SP7653ERL/TR [SIPEX]

Wide Input Voltage Range, 1.3MHz, Buck Regulator; 宽输入电压范围, 1.3MHz ,降压型稳压器
SP7653ERL/TR
型号: SP7653ERL/TR
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

Wide Input Voltage Range, 1.3MHz, Buck Regulator
宽输入电压范围, 1.3MHz ,降压型稳压器

稳压器
文件: 总15页 (文件大小:797K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SP7653  
Wide Input Voltage Range,  
1.3MHz, Buck Regulator  
TM  
Power  
Blox  
SP7653  
FEATURES  
DFN PACKAGE  
7mm x 4mm  
2.5Vto20VStepDownAchievedUsingDualInput  
26  
P
1
2
3
LX  
GND  
OutputVoltagedownto0.8V  
BOTTOM VIEW  
P
25  
GND  
LX  
3AOutputCapability  
Heatsink Pad 1  
P
24  
LX  
GND  
Connect to Lx  
BuiltinLowRDSON PowerSwitches(40m1 typical)  
HighlyIntegratedDesign,MinimalComponents  
1.3MHzFixedFrequencyOperation  
UVLODetectsBothV andV  
23  
GND  
4
LX  
5
V
22  
FB  
V
CC  
6
COMP  
21  
GND  
CC  
IN  
Heatsink Pad 2  
Co  
n
n
e
c
t
t
o
G
N
D
UV  
7
IN  
20  
OverTemperatureProtection  
GND  
GND  
8
19  
ShortCircuitProtectionwithAuto-Restart  
WideBWAmpAllowsTypeIIorIIICompensation  
ProgrammableSoftStart  
HighEfficiency:Greaterthan95% Possible  
AsynchronousStart-UpintoaPre-ChargedOutput  
Small7mmx4mmDFNPackage  
U.S.Patent#6,922,041  
GND  
SS  
9
18  
BST  
V
10  
NC  
17  
IN  
Heatsink Pad 3  
Connect to VIN  
V
FastTransientResponse  
11  
IN  
LX  
16  
V
12  
IN  
LX 15  
13  
V
14  
LX  
IN  
Now Available in Lead Free Packaging  
DESCRIPTION  
TheSP7653isasynchronousstep-downswitchingregulator optimizedforhighefficiency. Thepartisdesignedtobe  
especiallyattractivefordualsupply,12Vto20Vdistributedpowersystemssteppeddownwith5Vusedtopowerthe  
controller.ThislowerV voltageminimizespowerdissipationinthepartandisusedtodrivethetopswitch.TheSP7653  
CC  
isdesignedtoprovideafullyintegratedbuckregulatorsolutionusingafixed1.3MHzfrequency,PWMvoltagemode  
architecture.ProtectionfeaturesincludeUnderVoltageLockOut(UVLO),thermalshutdownandoutputshortcircuit  
protection.TheSP7653isavailableinthespacesavingDFNpackage.  
TYPICAL APPLICATION CIRCUIT  
L1 IHLP2525CZER2R2M01  
U1  
2.2uH, Irate=8A  
SP7653  
DCR=18m1  
1
2
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
PGND  
PGND  
PGND  
GND  
VFB  
LX  
LX  
VOUT  
3.30V  
0-3A  
RZ2  
CZ2  
C3:X5R  
CERAMIC  
C3  
RZ3  
1581 ,1%  
3
LX  
38.3k1 , 1%  
1.5nF  
4
47uF  
6.3V  
LX  
R1  
CP1  
5
68.1k1 ,1%  
CZ3  
820pF  
VCC  
GND  
GND  
GND  
BST  
NC  
3.3pF  
6
COMP  
UVIN  
GND  
SS  
CVCC  
2.2uF  
7
CF1  
100pF  
GND2  
8
9
R2  
21.5k1 ,1%  
RBST  
10  
11  
12  
13  
CSS  
22nF  
VIN  
5.111 ,  
DBST  
SD101AWS  
1%  
VIN  
LX  
VIN  
LX  
CBST  
1uF  
VIN  
LX  
VIN  
12V  
U2  
Fs=1.3MHz  
R3  
SPX5205  
VIN VOUT  
GND  
200k1 ,1%  
C1,C5:  
CERAMIC  
X5R  
1
5
4
Notes:  
C1  
22uF  
16V  
C5  
22uF  
16V  
2
3
U1 Bottom-Side Layout should have  
three Contacts which are  
EN  
BYP  
isolated from one another: QT-  
Drain Contact, QB-Drain Contact and  
Controller-GND Contact.  
R4  
100k1 ,1%  
C2  
0.1uF  
GND  
ALL RESISTORS & CAPACITORS ARE SIZE  
0603 UNLESS OTHERWISE SPECIFIED.  
D
a
t
e
: 2
/
1
7
/
0
6  
SP
7
65
3
W
i
d
e
I
n
pu
t
V
o
l
t
a
g
e
R
a
nge
,
1
.
3
M
H
z
,
B
u
c
k
R
e
gu
l
a
t
o
r  
©
C
o
py
r
i
g
h
t
2
00
6
S
i
p
e
x
C
o
r
p
o
r
a
t
i
o
n  
Date: ꢀꢀ/20/06  
SP7653 Wide Input Voltage Range, ꢀ.3MHz, Buck Regulator  
© Copyright 2006 Sipex Corporation  
ABSOLUTE MAXIMUM RATINGS  
Thesearestressratingsonlyandfunctionaloperationofthedeviceattheseratingsoranyotherabovethoseindicatedintheoperationsectionsofthe  
specificationsbelowisnotimplied.Exposuretoabsolutemaximumratingconditionsforextendedperiodsoftimemayaffectreliability.  
VCC ..................................................................................................7V  
V ........................................................................................................................................... 20V  
IN  
StorageTemperature..................................................-65°Cto150°C  
I X...............................................................................................................................................5A  
L
PowerDissipation ...................................... InternallyLimitedviaOT  
P
B
ST...............................................................................................27V  
E
S
DRating ..........................................................................2kVH  
B
M
LX-BST ............................................................................. -0.3Vto7V  
LX....................................................................................... -1Vto20V  
ThermalResistanceV .................................................................................... 5°C/W  
JC  
Allotherpins .......................................................... -0.3VtoV C+0.3V  
C
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified: -40°C < TAMB < 85°C, -40°C< Tj< 125°C, 4.5V < V < 5.5V, 3V< Vin< 28V, Boost=LX+ 5V,  
CC  
LX =G  
N
D=0.0V,UV =3.0V,CV =1µF,CCOMP =0.1µF,C =50nF,TypicalmeasuredatV =5V.  
IN  
CC  
SS  
CC  
Thez denotesthespecificationswhichapplyoverthefulltemperaturerange,unlessotherwisespecified.  
PARAMETER  
MIN.  
TYP.  
MAX.  
3
UNITS  
CONDITIONS  
QUIESCENT CURRENT  
V SupplyCurrent(Noswitching)  
1.5  
8
mA  
mA  
V =0.9V  
CC  
FB  
V SupplyCurrent(switching)  
CC  
BoostSupplyCurrent(No  
0.2  
4.0  
0.4  
mA  
mA  
V =0.9V  
FB  
switching)  
BoostSupplyCurrent(switching)  
PROTECTION: UVLO  
V UVLOStartThreshold  
4.00  
100  
2.3  
4.25  
200  
2.5  
4.5  
300  
2.65  
400  
1
V
mV  
V
CC  
V UVLOHysteresis  
CC  
UVINStartThreshold  
UVINHysteresis  
200  
300  
mV  
µA  
UVINInputCurrent  
UVIN=3.0V  
ERROR AMPLIFIER REFERENCE  
2XGainConfig.,Measure  
ErrorAmplifierReference  
0.792 0.800 0.808  
0.788 0.800 0.812  
V
V
V ;V =5V,T=25ºC  
FB CC  
ErrorAmplifierReference  
OverLineandTemperature  
ErrorAmplifierTransconductance  
ErrorAmplifierGain  
6
mA/V  
60  
dB  
NoLoad  
COMPSinkCurrent  
150  
150  
µA  
V =0.9V,COMP=0.9V  
FB  
COMPSourceCurrent  
µA  
V =0.7V,COMP=2.2V  
FB  
V InputBiasCurrent  
50  
4
200  
nA  
V =0.8V  
FB  
FB  
InternalPole  
MHz  
V
COMPClamp  
2.5  
-2  
V =0.7V,TA=25ºC  
FB  
COMPClampTemp.Coefficient  
mV/ºC  
Date: ꢀꢀ/20/06  
SP7653 Wide Input Voltage Range, ꢀ.3MHz, Buck Regulator  
© Copyright 2006 Sipex Corporation  
2
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified: -40°C < T MB < 85°C, -40°C< Tj< 125°C, 4.5V < V C < 5.5V, 3V< Vin< 28V, Boost = LX+ 5V,  
A
C
LX=GN  
D=0.0V,UVIN=3.0V,CV C =1µF,C OMP =0.1µF,C S =50nF,TypicalmeasuredatV C=5V.  
C
C
S
C
Thez denotesthespecificationswhichapplyoverthefulltemperaturerange,unlessotherwisespecified.  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
CONTROL LOOP: PWM COMPARATOR, RAMP & LOOP DELAY PATH  
RampAmplitude  
RAMPOffset  
0.92  
1.1  
1.1  
1.28  
180  
V
V
T =25ºC,RAMPCOMP  
A
untilGHstartsSwitching  
RAMP offsetTemp.Coefficient  
-2  
mV/ºC  
GHMinimumPulseWidth  
90  
ns  
MaximumDutyRatio  
Measuredjustbefore  
pulsingbegins  
MaximumControllableDutyRatio  
92  
97  
%
MaximumDutyRatio  
InternalOscillatorRatio  
TIMERS: SOFTSTART  
SSChargeCurrent:  
100  
1.1  
%
Validfor20cycles  
1.3  
10  
1.5  
0.3  
MHz  
µA  
SSDischargeCurrent:  
1
mA  
FaultPresent,SS=0.2V  
PROTECTION: Short Circuit & Thermal  
MeasuredV EF (0.8V)-  
R
ShortCircuitThresholdVoltage  
HiccupTimeout  
0.2  
0.25  
200  
20  
V
ms  
V
F
B
V =0.5V  
FB  
NumberofAllowableClockCycles  
at100%DutyCycle  
Cycles  
MinimumGLPulseAfter20Cycles  
ThermalShutdownTemperature  
ThermalRecoveryTemperature  
ThermalHysteresis  
0.5  
145  
135  
10  
Cycles  
V =0.7V  
F
B
ºC  
V =0.7V  
F
B
ºC  
ºC  
OUTPUT: POWER STAGE  
V =5V;I UT =3A  
C
C
O
HighSideSwitchR O  
40  
40  
mΩ  
DS N  
T MB =25ºC  
A
V =5V;I UT =3A  
C
C
O
SynchronousLowsideSwitchR O  
mΩ  
A
DS N  
T MB =25ºC  
A
MaximumOutputCurrent  
3
Date: ꢀꢀ/20/06  
SP7653 Wide Input Voltage Range, ꢀ.3MHz, Buck Regulator  
© Copyright 2006 Sipex Corporation  
3
PIN DESCRIPTION  
Pin #  
Pin Name  
Description  
1-3  
4,8,19-21  
P
GND  
G
N
D
Groundconnectionforthesynchronousrectifier  
GroundPin.ThecontrolcircuitryoftheICandlowerpowerdriverare  
referencedtothispin.Returnseparatelyfromothergroundtracestothe(-)  
terminalofC  
O
UT  
.
FeedbackVoltageandShortCircuitDetectionpin.Itistheinvertinginputof  
theErrorAmplifierandservesastheoutputvoltagefeedbackpointforthe  
BuckConverter.Theoutputvoltageissensedandcanbeadjustedthrough  
anexternalresistordivider. WheneverV drops0.25Vbelowthepositive  
5
V
F
B
FB  
reference,ashortcircuitfaultisdetectedandtheICentershiccupmode.  
OutputoftheErrorAmplifier.Itisinternallyconnectedtotheinvertinginputof  
6
7
9
COMP  
UVIN  
SS  
thePWMcomparator. Anoptimalfiltercombinationischosenandconnected  
tothispinandeithergroundorV  
FB  
tostabilizethevoltagemodeloop.  
UVLOinputforVIN voltage.ConnectaresistordividerbetweenVIN andUVIN  
tosetminimumoperatingvoltage.  
SoftStart.ConnectanexternalcapacitorbetweenSSandGNDtosetthe  
softstartratebasedonthe1Asourcecurrent.TheSSpinisheldlowviaa  
1mA(min)currentduringallfaultconditions.  
InputconnectiontothehighsideN-channelMOSFET.Placeadecoupling  
capacitorbetweenthispinandPGND.  
10-13  
V
IN  
14-16,23-26  
LX  
ConnectaninductorbetweenthispinandV  
OUT  
17  
N
C
NoConnect  
Highsidedriversupplypin. ConnectBSTtotheexternalboostdiodeand  
capacitorasshownintheTypicalApplicationCircuitonpage1. Highside  
driveris connectedbetweenBSTpinandSWNpin.  
18  
22  
BST  
Vcc  
Inputforexternal5Vbiassupply  
THEORY OF OPERATION  
General Overview  
The SP7653 is a fixed frequency, voltage mode,  
synchronousPWMregulatoroptimizedforhigh  
efficiency. The part has been designed to be  
especially attractive for high input voltages of  
2.5V to 20V.  
The SP7653 contains two unique control fea-  
tures that are very powerful in distributed appli-  
cations. First, asynchronous driver control is  
enabled during startup, to prohibit the low side  
switch from pulling down the output until the  
high side switch has attempted to turn on. Sec-  
ond, a 100% duty cycle timeout ensures that the  
low side switch is periodically enhanced during  
extended periods at 100% duty cycle. This guar-  
antees the synchronized refreshing of the Boost  
capacitor during very large duty cycle ratios.  
The heart of the SP7653 is a wide bandwidth  
transconductance amplifier designed to accom-  
modate Type II and Type III compensation  
schemes. Aprecision0.8Vreference, presenton  
the positive terminal of the error amplifier,  
permits the programming of the output voltage  
down to 0.8V via the VFB pin. The output of the  
error amplifier, COMP, compared to a 1.1V  
peak-to-peak ramp is responsible for trailing  
edge PWM control. This voltage ramp, and  
PWM control logic are governed by the internal  
oscillator that accurately sets the PWM fre-  
quency to 1.3MHz.  
The SP7653 also contains a number of valuable  
protection features. Programmable VIN UVLO  
allowstheusertosettheexactvalueatwhichthe  
conversion voltage can safely begin down con-  
version, and an internal VCC UVLO which en-  
sures that the controller itself has enough volt-  
age to operate properly. Other protection fea-  
Date: ꢀꢀ/20/06  
SP7653 Wide Input Voltage Range, ꢀ.3MHz, Buck Regulator  
© Copyright 2006 Sipex Corporation  
THEORY OF OPERATION  
Thermal and Short-Circuit Protection  
tures include thermal shutdown and short-cir-  
cuit detection. In the event that either a thermal,  
short-circuit, or UVLO fault is detected, the  
SP7653 is forced into an idle state where the  
output drivers are held off for a finite period  
before a restart is attempted.  
Because the SP7653 is designed to drive large  
output current, there is a chance that the power  
converter will become too hot. Therefore, an  
internal thermal shutdown (145°C) has been  
included to prevent the IC from malfunctioning  
at extreme temperatures.  
Soft Start  
“Soft Start” is achieved when a power converter  
ramps up the output voltage while controlling  
the magnitude of the input supply source cur-  
rent. In a modern step down converter, ramping  
up the positive terminal of the error amplifier  
controls soft start. As a result, excess source  
current can be defined as the current required to  
charge the output capacitor:  
A short-circuit detection comparator has also  
been included in the SP7653 to protect against  
an accidental short at the output of the power  
converter. This comparator constantly monitors  
the positive and negative terminals of the error  
amplifier, and if the VFB pin falls more than  
250mV (typical) below the positive reference, a  
short-circuit fault is set. Because the SS pin  
overridestheinternal0.8Vreferenceduringsoft  
start, the SP7653 is capable of detecting short-  
circuit faults throughout the duration of soft  
start as well as in regular operation.  
I
VIN = COUT * (6VOUT / 6TSOFT-START)  
The SP7653 provides the user with the option to  
program the soft start rate by tying a capacitor  
from the SS pin to GND. The selection of this  
capacitor is based on the 10uA pull up current  
present at the SS pin and the 0.8V reference  
voltage. Therefore, the excess source can be  
redefined as:  
Handling of Faults:  
Upon the detection of power (UVLO), thermal,  
or short-circuit faults, the SP7653 is forced into  
an idle state where the SS and COMP pins are  
pulled low and both switches are held off. In the  
eventofUVLOfault, theSP7653remainsinthis  
idle state until the UVLO fault is removed.  
Upon the detection of a thermal or short-circuit  
fault, aninternal200ms timerisactivated. Inthe  
event of a short-circuit fault, a restart is at-  
tempted immediately after the 200ms timeout  
expires. Whereas, when a thermal fault is de-  
tected, the 200ms delay continuously recycles  
and a restart cannot be attempted until the ther-  
mal fault is removed and the timer expires.  
IVIN = COUT *[(DVOUT *10µA) /(CSS * 0.8V)]  
Under Voltage Lock Out (UVLO)  
The SP7653 contains two separate UVLO com-  
parators to monitor the bias (VCC) and conver-  
sion (VIN) voltages independently. The VCC  
UVLO threshold is internally set to 4.25V,  
whereas the VIN UVLO threshold is program-  
mable through the UVIN pin. When the voltage  
ontheUVIN pinisgreaterthan2.5V,theSP7653  
is permitted to start up pending the removal of  
all other faults. Both the VCC and VIN UVLO  
comparatorshavebeendesignedwithhysteresis  
to prevent noise from resetting a fault.  
Error Amplifier and Voltage Loop  
The heart of the SP7653 voltage error loop  
compensationisahighperformance,wideband-  
width transconductance amplifier. Because of  
the amplifier’s current limited (+/-150µA)  
transconductance, there are many ways to com-  
pensate the voltage loop or to control the COMP  
Date: ꢀꢀ/20/06  
SP7653 Wide Input Voltage Range, ꢀ.3MHz, Buck Regulator  
© Copyright 2006 Sipex Corporation  
5
THEORY OF OPERATION  
pin externally. If a simple, single-pole single-  
zero response is desired, then compensation can  
be as simple as an RC circuit to Ground. If a  
more complex compensation is required, then  
the amplifier has enough bandwidth (45° at 4  
MHz) and enough gain (60dB) to run Type III  
compensation schemes with adequate gain and  
phase margins at crossover frequencies greater  
than 50kHz.  
V
B
ST  
G
H
Voltage  
V
S
WN  
V(V  
C
C)  
GL  
Voltage  
0V  
V(V )  
IN  
S
WN  
The common mode output of the error amplifier  
is 0.9V to 2.2V. Therefore, the PWM voltage  
ramp has been set between 1.1V and 2.2V to  
ensureproper0%to100%dutycyclecapability.  
The voltage loop also includes two other very  
important features. One is an asynchronous  
startup mode. Basically, the synchronous recti-  
fier cannot turn on unless the high side switch  
has attempted to turn on or the SS pin has  
exceeded 1.7V. This feature prevents the con-  
troller from “dragging down” the output voltage  
during startup or in fault modes. The second  
feature is a 100% duty cycle timeout that en-  
sures synchronized refreshing of the Boost ca-  
pacitor at very high duty ratios. In the event that  
the high side NFET is on for 20 continuous  
clock cycles, a reset is given to the PWM flip-  
flop half way through the 21st cycle. This forces  
GL to rise for the cycle, in turn refreshing the  
Boost capacitor. The boost capacitor is used to  
generate a high voltage drive supply for the high  
side switch, which is 5V above VIN.  
Voltage  
-0V  
-V(Diode)V  
V(V )+V(V  
)
IN  
CC  
B
ST  
Voltage  
V(V  
)
C
C
TIME  
Setting Output Voltages  
The SP7653 can be set to different output volt-  
ages. The relationship in the following formula  
is based on a voltage divider from the output to  
the feedback pin VFB, which is set to an internal  
reference voltage of 0.80V. Standard 1% metal  
film resistors of surface mount size 0603 are  
recommended.  
VOUT = 0.80V ( R1 / R2 + 1 ) =>  
Power MOSFETs  
R1  
.
R2 =  
The SP7653 contains a pair of integrated low  
resistance N-channel switches designed for up  
to 3Amps. Care should be taken to de-rate the  
output current based on the thermal conditions  
in the system such as ambient temperature,  
airflow and heat sinking. Maximum output cur-  
rent could be limited by thermal limitations of a  
particular application by taking advantage of  
the integrated-over-temperature protective  
scheme employed in the SP7653. The SP7653  
incorporates a built-in overtemperature protec-  
tion to prevent internal overheating.  
{
( VOUT / 0.80V ) – 1  
}
Where R1 = 68.1K1 and for VOUT = 0.80V  
setting, simply remove R2 from the board. Fur-  
thermore, one could select the value of the R1  
and R2 combination to meet the exact output  
voltagesettingbyrestrictingtheresistancerange  
of R1 such that 50K1 < R1 < 100K1 for overall  
system loop stability.  
Date: ꢀꢀ/20/06  
SP7653 Wide Input Voltage Range, ꢀ.3MHz, Buck Regulator  
© Copyright 2006 Sipex Corporation  
6
APPLICATIONS INFORMATION  
Inductor Selection  
IPP  
IPEAK = IOUT (max)  
+
There are many factors to consider in selecting  
the inductor including core material, inductance  
vs. frequency, current handling capability, effi-  
ciency, size and EMI. In a typical SP7653 cir-  
cuit, the inductor is chosen primarily for value,  
saturationcurrentandDCresistance. Increasing  
the inductor value will decrease output voltage  
ripple, but degrade transient response. Low in-  
ductor values provide the smallest size, but  
cause large ripple currents, poor efficiency and  
require more output capacitance to smooth out  
the larger ripple current. The inductor must be  
able to handle the peak current at the switching  
frequency without saturating, and the copper  
resistance in the winding should be kept as low  
as possible to minimize resistive power loss. A  
good compromise between size, loss and cost is  
to set the inductor ripple current to be within  
20% to 40% of the maximum output current.  
2
...and provide low core loss at the high switch-  
ing frequency. Low cost powdered-iron cores  
have a gradual saturation characteristic but can  
introduce considerable AC core loss, especially  
whentheinductorvalueisrelativelylowandthe  
ripplecurrentishigh.Ferritematerials,although  
more expensive, have an abrupt saturation char-  
acteristic with the inductance dropping sharply  
when the peak design current is exceeded. Nev-  
ertheless, they are preferred at high switching  
frequencies because they present very low core  
loss while the designer is only required to  
prevent saturation. In general, ferrite or  
molypermalloy materials are a better choice for  
all but the most cost sensitive applications.  
Optimizing Efficiency  
The switching frequency and the inductor oper-  
ating point determine the inductor value as fol-  
lows:  
The power dissipated in the inductor is equal to  
the sum of the core and copper losses. To mini-  
mizecopperlosses,thewindingresistanceneeds  
to be minimized, but this usually comes at the  
expense of a larger inductor. Core losses have a  
more significant contribution at low output cur-  
rent where the copper losses are at a minimum,  
and can typically be neglected at higher output  
currentswherethecopperlossesdominate.Core  
loss information is usually available from the  
magneticsvendor.Properinductorselectioncan  
affect the resulting power supply efficiency by  
more than 15%!  
VOUT (VIN (max) <VOUT  
)
L =  
VIN (max) FS Kr IOUT (max)  
where:  
fS = switching frequency  
Kr = ratio of the AC inductor ripple current to  
the maximum output current  
Thecopperlossintheinductorcanbecalculated  
using the following equation:  
The peak-to-peak inductor ripple current is:  
P
L(Cu) = IL2(RMS) RWINDING  
VOUT (VIN (max) <VOUT  
)
IPP  
=
where IL(RMS) is the RMS inductor current that  
can be calculated as follows:  
VIN(max) FS L  
2
IPP  
IOUT(max)  
1
3
Once the required inductor value is selected, the  
proper selection of core material is based on  
peak inductor current and efficiency require-  
ments. The core must be large enough not to  
saturate at the peak inductor current...  
IL(RMS) = IOUT(max) 1 +  
(
)
D
a
t
e
: 2
/
1
7
/
0
6  
S
P
7
65
3
W
i
d
e
I
n
pu
t
V
o
l
t
a
g
e
R
a
nge
,
1
.
3
M
H
z
,
B
u
c
k
R
e
gu
l
a
t
o
r  
©
C
o
py
r
i
g
h
t
2
00
6
S
i
p
e
x
C
o
r
p
o
r
a
t
i
o
n  
Date: ꢀꢀ/20/06  
SP7653 Wide Input Voltage Range, ꢀ.3MHz, Buck Regulator  
© Copyright 2006 Sipex Corporation  
7
APPLICATIONS INFORMATION  
FS = Switching Frequency  
Output Capacitor Selection  
D = Duty Cycle  
The required ESR (Equivalent Series Resis-  
tance) and capacitance drive the selection of the  
type and quantity of the output capacitors. The  
ESR must be small enough that both the resis-  
tive voltage deviation due to a step change in the  
load current and the output ripple voltage do not  
exceed the tolerance limits expected on the  
output voltage. During an output load transient,  
the output capacitor must supply all the addi-  
tional current demanded by the load until the  
SP7653 adjusts the inductor current to the new  
value.  
COUT = Output Capacitance Value  
Input Capacitor Selection  
The input capacitor should be selected for ripple  
current rating, capacitance and voltage rating.  
The input capacitor must meet the ripple current  
requirement imposed by the switching current.  
In continuous conduction mode, the source cur-  
rent of the high-side MOSFET is approximately  
a square wave of duty cycle VOUT/VIN. More  
accurately, thecurrentwaveformistrapezoidal,  
given a finite turn-on and turn-off, switch tran-  
sition slope. Most of this current is supplied by  
the input bypass capacitors. The RMS current  
handling capability of the input capacitors is  
determined at maximum output current and  
under the assumption that the peak-to-peak in-  
ductor ripple current is low; it is given by:  
In order to maintain VOUT ,the capacitance must  
belargeenoughsothattheoutputvoltageisheld  
up while the inductor current ramps to the value  
corresponding to the new load current. Addi-  
tionally, the ESR in the output capacitor causes  
a step in the output voltage equal to the current.  
Because of the fast transient response and inher-  
ent 100% to 0% duty cycle capability provided  
by the SP7653 when exposed to an output load  
transient, the output capacitor is typically cho-  
sen for ESR, not for capacitance value.  
ICIN(RMS) = IOUT(max)  
3 D(1 - D)  
The worst case occurs when the duty cycle D is  
50% and gives an RMS current value equal to  
IOUT/2. Select input capacitors with adequate  
ripple current rating to ensure reliable opera-  
tion.  
The ESR of the output capacitor, combined with  
the inductor ripple current, is typically the main  
contributor to output voltage ripple. The maxi-  
mum allowable ESR required to maintain a  
specifiedoutputvoltageripplecanbecalculated  
by:  
The power dissipated in the input capacitor is:  
6V UT  
O
P
= IC2IN (rms) RESR(CIN)  
RESR  
)
CIN  
I K-P  
P
K
where:  
This can become a significant part of power  
losses in a converter and hurt the overall energy  
transfer efficiency. The input voltage ripple  
primarily depends on the input capacitor ESR  
and capacitance. Ignoring the inductor ripple  
current, the input voltage ripple can be deter-  
mined by:  
6VOUT = Peak-to-Peak Output Voltage Ripple  
IPK-PK = Peak-to-Peak Inductor Ripple Current  
The total output ripple is a combination of the  
ESR and the output capacitance value and can  
be calculated as follows:  
IOUT (MAX )VOUT (VIN <VOUT  
)
2 + (IPPRESR  
)
6VIN = Iout(max) RESR(CIN )  
+
2
IPP (1 – D)  
2
FSCINVIN  
6VOUT  
=
COUTFS  
(
)
Date: ꢀꢀ/20/06  
SP7653 Wide Input Voltage Range, ꢀ.3MHz, Buck Regulator  
© Copyright 2006 Sipex Corporation  
APPLICATIONS INFORMATION  
The first step of compensation design is to pick  
the loop crossover frequency. High crossover  
frequencyisdesirableforfasttransientresponse,  
but often jeopardizes the power supply stability.  
Crossover frequency should be higher than the  
ESR zero but less than 1/5 of the switching  
frequency or 60kHz. The ESR zero is contrib-  
uted by the ESR associated with the output  
capacitors and can be determined by:  
The capacitor type suitable for the output capac-  
itors can also be used for the input capacitors.  
However, exercise extra caution when tantalum  
capacitorsareused.Tantalumcapacitorsareknown  
for catastrophic failure when exposed to surge  
current, and input capacitors are prone to such  
surge current when power supplies are connected  
“livetolowimpedancepowersources. Although  
tantalum capacitors have been successfully em-  
ployed at the input, it is generally not recom-  
mended.  
1
ƒZ(ESR)  
=
2/ COUT RESR  
The next step is to calculate the complex conju-  
gate poles contributed by the LC output filter,  
Loop Compensation Design  
The open loop gain of the whole system can be  
divided into the gain of the error amplifier,  
PWM modulator, buck converter output stage,  
and feedback resistor divider. In order to cross  
over at the desired frequency cut-off (FCO), the  
gain of the error amplifier must compensate for  
the attenuation caused by the rest of the loop at  
this frequency. The goal of loop compensation  
is to manipulate loop frequency response such  
that its crossover gain at 0db, results in a slope  
of -20db/dec.  
1
ƒP(LC)  
=
2/ L COUT  
When the output capacitors are Ceramic, the  
SP7653 Evaluation Board requires a Type III  
compensation circuit to give a phase boost of  
180° in order to counteract the effects of an  
underdamped resonance of the output filter at  
the double pole frequency.  
Type III Voltage Loop  
Compensation  
GAMP (s) Gain Block  
PWM Stage  
GPWM Gain  
Block  
Output Stage  
G
OUT (s) Gain  
Block  
V
(SRz  
2
Cz  
2
+
1)(SR1Cz  
3
+
1)  
(SRESRCOU +1)  
V AIN  
UT S(R RT  
+
R C)C UT  
+
1]  
+
_
VREF  
(Volts)  
VOUT  
(Volts)  
S
R1Cz2(SRz  
3
Cz  
3
+
1)(SRz  
2
Cp  
1
+
1)  
[S^  
2
L O  
C
+
R M  
P
_
P
P
E
S
D
O
Notes:R SR =OutputCa  
pacitorEquivalentSeriesResistance.  
E
R
DC =OutputIn  
d
uctorD  
C
Resistance.  
V MP_PP =SP6  
1
3
2InternalR  
A
M
P
A
mplitu  
d
ePeaktoPeakVolta  
g
e.  
RA  
Co  
n
dition:Cz2>>Cp1&R1>>Rz  
3
OutputLo  
a
dResistance>>R SR &R C  
E
D
Voltage Feedback  
FBK Gain Block  
G
R
V E  
R F  
2
or  
V U  
O T  
(R R )  
1
+
2
VFBK  
(Volts)  
SP7653 Voltage Mode Control Loop with Loop Dynamic  
Definitions:  
R
R
R
ESR = Output Capacitor Equivalent Series Resistance  
DC = Output Inductor DC Resistance  
RAMP_PP = SP7653 internal RAMP Amplitude Peak to Peak Voltage  
Conditions:  
CZ2 >> Cp1 and R1 >> Rz3  
Output Load Resistance >> RESR and RDC  
D
a
t
e
: 2
/
1
7
/
0
6  
SP
7
65
3
W
i
d
e
I
n
pu
t
V
o
l
t
a
g
e
R
a
nge
,
1
.
3
M
H
z
,
B
u
c
k
R
e
gu
l
a
t
o
r  
©
C
o
py
r
i
g
h
t
2
00
6
S
i
p
e
x
C
o
r
p
o
r
a
t
i
o
n  
Date: ꢀꢀ/20/06  
SP7653 Wide Input Voltage Range, ꢀ.3MHz, Buck Regulator  
© Copyright 2006 Sipex Corporation  
APPLICATIONS INFORMATION  
Gain  
(dB)  
ErrorAmplifierGain  
BandwidthProduct  
Condition:  
C22>>CP1,R1>>RZ3  
20Log(RZ2/R1)  
Frequency  
(Hz)  
Bode Plot of Type III Error Amplifier Compensation.  
CP1  
RZ2  
CZ2  
RZ3  
CZ3  
V
OUT  
5
-
R1  
6
VFB  
68.1k,1%  
+
COMP  
R
SET  
CF1  
+
0.8V  
-
R
-0.8V)  
(k1)  
=54.48/(V  
SET  
OUT  
Type III Error Amplifier Compensation Circuit  
D
a
t
e
: 2
/
1
7
/
0
6  
S
P
7
65
3
W
i
d
e
I
n
pu
t
V
o
l
t
a
g
e
R
a
nge
,
1
.
3
M
H
z
,
B
u
c
k
R
e
gu
l
a
t
o
r  
©
C
o
py
r
i
g
h
t
2
00
6
S
i
p
e
x
C
o
r
p
o
r
a
t
i
o
n  
Date: ꢀꢀ/20/06  
SP7653 Wide Input Voltage Range, ꢀ.3MHz, Buck Regulator  
© Copyright 2006 Sipex Corporation  
ꢀ0  
APPLICATIONS INFORMATION  
SP765X Thermal Resistance  
The SP765X family has been tested with a  
variety of footprint layouts along with different  
copper area and thermal resistance has been  
measured. The layouts were done on 4 layer  
FR4 PCB with the top and bottom layers using  
3oz copper and the Power and Ground layers  
using 1oz copper.  
Using a minimum of 0.1 square inches of (3  
ounces of) copper on the top layer with no vias  
connecting to the 3 other layers produced a  
thermal resistance of 44°C/W. This thermal  
impedance is only 22% higher than the medium  
andlargefootprintlayouts, indicatingthatspace  
constrained designs can still benefit thermally  
from the Powerblox family of ICs. This indi-  
cates that a minimum footprint of 0.1 square  
inch, if used on a 4 layer board, can produce  
44°C/W thermal resistance. This approach is  
still very worthwhile if used in a space con-  
strained design.  
FortheMinimumfootprint,onlyabout0.1square  
inch (of 3 ounces of) copper was used on the top  
or footprint layer, and this layer had no vias to  
connect to the 3 other layers. For the Medium  
footprint, about 0.7 square inches (of 3 ounces  
of) copper was used on the top layer, but vias  
were used to connect to the other 3 layers. For  
the Maximum footprint, about 1.0 square inch  
(of3ouncesof)copperwasusedonthetoplayer  
and many vias were used to connect to the 3  
other layers.  
The following page shows the footprint layouts  
from an ORCAD file. The thermal data was  
taken for still air, not with forced air. If forced  
air is used, some improvement in thermal resis-  
tance would be seen.  
The results show that only about 0.7 square  
inches (of 3 ounces of) copper on the top layer  
and vias connecting to the 3 other layers are  
needed to get the best thermal resistance of  
36°C/W. Adding area on the top beyond the 0.7  
square inches did not reduce thermal resistance.  
SP765XThermalResistance  
4LayerBoard:  
TopLayer3ouncesCopper  
GNDLayer1ounceCopper  
PowerLayer1ounceCopper  
BottomLayer3ouncesCopper  
MinimumFootprint:44°C/W  
TopLayer:0.1squareinch  
NoViastoother3Layers  
MediumFootprint:36°C/W  
TopLayer:0.7squareinch  
Viastoother3Layers  
MaximumFootprint:36°C/W  
TopLayer:1.0squareinch  
Viastoother3Layers  
Date: ꢀꢀ/20/06  
SP7653 Wide Input Voltage Range, ꢀ.3MHz, Buck Regulator  
© Copyright 2006 Sipex Corporation  
ꢀꢀ  
APPLICATIONS INFORMATION  
D
a
t
e
: 2
/
1
7
/
0
6  
S
P
7
65
3
W
i
d
e
I
n
pu
t
V
o
l
t
a
g
e
R
a
nge
,
1
.
3
M
H
z
,
B
u
c
k
R
e
gu
l
a
t
o
r  
©
C
o
py
r
i
g
h
t
2
00
6
S
i
p
e
x
C
o
r
p
o
r
a
t
i
o
n  
Date: ꢀꢀ/20/06  
SP7653 Wide Input Voltage Range, ꢀ.3MHz, Buck Regulator  
© Copyright 2006 Sipex Corporation  
ꢀ2  
TYPICAL PERFORMANCE CHARACTERISTICS  
EfficiencyvsOutputLoadat12Vin  
100  
90  
80  
70  
60  
50  
40  
Vout=5.0V  
Vout=3.3V  
Vout=2.5V  
Vout=1.8V  
Vout=1.5V  
Vout=1.2V  
0
0.5  
1
1.5  
2
2.5  
2.5  
3
OutputLoadCurrent(A)  
EfficiencyvsOutputLoadat5Vin  
100  
90  
80  
70  
60  
50  
40  
Vout=3.3V  
Vout=2.5V  
Vout=1.8V  
Vout=1.5V  
Vout=1.2V  
0
0.5  
1
1.5  
2
3
OutputLoadCurrent(A)  
EfficiencyvsOutputLoadat3.3Vin  
100  
90  
80  
70  
60  
50  
40  
Vout=2.5V  
Vout=1.8V  
Vout=1.5V  
Vout=1.2V  
0
0.5  
1
1.5  
2
2.5  
3
OutputLoadCurrent(A)  
Date: ꢀꢀ/20/06  
SP7653 Wide Input Voltage Range, ꢀ.3MHz, Buck Regulator  
© Copyright 2006 Sipex Corporation  
ꢀ3  
PACKAGE: 26 PIN DFN  
Date: ꢀꢀ/20/06  
SP7653 Wide Input Voltage Range, ꢀ.3MHz, Buck Regulator  
© Copyright 2006 Sipex Corporation  
ꢀꢁ  
ORDERING INFORMATION  
Package  
Part Number  
Temperature  
SP7653ER..............................................-40°Cto+85°C................................. 26Pin7X4DFN  
SP7653ER-L...........................................-40°Cto+85°C............. (LeadFree)26Pin 7X4DFN  
SP7653ER/TR ........................................-40°Cto+85°C................................. 26Pin7X4DFN  
SP7653ER-L/TR .....................................-40°Cto+85°C............. (LeadFree)26Pin 7X4DFN  
BulkPackminimumquantityis500.  
/TR=TapeandReel. Packquantityis3,000DFN.  
Sipex Corporation  
Headquarters and  
Sales Office  
233 South Hillview Drive  
Solved by Sipex  
tm  
Milpitas, CA ꢃ5035  
TEL: (ꢁ0ꢂ) ꢃ3ꢁ-7500  
FAX: (ꢁ0ꢂ) ꢃ35-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume  
any liability arising out of the application or use of any product or circuit described herein; neither does it convey  
any license under its patent rights nor the rights of others.  
Date: ꢀꢀ/20/06  
SP7653 Wide Input Voltage Range, ꢀ.3MHz, Buck Regulator  
© Copyright 2006 Sipex Corporation  
ꢀ5  

相关型号:

SP7653TR

Wide Input Voltage Range, 1.3MHz,Buck Regulator
SIPEX

SP7653_06

Wide Input Voltage Range, 1.3MHz, Buck Regulator
SIPEX

SP7655

Wide Input Voltage Range 8A, 300kHz, Buck Regulator
SIPEX

SP7655EB

Evaluation Board Manual
SIPEX

SP7655ER

Wide Input Voltage Range, 8Amp 300kHz, Buck Regulator
SIPEX

SP7655ER-L

暂无描述
SIPEX

SP7655ER-L/TR

Wide Input Voltage Range 8A, 300kHz, Buck Regulator
SIPEX

SP7655ER/TR

Wide Input Voltage Range 8A, 300kHz, Buck Regulator
SIPEX

SP7655ERL

Wide Input Voltage Range, 8Amp 300kHz, Buck Regulator
SIPEX

SP7655ERL/TR

Wide Input Voltage Range, 8Amp 300kHz, Buck Regulator
SIPEX

SP7655_05

Evaluation Board Manual
SIPEX

SP7655_07

Wide Input Voltage Range, 8Amp 300kHz, Buck Regulator
SIPEX