SC690RCN [SIPEX]

Power Supply Management Circuit, Fixed, 1 Channel, PDSO8, PLASTIC, SOP-8;
SC690RCN
型号: SC690RCN
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

Power Supply Management Circuit, Fixed, 1 Channel, PDSO8, PLASTIC, SOP-8

光电二极管
文件: 总20页 (文件大小:218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
SP690T/S/R, SP802T/S/R,  
SP804T/S/R, and SP805T/S/R  
3.0V/3.3V Low Power Microprocessor  
Supervisory with Battery Switch-Over  
RESET and RESET Outputs  
Reset asserted down to VCC = 1V  
Reset Time Delay - 200ms  
Watchdog Timer - 1.6 sec timeout  
40µA Maximum VCC Supply Current  
1µA Maximum Battery Supply Current  
Power Switching  
50mA Output in VCC Mode (1.5)  
10mA Output in Battery Mode (15)  
Battery Can Exceed VCC in Normal Operation  
Precision Voltage Monitor for Power-Fail  
or Low-Battery Warning  
Available in 8 pin SO and DIP packages  
Pin Compatible Upgrades to  
MAX690T/S/R, MAX802T/S/R,  
MAX804T/S/R, MAX805T/S/R  
DESCRIPTION  
The SP690T/S/R, SP802T/S/R, SP804T/S/R and SP805T/S/R devices are a family of  
microprocessor (µP) supervisory circuits that integrate a myriad of components involved in  
discrete solutions to monitor power-supply and battery-control functions in µP and digital  
systems. The series will significantly improve system reliability and operational efficiency  
when compared to discrete solutions. The features of the SP690T/S/R, SP802T/S/R,  
SP804T/S/R and SP805T/S/R devices include a watchdog timer, a µP reset and backup-  
battery switchover, and power-failure warning; a complete µP monitoring and watchdog  
solution. The series is ideal for 3.0V or 3.3V applications in portable electronics, computers,  
controllers, and intelligent instruments and is a solid match for designs where it is critical to  
monitor the power supply to the µP and it’s related digital components. Refer to Sipex's  
SP690A/692A/802L/802M/805L/805M series for similar devices designed for +5V systems.  
RESET  
Active  
RESET  
Threshold  
RESET  
Accuracy  
PFI  
Accuracy  
Watchdog  
Input  
Backup-Battery  
Switch  
Part Number  
SP690T/805T  
SP802T/804T  
SP690S/805S  
SP802S/804S  
SP690R/805R  
SP802R/804R  
LOW/HIGH  
LOW/HIGH  
LOW/HIGH  
LOW/HIGH  
LOW/HIGH  
LOW/HIGH  
3.075V  
3.075V  
2.925V  
2.925V  
2.625V  
2.625V  
±75mV  
±60mV  
±75mV  
±60mV  
±75mV  
±60mV  
±4%  
±2%  
±4%  
±2%  
±4%  
±2%  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
1
ABSOLUTEMAXIMUMRATINGS  
These are stress ratings only and functional operation of the device at  
these ratings or any other above those indicated in the operation  
sections of the specifications below is not implied. Exposure to absolute  
maximum rating conditions for extended periods of time may affect  
reliability and cause permanent damage to the device.  
VCC..................................................................................-0.3V to 6.0V  
VBATT................................................................................-0.3V to 6.0V  
AllOtherInputs(NOTE1).................................-0.3VtothehigherofVCC orVBATT  
Continuous Input Current:  
VCC..................................................................................100mA  
VBATT..................................................................................20mA  
GND..................................................................................20mA  
WDI, PFI...........................................................................20mA  
Continuous Output Current:  
RESET, RESET, PFO.........................................................20mA  
VOUT......................................................................................100mA  
Power Dissipation per Package:  
8pin NSOIC (derate 6.14mW/°C above +70°C)..............500mW  
8pin PDIP (derate 11.8mW/°C above +70°C)..............1,000mW  
Storage Temperature........................................-65°C to +160°C  
Lead Temperature(soldering,10sec).............................................+300°C  
ESD Rating........................................................4KV Human Body Model  
SPECIFICATIONS  
VCC = 3.17V to 5.50V for the SP690T/SP80_T, VCC = 3.02V to 5.50V for the SP690S/SP80_S, VCC = 2.72V to 5.50V for the SP690R/SP80_R, VBATT = 3.60V, and  
TA = TMIN to TMAX unless otherwise noted. Typical values taken at TAMB = +25OC.  
PARAMETERS  
MIN.  
TYP.  
MAX. UNITS CONDITIONS  
Operating Voltage Range,  
1.0  
5.5  
Volts  
VCC or VBATTERY, NOTE 1  
µA  
µA  
VCC Supply Current, ISUPPLY  
25  
20  
40  
40  
excluding IOUT  
VCC Supply Current in Battery  
Backup Mode  
VCC=2.0V,VBATTERY=2.3V,  
excluding IOUT  
VBATTERY Supply Current in  
Any Mode, NOTE 2  
µA  
0.4  
1
excluding IOUT  
VBATTERY Leakage Current, NOTE 3  
VBATTERY Leakage Current, NOTE 4  
Output Voltage, VOUT  
µA  
µA  
0.001  
0.5  
-0.1  
3.3V > VCC >VBATTERY + 0.2V  
0.02  
VCC - 0.03  
VCC - 0.3  
VCC - 0.0075  
VCC - 0.075  
VCC - 0.0003  
I = 5mA  
V
V
IOUT = 50mA  
VCC - 0.0015  
IOUT = 250µA, VCC > 2.5V  
VOUT in Battery-Backup Mode  
VBATTERY - 0.02 VBATTERY - 0.0045  
VBATTERY - 0.018  
IOUT = 250µA, VBATTERY = 2.3V  
IOUT = 1mA, VBATTERY = 2.3V  
IOUT = 10mA, VBATTERY = 3.3V  
VBATTERY - 0.15  
Battery Switch Threshold,  
VCC falling  
0.065  
2.30  
0.025  
2.40  
VBATTERY - VCC, VSW > VCC > 1.75V, NOTE 5  
VBATTERY > VCC, NOTE 6  
V
V
2.50  
Battery Switch Threshold,  
VCC rising, NOTE 7  
Values are identical to the Reset  
Threshold values at VCC rising  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
2
SPECIFICATIONS (continued)  
VCC = 3.17V to 5.50V for the SP690T/SP80_T, VCC = 3.02V to 5.50V for the SP690S/SP80_S, VCC = 2.72V to 5.50V for the SP690R/SP80_R, VBATT = 3.60V, and  
TA = TMIN to TMAX unless otherwise noted. Typical values taken at TAMB = +25OC.  
PARAMETERS  
MIN.  
TYP.  
MAX.  
UNITS CONDITIONS  
SP690T/805T, VCC falling  
3.00  
3.00  
2.85  
2.85  
2.55  
2.55  
3.075  
3.085  
2.925  
2.935  
2.625  
2.635  
3.15  
3.17  
3.00  
3.02  
2.70  
2.72  
SP690T/805T, VCC rising  
SP690S/805S, VCC falling  
SP690S/805S, VCC rising  
SP690R/805R, VCC falling  
SP690R/805R, VCC rising  
V
V
Reset Threshold, VRST  
NOTE 8  
3.00  
3.00  
2.88  
2.88  
2.59  
2.59  
3.075  
3.085  
2.925  
2.935  
2.625  
2.635  
3.12  
3.14  
3.00  
3.02  
2.70  
2.72  
SP802T/804T, VCC falling  
SP802T/804T, VCC rising  
SP802S/804S, VCC falling  
SP802S/804S, VCC rising  
SP802R/804R, VCC falling  
SP802R/804R, VCC rising  
Reset Timeout Period, tWP  
140  
200  
280  
ms  
V
RESET, PFO Output Voltage, VOH VCC - 0.3 VCC - 0.15  
ISOURCE = 30µA  
ISINK = 1.2mA, SP690_/802_ where  
VCC = VRST minimum  
RESET, PFO Output Voltage, VOL  
RESET, PFO Output Voltage, VOL  
RESET Output Voltage, VOL  
0.06  
0.13  
0.06  
0.30  
0.30  
0.30  
V
V
V
VBATTERY = 0V, VCC = 1.0V, ISINK = 40µA  
I
SINK = 1.2mA, SP804_/805_ where  
VCC = VRST maximum  
RESET Output Leakage Current,  
NOTE 11  
VBATTERY = 0V, VCC = VRST minimum,  
VRESET = 0V or VCC  
µA  
µA  
-1  
-1  
Output Short to GND Current, IOS  
,
180  
500  
VCC = 3.3V, VOH = 0V  
VCC < 3.6V  
PFO and RESET  
Watchdog Timeout, tWD  
WDI Pulse Width  
1.12  
1
1.60  
2.24  
s
µs  
WDI Input Threshold  
VIH  
VIL  
0.7 x VCC  
V
0.3 x VCC  
-1  
µA  
WDI Input Current  
PFI Input Threshold  
0.01  
1
0V < VCC < 5.5V  
1.200  
1.225  
1.25  
1.25  
1.300  
1.275  
SP690_/805_, VCC <3.6V, VPFI falling  
SP802_/804_, VCC <3.6V, VPFI falling  
V
PFI Input Current  
-25  
0.01  
10  
25  
20  
nA  
PFI Hysteresis, VPFH  
mV  
PFI rising, VCC < 3.6V  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
3
SPECIFICATIONS (continued)  
VCC = 3.17V to 5.50V for the SP690T/SP80_T, VCC = 3.02V to 5.50V for the SP690S/SP80_S, VCC = 2.72V to 5.50V for the SP690R/SP80_R, VBATT = 3.60V, and  
TA = TMIN to TMAX unless otherwise noted. Typical values taken at TAMB = +25OC.  
NOTE 1: The following are tested at VBATT = 3.6V and VCC = 5.5V: VCC supply current, watchdog  
functionality, logic input leakage, PFI functionality, and the RESET and RESET states. The state of  
RESET or RESET and PFO is tested at VCC = VCC(min).  
NOTE 2: Tested VBATT = 3.6V, VCC = 3.5V and 0V.  
NOTE 3: Leakage current into the battery is tested under the following worst-case conditions: VCC  
= 5.5V, VBATT = 1.8V and at VCC = 1.5V, VBATT = 1.0V.  
NOTE 4: "-" equals the battery-charging current, "+" equals the battery-discharging current.  
NOTE 5: When VSW > VCC > VBATT, VOUT remains connected to VCC until VCC drops below VBATT. The  
VCC-to-VBATT comparator has a small 25mV typical hysteresis to prevent oscillation.  
NOTE 6: When VBATT > VCC > VSW, VOUT remains connected to VCC until VCC drops below the battery  
switch threshold, VSW.  
NOTE 7: VOUT switches from VBATT to VCC when VCC rises above the reset threshold, independent of  
VBATT. Switchover back to VCC occurs at the exact voltage that causes RESET to go HIGH (on the  
SP804_ and SP805_ RESET goes LOW). Switchover occurs 200ms prior to reset.  
NOTE 8: The reset threshold tolerance is wider for VCC rising than for VCC falling to accommodate the  
10mV typical hysteresis, which prevents internal oscillation.  
NOTE 9: SP690_ and SP802_ devices only.  
NOTE 10: SP804_ and SP805_ devices only.  
NOTE 11: The leakage current into or out of the RESET pin is tested with RESET asserted (RESET  
output high impedance).  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
4
INTERNAL BLOCK DIAGRAM  
8
VBATT  
BATTERY  
SWITCHOVER  
CIRCUIT  
VOUT  
VCC  
2
1
SP690T/S/R  
SP802T/S/R  
SP804T/S/R  
SP805T/S/R  
BATTERY  
SWITCHOVER  
COMPARATOR  
1.25V  
RESET  
GENERATOR  
RESET / RESET*  
7
RESET  
COMPARATOR  
1.25V  
WATCHDOG  
TIMER  
WDI  
PFI  
6
4
PFO  
5
POWER-FAIL  
COMPARATOR  
1.25V  
3
GND  
*SP804T/S/R and SP805T/S/R only  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
5
PINOUT  
VOUT  
1
2
3
4
8
VBATTERY  
SP690T/S/R  
SP802T/S/R  
SP804T/S/R  
SP805T/S/R  
7 RESET / RESET*  
VCC  
GND  
6
5
WDI  
PFO  
PFI  
*SP804T/S/R and SP805T/S/R only  
PIN ASSIGNMENTS  
Pin 7 for SP690_/802_ only — Active-LOW  
Reset Output. — Whenever RESET is  
triggered by a watchdog timeout, it goes  
LOW for 200ms. It stays LOW whenever  
VCC is below the reset threshold and re-  
mains LOW for 200ms after VCC rises  
above the reset threshold or when the  
watchdog triggers a reset.  
Pin 1 —VOUT — Output Supply Voltage for  
CMOS RAM. When VCC is above the  
reset threshold, VOUT connects to VCC  
through a P-channel MOSFET switch.  
When VCC falls below the VSW and  
VBATTERY, VBATTERY connects to VOUT  
.
Connect to VCC if no battery is used.  
Pin 2 — VCC — +5V Supply Input  
Pin 7 for SP804_/805_ only — Active-HIGH  
Pin 3 — GND — Ground reference for all  
signals  
Open-Drain Reset Output.  
inverse operation of RESET.  
The  
Pin 4 — PFI — Power-Fail Comparator Input.  
When PFI is less than 1.25V or when VCC  
falls below the VSW, PFO goes LOW,  
otherwise PFO remains HIGH. Connect  
to GND if unused.  
Pin 8 — VBATTERY — Backup-Battery Input.  
WhenVCC fallsbelowVSW andVBATTERY  
VOUT switchesfrom VCC to VBATTERY  
,
.
WhenVCC risesabovetheresetthreshold,  
VOUT reconnects to VCC. VBATTERY may  
exceed VCC. Connect to VCC if no battery  
is used.  
Pin 5 — PFO — Power-Fail Comparator  
Output. Leave open if unused.  
Pin 6 — WDI — Watchdog Input. If WDI  
remains HIGH or LOW for 1.6 seconds,  
the internal watchdog timer triggers a  
reset. The internal watchdog timer clears  
when reset is asserted or WDI sees a  
rising or falling edge. The watchdog  
function cannot be disabled.  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
6
TYPICAL CHARACTERISTICS (TAMB = 25oC, unless otherwise noted)  
10000  
40  
1000  
35  
100  
30  
10  
25  
1
20  
0.1  
-60 -40 -20  
0
20 40  
60 80 100 120 140  
-60 -35 -10 15  
40 65 90 115 140  
Temperature (oC)  
Temperature (oC)  
Figure 1. VCC Supply Current vs. Temperature (Normal  
Mode)  
Figure 2. Battery Supply Current vs. Temperature  
1.262  
1.26  
30  
25  
20  
15  
10  
5
1.258  
1.256  
1.254  
1.252  
1.25  
1.248  
0
-60 -40 -20  
0
20 40  
60 80 100 120 140  
-60 -40 -20  
0
20 40  
60 80 100 120 140  
Temperature (oC)  
Temperature (oC)  
Figure 3. PFI Threshold vs. Temperature  
Figure 4. VBATTERY to VOUT ON-Resistance vs. Temperature  
3.15  
3.13  
3.11  
3.09  
3.07  
3.05  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-60 -40 -20  
0
20 40  
60 80 100 120 140  
-60 -35 -10 15  
40 65 90 115 140  
Temperature (oC)  
Temperature (oC)  
Figure 5. VCC to VOUT On-Resistance vs. Temperature  
Figure 6. Reset Threshold vs. Temperature  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
7
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
185  
180  
175  
-60 -40 -20  
0
20 40  
60 80 100 120 140  
-60 -35 -10 15  
40 65 90 115 140  
Temperature (oC)  
Temperature (oC)  
Figure 7. Reset Output Resistance vs. Temperature  
Figure 8. Reset Timeout vs. Temperature  
30  
26  
22  
18  
14  
10  
1E-06  
decade  
/div  
1E-14  
-60 -40 -20  
0
20 40  
60 80 100 120 140  
5.000  
.0000  
Temperature (oC)  
V3 .5000/div  
(V)  
Figure 9. Battery Current vs. VCC Voltage  
Figure 10. Reset-Comparator Propagation Delay vs.  
Temperature  
1000  
1000  
VCC = 0V  
VBATTERY = 4.5V  
VCC = 4.5V  
VBATTERY = 0V  
100  
100  
10  
1
10  
1
1
10  
100  
1
10  
I
OUT (mA)  
IOUT (mA)  
Figure 11. VCC to VOUT Vs. Output Current  
Figure 12. VBATTERY to VOUT Vs. Output Current  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
8
VCC  
VBATTERY = 0V  
TA = +25 C  
VCC  
2V  
div  
VCC  
T
2KΩ  
0V  
RESET  
RESET  
RESET  
1
0V  
330pF  
1 sec / div  
GND  
Figure 13A. SP690A RESET Output Voltage vs.  
Supply Voltage  
Figure 13B. Circuit for the SP690A/802L RESET  
Output Voltage vs. Supply Voltage  
VCC  
VCC  
VCC  
VCC  
1V  
div  
10KΩ  
0V  
RESET  
VBATTERY  
1
RESET  
0V  
330pF  
1 sec /div  
GND  
Figure 14A. SP805L RESET Output Voltage vs.  
Supply Voltage  
Figure 14B. Circuit for the SP805 RESET Output  
Voltage vs. Supply Voltage  
VCC  
[
T
]
1V / div  
3.1V  
TA = +25 C  
VCC  
1
2V  
VCC  
10KΩ  
RESET  
3.1V  
T
RESET  
0
30pF  
10µS / div  
GND  
Figure 15B. Circuit for the SP690A/802L RESET  
Response Time  
Figure 15A. SP690A RESET Response Time  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
9
VCC  
VCC  
VCC  
[
T
]
1V / div  
3.1V  
VCC  
1
2V  
10KΩ  
RESET  
RESET  
T
0V  
330pF  
GND  
10 µs / div  
Figure 16B. Circuit for the SP805 RESET Response  
Time  
Figure 16A. SP805L RESET Response Time  
+5V  
PFI  
1.3V  
1.2V  
VCC = +5V  
= 5V  
VCC  
TA = +25 C  
VBATTERY  
= 0  
1KΩ  
PFI  
PFO  
5V  
PFO  
0V  
30pF  
+1.25V  
500ns / div  
Figure 17B. Circuit for the Power-Fail Comparator  
Response Time (fall)  
Figure 17A. Power-Fail Comparator Response Time (fall)  
1
+5V  
1.3V  
PFI  
1.2V  
= 5  
VCC  
VCC = +5V  
TA = +25 C  
VBATTERY  
= 0  
PFI  
PFO  
PFO  
1KΩ  
30pF  
+1.25V  
1
T
2
500ns / div  
Figure 18A. Power-Fail Comparator Response Time (rise)  
Figure 18B. Circuit for the Power-Fail Comparator  
Response Time (rise)  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
10  
3.0V or 3.3V  
VRST  
VSW  
VCC  
0V  
3.0V or 3.3V  
V =3.6V  
BATTERY  
VOUT  
VSW  
0V  
3.0V or 3.3V  
tWP  
RESET  
0V  
3.0V or 3.3V  
RESET*  
0V  
3.0V or 3.3V  
VBATTERY=PFI=3.6V  
IOUT=0mA  
PFO  
0V  
*SP804T/S/R and SP805T/S/R only; Reset externally pulled up to VCC  
.
Figure 19. Timing Diagram  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
11  
FEATURES  
THEORY OF OPERATION  
The SP690T/S/R, SP802T/S/R, SP804T/S/R  
and SP805T/S/R devices provide four key  
functions:  
1. A battery backup switch for CMOS RAM,  
CMOS microprocessors, or other logic.  
2. Aresetoutputduringpower-up, power-down  
and brownout conditions.  
3. A reset pulse if the optional watchdog timer  
has not been toggled within a specified time.  
4. A 1.25V threshold detector for power-fail  
warning, low battery detection, or to monitor a  
power supply other than 3.3V or 3.0V.  
The SP690T/S/R, SP802T/S/R, SP804T/S/R  
and SP805T/S/R devices are microprocessor  
(µP)supervisorycircuitsthat monitorthepower  
supplied to digital circuits such as microproces-  
sors, microcontrollers, ormemory. Theseriesis  
an ideal solution for portable, battery-powered  
equipmentthatrequirespowersupplymonitoring.  
Implementing this series will reduce the  
number of components and overall complexity.  
The watchdog functions of this product family  
will continuously oversee the operational status  
of a system.  
The SP690T/S/R, SP802T/S/R, SP804T/S/R  
and SP805T/S/R devices differ in their reset-  
voltage threshold levels and are ideally suited  
for applications in automotive systems, intelligent  
instruments,andbattery-poweredcomputersand  
controllers. The series is a solid match for  
designs where it is critical to monitor the  
power supply to the µP and it’s related digital  
components.  
These µP supervisory circuits are not short-  
circuit protected. Shorting VOUT to ground -  
excluding power-up transients such as charging  
a decoupling capacitor - may potentially damage  
thesedevices.DecouplebothVCC andVBATTERY  
pins to ground by placing 0.1µF capacitors as  
close to the device as possible. The operational  
features and benefits of the SP690T/S/R,  
SP802T/S/R, SP804T/S/R and SP805T/S/R  
devices are described in more detail below.  
Reset Output  
Regulated +3.3V or +3.0V  
Unregulated  
The microprocessor's (µP's) reset input starts  
the µP in a known state. When the µP is in an  
unknown state, it should be held in reset. The  
SP690T/S/R, SP802T/S/R, SP804T/S/R and  
SP805T/S/R devices assert reset during  
power-up and prevent code execution errors  
during power-down or brownout conditions.  
0.1µF  
DC  
VCC  
VCC  
R
1
2
pin 7*  
RESET  
NMI  
µP  
PFI  
PFO  
WDI  
VOUT  
SP690T/S/R  
SP802T/S/R  
SP804T/S/R  
SP805T/S/R  
I/O LINE  
R
RESET is guaranteed to be a logic LOW for 0V  
<VCC <VRST,providedthatVBATTERY isgreater  
than 1V. Without a backup battery, RESET is  
guaranteed valid for VCC > 1V. Once VCC  
exceeds the reset threshold, an internal timer  
keeps RESET low for the reset timeout period.  
After this period, RESET goes HIGH, as seen in  
Figure 19.  
VBATTERY  
GND  
BUS  
GND  
VCC  
3.6V  
Lithium  
Battery  
CMOS  
RAM  
0.1µF  
GND  
If a brownout condition occurs and VCC dips  
below the reset threshold, RESET goes LOW.  
Each time RESET is triggered, it stays low for  
the reset timeout period. Any time VCC goes  
below the reset threshold, the internal timer  
restarts.  
RESET for the SP690T/S/R and the SP802T/S/R  
RESET for the SP804T/S/R and the SP805T/S/R  
*
Figure 20. Typical Operating Circuit  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
12  
Watchdog Input  
The watchdog timer can also initiate a reset.  
Refer to the Watchdog Input section.  
The watchdog circuit monitors the µP's activity.  
If the µP does not toggle the watchdog input  
(WDI) within 1.6sec, a reset pulse is triggered.  
The internal 1.6sec timer is cleared by either a  
reset pulse or by a transition (LOW-to-HIGH or  
HIGH-to-LOW) at WDI. If WDI is tied HIGH  
or LOW, a RESET pulse is triggered every  
1.8sec (tWD plus tRS).  
TheSP804T/S/RandSP805T/S/Ractive-HIGH  
RESET output is open drain and the inverse  
of the SP690T/S/R and SP802T/S/R RESET  
outputs.  
RESET is also triggered by a watchdog timeout.  
If WDI remains either high or low for a period  
that exceeds the watchdog timeout period (1.6  
sec), RESET pulses low for 200mS. As long as  
RESET is asserted, the watchdog timer remains  
cleared. When RESET comes high, the watch-  
dog resumes timing and must be serviced within  
1.6sec. If WDI is tied high or low, a RESET  
pulse is triggered every 1.8sec (tWD plus tRS).  
As long as reset is asserted, the timer remains  
cleared and does not count. As soon as reset is  
de-asserted, the timer starts counting. Unlike  
the 5V SP690A series, the watchdog function  
cannot be disabled.  
Power-Fail Comparator  
Reset Threshold  
The power-fail comparator can be used as an  
under-voltage detector to signal the failing of a  
powersupply(it iscompletelyseparatefromthe  
rest of the circuitry and does not need to be  
dedicated to this function). The PFI input is  
comparedtoaninternal1.25V. IfPFIislessthan  
VPFT, PFO goes low.  
The SP690T and SP805T devices are designed  
for 3.3V systems with a ±5% power-supply  
tolerance and a 10% system tolerance. Except  
for watchdog faults, reset will not assert as long  
as the power supply remains above 3.15V (3.3V  
- 5%). Reset is guaranteed to assert before the  
power supply falls below 3.0V.  
The power-fail comparator turns off and PFO  
goes LOW when VCC falls below VSW on  
power-down. The power-fail comparator turns  
on as VCC crosses VSW on power-up. If the  
comparator is not used, connect PFI to ground  
and leave PFO unconnected.  
The SP690S and SP805S devices are designed  
for 3.3V ±10% power supplies. Except for  
watchdog faults, they are guaranteed not to  
assert reset as long as the supply remains above  
3.0V (3.3V - 10%). Reset is guaranteed to  
assertbeforethepowersupplyfailsbelow2.85V  
(VCC - 14%).  
Backup-Battery Switchover  
In the event of a brownout or power failure, it  
may be necessary to preserve the contents of  
RAM. With a backup battery installed at  
VBATTERY, the devices automatically switch  
RAM to backup power when VCC fails.  
The SP690R and SP805R devices are optimized  
formonitoring3.0V±10%powersupplies. Reset  
will not occur until VCC falls below 2.7V (3.0V  
- 10%), but is guaranteed to occur before the  
supply falls below 2.55V (3.0V - 15%).  
This family of µP supervisors (designed for  
3.3V and 3V systems) doesn't always connect  
VBATTERY to VOUT when VBATTERY is greater  
than VCC. VBATTERY connects to VOUT (through  
a 15switch) when VCC is below VSW and  
The SP802T/S/R and SP804T/S/R devices are  
respectively similar to the SP690T/S/R and  
SP805T/S/R devices with tightened reset  
and power-fail threshold tolerances.  
VBATTERY is greater than VCC  
.
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
13  
3.0V or 3.3V  
VCC  
+5V  
3.0V or 3.3V  
VCC  
A)  
B)  
1N4148  
1N4148  
CONNECT TO  
STATIC RAM  
VOUT  
CONNECT TO  
STATIC RAM  
VOUT  
VBATTERY  
VBATTERY  
pin 7*  
pin 7*  
CONNECT  
CONNECT  
0.1F  
0.1F  
TO µP  
TO µP  
GND  
GND  
RESET for the SP690T/S/R and the SP802T/S/R  
RESET for the SP804T/S/R and the SP805T/S/R  
*
Figure 21. Using a High Capacity Capacitor as a Backup Power Source  
SwitchoveratVSW (2.40V)ensuresthatbattery-  
backup mode is entered before VOUT gets too  
close to the 2.0V minimum required to reliably  
retaindatainCMOSRAM.Switchoverathigher  
VCC voltages would decrease backup-battery  
life. WhenVCC recovers, switchoverisdeferred  
Replacing the Backup Battery  
IfVBATTERY isdecoupledwitha0.1µFcapacitor  
to ground, the backup battery can be removed  
while VCC remains valid without danger of  
triggering RESET/RESET. As long as VCC  
stays above VSW, battery-backup mode cannot  
be entered.  
until VCC rises above the reset threshold, VRST  
,
to ensure a stable supply. VOUT is connected to  
VCC through a 1.5PMOS power switch.  
Adding Hysteresis to the Power-Fail  
Comparator  
Using a High Capacity Capacitor as a  
Backup Power Source  
The power-fail comparator has a typical input  
hysteresis of 10mV. This is sufficient for most  
applications where a power-supply line is being  
monitored through an external voltage divider  
(refertotheMonitoringanAdditionalPower  
Supply section).  
Figure 21 shows two ways to use a High Value  
Capacitor as a backup power source. The High  
Value Capacitor may be connected through a  
diode to the 3V input as in Figure 21A or, if a  
5V supply is also available, the High Value  
Capacitor may be charged up to the 5V supply  
as in Figure 21B allowing a longer backup  
period. Since VBATTERY can exceed VCC while VCC  
is above the reset threshold, there are no  
special precautions when using these µP  
supervisors with a High Value Capacitor.  
If additional noise margin is desired, connect a  
resistor between PFO and PFI as shown in  
Figure 22A. Select the ratio of R1 and R2 such  
that PFI sees 1.25V when VIN falls to its trip  
point (VTRIP). R3 adds the hysteresis and will  
typically be more than 10 times the value of R1  
or R2. The hysteresis window extends both  
above (VH) and below (VL) the original trip  
point (VTRIP).  
Operation Without a Backup Power  
Source  
These µP supervisors were designed for  
battery-backed applications. If a backup power  
source is not used, connect both VBATTERY  
and VOUT to VCC. Since there is no need to  
switch over to any backup power source, VOUT  
does not need to be switched. A direct connec-  
tion to VCC eliminates any voltage drops across  
the switch which may push VOUT below VCC  
.
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
14  
VIN  
VIN  
B.)  
A.)  
R1  
R2  
R1  
R2  
VCC  
VCC  
PFI  
PFI  
+
+
SP690T/S/R  
SP802T/S/R  
SP804T/S/R  
SP805T/S/R  
SP690T/S/R  
SP802T/S/R  
SP804T/S/R  
SP805T/S/R  
R3  
R3  
*C1  
*C1  
PFO  
PFO  
GND  
GND  
TOµP  
TOµP  
*OPTIONAL  
PFO  
0V  
PFO  
0V  
VIN  
VIN  
0V  
VTRIP  
0V  
VL  
VTRIP  
VH  
VH  
R1 + R2  
R1 + R2  
VTRIP = VPFT  
VTRIP = VPFT  
(
)(  
)
+ 1  
(
)
R2  
R2  
1
+ 1  
VH  
=
VPFT + VPFH  
-
(VCC - VD  
R3  
)
R1  
1 + 1 + 1  
(
)
(
R1 R2 R3  
)
]
VPFT + VPFH  
VL = R1  
[
(
)(R1  
)
R2 R3  
]
1
+
1
+
1
-
VCC  
R3  
VPFT  
VL = R1  
[
(
)
R1 R2 R3  
WHERE VPFT = 1.25V  
VPFH = 10mV  
WHERE VPFT = 1.25V  
VD = DIOD FORWARD VOLTAGE DROP  
VPFH = 10mV  
Figure 22A. Adding Additional Hysteresis to the Power-Fail Comparator.  
Figure 22B. Shifting the Additional Hysteresis above VPFT  
ThecurrentthroughR1andR2shouldbeatleast  
1µAtoensurethatthe25nA(maxoverextended  
temperature range) PFI input current does not  
shift the trip point. R3 should be larger than  
10kso it does not load down the PFO pin.  
Capacitor C1 adds additional noise rejection.  
Connecting an ordinary signal diode in series  
with R3, as in Figure 22B, causes the lower trip  
point(VL)tocoincidewiththetrippointwithout  
hysteresis (VTRIP), so the entire hysteresis  
window occurs above VTRIP. This method pro-  
vides additional noise margin without compro-  
mising the accuracy of the power-fail threshold  
when the monitored voltage is falling. It is  
useful for accurately detecting when a voltage  
falls past a threshold.  
VIN  
3.0V OR 3.3V  
VCC  
VCC  
R1  
R2  
R1  
R2  
SP690T/S/R  
SP802T/S/R  
SP690T/S/R  
SP802T/S/R  
PFI  
PFO  
PFI  
PFO  
SP804T/S/R  
SP805T/S/R  
SP804T/S/R  
SP805T/S/R  
GND  
GND  
V-  
VCC  
VCC  
PFO  
PFO  
VIN  
V-  
VTRIP  
VL  
VTRIP  
0V  
VH  
-
VCC  
R1 + R2  
1
+
1
R2  
VTRIP = VPFT  
VTRIP = R2  
VPFT + VPFH  
(
)
[
(
R2  
]
)(R1  
)
R1  
-
VCC  
R3  
1
+
1
VPFT  
VL = R2  
R1 + R2  
[
(
]
)
R1 R2  
VPFT VPFH  
=
VH  
+
(
)(  
)
R2  
WHERE VPFT = 1.25V  
VPFH = 10mV  
NOTE: VTRIP IS NEGATIVE  
Figure 23. Using the Power-Fail Comparator to Monitor an Additional Power Supply  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
15  
Buffered RESET connects to System Components  
1nF Capacitor  
VOUT TO GND  
VCC  
VCC  
µP  
Above Line  
RESET  
RESET  
RESET  
Generated  
NO  
4.7KΩ  
RESET  
Generated  
GND  
GND  
Figure 24. Interfacing to Microprocessors with  
Bidirectional RESET I/O  
Figure 25. Maximum Transient Duration without  
Causing a Reset Pulse vs. Reset Comparator Overdrive  
Monitoring an Additional Power Supply  
Figure 25 shows maximum transient duration  
vs. reset-comparator overdrive, for which reset  
pulses are not generated. The data was generated  
using negative-going VCC pulses, starting at  
3.3V and ending below the reset threshold by  
the magnitude indicated (reset comparator  
overdrive).Thegraphshowsthemaximumpulse  
width a negative-going VCC transient may  
typically have without causing a reset pulse to  
be issued. As the amplitude of the transient  
increases (i.e. goes farther below the reset  
threshold), the maximum allowable pulse width  
decreases. Typically, a VCC transient that goes  
100mV below the reset threshold and lasts for  
40µs or less will not cause a reset pulse to be  
issued.A100nFbypasscapacitormountedclose  
to the VCC pin provides additional transient  
immunity.  
These µP supervisors can monitor either positive  
or negative supplies using a resistor voltage  
divider to PFI. PFO can be used to generate an  
interrupt to the µP, as seen in Figure 23.  
Interfacing to µPs with Bidirectional  
Reset Pins  
Any µPs with bidirectional reset pins, such as  
the Motorola 68HC11 series, can interface with  
the SP690_ and the SP802_ RESET outputs.  
For example, if the RESET output is driven  
HIGH and the µP wants to pull it LOW,  
indeterminate logic levels may result. To correct  
this, connect a 4.7kresistor between the  
RESET output and the µP reset I/O, as in  
Figure 24. Buffer the RESET output to other  
system components.  
Negative-Going VCC Transients  
While issuing resets to the µP during power-up,  
power-down, and brownout conditions, these  
supervisors are relatively immune to short-  
duration negative-going VCC transients  
(glitches). It is usually undesirable to reset the  
µP when VCC experiences only small glitches.  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
16  
PACKAGE: PLASTIC  
DUAL–IN–LINE  
(NARROW)  
E1  
E
D1 = 0.005" min.  
(0.127 min.)  
A1 = 0.015" min.  
(0.381min.)  
D
A = 0.210" max.  
(5.334 max).  
C
A2  
Ø
L
B1  
B
e
= 0.300 BSC  
(7.620 BSC)  
e = 0.100 BSC  
(2.540 BSC)  
A
ALTERNATE  
END PINS  
(BOTH ENDS)  
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
8–PIN  
14–PIN  
16–PIN  
18–PIN  
20–PIN  
22–PIN  
0.115/0.195  
0.115/0.195  
0.115/0.195  
0.115/0.195  
(2.921/4.953)  
0.115/0.195  
(2.921/4.953)  
0.115/0.195  
(2.921/4.953)  
A2  
(2.921/4.953) (2.921/4.953) (2.921/4.953)  
0.014/0.022  
0.014/0.022  
0.014/0.022  
0.014/0.022  
(0.356/0.559)  
0.014/0.022  
(0.356/0.559)  
0.014/0.022  
(0.356/0.559)  
B
(0.356/0.559) (0.356/0.559) (0.356/0.559)  
0.045/0.070 0.045/0.070 0.045/0.070  
0.045/0.070  
0.045/0.070  
0.045/0.070  
B1  
C
(1.143/1.778) (1.143/1.778) (1.143/1.778)  
(1.143/1.778)  
(1.143/1.778)  
(1.143/1.778)  
0.008/0.014 0.008/0.014 0.008/0.014  
0.008/0.014  
(0.203/0.356)  
0.008/0.014  
(0.203/0.356)  
0.008/0.014  
(0.203/0.356)  
(0.203/0.356) (0.203/0.356) (0.203/0.356)  
0.355/0.400 0.735/0.775 0.780/0.800  
0.880/0.920  
0.980/1.060  
1.145/1.155  
D
(9.017/10.160) (18.669/19.685) (19.812/20.320) (22.352/23.368) (24.892/26.924) (29.083/29.337)  
0.300/0.325  
0.300/0.325  
0.300/0.325  
0.300/0.325  
(7.620/8.255)  
0.300/0.325  
(7.620/8.255)  
0.300/0.325  
(7.620/8.255)  
E
(7.620/8.255) (7.620/8.255) (7.620/8.255)  
0.240/0.280 0.240/0.280 0.240/0.280  
0.240/0.280  
0.240/0.280  
0.240/0.280  
E1  
L
(6.096/7.112) (6.096/7.112) (6.096/7.112)  
(6.096/7.112)  
(6.096/7.112)  
(6.096/7.112)  
0.115/0.150 0.115/0.150 0.115/0.150  
(2.921/3.810) (2.921/3.810) (2.921/3.810)  
0.115/0.150  
(2.921/3.810)  
0.115/0.150  
(2.921/3.810)  
0.115/0.150  
(2.921/3.810)  
0°/ 15°  
(0°/15°)  
0°/ 15°  
(0°/15°)  
0°/ 15°  
(0°/15°)  
0°/ 15°  
(0°/15°)  
0°/ 15°  
(0°/15°)  
0°/ 15°  
(0°/15°)  
Ø
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
17  
PACKAGE: PLASTIC  
SMALL OUTLINE (SOIC)  
(NARROW)  
E
H
h x 45°  
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
8–PIN  
14–PIN  
16–PIN  
A
A1  
B
D
E
0.053/0.069  
0.053/0.069  
0.053/0.069  
(1.346/1.748) (1.346/1.748) (1.346/1.748)  
0.004/0.010  
(0.102/0.249  
0.004/0.010  
(0.102/0.249) (0.102/0.249)  
0.004/0.010  
0.014/0.019  
(0.35/0.49)  
0.013/0.020  
(0.330/0.508) (0.330/0.508)  
0.013/0.020  
0.189/0.197  
(4.80/5.00)  
0.337/0.344 0.386/0.394  
(8.552/8.748) (9.802/10.000)  
0.150/0.157 0.150/0.157  
0.150/0.157  
(3.802/3.988) (3.802/3.988) (3.802/3.988)  
e
0.050 BSC  
(1.270 BSC)  
0.050 BSC  
(1.270 BSC)  
0.050 BSC  
(1.270 BSC)  
H
h
0.228/0.244  
0.228/0.244  
0.228/0.244  
(5.801/6.198) (5.801/6.198) (5.801/6.198)  
0.010/0.020  
(0.254/0.498) (0.254/0.498) (0.254/0.498)  
0.010/0.020  
0.010/0.020  
L
0.016/0.050 0.016/0.050 0.016/0.050  
(0.406/1.270) (0.406/1.270) (0.406/1.270)  
Ø
0°/8°  
(0°/8°)  
0°/8°  
(0°/8°)  
0°/8°  
(0°/8°)  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
18  
ORDERING INFORMATION  
Model  
Temperature Range  
Package Types  
SP690TCN......................................................0°C to +70°C......................................................8-Pin NSOIC  
SP690TCP......................................................0°C to +70°C.........................................................8-Pin PDIP  
SP690TEN.....................................................-40°C to +85°C....................................................8-Pin NSOIC  
SP690TEP.....................................................-40°C to +85°C.......................................................8-Pin PDIP  
SP690SCN......................................................0°C to +70°C......................................................8-Pin NSOIC  
SP690SCP......................................................0°C to +70°C.........................................................8-Pin PDIP  
SP690SEN.....................................................-40°C to +85°C....................................................8-Pin NSOIC  
SP690SEP.....................................................-40°C to +85°C.......................................................8-Pin PDIP  
SP690RCN......................................................0°C to +70°C......................................................8-Pin NSOIC  
SP690RCP......................................................0°C to +70°C.........................................................8-Pin PDIP  
SP690REN.....................................................-40°C to +85°C....................................................8-Pin NSOIC  
SP690REP.....................................................-40°C to +85°C.......................................................8-Pin PDIP  
SP802TCN........................................................0°C to +70°C....................................................8-Pin NSOIC  
SP802TCP........................................................0°C to +70°C.......................................................8-Pin PDIP  
SP802TEN.......................................................-40°C to +85°C..................................................8-Pin NSOIC  
SP802TEP.......................................................-40°C to +85°C.....................................................8-Pin PDIP  
SP802SCN........................................................0°C to +70°C....................................................8-Pin NSOIC  
SP802SCP........................................................0°C to +70°C.......................................................8-Pin PDIP  
SP802SEN.......................................................-40°C to +85......................................................8-Pin NSOIC  
SP802SEP.......................................................-40°C to +85°C.....................................................8-Pin PDIP  
SP802RCN........................................................0°C to 0°C........................................................8-Pin NSOIC  
SP802RCP........................................................0°C to+70°C...................................................... 8-Pin PDIP  
SP802REN.......................................................-40°C to +85°C..................................................8-Pin NSOIC  
SP802REP.......................................................-40°C to +85°C.....................................................8-Pin PDIP  
SP804TCN.......................................................0°C to +70°C.....................................................8-Pin NSOIC  
SP804TCP.......................................................0°C to +70°C........................................................8-Pin PDIP  
SP804TEN......................................................-40°C to +85°C...................................................8-Pin NSOIC  
SP804TEP......................................................-40°C to +85°C......................................................8-Pin PDIP  
SP804SCN.......................................................0°C to +70°C.....................................................8-Pin NSOIC  
SP804SCP.......................................................0°C to +70°C........................................................8-Pin PDIP  
SP804SEN......................................................-40°C to +85°C...................................................8-Pin NSOIC  
SP804SEP......................................................-40°C to +85°C......................................................8-Pin PDIP  
SP804RCN.......................................................0°C to +70°C.....................................................8-Pin NSOIC  
SP804RCP.......................................................0°C to +70°C........................................................8-Pin PDIP  
SP804REN......................................................-40°C to +85°C...................................................8-Pin NSOIC  
SP804REP......................................................-40°C to +85°C......................................................8-Pin PDIP  
SP805TCN........................................................0°C to +70°C....................................................8-Pin NSOIC  
SP805TCP........................................................0°C to +70°C.......................................................8-Pin PDIP  
SP805TEN.......................................................-40°C to +8C.................................................. ..8-Pin NSOIC  
SP805TEP.......................................................-40°C to +85°C.....................................................8-Pin PDIP  
SP805SCN........................................................0°C to+70°C.....................................................8-Pin NSOIC  
SP805SCP........................................................0°C to +70°C.......................................................8-Pin PDIP  
SP805SEN.......................................................-40°C to +85°C..................................................8-Pin NSOIC  
SP805SEP.......................................................-40°C to +85°C.....................................................8-Pin PDIP  
SP805RCN........................................................0°C to +70°C....................................................8-Pin NSOIC  
SP805RCP........................................................0°C to +70°C.......................................................8-Pin PDIP  
SP805REN.......................................................-40°C to +85°C..................................................8-Pin NSOIC  
SP805REP.......................................................-40°C to +85°C.....................................................8-Pin PDIP  
Please consult the factory for pricing and availability on a Tape-On-Reel option.  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
19  
Co rp o ra tio n  
SIGNAL PROCESSING EXCELLENCE  
Sipex Corporation  
Headquarters and  
Sales Office  
22 Linnell Circle  
Billerica, MA 01821  
TEL: (978) 667-8700  
FAX: (978) 670-9001  
e-mail: sales@sipex.com  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.  
SP690T/S/R JAN 30-06 SP690T/S/R, 802/T/S/R, 804T/S/R, 805T/S/R Low Power Microprocessor Supervisory  
© 2006 Sipex Corporation  
20  

相关型号:

SC690RCP

Power Supply Management Circuit, Fixed, 1 Channel, PDIP8, PLASTIC, DIP-8
SIPEX

SC690REN

Power Supply Management Circuit, Fixed, 1 Channel, PDSO8, PLASTIC, SOP-8
SIPEX

SC690REP

Power Supply Management Circuit, Fixed, 1 Channel, PDIP8, PLASTIC, DIP-8
SIPEX

SC690SCN

Power Supply Management Circuit, Fixed, 1 Channel, PDSO8, PLASTIC, SOP-8
SIPEX

SC690SCP

Power Supply Management Circuit, Fixed, 1 Channel, PDIP8, PLASTIC, DIP-8
SIPEX

SC690SEN

Power Supply Management Circuit, Fixed, 1 Channel, PDSO8, PLASTIC, SOP-8
SIPEX

SC690SEP

Power Supply Management Circuit, Fixed, 1 Channel, PDIP8, PLASTIC, DIP-8
SIPEX

SC690TCN

Power Supply Management Circuit, Fixed, 1 Channel, PDSO8, PLASTIC, SOP-8
SIPEX

SC690TCP

Power Supply Management Circuit, Fixed, 1 Channel, PDIP8, PLASTIC, DIP-8
SIPEX

SC690TEN

Power Supply Management Circuit, Fixed, 1 Channel, PDSO8, PLASTIC, SOP-8
SIPEX

SC690TEP

Power Supply Management Circuit, Fixed, 1 Channel, PDIP8, PLASTIC, DIP-8
SIPEX

SC6921

红外遥控IC
ETC