) CSIO/UART Timing  
Electrical Characteristics  
5. 12bit A/D Converter  
87  
· Added the figure of Main PLL connection  
· Modified from UART Timing to CSIO/UART Timing  
· Changed from Internal shift clock operation to Master mode  
· Changed from External shift clock operation to Slave mode  
· Added the typical value of Integral Nonlinearity, Differential  
Nonlinearity, Zero transition voltage and Full-scale transition voltage  
Change to full part number  
100 to 107  
114  
125  
Ordering Information  
130  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
131  
D a t a S h e e t  
132  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  
D a t a S h e e t  
January 30, 2015, MB9B120TA_DS706-00063-2v0-E  
133  
D a t a S h e e t  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use,  
including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not  
designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless  
extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury,  
severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use  
where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not  
be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the  
products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss  
from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire  
protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in  
this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and  
Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the  
prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a  
Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any  
product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to  
its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party  
rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind  
arising out of the use of the information in this document.  
Copyright © 2013-2015 Spansion All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® EclipseTM  
ORNANDTM, Easy DesignSimTM, TraveoTM and combinations thereof, are trademarks and registered trademarks of  
,
Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be  
trademarks of their respective owners.  
134  
MB9B120TA_DS706-00063-2v0-E, January 30, 2015  

相关型号:

MB9BF129SAPMC-GK7E2

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9BF129SPMC-GE2

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9BF129SPMC-GK7E2

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9BF129TA

This document states the current technical specifications regarding
SPANSION

MB9BF129TABGL-GK7E1

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9BF129TAPMC-GK7E2

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9BF129TBGL-GE1

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9BF129TBGL-GK7E1

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9BF129TPMC-GE2

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9BF129TPMC-GK7E2

32-bit Arm® Cortex®-M3 FM3 Microcontroller
CYPRESS

MB9BF166NPMC-G-JNE2

RISC Microcontroller,
CYPRESS

MB9BF168NPMC-G-JNE2

RISC Microcontroller,
CYPRESS