SL74HC299 [SLS]

8-Bit Bidirectional Universal Shift Register with Parallel I/O; 与并行I的8位双向通用移位寄存器/ O
SL74HC299
型号: SL74HC299
厂家: SYSTEM LOGIC SEMICONDUCTOR    SYSTEM LOGIC SEMICONDUCTOR
描述:

8-Bit Bidirectional Universal Shift Register with Parallel I/O
与并行I的8位双向通用移位寄存器/ O

移位寄存器
文件: 总8页 (文件大小:86K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SL74HC299  
8-Bit Bidirectional Universal  
Shift Register with Parallel I/O  
High-Performance Silicon-Gate CMOS  
The SL74HC299 is identical in pinout to the LS/ALS299. The device  
inputs are compatible with standard CMOS outputs; with pullup  
resistors, they are compatible with LS/ALSTTL outputs.  
The SL74HC299 features a multiplexed parallel input/output data  
port to achieve full 8-bit handling in a 20 pin package. Due to the large  
output drive capability and the 3-state feature, this device is ideally  
suited for interface with bus lines in a bus-oriented system.  
ORDERING INFORMATION  
SL74HC299N Plastic  
SL74HC299D SOIC  
TA = -55° to 125° C for all packages  
Two Mode-Select inputs and two Output Enable inputs are used to  
choose the mode of operation as listed in the Function Table.  
Synchronous parallel loading is accomplished by taking both Mode-  
Select lines, S and S , high. This places the outputs in the high-  
1
2
impedance state, which permits data applied to the data port to be  
clocked into the register. Reading out of the register can be  
accomplished when the outputs are enabled. The active-low  
asynchronous Reset overrides all other inputs.  
·
·
·
·
Outputs Directly Interface to CMOS, NMOS, and TTL  
Operating Voltage Range: 2.0 to 6.0 V  
Low Input Current: 1.0 mA  
PIN ASSIGNMENT  
High Noise Immunity Characteristic of CMOS Devices  
LOGIC DIAGRAM  
PIN 20=VCC  
PIN 10 = GND  
System Logic  
SLS  
Semiconductor  
SL74HC299  
MAXIMUM RATINGS*  
Symbol  
Parameter  
Value  
-0.5 to +7.0  
-1.5 to VCC +1.5  
-0.5 to VCC +0.5  
±20  
Unit  
V
VCC  
DC Supply Voltage (Referenced to GND)  
DC Input Voltage (Referenced to GND)  
DC Output Voltage (Referenced to GND)  
DC Input Current, per Pin  
V
IN  
V
VOUT  
IIN  
V
mA  
mA  
mA  
mW  
IOUT  
ICC  
DC Output Current, per Pin  
±35  
DC Supply Current, VCC and GND Pins  
±75  
PD  
Power Dissipation in Still Air, Plastic DIP+  
SOIC Package+  
750  
500  
Tstg  
TL  
Storage Temperature  
-65 to +150  
260  
°C  
°C  
Lead Temperature, 1 mm from Case for 10 Seconds  
(Plastic DIP or SOIC Package)  
*Maximum Ratings are those values beyond which damage to the device may occur.  
Functional operation should be restricted to the Recommended Operating Conditions.  
+Derating - Plastic DIP: - 10 mW/°C from 65° to 125°C  
SOIC Package: : - 7 mW/°C from 65° to 125°C  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
VCC  
Parameter  
Min  
2.0  
0
Max  
6.0  
Unit  
V
DC Supply Voltage (Referenced to GND)  
DC Input Voltage, Output Voltage (Referenced to GND)  
Operating Temperature, All Package Types  
V , VOUT  
IN  
VCC  
V
TA  
-55  
+125  
°C  
ns  
tr, tf  
Input Rise and Fall Time (Figure 1)  
VCC =2.0 V  
VCC =4.5 V  
VCC =6.0 V  
0
0
0
1000  
500  
400  
This device contains protection circuitry to guard against damage due to high static voltages or electric  
fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated  
voltages to this high-impedance circuit. For proper operation, V and VOUT should be constrained to the range  
IN  
GND£(V or VOUT)£VCC.  
IN  
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V ).  
CC  
Unused outputs must be left open. I/O pins must be connected to a properly terminated line or bus.  
System Logic  
SLS  
Semiconductor  
SL74HC299  
DC ELECTRICAL CHARACTERISTICS(Voltages Referenced to GND)  
VCC  
V
Guaranteed Limit  
Symbol  
Parameter  
Test Conditions  
25 °C  
to  
£85  
°C  
£125  
°C  
Unit  
V
-55°C  
V
IH  
MinimumHigh-Level  
Input Voltage  
VOUT=0.1 V or VCC-0.1 V  
êIOUTê£ 20 mA  
2.0  
4.5  
6.0  
1.5  
3.15  
4.2  
1.5  
3.15  
4.2  
1.5  
3.15  
4.2  
V
IL  
Maximum Low -Level  
Input Voltage  
VOUT=0.1 V or VCC-0.1 V  
êIOUTê £ 20 mA  
2.0  
4.5  
6.0  
0.3  
0.9  
1.2  
0.3  
0.9  
1.2  
0.3  
0.9  
1.2  
V
VOH  
MinimumHigh-Level  
Output Voltage  
V =V or V  
IL  
êIOUTê £ 20 mA  
2.0  
4.5  
6.0  
1.9  
4.4  
5.9  
1.9  
4.4  
5.9  
1.9  
4.4  
5.9  
V
IN  
IH  
V =V or V  
IL  
IN  
IH  
êIOUTê £ 6.0 mA (P/Q)  
êIOUTê £ 7.8 mA (P/Q)  
4.5  
6.0  
3.98  
5.48  
3.84  
5.34  
3.7  
5.2  
V =V or V  
IL  
IN  
IH  
êIOUTê £ 4.0 mA (Q)  
êIOUTê £ 5.2 mA (Q)  
4.5  
6.0  
3.98  
5.48  
3.84  
5.34  
3.7  
5.2  
VOL  
Maximum Low-Level  
Output Voltage  
V = V or V  
IH  
êIOUTê £ 20 mA  
2.0  
4.5  
6.0  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
V
IN  
IL  
V =V or V  
IL  
IN  
IH  
êIOUTê £ 6.0 mA (P/Q)  
êIOUTê £ 7.8 mA (P/Q)  
4.5  
6.0  
0.26  
0.26  
0.33  
0.33  
0.4  
0.4  
V =V or V  
IL  
IN  
IH  
êIOUTê £ 4.0 mA (Q)  
êIOUTê £ 5.2 mA (Q)  
4.5  
6.0  
0.26  
0.26  
0.33  
0.33  
0.4  
0.4  
IIN  
Maximum Input  
Leakage Current  
V =VCC or GND  
6.0  
±0.1  
±1.0  
±1.0  
mA  
mA  
IN  
IOZ  
Maximum Three-State Output in High-Impedance  
6.0  
±0.5  
±5.0  
±10  
Leakage Current  
(QA thru QH)  
State  
V = V or V  
IN IH  
IL  
VOUT=VCC or GND  
ICC  
Maximum Quiescent  
Supply Current  
(per Package)  
V =VCC or GND  
IOUT=0mA  
6.0  
8.0  
80  
160  
mA  
IN  
System Logic  
Semiconductor  
SLS  
SL74HC299  
AC ELECTRICAL CHARACTERISTICS(CL=50pF,Input tr=tf=6.0 ns)  
VCC  
Guaranteed Limit  
Symbol  
fmax  
Parameter  
V
25 °C to £85°C  
-55°C  
£125°C  
Unit  
Maximum Clock Frequency (50% Duty Cycle)  
(Figures 1 and 5)  
2.0  
4.5  
6.0  
5.0  
25  
29  
4.0  
20  
24  
3.4  
17  
20  
MHz  
tPLH, tPHL Maximum Propagation Delay, Clock to QA’ or QH’  
(Figures 1 and 5)  
2.0  
4.5  
6.0  
170  
34  
29  
215  
43  
37  
255  
51  
43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tPLH, tPHL Maximum Propagation Delay, Clock to QA thru QH  
(Figures 1 and 5)  
2.0  
4.5  
6.0  
160  
32  
27  
200  
40  
34  
240  
48  
41  
tPHL  
Maximum Propagation Delay, Reset to QA’ or QH’  
(Figures 2 and 5)  
2.0  
4.5  
6.0  
175  
35  
30  
220  
44  
37  
265  
53  
45  
tPHL  
Maximum Propagation Delay, Reset to QA thru QH  
(Figures 2 and 5)  
2.0  
4.5  
6.0  
190  
38  
32  
240  
48  
41  
285  
57  
48  
tPLZ, tPHZ Maximum Propagation Delay , OE1, OE2, S1, or S2  
to QA thru QH (Figures 3 and 6)  
2.0  
4.5  
6.0  
150  
30  
26  
190  
38  
33  
225  
45  
38  
tPZL, tPZH Maximum Propagation Delay , OE1, OE2, S1, or S2  
to QA thru QH (Figures 3 and 6)  
2.0  
4.5  
6.0  
150  
30  
26  
190  
38  
33  
225  
45  
38  
tTLH, tTHL Maximum Output Transition Time, QA thru QH  
(Figures 1 and 5)  
2.0  
4.5  
6.0  
60  
12  
10  
75  
15  
13  
90  
18  
15  
tTLH, tTHL Maximum Output Transition Time, QA’ thru QH’  
(Figures 1 and 5)  
2.0  
4.5  
6.0  
75  
15  
13  
95  
19  
16  
110  
22  
19  
CIN  
Maximum Input Capacitance)  
-
-
10  
15  
10  
15  
10  
15  
pF  
pF  
COUT  
Maximum Three-State I/O Capacitance  
(I/O in High-Impedance State), QA thru QH  
Power Dissipation Capacitance (Per Package),  
Output Enable  
Typical @25°C,VCC=5.0 V  
CPD  
Used to determine the no-load dynamic power  
consumption:  
240  
pF  
PD=CPDVCC2f+ICCVCC  
System Logic  
Semiconductor  
SLS  
SL74HC299  
TIMING REQUIREMENTS(CL=50pF,Input tr=tf=6.0 ns)  
VCC  
Guaranteed Limit  
Symbol  
tsu  
Parameter  
V
25 °C to-55°C  
£85°C  
£125°C  
Unit  
ns  
Minimum Setup Time, Mode Select S1  
or S2 to Clock (Figure 4)  
2.0  
4.5  
6.0  
100  
20  
17  
125  
25  
21  
150  
30  
26  
tsu  
Minimum Setup Time, Data Inputs SA,  
SH, PA thru PH to Clock  
(Figure 4)  
2.0  
4.5  
6.0  
100  
20  
17  
125  
25  
21  
150  
30  
26  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
th  
Minimum Hold Time, Clock to Mode  
Select S1 or S2 (Figure 4)  
2.0  
4.5  
6.0  
120  
24  
20  
150  
30  
26  
180  
36  
31  
th  
Minimum Hold Time, Clock to Data  
Inputs, SA, SH, PA thru PH (Figure 4)  
2.0  
4.5  
6.0  
5
5
5
5
5
5
5
5
5
trec  
Minimum Recovery Time, Reset  
Inactive to Clock (Figure 2)  
2.0  
4.5  
6.0  
50  
10  
9
65  
13  
11  
75  
15  
13  
tw  
Minimum Pulse Width, Clock (Figure  
1)  
2.0  
4.5  
6.0  
80  
16  
14  
100  
20  
17  
120  
24  
20  
tw  
Minimum Pulse Width, Reset (Figure  
2)  
2.0  
4.5  
6.0  
80  
16  
14  
100  
20  
17  
120  
24  
20  
tr, tf  
Maximum Input Rise and Fall Times  
(Figure 1)  
2.0  
4.5  
6.0  
1000  
500  
400  
1000  
500  
400  
1000  
500  
400  
System Logic  
Semiconductor  
SLS  
SL74HC299  
FUNCTION TABLE  
Inputs  
Output  
Enables  
Response  
Mode Reset Mode  
Select  
Clock  
Serial PA/ PB/ PC/ PD/ PE/ PF/ PG/ PH/ QA’ QH’  
Inputs QA QB QC QD QE QF QG QH  
S2 S1 OE1 OE2  
DA DH  
Reset  
L
L
L
H
X
L
H
L
L
X
H
H
L
L
L
L
X
X
X
X
X
X
D
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
D
L
L
X
H
X
X
QA through QH=Z  
L
Shift  
Right  
Shift Right: QA through QH=Z;  
DA FA; FA FB; etc  
QG  
H
H
H
H
H
H
L
L
H
H
L
L
L
H
X
L
H
L
D
D
X
X
X
X
X
X
D
D
D
X
Shift Right: QA through QH=Z;  
DA FA; FA FB; etc  
D
D
QG  
QG  
D
Shift Right: DA FA =QA;  
FA  
Shift Left: QA through QH=Z;  
DH FH; FH FG; etc  
FB =QB; etc  
Shift  
Left  
H
H
H
H
H
X
L
X
H
L
QB  
QB  
QB  
PA  
Shift Left: QA through QH=Z;  
DH FH; FH FG; etc  
D
Shift Left: DH  
FH =QH;  
D
FH  
FG =QG; etc  
Parallel  
Load  
X
X
Parallel Load:PN  
FN  
PH  
Hold  
H
H
H
L
L
L
L
L
L
H
X
L
X
H
L
X
X
X
X
X
X
X
X
X
Hold: QA through QH=Z; FN=FN  
Hold: QA through QH=Z; FN=FN  
Hold: QN =QH  
PA  
PA  
PA  
PH  
PH  
PH  
Z = high impedance  
D = data on serial input  
F = flip-flop (see Logic Diagram)  
When one or both output controls are high the eight input/output terminals are disabled to the high-  
impedance state; however, sequential operation or clearing of the register is not affected.  
System Logic  
SLS  
Semiconductor  
SL74HC299  
Figure 1. Switching Waveforms  
Figure 2. Switching Waveforms  
Figure 3a. Switching Waveforms  
Figure 3b. Switching Waveforms  
Figure 4. Switching Waveforms  
Figure 5. Test Circuit  
Figure 6. Test Circuit  
System Logic  
Semiconductor  
SLS  
SL74HC299  
EXPANDED LOGIC DIAGRAM  
System Logic  
Semiconductor  
SLS  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX