SP708TCU [SIPEX]

+3.0V/+3.3V Low Power Microprocessor Supervisory Circuits; + 3.0V / + 3.3V的低功耗微处理器监控电路
SP708TCU
型号: SP708TCU
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

+3.0V/+3.3V Low Power Microprocessor Supervisory Circuits
+ 3.0V / + 3.3V的低功耗微处理器监控电路

电源电路 电源管理电路 微处理器 光电二极管 监控 输入元件
文件: 总18页 (文件大小:214K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
SP706P/R/S/T, SP708R/S/T  
+3.0V/+3.3V Low Power Microprocessor  
Supervisory Circuits  
Precision Low Voltage Monitor:  
SP706P/R and SP708R at +2.63V  
SP706S and SP708S at +2.93V  
SP706T and SP708T at +3.08V  
RESET Pulse Width - 200ms  
Independent Watchdog Timer - 1.6 sec  
Timeout (SP706P/S/R/T)  
40µA Maximum Supply Current  
Debounced TTL/CMOS Manual-Reset Input  
RESET Asserted Down to VCC = 1V  
RESET Output:  
Built-In Vcc Glitch Immunity  
SP706P Active-High  
Available in 8-pin PDIP, NSOIC, and  
µSOIC packages  
SP706R/S/T Active-Low  
SP708R/S/T Both Active High + Active Low  
Voltage Monitor for Power Failure or Low  
WDI Can Be Left Floating, Disabling the  
Battery Warning  
Watchdog Function  
Pin Compatible Enhancement to Industry  
Standards 706P/R/S/T and 708R/S/T  
DESCRIPTION  
The SP706P/S/R/T, SP708R/S/T series is a family of microprocessor (µP) supervisory circuits  
thatintegratemyriadcomponentsinvolvedindiscretesolutionswhichmonitorpower-supplyand  
battery, in µP, and digital systems. The SP706P/S/R/T, SP708R/S/T series will significantly  
improve system reliability and operational efficiency when compared to results obtained with  
discrete components. The features of the SP706P/S/R/T, SP708R/S/T series include a  
watchdog timer, a µP reset, a Power Fail Comparator, and a manual-reset input. The SP706P/  
S/R/T, SP708R/S/T series is ideal for +3.0V or +3.3V applications in automotive systems,  
computers, controllers, and intelligent instruments. The SP706P/S/R/T, SP708R/S/T series is  
anidealsolutionforsystemsinwhichcriticalmonitoringofthepowersupplytothe µPandrelated  
digital components is demanded.  
Part Number  
SP706P  
SP706R  
SP706S  
SP706T  
SP708R  
SP708S  
SP708T  
RESET Active RESET Threshold Manual Reset PFI Accuracy Watchdog Input  
HIGH  
LOW  
2.63V  
2.63V  
2.93V  
3.08V  
2.63V  
2.93V  
3.08V  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
4%  
4%  
4%  
4%  
4%  
4%  
4%  
YES  
YES  
YES  
YES  
NO  
LOW  
LOW  
LOW/HIGH  
LOW/HIGH  
LOW/HIGH  
NO  
NO  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
1
ABSOLUTE MAXIMUM RATINGS  
These are stress ratings only and functional operation  
of the device at these ratings or any other above those  
indicated in the operation sections of the specifications  
below is not implied. Exposure to absolute maximum  
rating conditions for extended periods of time may  
affect reliability.  
Continuous Power Dissipation  
Plastic DIP  
(derate 9.09mW/OC above +70OC)..................727mW  
SO  
(derate 5.88mW/OC above +70OC)..................471mW  
Mini SO  
(derate 4.10mW/OC above +70OC)..................330mW  
Storage Temperature Range.............-65˚C to +160˚C  
Lead Temperature (solding 10 sec)................+300˚C  
Terminal Voltage (with respect to GND):  
V
CC........................................................-0.3V to +6.0V  
All Other Inputs (Note 1)..............-0.3V to (VCC +3.0V)  
Input Current:  
V
CC.....................................................................20mA  
GND...................................................................20mA  
Output Current (all outputs)...............................20mA  
ESD Rating...........................................................2kV  
SPECIFICATIONS  
Vcc = 2.7V to 5.5V for SP70_P/R, VCC = 3.0 to 5.5V for SP70_S, VCC = 3.15V to 5.5V for SP70_T, TA= TMIN to TMAX to TMAX, unless otherwise noted,  
typical at 25°C.  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNITS CONDITIONS  
Operating Voltage Range, VCC  
1.0  
5.5  
V
µA  
Supply Current, ISUPPLY  
Reset Threshold  
25  
40  
MR=VCC or Floating, WDI Floating  
2.55  
2.85  
3.00  
2.63  
2.93  
3.08  
2.70  
3.00  
3.15  
SP70_P/R  
SP70_S  
SP70_T  
V
Reset Threshold Hysteresis  
20  
mV  
ms  
Note 2  
Note 2  
Reset Pulse Width, tRS  
140  
200  
280  
RESET Output Voltage  
VOH  
0.8xVCC  
VCC-1.5  
VRST(MAX)<VCC<3.6V, ISOURCE = 500µA  
VRST(MAX)<VCC<3.6V, ISINK =1.2mA  
4.5V<VCC<5.5V, ISOURCE = 800µA  
4.5V<VCC<5.5V, ISINK = 3.2mA  
VOL  
0.3  
0.4  
V
V
VOH  
VOL  
RESET Output Voltage  
VOH  
VCC-0.6  
VCC-1.5  
VRST(MAX)<VCC<3.6V, ISOURCE = 215µA  
VRST(MAX)<VCC<3.6V, ISOURCE =1.2mA  
4.5V<VCC<5.5V, ISOURCE = 800µA  
4.5V<VCC<5.5V, ISOURCE = 3.2mA  
VCC<3.6V  
VOL  
0.3  
VOH  
VOL  
0.4  
Watchdog Timeout Period, tWD  
WDI Pulse Width, tWP  
1.00  
50  
1.60  
0.02  
2.25  
s
ns  
VIL = 0.4V, VIH = 0.8xVCC  
WDI Input Threshold,  
VIL  
VIH  
VIL  
VIH  
0.6  
0.8  
VRST (MAX) <VCC <3.6V  
VRST (MAX) <VCC <3.6V  
VCC = 5.0V  
0.7xVCC  
V
3.5  
-1  
VCC = 5.0V  
µA  
WDI Input Current  
1
WDI = 0 or VCC  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
2
SPECIFICATIONS (continued)  
Vcc = 2.7V to 5.5V for SP70_P/R, VCC = 3.0 to 5.5V for SP70_S, VCC = 3.15V to 5.5V for SP70_T, TA= TMIN to TMAX to TMAX, unless otherwise noted,  
typical at 25°C.  
PARAMETER  
MIN.  
TYP. MAX. UNITS CONDITIONS  
WDO Output Voltage  
VOH  
VOL  
VOH  
VOL  
0.8xVCC  
VCC-1.5  
V
RST(MAX)<VCC<3.6V, ISOURCE = 500µA  
0.3  
0.4  
V
VRST(MAX)<VCC<3.6V, ISINK =1.2mA  
4.5V<VCC<5.5V, ISOURCE = 800µA  
4.5V<VCC<5.5V, ISINK = 3.2mA  
µA  
MR Pull-Up Current  
25  
100  
70  
250  
250  
600  
MR = 0V,VRST(MAX)<VCC<3.6V  
MR = 0V,4.5V<VCC<5.5V  
MR Pulse Width, tMR  
500  
150  
VRST(MAX)<VCC<3.6V  
4.5V<VCC<5.5V  
ns  
MR Input Threshold  
VIL  
VIH  
VIL  
VIH  
0.6  
0.8  
VRST(MAX)<VCC<3.6V  
VRST(MAX)<VCC<3.6V  
4.5V<VCC<5.5V  
0.7xVCC  
2.0  
V
4.5V<VCC<5.5V  
MR to Reset Out Delay, tMD  
PFI Input Threshold  
PFI Input Current  
750  
250  
VRST(MAX)<VCC<3.6V,NOTE 2  
4.5V<VCC<5.5V,NOTE 2  
ns  
VCC = 3.0V for the SP70_P/R,VCC  
3.3V for the SP70_S/T,PFI falling  
=
1.20  
1.25  
1.30  
V
-25.00  
0.01 25.00  
nA  
PFO Output Voltage  
VOH  
VOL  
VOH  
VOL  
0.8xVCC  
VCC-1.5  
VRST(MAX)<VCC<3.6V, ISOURCE = 500µA  
0.3  
0.4  
V
VRST(MAX)<VCC<3.6V,ISINK =1.2mA  
4.5V<VCC<5.5V, ISOURCE = 800µA  
4.5V<VCC<5.5V, ISINK = 3.2mA  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
3
µSOIC  
DIP and SOIC  
1
2
8
7
MR  
WDO  
1
8
7
RESET / RESET*  
WDI  
PFO  
V
CC  
RESET / RESET*  
WDO 2  
SP706P/R/S/T  
SP706P/R/S/T  
3
4
6
5
GND  
PFI  
WDI  
PFO  
3
6
5
MR  
PFI  
4
VCC  
GND  
1
2
8
7
MR  
RESET  
RESET  
1
2
8
7
RESET  
RESET  
N.C.  
PFO  
V
CC  
SP708S/R/T  
SP708S/R/T  
3
4
6
5
GND  
PFI  
N.C.  
PFO  
3
4
6
5
MR  
PFI  
V
CC  
GND  
*SP706P only  
*SP706P only  
Figure 1. Pinouts  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
4
PIN DESCRIPTION  
SP706R/S/T  
SP706P  
SP708R/S/T  
NAME  
FUNCTION  
DIP/  
SOIC  
DIP/  
SOIC  
DIP/  
SOIC  
µSOIC  
µSOIC  
µSOIC  
Manual Reset - This input triggers a reset pulse  
when pulled below 0.8V. This active-LOW input  
has an internal 70µA pull-up current. It can be  
driven from a TTL or CMOS logic line or shorted  
to ground with a switch  
MR  
1
3
1
3
1
3
VCC  
Voltage input.  
2
3
4
5
2
3
4
5
2
3
4
5
GND  
Ground reference for all signals  
Power-Fail Input - When this voltage monitor input  
is less than 1.25V, PFO goes LOW. Connect PFI  
to ground or VCC when not in use.  
PFI  
4
5
6
7
4
5
6
7
4
5
6
7
Power-Fail Output - This output is HIGH until PFI  
is less than 1.25V.  
PFO  
Watchdog Input - If this input remains HIGH or  
LOW for 1.6s, the internal watchdog timer times  
out and WDO goes LOW. Floating WDI or  
connecting WDI to a high-impedance tri-state  
buffer disables the watchdog feature. The internal  
watchdog timer clears whenever RESET is  
asserted, WDI is tri-stated, or whenever WDI sees  
a rising or falling edge.  
WDI  
N.C.  
6
8
6
8
-
-
No Connect.  
-
-
-
-
-
-
6
7
8
1
Active-LOW RESET Output - This output pulses  
LOW for 200ms when triggered and stays LOW  
whenever VCC is below the reset threshold. It  
RESET remains LOW for 200ms after Vcc rises above the  
reset threshold or MR goes from LOW to HIGH.  
A watchdog timeout will not trigger RESET unless  
WDO is connected to MR.  
7
1
Watchdog Output - This output pulls LOW when  
the internal watchdog timer finishes its 1.6s count  
and does not go HIGH again until the watchdog is  
cleared. WDO also goes LOW during low-line  
WDO  
conditions. Whenever VCC is below the reset  
threshold, WDO stays LOW. However, unlike  
RESET, WDO does not have a minimum pulse  
width. As soon as VCC is above the reset  
threshold, WDO goes HIGH with no delay.  
8
7
2
8
2
-
-
Active-HIGH RESET Output - This output is the  
complement of RESET. Whenever RESET is  
HIGH, RESET is LOW, and vice versa. Note the  
SP708R/S/T has a reset output only.  
RESET  
1
-
-
8
2
Table 1. Device Pin Description  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
5
WATCHDOG  
TRANSITION  
DETECTOR  
WATCHDOG  
TIMER  
WDI  
MR  
WDO  
V
CC  
TIMEBASE FOR  
RESET AND  
WATCHDOG  
70µA  
RESET  
GENERATOR  
RESET/RESET*  
V
CC  
2.63V for the SP706P/R  
2.93V for the SP706S  
3.08V for the SP706T  
PFI  
PFO  
1.25V  
SP706P/R/S/T  
GND  
* For the SP706P only  
Figure 2. Internal Block Diagram for the SP706P/R/S/T  
V
CC  
RESET  
RESET  
250µA  
MR  
RESET  
GENERATOR  
V
CC  
2.63V for the SP708R  
2.93V for the SP708S  
3.08V for the SP708T  
PFI  
PFO  
1.25V  
SP708R/S/T  
GND  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
6
+3.3V  
1.4V  
PFI  
V
CC = +3.3V  
1.2V  
T
A
= +25 C  
PFI  
PFO  
3V  
PFO  
1K  
30pF  
+1.25V  
0V  
Figure 4B. Circuit for the Power-Fail Comparator  
De-assertion Response Time.  
Figure 4A. Power-Fail Comparator De-assertion  
Response Time.  
+3.3V  
1.4V  
V
CC = +3.3V  
PFI  
1.2V  
T
A
= +25 C  
1K  
3V  
PFI  
PFO  
PFO  
0V  
30pF  
+1.25V  
Figure 5A. Power-Fail Comparator Assertion  
Response Time.  
Figure 5B. Circuit for the Power-Fail Comparator  
Assertion Response Time.  
VCC  
TA = +25oC  
3.6V  
VCC  
VCC  
2K  
0V  
RESET  
RESET  
RESET  
330pF  
GND  
Figure 6B. Circuit for the SP706 RESET Output  
Voltage vs. Supply Voltage.  
Figure 6A. SP706 RESET Output Voltage vs. Supply  
Voltage.  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
7
VCC  
T
A
= +25oC  
RESET  
V
CC  
10K  
RESET  
330pF  
GND  
Figure 7A. SP706 RESET Response Time  
Figure 7B. Circuit for the SP706 RESET Response  
Time  
3.2V  
2.8V  
RESET  
RESET  
0V  
0V  
3.2V  
2.8V  
RESET  
RESET  
0V  
0V  
Figure 8. SP708 RESET and RESET Assertion  
Figure 9. SP708 RESET and RESET De-Assertion  
V
CC  
T
A
= +25oC  
RESET  
V
CC  
10K  
330pF  
330pF  
RESET  
10KΩ  
GND  
Figure 10. Circuit for the SP708 RESET and RESET Assertion and De-Assertion  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
8
3.6V  
VCC  
0V  
RESET  
0V  
Figure 12. SP708 RESET Response Time  
Figure 11. SP708 RESET Output Voltage vs. Supply  
Voltage  
V
CC  
V
CC  
RESET  
330pF  
10K  
GND  
Figure 13. Circuit for the SP708 RESET Output Voltage vs. Supply Voltage and the RESET Response Time  
Figures  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
9
the reset threshold, an internal timer releases  
RESETafter200ms. RESETpulsesLOWwhen-  
ever VCC dips below the reset threshold, such as  
in a brownout condition. When a brownout  
condition occurs in the middle of a previously  
initiated reset pulse, the pulse continues for at  
least another 140ms. During power-down, once  
VCC falls below the reset threshold, RESET  
stays LOW and is guaranteed to be 0.4V or less  
until VCC drops below 1V.  
FEATURES  
TheSP706P/R/S/T-SP708R/S/Tseriesprovides  
four key functions:  
1. Aresetoutputduringpower-up, power-down  
and brownout conditions.  
2. An independent watchdog output that goes  
LOWifthewatchdoginputhasnotbeentoggled  
within 1.6 sec.  
3. A 1.25V threshold detector for power-fail  
warning, low battery detection, or monitoring a  
power supply other than +3.3V/+3.0V.  
4. An active-LOW manual-reset that allows  
RESET to be triggered by a pushbutton switch.  
The active-HIGH RESET output is simply  
the complement of the RESET output and is  
guaranteed to be valid with VCC down to 1.1V.  
Some µPs, such as Intel's 80C51, require an  
active-HIGH reset pulse.  
The SP706R/S/T devices are the same as the  
SP708R/S/Tdevicesexceptfortheactive-HIGH  
RESET substitution of the watchdog timer. The  
SP706P device is the same as the SP706R de-  
vice except an active-HIGH RESET is provided  
rather than an active-LOW RESET.  
Watchdog Timer  
The SP706P/R/S/T-SP708R/S/T series watchdog  
circuit monitors the µP's activity. If the µP does  
not toggle the watchdog input (WDI) within 1.6  
seconds and WDI is not tri-stated, WDO goes  
LOW. As long as RESET is asserted or the WDI  
input is tri-stated, the watchdog timer will stay  
cleared and will not count. As soon as RESET  
is released and WDI is driven HIGH or LOW,  
the timer will start counting. Pulses as short as  
50ns can be detected.  
THEORY OF OPERATION  
The SP706P/R/S/T-SP708R/S/T series is a mi-  
croprocessor(µP)supervisorycircuitthatmoni-  
tors the power supplied to digital circuits such  
as microprocessors, microcontrollers, or  
memory. The series is an ideal solution for  
portable, battery-powered equipment that re-  
quires power supply monitoring. Implementing  
this series will reduce the number of compo-  
nents and overall complexity of a system. The  
watchdog functions of this product family will  
continuously oversee the operational status of a  
system. The operational features and benefits of  
the SP706P/R/S/T-SP708R/S/T series are de-  
scribed, in more detail, below.  
Typically, WDO will be connected to the  
non-maskable interrupt input (NMI) of a µP.  
WhenVCC dropsbelowtheresetthreshold,WDO  
will go LOW independent of the current status  
of the watchdog timer. Normally this would  
trigger an NMI but RESET goes LOW simulta-  
neously, and thus overrides the NMI.  
If WDI is left unconnected, WDO can be used as  
a low-line output. Since floating WDI disables  
the internal timer, WDO goes LOW only when  
VCC falls below the reset threshold, thus  
functioning as a low-line output.  
RESET Output  
A microprocessor's reset input starts the µP  
in a known state. The SP706P/R/S/T-SP708R/  
S/T series asserts reset during power-up and  
prevents code execution errors during power-  
down or brownout conditions.  
Power-Fail Comparator  
The power-fail comparator can be used for  
various purposes because its output and  
noninverting input are not internally connected.  
The inverting input is internally connected to  
a 1.25V reference.  
Duringpower-up, onceVCC reaches1V, RESET  
is a guaranteed logic LOW of 0.4V or less. As  
VCC  
rises,RESETstaysLOW.WhenVCC risesabove  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
10  
t
WP  
t
WD  
t
WD  
+3.3V  
0V  
WDI  
+3.3V  
0V  
WDO  
t
WD  
+3.3V  
RESET*  
RESET*  
0V  
t
RS  
+3.3V  
0V  
* externally triggered LOW by MR,  
RESET is for the SP813L/813M only  
Figure 14. Watchdog Timing Waveforms  
Manual Reset  
The manual-reset input (MR) allows RESET to  
be triggered by a pushbutton switch. The switch  
is effectively debounced by the 140ms  
minimum RESET pulse width. MR is TTL/  
CMOS logic compatible, so it can be driven by  
an external logic line. MR can be used to force  
a watchdog timeout to generate a RESET pulse  
in the SP706P/R/S/T-SP708R/S/T series.  
Simply connect WDO to MR.  
To build an early-warning circuit for power  
failure, connect the PFI pin to a voltage divider  
as shown in Figure 16. Choose the voltage  
divider ratio so that the voltage at PFI falls  
below1.25Vjustbeforethe+5Vregulatordrops  
out. UsePFOtointerrupttheµPsoitcanprepare  
for an orderly power-down.  
+3.3V  
V
RT  
V
RT  
VCC  
0V  
+3.3V  
0V  
WDO  
t
RS  
t
RS  
+3.3V  
0V  
RESET  
MR*  
+3.3V  
0V  
t
MD  
*externally driven LOW  
t
MR  
Figure 15. Timing Diagrams with WDI Tri-stated. The RESET Output is the Inverse of the RESET Waveform  
Shown.  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
11  
VCC line. Connect PFO to MR to initiate a  
RESET pulse when PFI drops below 1.25V.  
Figure 17 shows the SP706R/S/T-SP708R/  
S/TseriesconfiguredtoassertRESETwhenthe  
+3.3V/+3.0V supply falls below the RESET  
threshold, or when the +12V supply falls below  
approximately 11V.  
Ensuring a Valid RESET Output Down to  
VCC = 0V  
When VCC falls below 1V, the RESET output no  
longer sinks current, it becomes an open circuit.  
High-impedanceCMOSlogicinputscandriftto  
undeterminedvoltagesifleftundriven. Ifapull-  
down resistor is added to the RESET pin, any  
stray charge or leakage currents will be shunted  
to ground, holding RESET LOW. The resistor  
value is not critical. It should be about 100K,  
large enough not to load RESET and small  
enough to pull RESET to ground.  
Monitoring a Negative Voltage Supply  
The power-fail comparator can also monitor a  
negative supply rail, shown in Figure 18.  
When the negative rail is good (a negative  
voltage of large magnitude), PFO is LOW. By  
adding the resistors and transistor as shown, a  
HIGH PFO triggers RESET. As long as PFO  
remains HIGH, the SP706P/R/S/T-SP708R/S/  
T series will keep RESET asserted (where  
RESET=LOWandRESET=HIGH). Notethat  
this circuit's accuracy depends on the PFI  
threshold tolerance, the VCC line, and the resis-  
tors.  
Monitoring Voltages Other Than the  
Unregulated DC Input  
Monitor voltages other than the unregulated DC  
by connecting a voltage divider to PFI and  
adjusting the ratio appropriately. If required,  
add hysteresis by connecting a resistor (with a  
value approximately 10 times the sum of the  
two resistors in the potential divider network)  
between PFI and PFO. A capacitor between PFI  
and GND will reduce the power-fail circuit's  
sensitivity to high-frequency noise on the  
line being monitored. RESET can be used to  
monitor voltages other than the +3.3V/+3.0V  
Interfacing to mPs with Bidirectional  
RESET Pins  
µPs with bidirectional RESET pins, such as the  
Motorola 68HC11 series, can contend with the  
RESET output. If, for example, the RESET  
Regulated +3.3V/+3.0V  
Power Supply  
+12V  
+3.3V/+3.0V  
Unregulated DC  
Power Supply  
0.1µF  
V
CC  
1M  
V
CC  
1%  
MR  
V
CC  
R
1
2
PFI  
RESET  
RESET  
µP  
PFI  
MR  
INTERRUPT  
PFO  
PFI  
PFO  
130KΩ  
1%  
I/O LINE  
NMI  
R
WDO  
RESET  
to µP  
GND  
GND  
GND  
PUSHBUTTON  
SWITCH  
Figure 16. Typical Operating Circuit  
Figure 17. Monitoring Both +3.3V/+3.0V and +12V  
Power Supplies  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
12  
themagnitudeindicated(resetcomparatorover-  
drive). The graph shows the maximum pulse  
width a negative-going VCC transient may  
typically have without causing a reset pulse to  
be issued. As the amplitude of the transient  
increases (i.e. goes farther below the reset  
threshold), the maximum allowable pulse width  
decreases. Typically, a VCC transient that goes  
100mV below the reset threshold and lasts for  
40µs or less will not cause a reset pulse to be  
issued.A100nFbypasscapacitormountedclose  
to the VCC pin provides additional transient  
immunity.  
output is driven HIGH and the µP wants to pull  
it LOW, indeterminate logic levels may result.  
To correct this, connect a 4.7kresistor  
between the RESET output and the µP reset  
I/O, as shown if Figure 19. Buffer the  
RESET output to other system components.  
Negative-Going VCC Transients  
While issuing resets to the µP during power-up,  
power-down, and brownout conditions, these  
supervisors are relatively immune to short-  
durationnegative-goingV transients(glitches).  
ItisusuallyundesirabletoCrCesettheµPwhenVCC  
experiences only small glitches.  
Applications  
The SP706P/R/S/T-SP708R/S/T series offers  
unmatched performance and the lowest power  
consumption for these industry standard de-  
vices. Refer to Figures 21 and 22 for supply  
currentperformancecharacteristicsratedagainst  
temperature and supply voltages.  
Figure 20 shows maximum transient dura-  
tion vs. reset-comparator overdrive, for which  
reset pulses are not generated. The data was gen-  
erated using negative-going VCC pulses, starting  
at 3.3V and ending below the reset threshold by  
+3.3V/+3.0V  
V
CC  
R
1
100k  
MR  
Buffered RESET connects to System Components  
PFI  
PFO  
2N3904  
100kΩ  
R2  
RESET  
+3.3V/+3.0V  
+3.3V/+3.0V  
to µP  
V-  
GND  
VCC  
VCC  
V
CC - 1.25  
R
R
1
=
, VTRIP < 0  
1.25 - VTRIP  
2
µP  
RESET  
RESET  
4.7KΩ  
+3.3V  
MR  
0V  
V-  
V-  
GND  
GND  
+3.3V  
PFO  
0V  
V
TRIP  
0V  
Figure 18. Monitoring a Negative Voltage Supply  
Figure 19. Interfacing to Microprocessors with  
Bidirectional RESET I/O for the SP706  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
13  
20.2  
20.1  
20.0  
19.9  
19.8  
19.7  
19.6  
19.5  
19.4  
Maximum Transient Duration  
100  
80  
Vcc=3.3V  
1nF Capacitor  
V
OUT TO GND  
60  
40  
Above Line  
RESET  
Generated  
20  
0
NO  
RESET  
Generated  
10  
1000  
100  
10000  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Reset Overdrive (mV)  
Temperature (°C)  
Figure 20. Maximum Transient Duration Without  
Causing a Reset Pulse vs. Reset Comparator Overdrive  
Figure 21. Supply Current vs. Temperature  
30  
28  
26  
24  
22  
20  
18  
16  
14  
2.5  
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
Figure 22. Supply Current vs. Supply Voltage  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
14  
PACKAGE: PLASTIC  
DUAL–IN–LINE  
(NARROW)  
E1  
E
D1 = 0.005" min.  
(0.127 min.)  
A1 = 0.015" min.  
(0.381min.)  
D
A = 0.210" max.  
(5.334 max).  
C
A2  
Ø
L
B1  
B
e
= 0.300 BSC  
(7.620 BSC)  
e = 0.100 BSC  
(2.540 BSC)  
A
ALTERNATE  
END PINS  
(BOTH ENDS)  
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
8–PIN  
0.115/0.195  
(2.921/4.953)  
A2  
0.014/0.022  
(0.356/0.559)  
B
0.045/0.070  
B1  
C
(1.143/1.778)  
0.008/0.014  
(0.203/0.356)  
0.355/0.400  
(9.017/10.160)  
D
0.300/0.325  
(7.620/8.255)  
E
0.240/0.280  
E1  
L
(6.096/7.112)  
0.115/0.150  
(2.921/3.810)  
0°/ 15°  
(0°/15°)  
Ø
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
15  
PACKAGE: PLASTIC  
SMALL OUTLINE (SOIC)  
(NARROW)  
E
H
h x 45°  
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
8–PIN  
A
A1  
B
D
E
0.053/0.069  
(1.346/1.748)  
0.004/0.010  
(0.102/0.249  
0.014/0.019  
(0.35/0.49)  
0.189/0.197  
(4.80/5.00)  
0.150/0.157  
(3.802/3.988)  
e
0.050 BSC  
(1.270 BSC)  
H
h
0.228/0.244  
(5.801/6.198)  
0.010/0.020  
(0.254/0.498)  
L
0.016/0.050  
(0.406/1.270)  
Ø
0°/8°  
(0°/8°)  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
16  
PACKAGE: PLASTIC  
MICRO SMALL  
OUTLINE (µSOIC)  
0.0256  
BSC  
12.0˚  
±4˚  
0.012  
±0.003  
0.008  
0˚ - 6˚  
0.0965  
±0.003  
0.006  
±0.006  
R .003  
0.006  
±0.006  
0.118  
±0.004  
0.16  
±0.003  
3.0˚  
±3˚  
12.0˚  
±4˚  
0.0215  
1  
±0.006  
0.020  
0.020  
0.037  
Ref  
1
2
0.116  
±0.004  
0.034  
±0.004  
0.116  
±0.004  
0.040  
±0.003  
0.013  
±0.005  
0.118  
±0.004  
0.004  
±0.002  
0.118  
±0.004  
All package dimensions are in inches  
50 USOIC devices per tube  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
17  
ORDERING INFORMATION  
Model .......................................................................................Temperature Range ................................................................................ Package  
SP706PCP ..................................................................................... 0°C to +70°C ................................................................................... 8–pin PDIP  
SP706PCN ..................................................................................... 0°C to +70°C ................................................................................ 8–pin NSOIC  
SP706PCU ..................................................................................... 0°C to +70°C ................................................................................. 8-pin µSOIC  
SP706RCP ..................................................................................... 0°C to +70°C ................................................................................... 8–pin PDIP  
SP706RCN ..................................................................................... 0°C to +70°C ................................................................................ 8–pin NSOIC  
SP706RCU ..................................................................................... 0°C to +70°C ................................................................................. 8-pin µSOIC  
SP706SCP ..................................................................................... 0°C to +70°C ................................................................................... 8–pin PDIP  
SP706SCN ..................................................................................... 0°C to +70°C ................................................................................ 8–pin NSOIC  
SP706SCU ..................................................................................... 0°C to +70°C ................................................................................. 8-pin µSOIC  
SP706TCP ..................................................................................... 0°C to +70°C ................................................................................... 8–pin PDIP  
SP706TCN ..................................................................................... 0°C to +70°C ................................................................................ 8–pin NSOIC  
SP706TCU ..................................................................................... 0°C to +70°C ................................................................................. 8-pin µSOIC  
SP706PEP ................................................................................... -40°C to +85°C ................................................................................. 8–pin PDIP  
SP706PEN ................................................................................... -40°C to +85°C .............................................................................. 8–pin NSOIC  
SP706PEU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC  
SP706REP ................................................................................... -40°C to +85°C ................................................................................. 8–pin PDIP  
SP706REN ................................................................................... -40°C to +85°C .............................................................................. 8–pin NSOIC  
SP706REU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC  
SP706SEP ................................................................................... -40°C to +85°C ................................................................................. 8–pin PDIP  
SP706SEN ................................................................................... -40°C to +85°C .............................................................................. 8–pin NSOIC  
SP706SEU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC  
SP706TEP ................................................................................... -40°C to +85°C ................................................................................. 8–pin PDIP  
SP706TEN ................................................................................... -40°C to +85°C .............................................................................. 8–pin NSOIC  
SP706TEU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC  
SP708RCP ..................................................................................... 0°C to +70°C ................................................................................... 8–pin PDIP  
SP708RCN ..................................................................................... 0°C to +70°C ................................................................................ 8–pin NSOIC  
SP708RCU ..................................................................................... 0°C to +70°C ................................................................................. 8-pin µSOIC  
SP708SCP ..................................................................................... 0°C to +70°C ................................................................................... 8–pin PDIP  
SP708SCN ..................................................................................... 0°C to +70°C ................................................................................ 8–pin NSOIC  
SP708SCU ..................................................................................... 0°C to +70°C ................................................................................. 8-pin µSOIC  
SP708TCP ..................................................................................... 0°C to +70°C ................................................................................... 8–pin PDIP  
SP708TCN ..................................................................................... 0°C to +70°C ................................................................................ 8–pin NSOIC  
SP708TCU ..................................................................................... 0°C to +70°C ................................................................................. 8-pin µSOIC  
SP708REP ................................................................................... -40°C to +85°C ................................................................................. 8–pin PDIP  
SP708REN ................................................................................... -40°C to +85°C .............................................................................. 8–pin NSOIC  
SP708REU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC  
SP708SEP ................................................................................... -40°C to +85°C ................................................................................. 8–pin PDIP  
SP708SEN ................................................................................... -40°C to +85°C .............................................................................. 8–pin NSOIC  
SP708SEU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC  
SP708TEP ................................................................................... -40°C to +85°C ................................................................................. 8–pin PDIP  
SP708TEN ................................................................................... -40°C to +85°C .............................................................................. 8–pin NSOIC  
SP708TEU ................................................................................... -40°C to +85°C ............................................................................... 8-pin µSOIC  
Please consult the factory for pricing and availability on a Tape-On-Reel option.  
Co rp o ra tio n  
SIGNAL PROCESSING EXCELLENCE  
Sipex Corporation  
Headquarters and  
Sales Office  
22 Linnell Circle  
Billerica, MA 01821  
TEL: (978) 667-8700  
FAX: (978) 670-9001  
e-mail: sales@sipex.com  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.  
Rev. 10-17-00  
SP706 +3.0/ +3.3 Low Power Microprocessor Circuits  
© Copyright 2000 Sipex Corporation  
18  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX