U631H16D1K35G1 [SIMTEK]

SimtekSoftStore 2K x 8 nvSRAM; SimtekSoftStore 2K ×8的nvSRAM
U631H16D1K35G1
型号: U631H16D1K35G1
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

SimtekSoftStore 2K x 8 nvSRAM
SimtekSoftStore 2K ×8的nvSRAM

存储 内存集成电路 静态存储器 光电二极管
文件: 总13页 (文件大小:133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Obsolete - Not Recommended for New Designs  
U631H16  
SimtekSoftStore 2K x 8 nvSRAM  
Features  
Description  
integrity.  
High-performance CMOS nonvola- The U631H16 has two separate  
Once a STORE cycle is initiated,  
further input or output are disabled  
until the cycle is completed.  
Because a sequence of addresses  
is used for STORE initiation, it is  
important that no other read or  
write accesses intervene in the  
sequence or the sequence will be  
aborted.  
Internally, RECALL is a two step  
procedure. First, the SRAM data is  
cleared and second, the nonvola-  
tile information is transferred into  
the SRAM cells.  
The RECALL operation in no way  
alters the data in the EEPROM  
cells. The nonvolatile data can be  
recalled an unlimited number of  
times.  
tile static RAM 2048 x 8 bits  
25, 35 and 45 ns Access Times  
12, 20 and 25 ns Output Enable  
Access Times  
modes of operation: SRAM mode  
and nonvolatile mode. In SRAM  
mode, the memory operates as an  
ordinary static RAM. In nonvolatile  
operation, data is transferred in  
parallel from SRAM to EEPROM or  
from EEPROM to SRAM. In this  
mode SRAM functions are disab-  
led.  
Software STORE Initiation  
(STORE Cycle Time < 10 ms)  
Automatic STORE Timing  
106 STORE cycles to EEPROM  
100 years data retention in  
EEPROM  
Automatic RECALL on Power Up  
Software RECALL Initiation  
(RECALL Cycle Time < 20 μs)  
Unlimited RECALL cycles from  
EEPROM  
The U631H16 is a fast static RAM  
(25, 35, 45 ns), with a nonvolatile  
electrically  
erasable  
PROM  
(EEPROM) element incorporated  
in each static memory cell. The  
SRAM can be read and written an  
unlimited number of times, while  
independent nonvolatile data resi-  
des in EEPROM.  
Data transfers from the SRAM to  
the EEPROM (the STORE opera-  
tion), or from the EEPROM to the  
SRAM (the RECALL ) operation)  
are initiated through software  
sequences.  
Unlimited Read and Write to  
SRAM  
Single 5 V ± 10 % Operation  
Operating temperature ranges:  
0 to 70 °C  
-40 to 85 °C  
QS 9000 Quality Standard  
ESD protection > 2000 V  
(MIL STD 883C M3015.7-HBM)  
RoHS compliance and Pb- free  
Packages: PDIP28 (600 mil)  
SOP24 (300 mil)  
The U631H16 combines the high  
performance and ease of use of a  
fast SRAM with nonvolatile data  
Pin Description  
Pin Configuration  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
1
n.c.  
n.c.  
A7  
VCC  
W
1
A7  
A6  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2
VCC  
A8  
2
3
n.c.  
A8  
Signal Name Signal Description  
3
A5  
4
A6  
A9  
A0 - A10  
Address Inputs  
Data In/Out  
4
A4  
5
A5  
A9  
W
5
A3  
6
A4  
n.c.  
G
G
DQ0 - DQ7  
PDIP  
28  
6
A2  
7
A3  
A10  
E
SOP  
24  
Chip Enable  
E
7
A1  
8
A2  
A10  
E
Output Enable  
Write Enable  
Power Supply Voltage  
Ground  
G
8
A0  
9
A1  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
W
9
DQ0  
DQ1  
DQ2  
VSS  
10  
11  
12  
13  
14  
A0  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
VCC  
VSS  
10  
11  
12  
DQ0  
DQ1  
DQ2  
VSS  
17  
16  
15  
Top View  
Top View  
March 31, 2006  
STK Control #ML0042  
1
Rev 1.0  
U631H16  
Block Diagram  
EEPROM Array  
32 x (64 x 8)  
VCC  
VSS  
STORE  
RECALL  
A5  
A6  
A7  
A8  
A9  
SRAM  
Array  
32 Rows x  
64 x 8 Columns  
Store/  
Recall  
Control  
VCC  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
Column I/O  
Software  
Detect  
Column Decoder  
A0 - A10  
G
A0 A1 A2 A3 A4A10  
DQ7  
E
W
Truth Table for SRAM Operations  
Operating Mode  
E
W
G
DQ0 - DQ7  
Standby/not selected  
Internal Read  
Read  
H
L
L
L
High-Z  
High-Z  
*
*
H
H
H
L
L
Data Outputs Low-Z  
Data Inputs High-Z  
Write  
*
* H or L  
Characteristics  
All voltages are referenced to VSS = 0 V (ground).  
All characteristics are valid in the power supply voltage range and in the operating temperature range specified.  
Dynamic measurements are based on a rise and fall time of 5 ns, measured between 10 % and 90 % of VI, as well as  
input levels of VIL = 0 V and VIH = 3 V. The timing reference level of all input and output signals is 1.5 V,  
with the exception of the tdis-times and ten-times, in which cases transition is measured ± ±200 mV from steady-state voltage.  
Absolute Maximum Ratingsa  
Symbol  
Min.  
Max.  
Unit  
Power Supply Voltage  
Input Voltage  
VCC  
VI  
-0.5  
-0.3  
-0.3  
7
V
V
VCC+0.5  
VCC+0.5  
1
Output Voltage  
VO  
PD  
V
Power Dissipation  
W
Operating Temperature  
C-Type  
K-Type  
0
-40  
70  
85  
°C  
°C  
Ta  
Storage Temperature  
Tstg  
-65  
150  
°C  
a: Stresses greater than those listed under „Absolute Maximum Ratings“ may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at condition above those indicated in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
Rev 1.0  
March 31, 2006  
STK Control #ML0042  
2
U631H16  
Recommended Operation  
Conditions  
Symbol  
Conditions  
Min.  
Max.  
Unit  
Power Supply Voltage  
Input Low Voltage  
Input High Voltage  
VCC  
VIL  
4.5  
-0.3  
2.2  
5.5  
0.8  
V
V
V
-2 V at Pulse Width  
10 ns permitted  
VIH  
VCC+0.3  
C-Type  
K-Type  
DC Characteristics  
Symbol  
Conditions  
Unit  
Min. Max. Min. Max.  
Operating Supply Currentb  
ICC1  
VCC  
VIL  
VIH  
= 5.5 V  
= 0.8 V  
= 2.2 V  
tc  
tc  
tc  
= 25 ns  
= 35 ns  
= 45 ns  
90  
80  
75  
95  
85  
80  
mA  
mA  
mA  
Average Supply Current during  
STOREc  
ICC2  
VCC  
E
W
VIL  
VIH  
= 5.5 V  
6
7
mA  
VCC-0.2 V  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
Standby Supply Currentd  
(Cycling TTL Input Levels)  
ICC(SB)1  
VCC  
E
= 5.5 V  
≥±VIH  
tc  
tc  
tc  
= 25 ns  
= 35 ns  
= 45 ns  
30  
23  
20  
34  
27  
23  
mA  
mA  
mA  
Average Supply Current  
at tcR = 200 nsb  
(Cycling CMOS Input Levels)  
ICC3  
VCC  
W
VIL  
VIH  
= 5.5 V  
15  
15  
mA  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
Standby Supply Currentd  
(Stable CMOS Input Levels)  
ICC(SB)  
VCC  
E
VIL  
VIH  
= 5.5 V  
1
1
mA  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
b: ICC1 and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
The current ICC1 is measured for WRITE/READ - ratio of 1/2.  
c: ICC2 is the average current required for the duration of the STORE cycle (STORE Cycle Time).  
d: Bringing E±≥±VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out. See MODE SELECTION  
table. The current ICC(SB)1 is measured for WRITE/READ - ratio of 1/2.  
March 31, 2006  
STK Control #ML0042  
3
Rev 1.0  
U631H16  
C-Type  
K-Type  
DC Characteristics  
Symbol  
Conditions  
Unit  
Min. Max. Min. Max.  
VCC  
IOH  
IOL  
= 4.5 V  
=-4 mA  
= 8 mA  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
2.4  
8
2.4  
8
V
V
0.4  
-4  
0.4  
-4  
VCC  
VOH  
VOL  
= 4.5 V  
= 2.4 V  
= 0.4 V  
Output High Current  
Output Low Current  
IOH  
IOL  
mA  
mA  
Input Leakage Current  
VCC  
= 5.5 V  
High  
Low  
IIH  
IIL  
VIH  
VIL  
= 5.5 V  
1
1
μA  
μA  
=
0 V  
-1  
-1  
-1  
-1  
Output Leakage Current  
VCC  
= 5.5 V  
High at Three-State- Output  
Low at Three-State- Output  
IOHZ  
IOLZ  
VOH  
VOL  
= 5.5 V  
1
1
μA  
μA  
=
0 V  
SRAM Memory Operations  
Symbol  
25  
35  
45  
Switching Characteristics  
No.  
Unit  
Read Cycle  
Alt.  
IEC  
Min. Max. Min. Max. Min. Max.  
1
2
3
4
5
6
7
8
9
Read Cycle Timef  
tAVAV  
tAVQV  
tELQV  
tcR  
ta(A)  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Access Time to Data Validg  
Chip Enable Access Time to Data Valid  
25  
25  
12  
13  
13  
35  
35  
20  
17  
17  
45  
45  
25  
20  
20  
ta(E)  
Output Enable Access Time to Data Valid tGLQV  
ta(G)  
tdis(E)  
tdis(G)  
ten(E)  
ten(G)  
tv(A)  
E HIGH to Output in High-Zh  
G HIGH to Output in High-Zh  
E LOW to Output in Low-Z  
tEHQZ  
tGHQZ  
tELQX  
5
0
3
0
5
0
3
0
5
0
3
0
G LOW to Output in Low-Z  
tGLQX  
tAXQX  
tELICCH  
tEHICCL  
Output Hold Time after Addr. Changeg  
10 Chip Enable to Power Activee  
11 Chip Disable to Power Standbyd, e  
25  
35  
45  
e: Parameter guaranteed but not tested.  
f: Device is continuously selected with E and G both LOW.  
g: Address valid prior to or at the same time with E transition LOW.  
h: Measured ± ±200 mV from steady state output voltage.  
Rev 1.0  
March 31, 2006  
STK Control #ML0042  
4
U631H16  
f
=
=
VIL, W = VIH)  
Read Cycle 1: Ai-controlled (during Read cycle: E  
G
tcR  
(1)  
Ai  
Address Valid  
ta(A)  
(2)  
DQi  
Output  
Output Data Valid  
Previous Data Valid  
tv(A)  
(9)  
Read Cycle 2: G-, E-controlled (during Read cycle: W = VIH)g  
tcR  
(1)  
Ai  
E
Address Valid  
ta(A)  
tPD  
(11)  
(2)  
ta(E) (3)  
tdis(E) (5)  
ten(E) (7)  
G
ta(G)  
(4)  
tdis(G) (6)  
ten(G) (8)  
DQi  
Output  
High Impedance  
Output Data Valid  
t
PU (10)  
ACTIVE  
ICC  
STANDBY  
Symbol  
Alt. #1 Alt. #2  
25  
35  
45  
Switching Characteristics  
Write Cycle  
Unit  
No.  
IEC  
Min. Max. Min. Max. Min. Max.  
12 Write Cycle Time  
tAVAV  
tAVAV  
tcW  
tw(W)  
tsu(W)  
tsu(A)  
tsu(A-WH)  
tsu(E)  
tw(E)  
25  
20  
20  
0
35  
30  
30  
0
45  
35  
35  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
13 Write Pulse Width  
tWLWH  
14 Write Pulse Width Setup Time  
15 Address Setup Time  
tWLEH  
tAVEL  
tAVEH  
tAVWL  
tAVWH  
tELWH  
16 Address Valid to End of Write  
17 Chip Enable Setup Time  
18 Chip Enable to End of Write  
19 Data Setup Time to End of Write  
20 Data Hold Time after End of Write  
21 Address Hold after End of Write  
22 W LOW to Output in High-Zh, i  
23 W HIGH to Output in Low-Z  
20  
20  
20  
12  
0
30  
30  
30  
18  
0
35  
35  
35  
20  
0
tELEH  
tDVEH  
tEHDX  
tEHAX  
tDVWH  
tWHDX  
tWHAX  
tWLQZ  
tWHQX  
tsu(D)  
th(D)  
th(A)  
0
0
0
tdis(W)  
ten(W)  
10  
13  
15  
5
5
5
March 31, 2006  
STK Control #ML0042  
5
Rev 1.0  
U631H16  
Write Cycle #1: W-controlledj  
tcW  
(12)  
Ai  
E
Address Valid  
tsu(E)  
t
(17)  
h(A) (21)  
tsu(A-WH)  
(16)  
tw(W) (13)  
W
t
su(A) (15)  
tsu(D)  
t
h(D) (20)  
(19)  
Input Data Valid  
ten(W)  
DQi  
Input  
tdis(W)  
(22)  
(23)  
High Impedance  
DQi  
Output  
Previous Data Valid  
Write Cycle #2: E-controlledj  
tcW  
(12)  
Ai  
E
Address Valid  
t
su(A) (15)  
tw(E)  
(18)  
th(A)  
(21)  
tsu(W)  
(14)  
W
t
th(D) (20)  
Input Data Valid  
High Impedance  
su(D)(19)  
DQi  
Input  
DQi  
Output  
undefined  
L- to H-level  
H- to L-level  
i: If W is LOW and when E goes LOW, the outputs remain in the high impedance state.  
>
j: E or W must be VIH during address transitions.  
Rev 1.0  
March 31, 2006  
STK Control #ML0042  
6
U631H16  
Nonvolatile Memory Operations  
Symbol  
STORE Cycle Inhibit and  
No.  
Min.  
Max.  
Unit  
Automatic Power Up RECALL  
Alt.  
IEC  
24 Power Up RECALL Durationk, e  
Low Voltage Trigger Level  
tRESTORE  
VSWITCH  
650  
4.5  
μs  
4.0  
V
k: tRESTORE starts from the time VCC rises above VSWITCH  
.
STORE Cycle Inhibit and Automatic Power Up RECALL  
VCC  
5.0 V  
VSWITCH  
t
STORE inhibit  
(24)  
Power Up  
RECALL  
tRESTORE  
Software Mode Selection  
A10 - A0  
E
W
Mode  
I/O  
Power  
Notes  
(hex)  
L
H
000  
555  
2AA  
7FF  
0F0  
70F  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
l, m  
l, m  
l, m  
l, m  
l, m  
l
Nonvolatile STORE  
ICC2  
L
H
000  
555  
2AA  
7FF  
0F0  
70E  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
l, m  
l, m  
l, m  
l, m  
l, m  
l
Nonvolatile RECALL  
l: The six consecutive addresses must be in order listed (000, 555, 2AA, 7FF, 0F0, 70F) for a Store cycle or (000, 555, 2AA,  
7FF, 0F0, 70E) for a RECALL cycle. W must be high during all six consecutive cycles. See STORE cycle and RECALL cycle tables and  
diagrams for further details.  
The following six-address sequence is used for testing purposes and should not be used: 000, 555, 2AA, 7FF, 0F0, 39C.  
m: I/O state assumes that G ≤±VIL. Activation of nonvolatile cycles does not depend on the state of G.  
March 31, 2006  
STK Control #ML0042  
7
Rev 1.0  
U631H16  
25  
35  
45  
Symbol  
No. Software Controlled STORE/RECALL  
Cyclel, n  
Unit  
Alt.  
tAVAV  
IEC  
Min. Max. Min. Max. Min. Max.  
25 STORE/RECALL Initiation Time  
26 Chip Enable to Output Inactiveo  
27 STORE Cycle Timep  
tcR  
25  
35  
45  
ns  
ns  
ms  
μs  
ns  
ns  
ns  
tELQZ tdis(E)SR  
tELQXS td(E)S  
tELQXR td(E)R  
tAVELN tsu(A)SR  
tELEHN tw(E)SR  
tEHAXN th(A)SR  
600  
10  
600  
10  
600  
10  
28 RECALL Cycle Timeq  
20  
20  
20  
29 Address Setup to Chip Enabler  
30 Chip Enable Pulse Widthr, s  
31 Chip Disable to Address Changer  
0
20  
0
0
25  
0
0
35  
0
n: The software sequence is clocked with E controlled READs.  
o: Once the software controlled STORE or RECALL cycle is initiated, it completes automatically, ignoring all inputs.  
p: Note that STORE cycles (but not RECALL) are aborted by VCC < VSWITCH (STORE inhibit).  
q: An automatic RECALL also takes place at power up, starting when VCC exceeds VSWITCH and takes tRESTORE. VCC must not drop below  
VSWITCH once it has been exceeded for the RECALL to function properly.  
r: Noise on the E pin may trigger multiple READ cycles from the same address and abort the address sequence.  
s: If the Chip Enable Pulse Width is less than ta(E) (see Read Cycle) but greater than or equal tw(E)SR, than the data may not be valid at  
the end of the low pulse, however the STORE or RECALL will still be initiated.  
Software Controlled STORE/RECALL Cycler, s, t, u (E = HIGH after STORE initiation)  
tcR  
(25)  
tcR  
(25)  
ADDRESS 6  
ADDRESS 1  
Ai  
E
th(A)SR  
(31)  
tw(E)SR  
(30)  
tw(E)SR  
(30)  
t
dis(E)(5)  
(31)  
th(A)SR  
tsu(A)SR  
(29)  
(29)  
t
td(E)S  
tsu(A)SR  
d(E)R (28)  
(27)  
DQi  
Output  
High Impedance  
VALID  
tdis(E)SR  
VALID  
(26)  
Software Controlled STORE/RECALL Cycler, s, t, u (E = LOW after STORE initiation)  
tcR  
(25)  
ADDRESS 1  
tw(E)SR  
ADDRESS 6  
Ai  
E
th(A)SR  
(31)  
(30)  
(29)  
tsu(A)SR  
(31)  
(29)  
th(A)SR  
t
td(E)R (28)  
tsu(A)SR  
d(E)S (27)  
DQi  
Output  
High Impedance  
VALID  
VALID  
tdis(E)SR  
(26)  
t: W must be HIGH when E is LOW during the address sequence in order to initiate a nonvolatile cycle. G may be either HIGH or LOW  
throughout. Addresses 1 through 6 are found in the mode selection table. Address 6 determines whether the U631H16 performs a STORE  
or RECALL.  
u: E must be used to clock in the address sequence for the Software controlled STORE and RECALL cycles.  
Rev 1.0  
March 31, 2006  
STK Control #ML0042  
8
U631H16  
Test Configuration for Functional Check  
5 V  
w
VCC  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
480  
V
IH  
V
IL  
VO  
v
30 pF  
E
W
255  
G
VSS  
v: In measurement of tdis-times and ten-times the capacitance is 5 pF.  
w: Between VCC and VSS must be connected a high frequency bypass capacitor 0.1 μF to avoid disturbances.  
Capacitancee  
Conditions  
Symbol  
Min.  
Max.  
Unit  
VCC = 5.0 V  
Input Capacitance  
CI  
8
pF  
VI  
f
= VSS  
= 1 MHz  
= 25 °C  
Output Capacitance  
CO  
7
pF  
Ta  
All pins not under test must be connected with ground by capacitors.  
Ordering Code  
Example  
U631H16 S1  
C
25 G1  
Leadfree Option  
Type  
blank= Standard Package  
G1 = Leadfree Green Package  
Package  
D1= PDIP28 (600 mil)  
S1 = SOP24 (300 mil)  
Access Time  
25 = 25 ns  
35 = 35 ns x  
45 = 45 ns x  
Operating Temperature Range  
C = 0 to 70 °C  
K = -40 to 85 °C  
x: on special request  
Device Marking (example)  
ZMD  
Product specification  
Date of manufacture  
U631H16S1C  
25 Z 0425  
G1  
(The first 2 digits indicating  
the year, and the last 2  
digits the calendar week.)  
Internal Code  
Leadfree Green Package  
March 31, 2006  
STK Control #ML0042  
9
Rev 1.0  
U631H16  
Device Operation  
performed, followed by parallel programming of all non-  
volatile elements. Once a STORE cycle is initiated, fur-  
ther inputs and outputs are disabled until the cycle is  
completed.  
Because a sequence of addresses is used for STORE  
initiation, it is important that no other READ or WRITE  
accesses intervene in the sequence or the sequence  
will be aborted and no STORE or RECALL will take  
place.  
The U631H16 has two separate modes of operation:  
SRAM mode and nonvolatile mode. In SRAM mode,  
the memory operates as a standard fast static RAM. In  
nonvolatile mode, data is transferred from SRAM to  
EEPROM (the STORE operation) or from EEPROM to  
SRAM (the RECALL operation). In this mode SRAM  
functions are disabled.  
To initiate the STORE cycle the following READ  
sequence must be performed:  
SRAM READ  
The U631H16 performs a READ cycle whenever E and  
G are LOW while W is HIGH. The address specified on  
pins A0 - A10 determines which of the 2048 data bytes  
will be accessed. When the READ is initiated by an  
address transition, the outputs will be valid after a delay  
of tcR. If the READ is initiated by E or G, the outputs will  
be valid at ta(E) or at ta(G), whichever is later. The data  
outputs will repeatedly respond to address changes  
within the tcR access time without the need for transition  
on any control input pins, and will remain valid until  
another address change or until E or G is brought  
HIGH or W is brought LOW.  
1.  
2.  
3.  
4.  
5.  
6.  
Read address  
Read address  
Read address  
Read address  
Read address  
Read address  
000  
555  
(hex) Valid READ  
(hex) Valid READ  
2AA (hex) Valid READ  
7FF  
0F0  
70F  
(hex) Valid READ  
(hex) Valid READ  
(hex) Initiate STORE  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the chip  
will be disabled. It is important that READ cycles and  
not WRITE cycles are used in the sequence. It is not  
necessary that G is LOW for the sequence to be valid.  
After the tSTORE cycle time has been fulfilled, the SRAM  
will again be activated for READ and WRITE operation.  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
LOW. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable until  
ei-ther E or W goes HIGH at the end of the cycle. The  
data on pins DQ0 - 7 will be written into the memory if it  
is valid tsu(D) before the end of a W controlled WRITE or  
Software Nonvolatile RECALL  
A RECALL cycle of the EEPROM data into the SRAM  
is initiated with a sequence of READ operations in a  
manner similar to the STORE initiation. To initiate the  
RECALL cycle the following sequence of READ opera-  
tions must be performed:  
tsu(D) before the end of an E controlled WRITE.  
It is recommended that G is kept HIGH during the  
entire WRITE cycle to avoid data bus contention on the  
common I/O lines. If G is left LOW, internal circuitry will  
turn off the output buffers tdis(W) after W goes LOW.  
1.  
2.  
3.  
4.  
5.  
6.  
Read address  
Read address  
Read address  
Read address  
Read address  
Read address  
000  
555  
(hex) Valid READ  
(hex) Valid READ  
2AA (hex) Valid READ  
7FF  
0F0  
70E  
(hex) Valid READ  
(hex) Valid READ  
(hex) Initiate RECALL  
Noise Consideration  
The U631H16 is a high speed memory and therefore it  
must have a high frequency bypass capacitor of appro-  
ximately 0.1 μF connected between VCC and VSS using  
leads and traces that are as short as possible. As with  
all high speed CMOS ICs, normal carefull routing of  
power, ground and signals will help prevent noise pro-  
blems.  
Internally, RECALL is a two step procedure. First, the  
SRAM data is cleared and second, the nonvolatile  
information is transferred into the SRAM cells. The  
RECALL operation in no way alters the data in the  
EEPROM cells. The nonvolatile data can be recalled an  
unlimited number of times.  
Software Nonvolatile STORE  
Automatic Power Up RECALL  
The U631H16 software controlled STORE cycle is  
initiated by executing sequential READ cycles from six  
specific address locations. By relying on READ cycles  
only, the U631H16 implements nonvolatile operation  
while remaining compatible with standard 2K x 8  
SRAMs. During the STORE cycle, an erase of the pre-  
vious nonvolatile data is first  
On power up, once VCC exceeds the sense voltage of  
VSWITCH, a RECALL cycle is automatically initiated. The  
voltage on the VCC pin must not frop belwo VSWITCH  
once it has risen above it in order for the RECALL to  
operate properly. Due to this automatic RECALL,  
SRAM operation cannot commence until tRESTORE after  
V
CC exceeds VSWITCH  
.
Rev 1.0  
March 31, 2006  
STK Control #ML0042  
10  
U631H16  
If the U631H16 is in a WRITE state at the end of power  
up RECALL, the SRAM data will be corrupted.  
Low Average Active Power  
To help avoid this situation, a 10 KΩ resistor should be  
The U631H16 has been designed to draw significantly  
less power when E is LOW (chip enabled) but the  
access cycle time is longer than 55 ns.  
When E is HIGH the chip consumes only standby cur-  
rent.  
connected between W and VCC  
.
Hardware Protection  
The U631H16 offers hardware protection against inad-  
vertent STORE operation through VCC sense.  
For VCC < VSWITCH the software initiated STORE opera-  
tion will be inhibited.  
The overall average current drawn by the part depends  
on the following items:  
1. CMOS or TTL input levels  
2. the time during which the chip is disabled (E HIGH)  
3. the cycle time for accesses (E LOW)  
4. the ratio of READs to WRITEs  
5. the operating temperature  
6. the VCC level  
The information describes the type of component and shall not be considered as assured characteristics. Terms of  
delivery and rights to change design reserved.  
March 31, 2006  
STK Control #ML0042  
11  
Rev 1.0  
U631H16  
LIFE SUPPORT POLICY  
Simtek products are not designed, intended, or authorized for use as components in systems intended for surgical  
implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the Simtek product could create a situation where personal injury or death may occur.  
Components used in life-support devices or systems must be expressly authorized by Simtek for such purpose.  
LIMITED WARRANTY  
The information in this document has been carefully checked and is believed to be reliable. However, Simtek  
makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any  
loss or damage of whatever nature resulting from the use of, or reliance upon it. The information in this document  
describes the type of component and shall not be considered as assured characteristics.  
Simtek does not guarantee that the use of any information contained herein will not infringe upon the patent,  
trademark, copyright, mask work right or other rights of third parties, and no patent or licence is implied hereby.  
This document does not in any way extent Simtek’s warranty on any product beyond that set forth in its standard  
terms and conditions of sale.  
Simtek reserves terms of delivery and reserves the right to make changes in the products or specifications, or  
both, presented in this publication at any time and without notice.  
March 31, 2006  
Change record  
Date/Rev  
Name  
Change  
01.11.2001 Ivonne Steffens  
format revision and release for „Memory CD 2002“  
20.04.2004 Matthias Schniebel  
adding „Leadfree Green Package“ to ordering information  
adding „Device Marking“  
6
7.4.2005  
Stefan Günther  
delete PDIP28 (300mil) and SOP28 (300mil), add 10 endurance  
cycles and 100a data retention and ESD protection > 2000V  
31.3.2006  
1.0  
Troy Meester  
Simtek  
changed to obsolete status  
Assigned Simtek Document Control Number  

相关型号:

U631H16D1K45

SimtekSoftStore 2K x 8 nvSRAM
SIMTEK

U631H16D1K45G1

SimtekSoftStore 2K x 8 nvSRAM
SIMTEK

U631H16DC25

2KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.300 INCH, PLASTIC, DIP-28
CYPRESS

U631H16DC25G1

2KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.300 INCH, LEAD FREE, PLASTIC, DIP-28
CYPRESS

U631H16DC35

SOFTSTORE 2K X 8 NVSRAM
ETC

U631H16DC45

2KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.300 INCH, PLASTIC, DIP-28
CYPRESS

U631H16DC45G1

Non-Volatile SRAM, 2KX8, 45ns, CMOS, PDIP28, 0.300 INCH, LEAD FREE, PLASTIC, DIP-28
SIMTEK

U631H16DC45G1

2KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.300 INCH, LEAD FREE, PLASTIC, DIP-28
CYPRESS

U631H16DK25

2KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.300 INCH, PLASTIC, DIP-28
CYPRESS

U631H16DK25G1

2KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.300 INCH, LEAD FREE, PLASTIC, DIP-28
SIMTEK

U631H16DK35

SOFTSTORE 2K X 8 NVSRAM
ETC

U631H16DK35G1

2KX8 NON-VOLATILE SRAM, 35ns, PDIP28, 0.300 INCH, LEAD FREE, PLASTIC, DIP-28
CYPRESS