GT3200-JN [SMSC]

USB2.0 PHY IC; USB2.0 PHY IC
GT3200-JN
型号: GT3200-JN
厂家: SMSC CORPORATION    SMSC CORPORATION
描述:

USB2.0 PHY IC
USB2.0 PHY IC

网络接口 电信集成电路 电信电路
文件: 总51页 (文件大小:1412K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GT3200  
(64-PIN TQFP PACKAGES)  
USB3250  
(56-PIN QFN PACKAGE)  
USB2.0 PHY IC  
Datasheet  
PRODUCT FEATURES  
USB-IF "Hi-Speed" certified to USB2.0 electrical  
NRZI encoding and decoding  
Bit stuffing and unstuffing with error detection  
specification  
Interface compliant with the UTMI specification  
(60MHz 8-bit unidirectional interface or 30MHz 16-bit  
bidirectional interface)  
Supports the USB suspend state, HS detection, HS  
Chirp, Reset and Resume  
Support for all test modes defined in the USB2.0  
Supports 480Mbps High Speed (HS) and 12Mbps  
specification  
Full Speed (FS) serial data transmission rates  
Draws 72mA (185mW) maximum current  
consumption in HS mode - ideal for bus powered  
functions  
Integrated 45and 1.5ktermination resistors  
reduce external component count  
Internal short circuit protection of DP and DM lines  
On-die decoupling capacitance and isolation for  
On-chip oscillator operates with low cost 12MHz  
immunity to digital switching noise  
crystal  
Available in three 64-pin TQFP packages (GT3200)  
Robust and low power digital clock and data recovery  
or a 56-pin QFN package (USB3250)  
circuit  
Full industrial operating temperature range from  
SYNC and EOP generation on transmit packets and  
-40oC to +85oC (ambient)  
detection on receive packets  
SMSC GT3200, SMSC USB3250  
DATASHEET  
Revision 1.3 (10-05-04)  
USB2.0 PHY IC  
ORDER NUMBER(S):  
GT3200 - JD FOR 64 PIN 10 X 10 X 1.4MM TQFP PACKAGE  
GT3200 - JN FOR 64 PIN 7 X 7 X 1.4MM TQFP PACKAGE  
GT3200 - JV FOR 64 PIN 7 X 7 X 1.4MM TQFP LEAD FREE PACKAGE  
USB3250 - ABZJ FOR 56 PIN 8 X 8 X 0.85MM QFN LEAD FREE PACKAGE  
80 Arkay Drive  
Hauppauge, NY 11788  
(631) 435-6000  
FAX (631) 273-3123  
Copyright © SMSC 2004. All rights reserved.  
Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete  
information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no  
responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without  
notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information does  
not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of SMSC  
or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's standard  
Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors  
known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request.  
SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause  
or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further  
testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms of Sale  
Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered trademark of Standard Microsystems  
Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders.  
SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES  
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND  
ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE.  
IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES;  
OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON  
CONTRACT; TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR  
NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN  
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  
Revision 1.3 (10-05-04)  
ii  
SMSC GT3200, SMSC USB3250  
DATASHEET  
USB2.0 PHY IC  
Table of Contents  
Chapter 1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1  
1.2  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Chapter 2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Chapter 3 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Chapter 4 Interface Signal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Chapter 5 Limiting Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chapter 6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
6.1  
6.2  
Driver Characteristics of Full-Speed Drivers in High-Speed Capable Transceivers. . . . . . . . . . . . 13  
High-speed Signaling Eye Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Chapter 7 Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
System Clocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Clock and Data Recovery Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
TX Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
RX Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
FS/HS RX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
FS/HS TX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Power Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Chapter 8 Application Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
Linestate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
OPMODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Test Mode Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
SE0 Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Reset Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Suspend Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
HS Detection Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
HS Detection Handshake - FS Downstream Facing Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
HS Detection Handshake - HS Downstream Facing Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.10 HS Detection Handshake - Suspend Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
8.11 Assertion of Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
8.12 Detection of Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
8.13 HS Device Attach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
8.14 Application Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Chapter 9 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
SMSC GT3200, SMSC USB3250  
iii  
Revision 1.3 (10-05-04)  
DATASHEET  
USB2.0 PHY IC  
List of Figures  
Figure 2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Figure 3.1 64 pin GT3200 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 3.2 56 pin USB3250 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 6.1 Full-Speed Driver VOH/IOH Characteristics for High-speed Capable Transceiver . . . . . . . . 13  
Figure 6.2 Full-Speed Driver VOL/IOL Characteristics for High-speed Capable Transceiver. . . . . . . . . 14  
Figure 6.3 Eye Pattern Measurement Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 6.4 Eye Pattern for Transmit Waveform and Eye Pattern Definition . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 6.5 Eye Pattern for Receive Waveform and Eye Pattern Definition. . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 7.1 Bidirectional 16-bit interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 7.2 FS CLK Relationship to Transmit Data and Control Signals (8-bit mode) . . . . . . . . . . . . . . . 20  
Figure 7.3 FS CLK Relationship to Receive Data and Control Signals (8-bit mode) . . . . . . . . . . . . . . . 20  
Figure 7.4 Transmit Timing for a Data Packet (8-bit mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 7.5 Transmit Timing for 16-bit Data, Even Byte Count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 7.6 Transmit Timing for 16-bit Data, Odd Byte Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 7.7 Receive Timing for Data with Unstuffed Bits (8-bit mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 7.8 Receive Timing for 16-bit Data, Even Byte Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 7.9 Receive Timing for 16-bit Data, Odd Byte Count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 7.10 Receive Timing for Data (with CRC-16 in 8-bit mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 7.11 Receive Timing for Setup Packet (8-bit mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 7.12 Receive Timing for Data Packet with CRC-16 (8-bit mode). . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 8.1 Reset Timing Behavior (HS Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 8.2 Suspend Timing Behavior (HS Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 8.3 HS Detection Handshake Timing Behavior (FS Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 8.4 Chirp K-J-K-J-K-J Sequence Detection State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 8.5 HS Detection Handshake Timing Behavior (HS Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 8.6 HS Detection Handshake Timing Behavior from Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 8.7 Resume Timing Behavior (HS Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 8.8 Device Attach Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 8.9 Application Diagram for 64-pin TQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 8.10 Application Diagram for 56-pin QFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 9.1 GT3200-JD 64 Pin TQFP Package Outline, 10x10x1.4mm Body . . . . . . . . . . . . . . . . . . . . . 42  
Figure 9.2 GT3200-JN, JV (lead free) 64 Pin TQFP Package Outline, 7x7x1.4mm Body . . . . . . . . . . . 44  
Figure 9.3 USB3250-ABZJ (lead free) 56 Pin QFN Package Outline, 8x8x0.85mm Body . . . . . . . . . . 45  
Revision 1.3 (10-05-04)  
iv  
SMSC GT3200, SMSC USB3250  
DATASHEET  
USB2.0 PHY IC  
List of Tables  
Table 4.1 System Interface Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 4.2 Data Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 4.3 USB I/O Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 4.4 Biasing and Clock Oscillator Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 4.5 Power and Ground Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 5.1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 5.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 5.3 Recommended External Clock Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 6.1 Electrical Characteristics: Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 6.2 DC Electrical Characteristics: Logic Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 6.3 DC Electrical Characteristics: Analog I/O Pins (DP/DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 6.4 Dynamic Characteristics: Analog I/O Pins (DP/DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 6.5 Dynamic Characteristics: Digital UTMI Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 6.6 Eye Pattern for Transmit Waveform and Eye Pattern Definition . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 6.7 Eye Pattern for Receive Waveform and Eye Pattern Definition. . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 8.1 Linestate States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 8.2 Operational Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 8.3 USB2.0 Test Mode to Macrocell Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 8.4 Reset Timing Values (HS Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 8.5 Suspend Timing Values (HS Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 8.6 HS Detection Handshake Timing Values (FS Mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 8.7 Reset Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 8.8 HS Detection Handshake Timing Values from Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 8.9 Resume Timing Values (HS Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 8.10 Attach and Reset Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 9.1 GT3200-JD 64 Pin TQFP Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 9.2 GT3200-JN, JV (lead free) 64 Pin TQFP Package Parameters . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 9.3 USB3250-ABZJ (lead free) 56 Pin QFN Package Parameters. . . . . . . . . . . . . . . . . . . . . . . . 45  
SMSC GT3200, SMSC USB3250  
v
Revision 1.3 (10-05-04)  
DATASHEET  
USB2.0 PHY IC  
Chapter 1 General Description  
The GT3200 and USB3250 provide the Physical Layer (PHY) interface to a USB2.0 Device Controller.  
The IC is available in a 64 pin lead TQFP (GT3200) or a 56 pin QFN (USB3250).  
1.1  
Applications  
The Universal Serial Bus (USB) is the preferred interface to connect high-speed PC peripherals.  
Scanners  
Printers  
External Storage and System Backup  
Still and Video Cameras  
PDAs  
CD-RW  
Gaming Devices  
1.2  
Product Description  
The GT3200 and USB3250 are USB2.0 physical layer transceiver (PHY) integrated circuits. SMSC's  
proprietary technology results in low power dissipation, which is ideal for building a bus powered  
USB2.0 peripheral. The PHY can be configured for either an 8-bit unidirectional or a 16-bit  
bidirectional parallel interface, which complies with the USB Transceiver Macrocell Interface (UTMI)  
specification. It supports 480Mbps transfer rate, while remaining backward compatible with USB 1.1  
legacy protocol at 12Mbps.  
All required termination for the USB2.0 Transceiver is internal. Internal 5.25V short circuit protection of  
DP and DM lines is provided for USB compliance.  
While transmitting data, the PHY serializes data and generates SYNC and EOP fields. It also performs  
needed bit stuffing and NRZI encoding. Likewise, while receiving data, the PHY de-serializes incoming  
data, stripping SYNC and EOP fields and performs bit un-stuffing and NRZI decoding.  
Revision 1.3 (10-05-04)  
1
SMSC GT3200, SMSC USB3250  
DATASHEET  
USB2.0 PHY IC  
Chapter 2 Functional Block Diagram  
PWR  
PLL and  
System  
Clocking  
CONTROL  
XTAL OSC  
TX  
TX  
LOGIC  
RPU_EN  
1.5kΩ  
TX State  
Machine  
VPO  
VMO  
OEB  
Parallel to  
Serial  
Conversion  
DATABUS16_8  
FS TX  
RESET  
HS_DATA  
HS_DRIVE_ENABLE  
HS_CS_ENABLE  
Bit Stuff  
SUSPENDN  
XCVRSELECT  
TERMSELECT  
OPMODE[1:0]  
HS TX  
NRZI  
Encode  
DP  
DM  
RX  
LINESTATE[1:0]  
CLKOUT  
RX  
FS SE+  
LOGIC  
DATA[15:0] *  
VP  
RX State  
Machine  
TXVALID  
TXREADY  
VALIDH  
VM  
FS SE-  
FS RX  
HS RX  
HS SQ  
Serial to  
Parallel  
Conversion  
Clock  
Recovery Unit  
Clock  
and  
Bit Unstuff  
RXVALID  
RXACTIVE  
RXERROR  
Data  
NRZI  
Recovery  
Decode  
Elasticity  
Buffer  
BIASING  
Bandgap Voltage Reference  
Current Reference  
Figure 2.1 Block Diagram  
Note: See Section 7.1, "Modes of Operation," on page 18 for a description of the digital interface.  
SMSC GT3200, SMSC USB3250  
2
Revision 1.3 (10-05-04)  
DATASHEET  
USB2.0 PHY IC  
Chapter 3 Pinout  
48  
47  
VSS  
NC  
VSSA  
NC  
DM  
DP  
1
2
DATA[1]  
DATA[2]  
DATA[3]  
DATA[4]  
VDD1.8  
DATA[5]  
DATA[6]  
DATA[7]  
DATA[8]  
VSS  
DATA[9]  
DATA[10]  
DATA[11]  
DATA[12]  
VSS  
46  
45  
3
4
44  
43  
42  
5
USB2.0  
GT3200  
PHY IC  
VDDA3.3  
VSSA  
RBIAS  
VDDA3.3  
VSSA  
XI  
XO  
VDDA1.8  
NC  
6
7
8
41  
40  
39  
38  
9
10  
11  
12  
13  
14  
15  
16  
37  
36  
35  
34  
33  
SUSPENDN  
VSS  
Figure 3.1 64 pin GT3200 Pinout  
Revision 1.3 (10-05-04)  
3
SMSC GT3200, SMSC USB3250  
DATASHEET  
USB2.0 PHY IC  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
DATA[1]  
DATA[2]  
DATA[3]  
DATA[4]  
VDD1.8  
DATA[5]  
DATA[6]  
DATA[7]  
DATA[8]  
VSS  
1
2
3
4
5
6
7
8
VSSA  
DM  
DP  
VDDA3.3  
VSSA  
RBIAS  
VDDA3.3  
VSSA  
USB2.0  
USB3250  
PHY IC  
VSSA  
XI  
XO  
9
10  
11  
12  
13  
14  
DATA[9]  
DATA[10]  
DATA[11]  
DATA[12]  
VDDA1.8  
SUSPENDN  
VSS  
Figure 3.2 56 pin USB3250 Pinout  
SMSC GT3200, SMSC USB3250  
4
Revision 1.3 (10-05-04)  
DATASHEET  
USB2.0 PHY IC  
Chapter 4 Interface Signal Definition  
Table 4.1 System Interface Signals  
ACTIVE  
NAME  
RESET  
DIRECTION  
LEVEL  
DESCRIPTION  
Input  
High  
Reset. Reset all state machines. After coming out of reset, must  
wait 5 rising edges of clock before asserting TXValid for transmit.  
Assertion of Reset: May be asynchronous to CLKOUT  
De-assertion of Reset: Must be synchronous to CLKOUT  
XCVRSELECT  
TERMSELECT  
SUSPENDN  
Input  
Input  
Input  
N/A  
N/A  
Low  
Transceiver Select. This signal selects between the FS and HS  
transceivers:  
0: HS transceiver enabled  
1: FS transceiver enabled.  
Termination Select. This signal selects between the FS and HS  
terminations:  
0: HS termination enabled  
1: FS termination enabled  
Suspend. Places the transceiver in a mode that draws minimal  
power from supplies. Shuts down all blocks not necessary for  
Suspend/Resume operation. While suspended, TERMSELECT  
must always be in FS mode to ensure that the 1.5k pull-up on  
DP remains powered.  
0: Transceiver circuitry drawing suspend current  
1: Transceiver circuitry drawing normal current  
CLKOUT  
Output  
Input  
Rising Edge System Clock. This output is used for clocking receive and  
transmit parallel data at 60MHz (8-bit mode) or 30MHz (16-bit  
mode). When in 8-bit mode, this specification refers to CLKOUT  
as CLK60. When in 16-bit mode, CLKOUT is referred to as  
CLK30.  
OPMODE[1:0]  
N/A  
Operational Mode. These signals select between the various  
operational modes:  
[1] [0] Description  
0
0
1
1
0
1
0
1
0: Normal Operation  
1: Non-driving (all terminations removed)  
2: Disable bit stuffing and NRZI encoding  
3: Reserved  
LINESTATE[1:0]  
DATABUS16_8  
Output  
Input  
N/A  
Line State. These signals reflect the current state of the USB  
data bus in FS mode, with [0] reflecting the state of DP and [1]  
reflecting the state of DM. When the device is suspended or  
resuming from a suspended state, the signals are combinatorial.  
Otherwise, the signals are synchronized to CLKOUT.  
[1] [0] Description  
0
0
1
1
0
1
0
1
0: SE0  
1: J State  
2: K State  
3: SE1  
N/A  
Databus Select. Selects between 8-bit and 16-bit data transfers.  
0: 8-bit data path enabled. VALIDH is undefined. CLKOUT =  
60MHz.  
1: 16-bit data path enabled. CLKOUT = 30MHz.  
Revision 1.3 (10-05-04)  
5
SMSC GT3200, SMSC USB3250  
DATASHEET  
USB2.0 PHY IC  
Table 4.2 Data Interface Signals  
ACTIVE  
NAME  
DIRECTION  
LEVEL  
DESCRIPTION  
DATA[15:0]  
Bidir  
N/A  
DATA BUS. 16-BIT BIDIRECTIONAL MODE.  
TXVALID  
RXVALID  
VALIDH  
DATA[15:0]  
Not used  
0
0
0
1
X
0
DATA[7:0] output is valid  
for receive  
0
1
1
1
X
X
1
0
1
DATA[15:0] output is  
valid for receive  
DATA[7:0] input is valid  
for transmit  
DATA[15:0] input is valid  
for transmit  
DATA BUS. 8-BIT UNIDIRECTIONAL MODE.  
TXVALID RXVALID DATA[15:0]  
0
0
1
0
1
X
Not used  
DATA[15:8] output is valid for receive  
DATA[7:0] input is valid for transmit  
TXVALID  
Input  
High  
Transmit Valid. Indicates that the TXDATA bus is valid for  
transmit. The assertion of TXVALID initiates the transmission of  
SYNC on the USB bus. The negation of TXVALID initiates EOP  
on the USB.  
Control inputs (OPMODE[1:0], TERMSELECT,XCVRSELECT)  
must not be changed on the de-assertion or assertion of TXVALID.  
The PHY must be in a quiescent state when these inputs are  
changed.  
TXREADY  
VALIDH  
Output  
Bidir  
High  
N/A  
Transmit Data Ready. If TXVALID is asserted, the SIE must  
always have data available for clocking into the TX Holding  
Register on the rising edge of CLKOUT. TXREADY is an  
acknowledgement to the SIE that the transceiver has clocked the  
data from the bus and is ready for the next transfer on the bus. If  
TXVALID is negated, TXREADY can be ignored by the SIE.  
Transmit/Receive High Data Bit Valid (used in 16-bit mode  
only). When TXVALID = 1, the 16-bit data bus direction is  
changed to inputs. If VALIDH is asserted, DATA[15:0] is valid for  
transmission. If deasserted, only DATA[7:0] is valid for  
transmission. The DATA bus is driven by the SIE.  
When TXVALID = 0 and RXVALID = 1, the 16-bit data bus  
direction is changed to outputs. If VALIDH is asserted, the  
DATA[15:0] outputs are valid for receive. If deasseted, only  
DATA[7:0] is valid for receive. The DATA bus is read by the SIE.  
RXVALID  
Output  
High  
Receive Data Valid. Indicates that the RXDATA bus has received  
valid data. The Receive Data Holding Register is full and ready to  
be unloaded. The SIE is expected to latch the RXDATA bus on the  
rising edge of CLKOUT.  
RXACTIVE  
RXERROR  
Output  
Output  
High  
High  
Receive Active. Indicates that the receive state machine has  
detected Start of Packet and is active.  
Receive Error. 0: Indicates no error. 1: Indicates a receive error  
has been detected. This output is clocked with the same timing as  
the RXDATA lines and can occur at anytime during a transfer.  
SMSC GT3200, SMSC USB3250  
6
Revision 1.3 (10-05-04)  
DATASHEET  
USB2.0 PHY IC  
Table 4.3 USB I/O Signals  
ACTIVE  
NAME  
NAME  
DIRECTION  
LEVEL  
DESCRIPTION  
DP  
DM  
I/O  
I/O  
N/A  
N/A  
USB Positive Data Pin.  
USB Negative Data Pin.  
Table 4.4 Biasing and Clock Oscillator Signals  
ACTIVE  
DIRECTION  
LEVEL  
DESCRIPTION  
RBIAS  
Input  
N/A  
External 1% bias resistor. Requires a 12Kresistor to ground.  
Used for setting HS transmit current level and on-chip termination  
impedance.  
XI/XO  
Input  
N/A  
External crystal. 12MHz crystal connected from XI to XO.  
Table 4.5 Power and Ground Signals  
ACTIVE  
NAME  
DIRECTION  
LEVEL  
DESCRIPTION  
VDD3.3  
VDD1.8  
VSS  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
3.3V Digital Supply. Powers digital pads. See Note 4.1  
1.8V Digital Supply. Powers digital core.  
Digital Ground. See Note 4.2  
VDDA3.3  
3.3V Analog Supply. Powers analog I/O and 3.3V analog  
circuitry.  
VDDA1.8  
VSSA  
N/A  
N/A  
N/A  
N/A  
1.8V Analog Supply. Powers 1.8V analog circuitry. See Note 4.1  
Analog Ground. See Note 4.2  
Note 4.1 A Ferrite Bead (with DC resistance <.5 Ohms) is recommended for filtering between both  
the VDD3.3 and VDDA3.3 supplies and the VDD1.8 and VDDA1.8 Supplies. See  
Figure 8.9 Application Diagram for 64-pin TQFP Package on page 40.  
Note 4.2 56-pin QFN package will down-bond all VSS and VSSA to exposed pad under IC.  
Exposed pad must be connected to solid GND plane on printed circuit board.  
Revision 1.3 (10-05-04)  
7
SMSC GT3200, SMSC USB3250  
DATASHEET  
USB2.0 PHY IC  
Chapter 5 Limiting Values  
Table 5.1 Absolute Maximum Ratings  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
1.8V Supply Voltage  
VDD1.8  
-0.5  
TBD  
V
(VDD1.8 and VDDA1.8)  
3.3V Supply Voltage  
VDD3.3  
-0.5  
4.6  
V
(VDD3.3 and VDDA3.3)  
Input Voltage  
Storage Temperature  
VI  
TSTG  
-0.5  
-40  
4.6  
+125  
V
oC  
[1] Equivalent to discharging a 100pF capacitor via a 1.5kresistor (HBM).  
Note: In accordance with the Absolute Maximum Rating System (IEC 60134  
Table 5.2 Recommended Operating Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
1.8V Supply Voltage  
VDD1.8  
1.6  
1.8  
2.0  
V
(VDD1.8 and VDDA1.8)  
3.3V Supply Voltage  
VDD3.3  
3.0  
3.3  
3.6  
V
(VDD3.3 and VDDA3.3)  
Input Voltage on Digital Pins  
VI  
VI(I/O)  
0.0  
0.0  
VDD3.3  
VDD3.3  
V
V
Input Voltage on Analog I/O  
Pins (DP, DM)  
Ambient Temperature  
TA  
-40  
+85  
oC  
Table 5.3 Recommended External Clock Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
System Clock Frequency  
XO driven by the  
external clock; and no  
connection at XI  
12  
MHz  
(+/- 100ppm)  
System Clock Duty Cycle  
XO driven by the  
external clock; and no  
connection at XI  
45  
50  
55  
%
SMSC GT3200, SMSC USB3250  
8
Revision 1.3 (10-05-04)  
DATASHEET  
USB2.0 PHY IC  
Chapter 6 Electrical Characteristics  
Table 6.1 Electrical Characteristics: Supply Pins  
PARAMETER  
Total Power  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PTOT(FSTX)  
P3.3V(FSTX)  
FS transmitting at 12Mb/s;  
50pF load on DP and DM  
86  
57  
115  
76  
mW  
mW  
VDD3.3  
FS  
Power  
VDD1.8  
Power  
TRANSMIT  
P1.8V(FSTX)  
29  
39  
mW  
Total Power  
VDD3.3  
PTOT(FSRX)  
P3.3V(FSRX)  
FS receiving at 12Mb/s  
75  
46  
115  
76  
mW  
mW  
FS RECEIVE Power  
VDD1.8  
P1.8V(FSRX)  
29  
39  
mW  
Power  
Total Power  
PTOT(HSTX)  
P3.3V (HSTX)  
HS transmitting into a 45Ω  
158  
110  
185  
130  
mW  
mW  
load  
VDD3.3  
HS  
Power  
TRANSMIT  
VDD1.8  
Power  
P1.8V (HSTX)  
48  
55  
mW  
Total Power  
VDD3.3  
PTOT(HSRX)  
P3.3V (HSRX)  
HS receiving at 480Mb/s  
155  
107  
185  
130  
mW  
mW  
HS RECEIVE Power  
VDD1.8  
P1.8V (HSRX)  
48  
55  
mW  
Power  
Total Current IDD(SUSP1)  
15kpull-down and 1.5kΩ  
pull-up resistor on pin DP  
not connected.  
123  
68  
240  
120  
uA  
uA  
VDD3.3  
I3.3V (SUSP1)  
SUSPEND  
MODE 1  
Current  
VDD1.8  
Current  
I1.8V (SUSP1)  
55  
120  
uA  
Total Current IDD(SUSP2  
)
15kpull-down and 1.5kΩ  
pull-up resistor on pin DP  
connected.  
323  
268  
460  
340  
uA  
uA  
VDD3.3  
I3.3V (SUSP2)  
SUSPEND  
MODE 2  
Current  
VDD1.8  
Current  
I1.8V (SUSP2)  
55  
120  
uA  
(VDD1.8 =1.6 to 2.0V; VDD3.3 =3.0 to 3.6V; VSS = 0V; TA = -40 C to +85oC; unless otherwise specified.)  
o
Revision 1.3 (10-05-04)  
9
SMSC GT3200, SMSC USB3250  
DATASHEET  
USB2.0 PHY IC  
Table 6.2 DC Electrical Characteristics: Logic Pins  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Low-Level Input Voltage  
High-Level Input Voltage  
Low-Level Output Voltage  
High-Level Output Voltage  
VIL  
VIH  
VOL  
VOH  
VSS  
2.0  
0.8  
VDD3.3  
0.4  
V
V
V
V
IOL = 4mA  
IOH = -4mA  
VDD3.3  
- 0.5  
Input Leakage Current  
Pin Capacitance  
ILI  
Cpin  
± 1  
4
uA  
pF  
(VDD1.8 =1.6 to 2.0V; VDD3.3 =3.0 to 3.6V; VSS = 0V; TA = -40 C to +85oC; unless otherwise specified.  
o
Pins Data[15:0] and VALIDH have passive pull-down elements.)  
Table 6.3 DC Electrical Characteristics: Analog I/O Pins (DP/DM)  
PARAMETER  
FS FUNCTIONALITY  
INPUT LEVELS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Differential Receiver Input  
VDIFS  
VCMFS  
VILSE  
| V(DP) - V(DM) |  
0.2  
0.8  
V
V
V
V
V
Sensitivity  
Differential Receiver  
2.5  
0.8  
Common-Mode Voltage  
Single-Ended Receiver Low  
Level Input Voltage  
Single-Ended Receiver High  
Level Input Voltage  
VIHSE  
2.0  
Single-Ended Receiver  
VHYSSE  
0.050  
0.150  
Hysteresis  
OUTPUT LEVELS  
Low Level Output Voltage  
VFSOL  
VFSOH  
Pull-up resistor on DP;  
0.3  
3.6  
V
V
RL = 1.5kto VDD3.3  
High Level Output Voltage  
Pull-down resistor on  
2.8  
DP, DM;  
RL = 15kto GND  
TERMINATION  
Driver Output Impedance for  
ZHSDRV  
Steady state drive (See  
Figure 6.1)  
40.5  
45  
49.5  
HS and FS  
Input Impedance  
Pull-up Resistor Impedance  
ZINP  
ZPU  
VTERM  
TX, RPU disabled  
10  
1.425  
3.0  
MΩ  
KΩ  
V
1.575  
3.6  
Termination Voltage For Pull-  
up Resistor On Pin DP  
HS FUNCTIONALITY  
INPUT LEVELS  
HS Differential Input  
VDIHS  
| V(DP) - V(DM) |  
100  
mV  
Sensitivity  
(VDD1.8 =1.6 to 2.0V; VDD3.3 =3.0 to 3.6V; VSS = 0V; TA = -40 C to +85oC; unless otherwise specified.)  
o
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA1S0HEET  
USB2.0 PHY IC  
Table 6.3 DC Electrical Characteristics: Analog I/O Pins (DP/DM) (continued)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HS Data Signaling Common  
VCMHS  
-50  
500  
mV  
Mode Voltage Range  
HS Squelch Detection  
Threshold (Differential)  
VHSSQ  
Squelch Threshold  
Unsquelch Threshold  
100  
mV  
mV  
150  
-10  
OUTPUT LEVELS  
High Speed Low Level Output  
Voltage (DP/DM referenced to  
GND)  
High Speed High Level Output  
Voltage (DP/DM referenced to  
GND)  
High Speed IDLE Level  
Output Voltage (DP/DM  
referenced to GND)  
VHSOL  
VHSOH  
VOLHS  
45load  
45load  
45load  
10  
440  
10  
mV  
mV  
mV  
mV  
mV  
360  
-10  
Chirp-J Output Voltage  
VCHIRPJ  
HS termination resistor  
disabled, pull-up resistor  
connected. 45load.  
HS termination resistor  
disabled, pull-up resistor  
connected. 45load.  
700  
-900  
1100  
-500  
(Differential)  
Chirp-K Output Voltage  
(Differential)  
VCHIRPK  
LEAKAGE CURRENT  
OFF-State Leakage Current  
PORT CAPACITANCE  
ILZ  
± 1  
10  
uA  
pF  
Transceiver Input Capacitance  
(VDD1.8 =1.6 to 2.0V; VDD3.3 =3.0 to 3.6V; VSS = 0V; TA = -40 C to +85oC; unless otherwise specified.)  
CIN  
Pin to GND  
5
o
Table 6.4 Dynamic Characteristics: Analog I/O Pins (DP/DM)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FS OUTPUT DRIVER TIMING  
Rise Time  
TFSR  
TFFF  
VCRS  
CL = 50pF; 10 to 90% of  
4
4
20  
20  
ns  
ns  
V
|VOH - VOL  
|
Fall Time  
CL = 50pF; 10 to 90% of  
|VOH - VOL  
|
Output Signal Crossover  
Voltage  
Excluding the first  
transition from IDLE  
state  
1.3  
2.0  
Differential Rise/Fall Time  
Matching  
FRFM  
Excluding the first  
transition from IDLE  
state  
90  
111.1  
%
(VDD1.8 =1.6 to 2.0V; VDD3.3 =3.0 to 3.6V; VSS = 0V; TA = -40 C to +85oC; unless otherwise specified.)  
o
Revision 1.3 (10-05-04)  
11  
SMSC GT3200, SMSC USB3250  
DATASHEET  
USB2.0 PHY IC  
Table 6.4 Dynamic Characteristics: Analog I/O Pins (DP/DM)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HS OUTPUT DRIVER TIMING  
Differential Rise Time  
Differential Fall Time  
THSR  
THSF  
500  
500  
ps  
ps  
Driver Waveform  
Eye pattern of Template  
1 in USB2.0 specification  
See  
Figure  
6.2  
Requirements  
HIGH SPEED MODE TIMING  
Receiver Waveform  
Requirements  
Eye pattern of Template  
4 in USB2.0 specification  
See  
Figure  
6.2  
Data Source Jitter and  
Receiver Jitter Tolerance  
Eye pattern of Template  
4 in USB2.0 specification  
See  
Figure  
6.2  
(VDD1.8 =1.6 to 2.0V; VDD3.3 =3.0 to 3.6V; VSS = 0V; TA = -40 C to +85oC; unless otherwise specified.)  
o
Table 6.5 Dynamic Characteristics: Digital UTMI Pins  
PARAMETER  
UTMI TIMING  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RXDATA[7:0]  
RXVALID  
RXACTIVE  
RXERROR  
LINESTATE[1:0]  
TXREADY  
TPD  
Propagation delay from  
CLKOUT to signal  
2
2
2
2
2
2
4
4
4
4
4
4
ns  
CL = 10pF  
TXDATA[7:0]  
TXVALID  
TSU  
Setup time from signal to  
CLKOUT  
4
4
4
4
4
4
0
0
0
0
0
0
ns  
ns  
OPMODE[1:0]  
XCVRSELECT  
TERMSELECT  
SUSPENDN  
TXDATA[7:0]  
TXVALID  
OPMODE[1:0]  
XCVRSELECT  
TERMSELECT  
SUSPENDN  
TH  
Hold time from CLKOUT  
to signal  
(VDD1.8 =1.6 to 2.0V; VDD3.3 =3.0 to 3.6V; VSS = 0V; TA = -40 C to +85oC; unless otherwise specified.)  
o
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA1S2HEET  
USB2.0 PHY IC  
6.1  
Driver Characteristics of Full-Speed Drivers in High-Speed  
Capable Transceivers  
The USB transceiver uses a differential output driver to drive the USB data signal onto the USB cable.  
Figure 6.1 shows the V/I characteristics for a full-speed driver which is part of a high-speed capable  
transceiver. The normalized V/I curve for the driver must fall entirely inside the shaded region. The  
V/I region is bounded by the minimum driver impedance above (40.5 Ohm) and the maximum driver  
impedance below (49.5 Ohm). The output voltage must be within 10mV of ground when no current is  
flowing in or out of the pin.  
Drive High  
Iout  
Slope = 1/49.5 Ohm  
(mA)  
-6.1 * |VOH|  
Test Limit  
Slope = 1/40.5 Ohm  
-10.71 * |VOH|  
0
0.566*VOH  
0.698*VOH  
VOH  
0
Vout (Volts)  
Figure 6.1 Full-Speed Driver VOH/IOH Characteristics for High-speed Capable Transceiver  
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA1S3HEET  
USB2.0 PHY IC  
Drive Low  
Slope = 1/40.5 Ohm  
Iout  
(mA)  
Test Limit  
10.71 * |VOH|  
22  
0
Slope = 1/49.5 Ohm  
1.09V  
0.434*VOH  
VOH  
0
Vout (Volts)  
Figure 6.2 Full-Speed Driver VOL/IOL Characteristics for High-speed Capable Transceiver  
6.2  
High-speed Signaling Eye Patterns  
High-speed USB signals are characterized using eye patterns. For measuring the eye patterns 4  
points have been defined (see Figure 6.3). The Universal Serial Bus Specification Rev.2.0 defines the  
eye patterns in several 'templates'. The two templates that are relevant to the PHY are shown below.  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA1S4HEET  
USB2.0 PHY IC  
TP1 TP2  
TP3  
TP4  
USB  
Traces  
Traces  
Transceiver  
A
Connector  
B
Transceiver  
Connector  
Hub Circuit Board  
Device Circuit Board  
Figure 6.3 Eye Pattern Measurement Planes  
The eye pattern in Figure 6.4 defines the transmit waveform requirements for a hub (measured at TP2  
of Figure 6.3) or a device without a captive cable (measured at TP3 of Figure 6.3). The corresponding  
signal levels and timings are given in Table 6.6. Time is specified as a percentage of the unit interval  
(UI), which represents the nominal bit duration for a 480 Mbit/s transmission rate.  
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA1S5HEET  
USB2.0 PHY IC  
Level 1  
400mV  
Differential  
Point 3  
Point 4  
0
Point 1  
Point 2  
Differential  
V lt  
Point 5  
Point 6  
-400mV  
Differential  
Level 2  
Unit Interval  
100%  
0%  
Figure 6.4 Eye Pattern for Transmit Waveform and Eye Pattern Definition  
.
Table 6.6 Eye Pattern for Transmit Waveform and Eye Pattern Definition  
TIME  
(% OF UNIT INTERVAL)  
VOLTAGE LEVEL (D+, D-)  
Level 1  
Level 2  
525mV in UI following a transition,  
N/A  
475mV in all others  
-525mV in UI following a transition,  
-475mV in all others  
N/A  
0V  
7.5% UI  
Point 1  
Point 2  
Point 3  
Point 4  
Point 5  
Point 6  
0V  
92.5% UI  
37.5% UI  
62.5% UI  
37.5% UI  
62.5% UI  
300mV  
300mV  
-300mV  
-300mV  
The eye pattern in Figure 6.5 defines the receiver sensitivity requirements for a hub (signal applied at  
test point TP2 of Figure 6.3) or a device without a captive cable (signal applied at test point TP3 of  
Figure 6.3). The corresponding signal levels and timings are given in Table 6.7. Timings are given as  
a percentage of the unit interval (UI), which represents the nominal bit duration for a 480 Mbit/s  
transmission rate.  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA1S6HEET  
USB2.0 PHY IC  
Level 1  
400mV  
Differential  
Point 3  
Point 4  
0 Volt  
Point 1  
Point 2  
Differential  
Point 5  
Point 6  
-400mV  
Differential  
Level 2  
0%  
100%  
Figure 6.5 Eye Pattern for Receive Waveform and Eye Pattern Definition  
Table 6.7 Eye Pattern for Receive Waveform and Eye Pattern Definition  
TIME  
(% OF UNIT INTERVAL)  
VOLTAGE LEVEL (D+, D-)  
Level 1  
Level 2  
Point 1  
Point 2  
Point 3  
Point 4  
Point 5  
Point 6  
575mV  
-575mV  
0V  
N/A  
N/A  
15% UI  
85% UI  
35% UI  
65% UI  
35% UI  
65% UI  
0V  
150mV  
150mV  
-150mV  
-150mV  
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA1S7HEET  
USB2.0 PHY IC  
Chapter 7 Functional Overview  
Figure 2.1 Block Diagram on page 2 shows the functional block diagram of the GT3200, SMSC  
USB3250. Each of the functions is described in detail below.  
7.1  
Modes of Operation  
The GT3200, SMSC USB3250 support two modes of operation. See Figure 7.1 for a block diagram  
of the digital interface.  
8-bit unidirectional mode. Selected when DATABUS16_8 = 0. CLKOUT runs at 60MHz. The 8-  
bit transmit data bus uses the lower 8 bits of the DATA bus (ie, TXDATA[7:0] = DATA[7:0]). The  
8-bit receive data bus uses the upper 8 bits of the DATA bus (ie, RXDATA[7:0] = DATA[15:8]).  
16-bit bidirectional mode. Selected when DATABUS16_8 = 1. CLKOUT runs at 30MHz. An  
additional signal (VALIDH) is used to identify whether the high byte of the respective 16-bit data  
word is valid. The full 16-bit DATA bus is used for transmit and receive operations. If TXVALID  
is asserted, then the DATA[15:0] bus accepts transmit data from the SIE. If TXVALID is deasserted,  
then the DATA[15:0] bus presents received data to the SIE. VALIDH is undefined when  
DATABUS16_8 = 0 (8-bit mode).  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA1S8HEET  
USB2.0 PHY IC  
TXVALID  
1=1  
6
DATABUS16_  
8
-bit mode, 0=8-bit mode  
TXVALI  
D
DATAOUT[7:0  
]
DATA[7:0]  
DATAIN[7:0]  
Transceiver  
Core  
DATAOUT[7:0  
]
SELB  
A
MU  
DATAOUT[1  
X
B
:8]  
DATA[15:8]  
5
DATAIN[15:8]  
RXVALID  
H
VALID  
H
TXVALID  
H
Figure 7.1 Bidirectional 16-bit interface  
7.2  
System Clocking  
This block connects to either an external 12MHz crystal or an external clock source and generates a  
480MHz multi-phase clock. The clock is used in the CRC block to over-sample the incoming received  
data, resynchronize the transmit data, and is divided down to a 30MHz or 60MHz version (CLKOUT)  
which acts as the system byte clock. The PLL block also outputs a clock valid signal to the other parts  
of the transceiver when the clock signal is stable. All UTMI signals are synchronized to the CLKOUT  
output. The behavior of the CLKOUT is as follows:  
Produce the first CLKOUT transition no later than 5.6ms after negation of SUSPENDN. The  
CLKOUT signal frequency error is less than 10% at this time.  
The CLKOUT signal will fully meet the required accuracy of ±500ppm no later than 1.4ms after the  
first transition of CLKOUT.  
In HS mode there is one CLKOUT cycle per byte time. The frequency of CLKOUT does not change  
when the Macrocell is switched between HS to FS modes. In FS mode (8-bit mode) there are 5 CLK60  
cycles per FS bit time, typically 40 CLK60 cycles per FS byte time. If a received byte contains a stuffed  
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA1S9HEET  
USB2.0 PHY IC  
bit then the byte boundary can be stretched to 45 CLK60 cycles, and two stuffed bits would result in  
a 50 CLK60 cycles.  
Figure 7.2 shows the relationship between CLK60 and the transmit data transfer signals in FS mode.  
TXREADY is only asserted for one CLK60 per byte time to signal the SIE that the data on the TXDATA  
lines has been read by the Macrocell. The SIE may hold the data on the TXDATA lines for the duration  
of the byte time. Transitions of TXVALID must meet the defined setup and hold times relative to  
CLK60.  
CLKOUT  
TXVALID  
Don't  
DATA1 DATA2  
DATA3  
TXDATA[7:0]  
TXREADY  
PID  
DATA4  
Care  
Figure 7.2 FS CLK Relationship to Transmit Data and Control Signals (8-bit mode)  
Figure 7.3 shows the relationship between CLK60 and the receive data control signals in FS mode.  
RXACTIVE "frames" a packet, transitioning only at the beginning and end of a packet. However  
transitions of RXVALID may take place any time 8 bits of data are available. Figure 7.3 also shows  
how RXVALID is only asserted for one CLKOUT cycle per byte time even though the data may be  
presented for the full byte time. The XCVRSELECT signal determines whether the HS or FS timing  
relationship is applied to the data and control signals.  
CLK60  
RXACTIVE  
RXDATA[7:0]  
RXVALID  
DATA(n+1)  
DATA(n+2)  
DATA(n)  
Figure 7.3 FS CLK Relationship to Receive Data and Control Signals (8-bit mode)  
7.3  
Clock and Data Recovery Circuit  
This block consists of the Clock and Data Recovery Circuit and the Elasticity Buffer. The Elasticity  
Buffer is used to compensate for differences between the transmitting and receiving clock domains.  
The USB2.0 specification defines a maximum clock error of ±1000ppm of drift.  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA2S0HEET  
USB2.0 PHY IC  
7.4  
TX Logic  
This block receives parallel data bytes placed on the DATA bus and performs the necessary transmit  
operations. These operations include parallel to serial conversion, bit stuffing and NRZI encoding.  
Upon valid assertion of the proper TX control lines by the SIE and TX State Machine, the TX LOGIC  
block will synchronously shift, at either the FS or HS rate, the data to the FS/HS TX block to be  
transmitted on the USB cable. Data transmit timing is shown in Figure 7.4.  
CLK60  
TXVALID  
TXDATA[7:0]  
DATA  
DATA  
DATA CRC  
DATA  
PID  
CRC  
PID  
TXREADY  
DP/DM  
DATA DATA DATA DATA CRC CRC  
EOP  
SYNC  
Figure 7.4 Transmit Timing for a Data Packet (8-bit mode)  
CLK30  
TXVALID  
VALIDH  
DATA[7:0]  
DATA[15:8]  
PID  
DATA (1)  
DATA (2)  
DATA (3)  
DATA (4)  
CRC (HI)  
CRC (LO)  
DATA (0)  
TXREADY  
DP/DM  
SYNC  
PID  
DATA DATA DATA DATA DATA CRC  
HI  
CRC EOP  
LO  
0
1
2
3
4
Figure 7.5 Transmit Timing for 16-bit Data, Even Byte Count  
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA2S1HEET  
USB2.0 PHY IC  
CLK30  
TXVALID  
VALIDH  
DATA[7:0]  
DATA[15:8]  
PID  
DATA (1)  
DATA (2)  
DATA (3)  
CRC(HI)  
CRC (LO)  
DATA (0)  
TXREADY  
DP/DM  
SYNC  
PID  
DATA DATA DATA DATA DATA CRC  
HI  
CRC EOP  
LO  
0
1
2
3
4
Figure 7.6 Transmit Timing for 16-bit Data, Odd Byte Count  
The behavior of the Transmit State Machine is described below.  
Asserting a RESET forces the transmit state machine into the Reset state which negates  
TXREADY. When RESET is negated the transmit state machine will enter a wait state.  
The SIE asserts TXVALID to begin a transmission.  
After the SIE asserts TXVALID it can assume that the transmission has started when it detects  
TXREADY has been asserted.  
The SIE must assume that the PHY has consumed a data byte if TXREADY and TXVALID are  
asserted on the rising edge of CLKOUT.  
The SIE must have valid packet information (PID) asserted on the TXDATA bus coincident with the  
assertion of TXVALID.  
TXREADY is sampled by the SIE on the rising edge of CLKOUT.  
The SIE negates TXVALID to complete a packet. Once negated, the transmit logic will never  
reassert TXREADY until after the EOP has been generated. (TXREADY will not re-assert until  
TXVALID asserts again).  
The PHY is ready to transmit another packet immediately, however the SIE must conform to the  
minimum inter-packet delays identified in the USB2.0 specification.  
7.5  
RX Logic  
This block receives serial data from the CRC block and processes it to be transferred to the SIE on  
the RXDATA bus. The processing involved includes NRZI decoding, bit unstuffing, and serial to  
parallel conversion. Upon valid assertion of the proper RX control lines by the RX State Machine, the  
RX Logic block will provide bytes to the RXDATA bus as shown in the figures below. The behavior of  
the Receive State Machine is described below.  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA2S2HEET  
USB2.0 PHY IC  
CLK60  
RXACTIVE  
Invalid Data  
DATA  
DATA  
DATA  
DATA  
Data  
RXDATA[7:0]  
Invalid  
Invalid  
CRC  
CRC  
DATA  
RXVALID  
Figure 7.7 Receive Timing for Data with Unstuffed Bits (8-bit mode)  
CLK30  
RXVALID  
VALIDH  
DATA[7:0]  
DATA[15:8]  
PID  
DATA  
DATA (3)  
DATA (4)  
CRC (LO)  
CRC (HI)  
(1)  
DATA (0)  
DATA (2)  
RXACTIVE  
DP/DM  
SYNC  
PID  
DATA DATA DATA DATA DATA CRC  
LO  
CRC  
HI  
EOP  
0
1
2
3
4
Figure 7.8 Receive Timing for 16-bit Data, Even Byte Count  
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA2S3HEET  
USB2.0 PHY IC  
CLK30  
RXVALID  
VALIDH  
DATA[7:0]  
PID  
DATA (1)  
DATA (2)  
DATA (3)  
CRC (LO)  
CRC (HI)  
DATA[15:8]  
DATA (0)  
RXACTIVE  
DP/DM  
SYNC  
PID  
DATA DATA DATA DATA CRC  
LO  
CRC  
HI  
EOP  
0
1
2
3
Figure 7.9 Receive Timing for 16-bit Data, Odd Byte Count  
The assertion of RESET will force the Receive State Machine into the Reset state. The Reset state  
deasserts RXACTIVE and RXVALID. When the RESET signal is deasserted the Receive State  
Machine enters the RX Wait state and starts looking for a SYNC pattern on the USB. When a SYNC  
pattern is detected the state machine will enter the Strip SYNC state and assert RXACTIVE. The length  
of the received Hi-Speed SYNC pattern varies and can be up to 32 bits long or as short as 12 bits  
long when at the end of five hubs. As a result, the state machine may remain in the Strip SYNC state  
for several byte times before capturing the first byte of data and entering the RX Data state.  
After valid serial data is received, the state machine enters the RX Data state, where the data is loaded  
into the RX Holding Register on the rising edge of CLKOUT and RXVALID is asserted. The SIE must  
clock the data off the RXDATA bus on the next rising edge of CLKOUT. If OPMODE = Normal, then  
stuffed bits are stripped from the data stream. Each time 8 stuffed bits are accumulated the state  
machine will enter the RX Data Wait state, negating RXVALID thus skipping a byte time.  
When the EOP is detected the state machine will enter the Strip EOP state and negate RXACTIVE  
and RXVALID. After the EOP has been stripped the Receive State Machine will reenter the RX Wait  
state and begin looking for the next packet.  
The behavior of the Receive State Machine is described below:  
RXACTIVE and RXREADY are sampled on the rising edge of CLKOUT.  
In the RX Wait state the receiver is always looking for SYNC.  
The USB3280 asserts RXACTIVE when SYNC is detected (Strip SYNC state).  
The USB3280 negates RXACTIVE when an EOP is detected and the elasticity buffer is empty  
(Strip EOP state).  
When RXACTIVE is asserted, RXVALID will be asserted if the RX Holding Register is full.  
RXVALID will be negated if the RX Holding Register was not loaded during the previous byte time.  
This will occur if 8 stuffed bits have been accumulated.  
The SIE must be ready to consume a data byte if RXACTIVE and RXVALID are asserted (RX Data  
state).  
Figure 7.10 shows the timing relationship between the received data (DP/DM) , RXVALID,  
RXACTIVE, RXERROR and RXDATA signals.  
Note 7.1 The USB2.0 Transceiver does NOT decode Packet ID's (PIDs). They are passed to the  
SIE for decoding.  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA2S4HEET  
USB2.0 PHY IC  
Note 7.2 Figure 7.10, Figure 7.11 and Figure 7.12 are timing examples of a HS/FS Macrocell when  
it is in HS mode. When a HS/FS Macrocell is in FS Mode (8-bit mode) there are  
approximately 40 CLK60 cycles every byte time. The Receive State Machine assumes that  
the SIE captures the data on the RXDATA bus if RXACTIVE and RXVALID are asserted.  
In FS mode, RXVALID will only be asserted for one CLK60 per byte time.  
Note 7.3 Figure 7.10, Figure 7.11 and Figure 7.12 the SYNC pattern on DP/DM is shown as one  
byte long. The SYNC pattern received by a device can vary in length. These figures  
assume that all but the last 12 bits have been consumed by the hubs between the device  
and the host controller.  
CLK60  
RXACTIVE  
PID  
RXDATA[7:0]  
RXVALID  
RXERROR  
DP/DM  
SYNC  
PID  
EOP  
Figure 7.10 Receive Timing for Data (with CRC-16 in 8-bit mode)  
CLK60  
RXACTIVE  
PID  
DATA  
DATA  
RXDATA[7:0]  
RXVALID  
RXERROR  
DP/DM  
SYNC  
PID  
DATA  
DATA  
EOP  
CRC-5 Computation  
Figure 7.11 Receive Timing for Setup Packet (8-bit mode)  
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA2S5HEET  
USB2.0 PHY IC  
CLK60  
RXACTIVE  
RXDATA[7:0]  
PID  
DATA  
CRC  
CRC  
DATA  
DATA  
DATA  
RXVALID  
RXERROR  
DP/DM  
PID  
DATA  
CRC  
CRC  
SYNC  
DATA  
DATA  
DATA  
EOP  
CRC-16 Computation  
Figure 7.12 Receive Timing for Data Packet with CRC-16 (8-bit mode)  
7.6  
7.7  
FS/HS RX  
The receivers connect directly to the USB cable. The block contains a separate differential receiver  
for HS and FS mode. Depending on the mode, the selected receiver provides the serial data stream  
through the mulitplexer to the RX Logic block. The FS mode section of the FS/HS RX block also  
consists of a single-ended receiver on each of the data lines to determine the correct FS LINESTATE.  
For HS mode support, the FS/HS RX block contains a squelch circuit to insure that noise is never  
interpreted as data.  
FS/HS TX  
The transmitters connect directly to the USB cable. The block contains a separate differential FS and  
HS transmitter which receive encoded, bitstuffed, serialized data from the TX Logic block and transmit  
it on the USB cable. The FS/HS TX block also contains circuitry that either enables or disables the  
pull-up resistor on the D+ line.  
7.8  
7.9  
Biasing  
This block consists of an internal bandgap reference circuit used for generating the driver current and  
the biasing of the analog circuits. This block requires an external precision resistor (12k+/- 1% from  
the RBIAS pin to analog ground).  
Power Control  
This is the block that receives and distributes all the power for the transceiver. This block is also  
responsible for handling ESD protection.  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA2S6HEET  
USB2.0 PHY IC  
Chapter 8 Application Notes  
The following sections consist of select functional explanations to aid in implementing the PHY into a  
system. For complete description and specifications consult the USB2.0 Transceiver Macrocell  
Interface Specification and Universal Serial Bus Specification Revision 2.0.  
8.1  
Linestate  
The voltage thresholds that the LINESTATE[1:0] signals use to reflect the state of DP and DM depend  
on the state of XCVRSELECT. LINESTATE[1:0] uses HS thresholds when the HS transceiver is  
enabled (XCVRSELECT = 0) and FS thresholds when the FS transceiver is enabled (XCVRSELECT  
= 1). There is not a concept of variable single-ended thresholds in the USB2.0 specification for HS  
mode.  
The HS receiver is used to detect Chirp J or K, where the output of the HS receiver is always qualified  
with the Squelch signal. If squelched, the output of the HS receiver is ignored. In the GT3200, SMSC  
USB3250, as an alternative to using variable thresholds for the single-ended receivers, the following  
approach is used.  
Table 8.1 Linestate States  
STATE OF DP/DM LINES  
LINESTATE[1:0]  
FULL SPEED  
XCVRSELECT =1  
TERMSELECT=1  
HIGH SPEED  
XCVRSELECT =0  
TERMSELECT=0  
CHIRP MODE  
XCVRSELECT =0  
TERMSELECT=1  
LS[1]  
LS[0]  
0
0
0
1
SE0  
J
Squelch  
!Squelch  
Squelch  
!Squelch & HS  
Differential Receiver  
Output  
1
1
0
1
K
Invalid  
Invalid  
!Squelch & !HS  
Differential Receiver  
Output  
SE1  
Invalid  
In HS mode, 3ms of no USB activity (IDLE state) signals a reset. The SIE monitors LINESTATE[1:0]  
for the IDLE state. To minimize transitions on LINESTATE[1:0] while in HS mode, the presence of  
!Squelch is used to force LINESTATE[1:0] to a J state.  
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA2S7HEET  
USB2.0 PHY IC  
8.2  
OPMODES  
The OPMODE[1:0] pins allow control of the operating modes.  
Table 8.2 Operational Modes  
MODE[1:0]  
STATE#  
STATE NAME  
DESCRIPTION  
00  
0
Normal Operation Transceiver operates with normal USB data encoding  
and decoding  
01  
1
Non-Driving  
Allows the transceiver logic to support a soft disconnect  
feature which tri-states both the HS and FS transmitters,  
and removes any termination from the USB making it  
appear to an upstream port that the device has been  
disconnected from the bus  
10  
11  
2
3
Disable Bit  
Stuffing and NRZI  
encoding  
Disables bitstuffing and NRZI encoding logic so that 1's  
loaded from the TXDATA bus become 'J's on the DP/DM  
and 0's become 'K's  
Reserved  
N/A  
The OPMODE[1:0] signals are normally changed only when the transmitter and the receiver are  
quiescent, i.e. when entering a test mode or for a device initiated resume.  
When using OPMODE[1:0] = 10 (state 2), OPMODES are set, and then 5 60MHz clocks later,  
TXVALID is asserted. In this case, the SYNC and EOP patterns are not transmitted.  
The only exception to this is when OPMODE[1:0] is set to state 2 while TXVALID has been asserted  
(the transceiver is transmitting a packet), in order to flag a transmission error. In this case, the PHY  
has already transmitted the SYNC pattern so upon negation of TXVALID the EOP must also be  
transmitted to properly terminate the packet. Changing the OPMODE[1:0] signals under all other  
conditions, while the transceiver is transmitting or receiving data will generate undefined results.  
Under no circumstances should the device controller change OPMODE while the DP/DM lines are still  
transmitting or unpredictable changes on DP/DM are likely to occur. The same applies for  
TERMSELECT and XCVRSELECT.  
8.3  
Test Mode Support  
Table 8.3 USB2.0 Test Mode to Macrocell Mapping  
GT3200, SMSC USB3250 SETUP  
SIE TRANSMITTED  
DATA  
XCVRSELECT &  
TERMSELECT  
USB2.0 TEST MODES  
OPERATIONAL MODE  
SE0_NAK  
Normal  
Disable  
Disable  
Normal  
No transmit  
All '1's  
HS  
HS  
HS  
HS  
J
K
All '0's  
Test_Packet  
Test Packet data  
8.4  
SE0 Handling  
For FS operation, IDLE is a J state on the bus. SE0 is used as part of the EOP or to indicate reset.  
When asserted in an EOP, SE0 is never asserted for more than 2 bit times. The assertion of SE0 for  
more than 2.5us is interpreted as a reset by the device operating in FS mode.  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA2S8HEET  
USB2.0 PHY IC  
For HS operation, IDLE is a SE0 state on the bus. SE0 is also used to reset a HS device. A HS  
device cannot use the 2.5us assertion of SE0 (as defined for FS operation) to indicate reset since the  
bus is often in this state between packets. If no bus activity (IDLE) is detected for more than 3ms, a  
HS device must determine whether the downstream facing port is signaling a suspend or a reset. The  
following section details how this determination is made. If a reset is signaled, the HS device will then  
initiate the HS Detection Handshake protocol.  
8.5  
Reset Detection  
If a device in HS mode detects bus inactivity for more than 3ms (T1), it reverts to FS mode. This  
enables the FS pull-up on the DP line in an attempt to assert a continuous FS J state on the bus. The  
SIE must then check LINESTATE for the SE0 condition. If SE0 is asserted at time T2, then the  
upstream port is forcing the reset state to the device (i.e., a Driven SE0). The device will then initiate  
the HS detection handshake protocol.  
T0  
T2  
T1  
time  
XCVRSELECT  
TERMSELECT  
DP/DM  
Last  
Activity  
Driven SE0  
HS Detection  
Handshake  
Figure 8.1 Reset Timing Behavior (HS Mode)  
Table 8.4 Reset Timing Values (HS Mode)  
DESCRIPTION  
TIMING  
PARAMETER  
VALUE  
HS Reset T0  
Bus activity ceases, signaling either a reset or a  
SUSPEND.  
0 (reference)  
T1  
T2  
Earliest time at which the device may place itself in  
FS mode after bus activity stops.  
HS Reset T0 + 3. 0ms < T1 < HS  
Reset T0 + 3.125ms  
SIE samples LINESTATE. If LINESTATE = SE0, then  
the SE0 on the bus is due to a Reset state. The  
device now enters the HS Detection Handshake  
protocol.  
T1 + 100µs < T2 < T1 + 875µs  
8.6  
Suspend Detection  
If a HS device detects SE0 asserted on the bus for more than 3ms (T1), it reverts to FS mode. This  
enables the FS pull-up on the DP line in an attempt to assert a continuous FS J state on the bus. The  
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA2S9HEET  
USB2.0 PHY IC  
SIE must then check LINESTATE for the J condition. If J is asserted at time T2, then the upstream  
port is asserting a soft SE0 and the USB is in a J state indicating a suspend condition. By time T4  
the device must be fully suspended.  
T0  
T1  
T2  
T3  
T4  
time  
SUSPENDN  
XCVRSELECT  
TERMSELECT  
DP/DM  
Last  
Activity  
Soft SE0  
'J' State  
Device is suspended  
Figure 8.2 Suspend Timing Behavior (HS Mode)  
Table 8.5 Suspend Timing Values (HS Mode)  
DESCRIPTION  
TIMING  
PARAMETER  
VALUE  
0 (reference)  
HS Reset T0  
End of last bus activity, signaling either a reset or  
a SUSPEND.  
T1  
T2  
The time at which the device must place itself in  
FS mode after bus activity stops.  
HS Reset T0 + 3. 0ms < T1 <  
HS Reset T0 + 3.125ms  
SIE samples LINESTATE. If LINESTATE = 'J', then  
the initial SE0 on the bus (T0 - T1) had been due  
to a Suspend state and the SIE remains in HS  
mode.  
T1 + 100 µs < T2 < T1 + 875µs  
T3  
T4  
The earliest time where a device can issue  
Resume signaling.  
HS Reset T0 + 5ms  
HS Reset T0 + 10ms  
The latest time that a device must actually be  
suspended, drawing no more than the suspend  
current from the bus.  
8.7  
HS Detection Handshake  
The High Speed Detection Handshake process is entered from one of three states: suspend, active  
FS or active HS. The downstream facing port asserting an SE0 state on the bus initiates the HS  
Detection Handshake. Depending on the initial state, an SE0 condition can be asserted from 0 to 4  
ms before initiating the HS Detection Handshake. These states are described in the USB2.0  
specification.  
There are three ways in which a device may enter the HS Handshake Detection process:  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA3S0HEET  
USB2.0 PHY IC  
1. If the device is suspended and it detects an SE0 state on the bus it may immediately enter the HS  
handshake detection process.  
2. If the device is in FS mode and an SE0 state is detected for more than 2.5µs. it may enter the HS  
handshake detection process.  
3. If the device is in HS mode and an SE0 state is detected for more than 3.0ms. it may enter the  
HS handshake detection process. In HS mode, a device must first determine whether the SE0 state  
is signaling a suspend or a reset condition. To do this the device reverts to FS mode by placing  
XCVRSELECT and TERMSELECT into FS mode. The device must not wait more than 3.125ms  
before the reversion to FS mode. After reverting to FS mode, no less than 100µs and no more  
than 875µs later the SIE must check the LINESTATE signals. If a J state is detected the device  
will enter a suspend state. If an SE0 state is detected, then the device will enter the HS Handshake  
detection process.  
In each case, the assertion of the SE0 state on the bus initiates the reset. The minimum reset interval  
is 10ms. Depending on the previous mode that the bus was in, the delay between the initial assertion  
of the SE0 state and entering the HS Handshake detection can be from 0 to 4ms.  
This transceiver design pushes as much of the responsibility for timing events on to the SIE as  
possible, and the SIE requires a stable CLKOUT signal to perform accurate timing. In case 2 and 3  
above, CLKOUT has been running and is stable, however in case 1 the PHY is reset from a suspend  
state, and the internal oscillator and clocks of the transceiver are assumed to be powered down. A  
device has up to 6ms after the release of SUSPENDN to assert a minimum of a 1ms Chirp K.  
8.8  
HS Detection Handshake - FS Downstream Facing Port  
Upon entering the HS Detection process (T0) XCVRSELECT and TERMSELECT are in FS mode. The  
DP pull-up is asserted and the HS terminations are disabled. The SIE then sets OPMODE to Disable  
Bit Stuffing and NRZI encoding, XCVRSELECT to HS mode, and begins the transmission of all 0's  
data, which asserts a HS K (chirp) on the bus (T1). The device chirp must last at least 1.0ms, and  
must end no later than 7.0ms after HS Reset T0. At time T1 the device begins listening for a chirp  
sequence from the host port.  
If the downstream facing port is not HS capable, then the HS K asserted by the device is ignored and  
the alternating sequence of HS Chirp K's and J's is not generated. If no chirps are detected (T4) by  
the device, it will enter FS mode by returning XCVRSELECT to FS mode.  
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA3S1HEET  
USB2.0 PHY IC  
T5  
T0  
T1  
T2  
T4  
time  
T3  
OPMODE 0  
OPMODE 1  
XCVRSELECT  
TERMSELECT  
TXVALID  
DP/DM  
SOF  
SE0  
FS Mode  
Device Chirp K  
No  
Downstream  
Facing Port  
Chirps  
Figure 8.3 HS Detection Handshake Timing Behavior (FS Mode)  
Table 8.6 HS Detection Handshake Timing Values (FS Mode)  
TIMING  
PARAMETER  
DESCRIPTION  
VALUE  
0 (reference)  
T0  
T1  
T2  
T3  
T4  
T5  
HS Handshake begins. DP pull-up enabled, HS  
terminations disabled.  
Device enables HS Transceiver and asserts Chirp  
K on the bus.  
T0 < T1 < HS Reset T0 + 6.0ms  
Device removes Chirp K from the bus. 1ms  
minimum width.  
T1 + 1.0 ms < T2 < HS Reset  
T0 + 7.0ms  
Earliest time when downstream facing port may  
assert Chirp KJ sequence on the bus.  
T2 < T3 < T2+100µs  
Chirp not detected by the device. Device reverts to  
FS default state and waits for end of reset.  
T2 + 1.0ms < T4 < T2 + 2.5ms  
HS Reset T0 + 10ms  
Earliest time at which host port may end reset  
Note 8.1 T0 may occur to 4ms after HS Reset T0.  
Note 8.2 The SIE must assert the Chirp K for 66000 CLK60 cycles to ensure a 1ms minimum  
duration.  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA3S2HEET  
USB2.0 PHY IC  
8.9  
HS Detection Handshake - HS Downstream Facing Port  
Upon entering the HS Detection process (T0) XCVRSELECT and TERMSELECT are in FS mode. The  
DP pull-up is asserted and the HS terminations are disabled. The SIE then sets OPMODE to Disable  
Bit Stuffing and NRZI encoding, XCVRSELECT to HS mode, and begins the transmission of all 0's  
data, which asserts a HS K (chirp) on the bus (T1). The device chirp must last at least 1.0ms, and  
must end no later than 7.0ms after HS Reset T0. At time T1 the device begins listening for a chirp  
sequence from the downstream facing port. If the downstream facing port is HS capable then it will  
begin generating an alternating sequence of Chirp K's and Chirp J's (T3) after the termination of the  
chirp from the device (T2). After the device sees the valid chirp sequence Chirp K-J-K-J-K-J (T6), it  
will enter HS mode by setting TERMSELECT to HS mode (T7).  
Figure 8.4 provides a state diagram for Chirp K-J-K-J-K-J validation. Prior to the end of reset (T9) the  
device port must terminate the sequence of Chirp K's and Chirp J's (T8) and assert SE0 (T8-T9). Note  
that the sequence of Chirp K's and Chirp J's constitutes bus activity.  
Start Chirp  
K-J-K-J-  
K-J  
!K  
State  
detection  
K State  
Chirp  
INC  
Invalid  
Chirp  
Detect K?  
Chirp  
Count  
Count = 0  
SE0  
Chirp Count != 6  
& !SE0  
Chirp Count  
=6 6 66  
!J  
J State  
INC  
Detect J?  
Chirp  
Valid  
Chirp  
Chirp Count  
!= 6  
& !SE0  
Figure 8.4 Chirp K-J-K-J-K-J Sequence Detection State Diagram  
The Chirp K-J-K-J-K-J sequence occurs too slow to propagate through the serial data path, therefore  
LINESTATE signal transitions must be used by the SIE to step through the Chirp K-J-K-J-K-J state  
diagram, where "K State" is equivalent to LINESTATE = K State and "J State" is equivalent to  
LINESTATE = J State. The SIE must employ a counter (Chirp Count) to count the number of Chirp K  
and Chirp J states. Note that LINESTATE does not filter the bus signals so the requirement that a bus  
state must be "continuously asserted for 2.5µs" must be verified by the SIE sampling the LINESTATE  
signals.  
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA3S3HEET  
USB2.0 PHY IC  
T5  
T0  
T1  
T2  
T4  
T8  
T6 T7  
T9  
time  
T3  
OPMODE 0  
OPMODE 1  
XCVRSELECT  
TERMSELECT  
TXVALID  
DP/DM  
Device  
Chirp K  
K
J
K
J
K
J
K
J
SE0 SOF  
Downstream Facing  
Port Chirps  
Device  
Port  
Chirp  
HS Mode  
Figure 8.5 HS Detection Handshake Timing Behavior (HS Mode)  
Table 8.7 Reset Timing Values  
TIMING  
PARAMETER  
DESCRIPTION  
VALUE  
T0  
HS Handshake begins. DP pull-up enabled, HS  
terminations disabled.  
0 (reference)  
T1  
T2  
Device asserts Chirp K on the bus.  
T0 < T1 < HS Reset T0 + 6.0ms  
Device removes Chirp K from the bus. 1 ms minimum  
width.  
T0 + 1.0ms < T2 < HS Reset T0 +  
7.0ms  
T3  
T4  
Downstream facing port asserts Chirp K on the bus.  
T2 < T3 < T2+100µs  
Downstream facing port toggles Chirp K to Chirp J on  
the bus.  
T3 + 40µs < T4 < T3 + 60µs  
T5  
Downstream facing port toggles Chirp J to Chirp K on  
the bus.  
T4 + 40µs < T5 < T4 + 60µs  
T6  
T7  
Device detects downstream port chirp.  
T6  
Chirp detected by the device. Device removes DP  
pull-up and asserts HS terminations, reverts to HS  
default state and waits for end of reset.  
T6 < T7 < T6 + 500µs  
T8  
Terminate host port Chirp K-J sequence (Repeating  
T4 and T5)  
T9 - 500µs < T8 < T9 - 100µs  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA3S4HEET  
USB2.0 PHY IC  
Table 8.7 Reset Timing Values (continued)  
DESCRIPTION  
TIMING  
PARAMETER  
VALUE  
HS Reset T0 + 10ms  
T9  
The earliest time at which host port may end reset.  
The latest time, at which the device may remove the  
DP pull-up and assert the HS terminations, reverts to  
HS default state.  
Note 8.3 T0 may be up to 4ms after HS Reset T0.  
Note 8.4 The SIE must use LINESTATE to detect the downstream port chirp sequence.  
Note 8.5 Due to the assertion of the HS termination on the host port and FS termination on the  
device port, between T1 and T7 the signaling levels on the bus are higher than HS  
signaling levels and are less than FS signaling levels.  
8.10  
HS Detection Handshake - Suspend Timing  
If reset is entered from a suspended state, the internal oscillator and clocks of the transceiver are  
assumed to be powered down. Figure 8.6 shows how CLK60 is used to control the duration of the  
chirp generated by the device.  
When reset is entered from a suspended state (J to SE0 transition reported by LINESTATE),  
SUSPENDN is combinatorially negated at time T0 by the SIE. It takes approximately 5 milliseconds  
for the transceiver's oscillator to stabilize. The device does not generate any transitions of the CLK60  
signal until it is "usable" (where "usable" is defined as stable to within ±10% of the nominal frequency  
and the duty cycle accuracy 50±5%).  
The first transition of CLK60 occurs at T1. The SIE then sets OPMODE to Disable Bit Stuffing and  
NRZI encoding, XCVRSELECT to HS mode, and must assert a Chirp K for 66000 CLK60 cycles to  
ensure a 1ms minimum duration. If CLK60 is 10% fast (66MHz) then Chirp K will be 1.0ms. If CLK60  
is 10% slow (54 MHz) then Chirp K will be 1.2ms. The 5.6ms requirement for the first CLK60 transition  
after SUSPENDN, ensures enough time to assert a 1ms Chirp K and still complete before T3. Once  
the Chirp K is completed (T3) the SIE can begin looking for host chirps and use CLK60 to time the  
process. At this time, the device follows the same protocol as in section 8.9 for completion of the High  
Speed Handshake.  
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA3S5HEET  
USB2.0 PHY IC  
T0  
T1  
T2  
T3 T4  
time  
OPMODE 0  
OPMODE 1  
XCVRSELECT  
TERMSELECT  
SUSPENDN  
TXVALID  
CLK60  
DP/DM  
SE0  
J
CLK power up time  
Device Chirp K  
Look for host chirps  
Figure 8.6 HS Detection Handshake Timing Behavior from Suspend  
To detect the assertion of the downstream Chirp K's and Chirp J's for 2.5us {TFILT}, the SIE must see  
the appropriate LINESTATE signals asserted continuously for 165 CLK60 cycles.  
Table 8.8 HS Detection Handshake Timing Values from Suspend  
TIMING  
PARAMETER  
DESCRIPTION  
VALUE  
0 (HS Reset T0)  
T0  
While in suspend state an SE0 is detected on the  
USB. HS Handshake begins. D+ pull-up enabled, HS  
terminations disabled, SUSPENDN negated.  
T1  
First transition of CLKOUT. CLKOUT "Usable"  
(frequency accurate to ±10%, duty cycle accurate to  
50±5).  
T0 < T1 < T0 + 5.6ms  
T2  
T3  
Device asserts Chirp K on the bus.  
T1 < T2 < T0 + 5.8ms  
Device removes Chirp K from the bus. (1 ms  
T2 + 1.0 ms < T3 < T0 + 7.0 ms  
minimum width) and begins looking for host chirps.  
T4  
CLK "Nominal" (CLKOUT is frequency accurate to  
±500 ppm, duty cycle accurate to 50±5).  
T1 < T3 < T0 + 20.0ms  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA3S6HEET  
USB2.0 PHY IC  
8.11  
Assertion of Resume  
In this case, an event internal to the device initiates the resume process. A device with remote wake-  
up capability must wait for at least 5ms after the bus is in the idle state before sending the remote  
wake-up resume signaling. This allows the hubs to get into their suspend state and prepare for  
propagating resume signaling.  
The device has 10ms where it can draw a non-suspend current before it must drive resume signaling.  
At the beginning of this period the SIE may negate SUSPENDN, allowing the transceiver (and its  
oscillator) to power up and stabilize.  
Figure 8.7 illustrates the behavior of a device returning to HS mode after being suspended. At T4, a  
device that was previously in FS mode would maintain TERMSELECT and XCVRSELECT high.  
To generate resume signaling (FS 'K') the device is placed in the "Disable Bit Stuffing and NRZI  
encoding" Operational Mode (OPMODE [1:0] = 10), TERMSELECT and XCVRSELECT must be in FS  
mode, TXVALID asserted, and all 0's data is presented on the TXDATA bus for at least 1ms (T1 - T2).  
T0  
T1  
T2  
T3 T4  
time  
SUSPENDN  
XCVRSELECT &  
TERMSELECT  
TXVALID  
DP/DM  
FS Idle ('J')  
'K' State  
SE0  
FS Mode  
HS Mode  
Figure 8.7 Resume Timing Behavior (HS Mode)  
Table 8.9 Resume Timing Values (HS Mode)  
DESCRIPTION  
TIMING  
PARAMETER  
VALUE  
T0  
T1  
Internal device event initiating the resume process  
0 (reference)  
Device asserts FS 'K' on the bus to signal resume  
request to downstream port  
T0 < T1 < T0 + 10ms.  
T1 + 1.0ms < T2 < T1 + 15ms  
T1 + 20ms  
T2  
The device releases FS 'K' on the bus. However by  
this time the 'K' state is held by downstream port.  
T3  
T4  
Downstream port asserts SE0.  
Latest time at which a device, which was previously  
in HS mode, must restore HS mode after bus activity  
stops.  
T3 + 1.33µs {2 Low-speed bit  
times}  
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA3S7HEET  
USB2.0 PHY IC  
8.12  
Detection of Resume  
Resume signaling always takes place in FS mode (TERMSELECT and XCVRSELECT = FS enabled),  
so the behavior for a HS device is identical to that if a FS device. The SIE uses the LINESTATE signals  
to determine when the USB transitions from the 'J' to the 'K' state and finally to the terminating FS  
EOP (SE0 for 1.25us-1.5µs.).  
The resume signaling (FS 'K') will be asserted for at least 20ms. At the beginning of this period the  
SIE may negate SUSPENDN, allowing the transceiver (and its oscillator) to power up and stabilize.  
The FS EOP condition is relatively short. SIEs that simply look for an SE0 condition to exit suspend  
mode do not necessarily give the transceiver's clock generator enough time to stabilize. It is  
recommended that all SIE implementations key off the 'J' to 'K' transition for exiting suspend mode  
(SUSPENDN = 1). And within 1.25µs after the transition to the SE0 state (low-speed EOP) the SIE  
must enable normal operation, i.e. enter HS or FS mode depending on the mode the device was in  
when it was suspended.  
If the device was in FS mode: then the SIE leaves the FS terminations enabled. After the SE0 expires,  
the downstream port will assert a J state for one low-speed bit time, and the bus will enter a FS Idle  
state (maintained by the FS terminations).  
If the device was in HS mode: then the SIE must switch to the FS terminations before the SE0 expires  
( < 1.25µs). After the SE0 expires, the bus will then enter a HS IDLE state (maintained by the HS  
terminations).  
8.13  
HS Device Attach  
Figure 8.8 demonstrates the timing of the PHY control signals during a device attach event. When a  
HS device is attached to an upstream port, power is asserted to the device and the device sets  
XCVRSELECT and TERMSELECT to FS mode (time T1).  
VBUS is the +5V power available on the USB cable. Device Reset in Figure 8.8 indicates that VBUS  
is within normal operational range as defined in the USB2.0 specification. The assertion of Device  
Reset (T0) by the upstream port will initialize the device. By monitoring LINESTATE, the SIE state  
machine knows to set the XCVRSELECT and TERMSELECT signals to FS mode (T1).  
The standard FS technique of using a pull-up resistor on DP to signal the attach of a FS device is  
employed. The SIE must then check the LINESTATE signals for SE0. If LINESTATE = SE0 is asserted  
at time T2 then the upstream port is forcing the reset state to the device (i.e. Driven SE0). The device  
will then reset itself before initiating the HS Detection Handshake protocol.  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA3S8HEET  
USB2.0 PHY IC  
T0  
T1  
T2  
time  
VBUS  
Device Reset  
XCVRSELECT  
TERMSELECT  
DP/DM  
SE0  
Idle (FS 'J')  
HS Detection  
Handshake  
Figure 8.8 Device Attach Behavior  
Table 8.10 Attach and Reset Timing Values  
DESCRIPTION  
TIMING  
PARAMETER  
VALUE  
T0  
T1  
Vbus Valid.  
0 (reference)  
Maximum time from Vbus valid to when the device  
must signal attach.  
T0 + 100ms < T1  
T2 (HS Reset T0)  
Debounce interval. The device now enters the HS  
Detection Handshake protocol.  
T1 + 100ms < T2  
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA3S9HEET  
USB2.0 PHY IC  
8.14  
Application Diagrams  
VDD3.3  
VDD1.8  
Voltage  
UTMI  
Regulator  
51  
57  
56  
52  
58  
53  
60  
TXVALID  
TXREADY  
1uF  
1uF  
10uF  
10uF  
50  
47  
46  
45  
44  
42  
41  
40  
DATA 0  
DATA 1  
DATA 2  
DATA 3  
DATA 4  
DATA 5  
DATA 6  
DATA 7  
RXACTIVE  
RXVALID  
RXERROR  
VALIDH  
DATABUS16_8  
20  
21  
XCVRSELECT  
TERMSELECT  
39  
37  
36  
35  
34  
31  
30  
29  
15  
28  
DATA 8  
SUSPENDN  
RESET  
DATA 9  
DATA 10  
DATA 11  
DATA 12  
DATA 13  
DATA 14  
DATA 15  
24  
23  
OPMODE 0  
OPMODE 1  
26  
25  
LINESTATE 0  
LINESTATE 1  
55  
8
CLKOUT  
USB  
RBIAS  
C LOAD  
12KΩ  
11  
5
4
XI  
DP  
12MHz  
1ΜΩ  
USB-B  
Crystal  
12  
XO  
DM  
C LOAD  
POWER  
2
7
VSSA  
VSSA  
VSSA  
13  
VDDA1.8  
10  
Ferrite Bead  
19  
VDD1.8  
VDD1.8  
VDD1.8  
VDD1.8  
27  
10uF  
43  
16  
17  
22  
33  
38  
48  
54  
61  
62  
63  
64  
59  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD1.8  
6
9
VDDA3.3  
VDDA3.3  
Ferrite Bead  
18  
VDD3.3  
VDD3.3  
VDD3.3  
32  
49  
VDD3.3  
GND  
Figure 8.9 Application Diagram for 64-pin TQFP Package  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA4S0HEET  
USB2.0 PHY IC  
VDD3.3  
10uF  
VDD1.8  
1uF  
Voltage  
UTMI  
Regulator  
45  
51  
50  
46  
52  
47  
54  
TXVALID  
TXREADY  
1uF  
10uF  
44  
42  
41  
40  
39  
37  
36  
35  
DATA 0  
DATA 1  
DATA 2  
DATA 3  
DATA 4  
DATA 5  
DATA 6  
DATA 7  
RXACTIVE  
RXVALID  
RXERROR  
VALIDH  
DATABUS16_8  
17  
18  
XCVRSELECT  
TERMSELECT  
34  
32  
31  
30  
29  
27  
26  
25  
13  
24  
DATA 8  
SUSPENDN  
RESET  
DATA 9  
DATA 10  
DATA 11  
DATA 12  
DATA 13  
DATA 14  
DATA 15  
20  
19  
OPMODE 0  
OPMODE 1  
22  
21  
LINESTATE 0  
LINESTATE 1  
49  
6
CLKOUT  
USB  
RBIAS  
C LOAD  
12KΩ  
10  
3
2
XI  
DP  
12MHz  
Crystal  
1ΜΩ  
USB-B  
11  
XO  
DM  
C LOAD  
POWER  
1
5
8
9
VSSA  
VSSA  
VSSA  
VSSA  
12  
VDDA1.8  
Ferrite Bead  
16  
23  
38  
53  
VDD1.8  
VDD1.8  
VDD1.8  
VDD1.8  
10uF  
VDD1.8  
14  
33  
48  
55  
56  
VSS  
VSS  
VSS  
VSS  
VSS  
4
7
VDDA3.3  
VDDA3.3  
Ferrite Bead  
15  
28  
43  
VDD3.3  
VDD3.3  
VDD3.3  
VDD3.3  
GND  
Figure 8.10 Application Diagram for 56-pin QFN Package  
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA4S1HEET  
USB2.0 PHY IC  
Chapter 9 Package Outlines  
The PHY is offered in four package types:  
GT3200-JD (10x10x1.4mm TQFP), GT3200-JN (7x7x1.4mm TQFP), GT3200-JV (7x7x1.4mm TQFP  
lead free), GT3200-ABZJ (8x8x0.85mm QFN lead free)  
Figure 9.1 GT3200-JD 64 Pin TQFP Package Outline, 10x10x1.4mm Body  
Table 9.1 GT3200-JD 64 Pin TQFP Package Parameters  
MIN  
~
NOMINAL  
MAX  
REMARKS  
Overall Package Height  
Standoff  
Body Thickness  
X Span  
X body Size  
A
A1  
A2  
D
D1  
E
E1  
H
L
~
~
~
~
~
~
~
~
1.60  
0.15  
1.45  
12.2  
10.2  
12.20  
10.20  
0.20  
0.75  
~
0.05  
1.35  
11.80  
9.80  
11.80  
9.80  
0.09  
0.45  
~
Y Span  
Y body Size  
Lead Frame Thickness  
Lead Foot Length  
Lead Length  
Lead Pitch  
Lead Foot Angle  
Lead Width  
Lead Shoulder Radius  
Lead Foot Radius  
Coplanarity  
0.60  
1.00  
0.50 Basic  
L1  
e
o
o
θ
0
~
0.22  
~
~
~
7
W
R1  
R2  
ccc  
0.17  
0.08  
0.08  
~
0.27  
~
0.20  
0.08  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA4S2HEET  
USB2.0 PHY IC  
Notes:  
1
Controlling Unit: millimeter.  
2
Tolerance on the true position of the leads is ± 0.04 mm maximum.  
3
Package body dimensions D1 and E1 do not include the mold protrusion.  
Maximum mold protrusion is 0.25 mm per side.  
4
Dimension for foot length L measured at the gauge plane 0.25 mm above the seating plane.  
Details of pin 1 identifier are optional but must be located within the zone indicated.  
5
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA4S3HEET  
USB2.0 PHY IC  
Figure 9.2 GT3200-JN, JV (lead free) 64 Pin TQFP Package Outline, 7x7x1.4mm Body  
Table 9.2 GT3200-JN, JV (lead free) 64 Pin TQFP Package Parameters  
MIN  
~
NOMINAL  
MAX  
REMARKS  
Overall Package Height  
Standoff  
Body Thickness  
X Span  
X body Size  
Y Span  
Y body Size  
Lead Frame Thickness  
Lead Foot Length  
Lead Length  
Lead Pitch  
Lead Foot Angle  
Lead Width  
A
A1  
A2  
D
D1  
E
E1  
H
L
~
~
1.60  
0.15  
1.45  
9.20  
7.20  
9.20  
7.20  
0.20  
0.75  
~
0.05  
1.35  
8.80  
6.80  
8.80  
6.80  
0.09  
0.45  
~
1.40  
9.00  
7.00  
9.00  
7.00  
~
0.60  
1.00 REF.  
0.40 Basic  
~
L1  
e
o
o
θ
0
7
W
ccc  
0.13  
~
0.18  
~
0.23  
0.08  
Coplanarity  
Notes:  
1
Controlling Unit: millimeter.  
2
Tolerance on the true position of the leads is ± 0.035 mm maximum.  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA4S4HEET  
USB2.0 PHY IC  
3
Package body dimensions D1 and E1 do not include the mold protrusion.  
Maximum mold protrusion is 0.25 mm per side.  
4
Dimension for foot length L measured at the gauge plane 0.25 mm above the seating plane.  
Details of pin 1 identifier are optional but must be located within the zone indicated.  
5
Figure 9.3 USB3250-ABZJ (lead free) 56 Pin QFN Package Outline, 8x8x0.85mm Body  
Table 9.3 USB3250-ABZJ (lead free) 56 Pin QFN Package Parameters  
MIN  
0.70  
0
NOMINAL  
MAX  
REMARKS  
Overall Package Height  
Standoff  
Mold Thickness  
X Overall Size  
X Mold Cap Size  
X exposed Pad Size  
Y Overall Size  
A
A1  
A2  
D
D1  
D2  
E
E1  
E2  
L
~
0.02  
~
8.00  
~
~
8.00  
~
1.00  
0.05  
0.80  
8.15  
7.95  
6.80  
8.15  
7.95  
6.80  
0.50  
~
7.85  
7.55  
2.25  
7.85  
7.55  
2.25  
0.30  
Y Mold Cap Size  
Y exposed Pad Size  
Terminal Length  
~
~
Revision 1.3 (10-05-04)  
SMSC GT3200, SMSC USB3250  
DATA4S5HEET  
USB2.0 PHY IC  
Table 9.3 USB3250-ABZJ (lead free) 56 Pin QFN Package Parameters (continued)  
MIN  
NOMINAL  
MAX  
REMARKS  
e
b
ccc  
0.50 Basic  
Terminal Pitch  
Terminal Width  
Coplanarity  
0.18  
~
~
~
0.30  
0.08  
Notes:  
1
Controlling Unit: millimeter.  
2
Dimension b applies to plated terminals and is measured between 0.15mm and 0.30mm from the  
terminal tip. Tolerance on the true position of the terminal is ± 0.05 mm at maximum material conditions  
(MMC).  
3
Details of terminal #1 identifier are optional but must be located within the zone indicated.  
4
Coplanarity zone applies to exposed pad and terminals.  
SMSC GT3200, SMSC USB3250  
Revision 1.3 (10-05-04)  
DATA4S6HEET  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY