STK16C88-W45I [SIMTEK]

32Kx8 AutoStore+ nvSRAM; 32Kx8自动存储+的nvSRAM
STK16C88-W45I
型号: STK16C88-W45I
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

32Kx8 AutoStore+ nvSRAM
32Kx8自动存储+的nvSRAM

存储 内存集成电路 静态存储器 光电二极管 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总12页 (文件大小:381K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK16C88  
32Kx8 AutoStore+ nvSRAM  
FEATURES  
• 25, 45 ns Read Access & R/W Cycle Time  
DESCRIPTION  
The Simtek STK16C88 is a 256Kb fast static RAM  
with a non-volatile Quantum Trap storage element  
included with each memory cell.  
• Unlimited Read/Write Endurance  
• Directly replaces battery-backed SRAM mod-  
ules such as Dallas/Maxim DS1230 AB  
The SRAM provides the fast access & cycle times,  
ease of use and unlimited read & write endurance of  
a normal SRAM.  
• Automatic Non-volatile STORE on Power Loss  
• Non-Volatile STORE Under Hardware or  
Software Control  
Data transfers automatically to the non-volatile stor-  
age cells when power loss is detected (the STORE  
operation). On power up, data is automatically  
restored to the SRAM (the RECALL operation). Both  
STORE and RECALL operations are also available  
under software control.  
• Automatic RECALL to SRAM on Power Up  
• Unlimited RECALL Cycles  
• 1 Million STORE Cycles  
• 100-Year Non-volatile Data Retention  
• Single 5V ± 10% Power Supply  
The Simtek nvSRAM is the first monolithic non-vola-  
tile memory to offer unlimited writes and reads. It is  
the highest performance, most reliable non-volatile  
memory available.  
• Commercial and Industrial Temperatures  
• 28-pin 600-mil PDIP Package (RoHS-Compliant)  
BLOCK DIAGRAM  
QUANTUM TRAP  
512 x 512  
STORE/  
RECALL  
CONTROL  
A5  
A6  
A7  
A8  
STORE  
RECALL  
STATIC RAM  
ARRAY  
512 X 512  
A9  
A11  
A12  
A13  
A14  
SOFTWARE  
DETECT  
A13 – A0  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
COLUMN I/O  
COLUMN DEC  
A0 A1 A2 A3 A4 A10  
G
E
W
This product conforms to specifications per the  
terms of Simtek standard warranty. The product  
has completed Simtek internal qualification testing  
and has reached production status.  
Rev 0.3  
Document Control #ML0018  
February, 2007  
1
STK16C88  
PIN CONFIGURATIONS  
A14  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
VCC  
2
A12  
W
3
A13  
A8  
A7  
4
A6  
5
A9  
A5  
A11  
6
A4  
7
G
A3  
8
A10  
E
A2  
A1  
9
10  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A0  
DQ0  
11  
12  
DQ1  
DQ2  
VSS  
17  
16  
15  
13  
14  
28 Pin 600 mil PDIP  
PIN CONFIGURATIONS  
Pin Name  
-A  
I/O  
Description  
A
Input  
I/O  
Address: The 15 address inputs select one of 32,768 bytes in the nvSRAM array  
Data: Bi-directional 8-bit data bus for accessing the nvSRAM  
Chip Enable: The active low E input selects the device  
14  
0
DQ -DQ  
7
0
E
Input  
Input  
W
Write Enable: The active low W enables data on the DQ pins to be written to the address  
location latched by the falling edge of E  
G
Input  
Output Enable: The active low G input enables the data output buffers during read cycles.  
De-asserting G high caused the DQ pins to tri-state.  
V
V
Power Supply  
Power Supply  
Power: 5.0V, ±10%  
Ground  
CC  
SS  
Rev 0.3  
Document Control #ML0018  
February, 2007  
2
STK16C88  
a
ABSOLUTE MAXIMUM RATINGS  
Note a: Stresses greater than those listed under “Absolute Maximum Rat-  
ings” may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at conditions  
above those indicated in the operational sections of this specifica-  
tion is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect reliability.  
Voltage on Input Relative to Ground. . . . . . . . . . . . . .0.5V to 7.0V  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (VCC + 0.5V)  
Voltage on DQ0-7. . . . . . . . . . . . . . . . . . . . . . –0.5V to (VCC + 0.5V)  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration). . . . . . . . 15mA  
DC CHARACTERISTICS  
(V = 5.0V 10%)  
CC  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
Average V Current  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
97  
70  
100  
70  
mA  
mA  
t
t
= 25ns  
= 45ns  
CC  
CC  
AVAV  
AVAV  
1
c
I
I
Average V Current during STORE  
3
3
mA  
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
CC  
2
3
b
Average V  
Current at t  
= 200ns  
W (V  
– 0.2V)  
CC  
5V, 25°C, Typical  
AVAV  
CC  
All Others Cycling, CMOS Levels  
10  
10  
d
d
I
I
I
I
Average V Current  
(Standby, Cycling TTL Input Levels)  
30  
22  
31  
23  
mA  
mA  
t
t
= 25ns, E V  
= 45ns, E V  
SB  
SB  
CC  
AVAV  
AVAV  
IH  
IH  
1
2
V
Standby Current  
E (V  
– 0.2V)  
CC  
CC  
All Others V 0.2V or (V  
1.5  
1
1.5  
1
mA  
μA  
μA  
(Standby, Stable CMOS Input Levels)  
– 0.2V)  
CC  
IN  
Input Leakage Current  
V
V
= max  
CC  
ILK  
= V to V  
IN  
SS CC  
Off-State Output Leakage Current  
V
V
= max  
CC  
OLK  
5
5
= V to V , E or G V  
IN  
SS CC  
IH  
V
V
V
V
T
Input Logic “1” Voltage  
Input Logic “0” Voltage  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Operating Temperature  
2.2  
V
+ .5  
2.2  
V
+ .5  
V
V
All Inputs  
All Inputs  
IH  
CC  
CC  
V
– .5  
0.8  
V
– .5  
0.8  
IL  
SS  
SS  
2.4  
2.4  
V
I
I
=–4mA  
= 8mA  
OH  
OL  
OUT  
OUT  
0.4  
70  
0.4  
85  
V
0
–40  
°C  
A
Note b: ICC and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 and ICC are the average currents required for the duration of the respective STORE cycles (tSTORE ).  
4
Note d: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1  
e
5.0V  
CAPACITANCE  
(TA = 25°C, f = 1.0MHz)  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
ΔV = 0 to 3V  
ΔV = 0 to 3V  
480 Ohms  
C
Input Capacitance  
Output Capacitance  
5
7
pF  
IN  
C
pF  
OUT  
OUTPUT  
30 pF  
Note e: These parameters are guaranteed but not tested.  
INCLUDING  
SCOPE AND  
FIXTURE  
255 Ohms  
Figure 1: AC Output Loading  
Rev 0.3  
Document Control #ML0018  
February, 2007  
3
STK16C88  
SRAM READ CYCLES #1 & #2  
(V = 5.0V 10%)  
CC  
SYMBOLS  
STK16C88-25 STK16C88-45  
UNITS  
PARAMETER  
NO.  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
Read Cycle Time  
25  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
f
25  
45  
AVAV  
RC  
AA  
g
3
Address Access Time  
Output Enable to Data Valid  
25  
10  
45  
20  
AVQV  
4
GLQV  
AXQX  
ELQX  
EHQZ  
GLQX  
OE  
OH  
LZ  
g
h
h
5
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
5
5
5
5
6
7
10  
10  
25  
15  
15  
45  
HZ  
8
0
0
0
0
OLZ  
OHZ  
PA  
9
GHQZ  
e
d
10  
11  
ELICCH  
EHICCL  
,
e
PS  
Note f: W must be high during SRAM READ cycles and low during SRAM WRITE cycles.  
Note g: I/O state assumes E, G < VIL and W > VIH; device is continuously selected.  
Note h: Measured + 200mV from steady state output voltage.  
f, g  
SRAM READ CYCLE #1: Address Controlled  
2
AVAV  
t
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DATA VALID  
DQ (DATA OUT)  
f
SRAM READ CYCLE #2: E Controlled  
2
AVAV  
t
ADDRESS  
E
1
ELQV  
11  
EHICCL  
t
t
6
ELQX  
t
7
EHQZ  
t
G
9
4
GLQV  
t
GHQZ  
t
8
t
GLQX  
DATA VALID  
DQ (DATA OUT)  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
Rev 0.3  
Document Control #ML0018  
February, 2007  
4
STK16C88  
SRAM WRITE CYCLES #1 & #2  
(V = 5.0V 10%)  
CC  
SYMBOLS  
NO.  
STK16C88-25  
STK16C88-45  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
WC  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
t
t
t
Write Pulse Width  
WLWH  
WLEH  
WP  
CW  
DW  
t
t
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
DH  
t
t
t
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
20  
0
30  
0
AVWH  
AVEH  
AW  
t
t
t
AS  
AVWL  
AVEL  
t
t
t
0
0
WHAX  
EHAX  
WR  
h, i  
t
t
10  
15  
WLQZ  
WZ  
t
t
5
5
WHQX  
OW  
Note i: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note j: E or W must be VIH during address transitions.  
j
SRAM WRITE CYCLE #1: W Controlled  
12  
AVAV  
t
ADDRESS  
19  
WHAX  
14  
ELWH  
t
t
E
17  
AVWH  
t
18  
AVWL  
t
13  
WLWH  
W
t
15  
DVWH  
16  
WHDX  
t
t
DATA IN  
DATA VALID  
20  
WLQZ  
t
21  
WHQX  
t
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
SRAM WRITE CYCLE #2: E Controlledj  
12  
AVAV  
t
ADDRESS  
14  
ELEH  
18  
AVEL  
19  
EHAX  
t
t
t
E
17  
AVEH  
t
13  
WLEH  
t
W
15  
DVEH  
16  
EHDX  
t
t
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
Rev 0.3  
Document Control #ML0018  
February, 2007  
5
STK16C88  
AutoStorePluse/POWER-UP RECALL  
(V = 5.0V 10%)  
CC  
SYMBOLS  
STK16C88  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
MIN  
MAX  
22  
23  
24  
25  
t
t
Power-up RECALL Duration  
550  
μs  
ns  
k
RESTORE  
Power-down AutoStore™ Slew Time to Ground  
Low Voltage Trigger Level  
500  
4.0  
e, g  
stg  
V
V
4.5  
3.6  
V
V
SWITCH  
Low Voltage Reset Level  
RESET  
Note k: tRESTORE starts from the time VCC rises above VSWITCH  
.
AutoStorePluse/POWER-UP RECALL  
V
CC  
5V  
24  
V
SWITCH  
25  
RESET  
V
23  
t
stg  
AutoStore™  
31  
STORE  
t
POWER-UP RECALL  
22  
RESTORE  
t
W
DQ (DATA OUT)  
BROWN OUT  
BROWN OUT  
POWER-UP  
BROWN OUT  
AutoStorePluse  
AutoStorePluse  
RECALL  
NO STORE DUE TO  
NO SRAM WRITES  
NO RECALL  
RECALL WHEN  
NO RECALL  
(VCC DID NOT GO  
V
RETURNS  
CC  
(VCC DID NOT GO  
BELOW VRESET  
)
ABOVE VSWITCH  
BELOW VRESET  
)
Rev 0.3  
Document Control #ML0018  
February, 2007  
6
STK16C88  
SOFTWARE STORE/RECALL MODE SELECTION  
E
W
A
- A (hex)  
MODE  
I/O  
NOTES  
13  
0
0E38  
31C7  
03E0  
3C1F  
303F  
0FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
L
H
l, m  
Nonvolatile STORE  
0E38  
31C7  
03E0  
3C1F  
303F  
0C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
L
H
l, m  
Nonvolatile RECALL  
Note l: The six consecutive addresses must be in the order listed. W must be high during all six consecutive cycles to enable a nonvolatile cycle.  
Note m: While there are 15 addresses on the STK16C88, only the lower 14 are used to control software modes.  
n, o  
SOFTWARE STORE/RECALL CYCLE  
(V = 5.0V 10%)  
CC  
STK16C88-25  
STK16C88-45  
NO.  
SYMBOLS  
PARAMETER  
UNITS  
MIN  
25  
0
MAX  
MIN  
45  
0
MAX  
26  
27  
28  
29  
30  
31  
t
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
ns  
ns  
ns  
ns  
μs  
ms  
AVAV  
n
Address Set-up Time  
Clock Pulse Width  
AVEL  
n
20  
20  
30  
20  
ELEH  
ELAX  
g, n  
Address Hold Time  
RECALL Cycle Duration  
STORE Cycle Duration  
20  
10  
20  
10  
RECALL  
STORE  
Note n: The software sequence is clocked with E controlled reads.  
Note o: The six consecutive addresses must be in the order listed in the Software STORE/RECALL Mode Selection Table: (0E38, 31C7, 03E0, 3C1F,  
303F, 0FC0) for a STORE cycle or (0E38, 31C7, 03E0, 3C1F, 303F, 0C63) for a RECALL cycle. W must be high during all six consecutive  
cycles.  
o
SOFTWARE STORE/RECALL CYCLE: E Controlled  
26  
AVAV  
26  
t
AVAV  
t
ADDRESS #1  
ADDRESS #6  
ADDRESS  
27  
AVEL  
28  
t
ELEH  
t
E
29  
ELAX  
t
31  
30  
RECALL  
t
STORE / t  
HIGH IMPEDANCE  
DATA VALID  
DATA VALID  
DQ (DATA  
Rev 0.3  
Document Control #ML0018  
February, 2007  
7
STK16C88  
nvSRAM OPERATION  
The AutoStore+ STK16C88 is a fast 32K x 8 SRAM  
AutoStore+ OPERATION  
that does not lose its data on power-down. The data  
is preserved in integral QuantumTrap non-volatile  
storage elements when power is lost. Automatic  
STORE on power-down and automatic RECALL on  
power-up guarantee data integrity without the use of  
batteries.  
The STK16C88’s automatic STORE on power-down  
is completely transparent to the system. The  
STORE initiation takes less than 500ns when power  
is lost (VCC < VSWITCH) at which point the part depends  
only on its internal capacitor for STORE completion.  
If the power supply drops faster than 20 μs/volt  
before Vcc reaches Vswitch, then a 2.2 ohm resistor  
should be inserted between Vcc and th system sup-  
ply to avoid a momentary excess of current between  
Vcc and internal capacitor.  
NOISE CONSIDERATIONS  
Note that the STK16C88 is a high-speed memory  
and so must have a high-frequency bypass capaci-  
tor of approximately 0.1μF connected between VCC  
and VSS, using leads and traces that are as short as  
possible. As with all high-speed CMOS ICs, normal  
careful routing of power, ground and signals will help  
prevent noise problems.  
In order to prevent unneeded STORE operations,  
automatic STOREs will be ignored unless at least  
one WRITE operation has taken place since the  
most recent STORE or RECALL cycle. Software  
initiated STORE cycles are performed regardless of  
whether or not a WRITE operation has taken place.  
SRAM READ  
The STK16C88 performs a READ cycle whenever E  
and G are low and W is high. The address specified  
on pins A0-14 determines which of the 32,768 data  
bytes will be accessed. When the READ is initiated  
by an address transition, the outputs will be valid  
after a delay of tAVQV (READ cycle #1). If the READ is  
initiated by E or G, the outputs will be valid at tELQV or  
at tGLQV, whichever is later (READ cycle #2). The data  
outputs will repeatedly respond to address changes  
within the tAVQV access time without the need for tran-  
sitions on any control input pins, and will remain valid  
until another address change or until E or G is  
brought high.  
POWER-UP RECALL  
During power up, or after any low-power condition  
(VCC < VRESET), an internal RECALL request will be  
latched. When VCC once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
If the STK16C88 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be cor-  
rupted. To help avoid this situation, a 10kΩ resistor  
should be connected either between W and system  
VCC or between E and system VCC.  
SOFTWARE NONVOLATILE STORE  
SRAM WRITE  
The STK16C88 software STORE cycle is initiated  
by executing sequential READ cycles from six spe-  
cific address locations. During the STORE cycle,  
previous non-volatile data is erased and then the  
SRAM contents are written to the non-volatile stor-  
age elements. Once a STORE cycle is initiated, fur-  
ther inputs and outputs are disabled until the cycle is  
completed.  
A WRITE cycle is performed whenever E and W are  
low. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable  
until either E or W goes high at the end of the cycle.  
The data on the common I/O pins DQ0-7 will be writ-  
ten into the memory if it is valid tDVWH before the end  
of a W controlled WRITE or tDVEH before the end of an  
E controlled WRITE.  
Because a sequence of READs from specific  
addresses is used for STORE initiation, it is impor-  
tant that no other READ or WRITE accesses inter-  
vene in the sequence or the sequence will be  
aborted and no STORE or RECALL will take place.  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
the common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
Rev 0.3  
Document Control #ML0018  
February, 2007  
8
STK16C88  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0FC0 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE cycle  
RECALL operation in no way alters the data in the  
non-volatile storage elements. The nonvolatile data  
can be recalled an unlimited number of times.  
HARDWARE PROTECT  
The STK16C88 offers hardware protection against  
inadvertent STORE operation and SRAM WRITEs  
The software sequence must be clocked with E  
controlled READs.  
during low-voltage conditions. When VCC < VSWITCH  
,
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ  
cycles and not WRITE cycles be used in the  
sequence, although it is not necessary that G be  
low for the sequence to be valid. After the tSTORE  
cycle time has been fulfilled, the SRAM will again be  
activated for READ and WRITE operation.  
all software STORE operations and SRAM WRITEs  
are inhibited.  
LOW AVERAGE ACTIVE POWER  
The STK16C88 draws significantly less current  
when it is cycled at times longer than 50ns. Figure 2  
shows the relationship between I and READ cycle  
CC  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
SOFTWARE NONVOLATILE RECALL  
perature range, V =5.5V, 100% duty cycle on chip  
CC  
A software RECALL cycle is initiated with a  
sequence of READ operations in a manner similar to  
the software STORE initiation. To initiate the RECALL  
cycle, the following sequence of READ operations  
must be performed:  
enable). Figure 3 shows the same relationship for  
WRITE cycles. If the chip enable duty cycle is less  
than 100%, only standby current is drawn when the  
chip is disabled. The overall average current drawn  
by the STK16C88 depends on the following items:  
1) CMOS vs. TTL input levels; 2) the duty cycle of  
chip enable; 3) the overall cycle rate for accesses;  
4) the ratio of READs to WRITEs; 5) the operating  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0C63 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL cycle  
temperature; 6) the V level; and 7) I/O loading.  
CC  
Internally, RECALL is a two-step procedure. First,  
the SRAM data is cleared, and second, the nonvola-  
tile information is transferred into the SRAM cells.  
After the tRECALL cycle time the SRAM will once again  
be ready for READ and WRITE operations. The  
100  
80  
100  
80  
60  
60  
TTL  
CMOS  
40  
40  
TTL  
20  
20  
CMOS  
150 200  
0
0
50  
100  
150  
200  
50  
100  
Cycle Time (ns)  
Cycle Time (ns)  
Figure 3: ICC (max) Writes  
Figure 2: ICC (max) Reads  
Rev 0.3  
Document Control #ML0018  
February, 2007  
9
STK16C88  
ORDERING INFORMATION  
STK16C88 - W F 45 I  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (–40 to 85°C)  
Access Time  
25 = 25ns  
45 = 45ns  
Lead Finish  
F = 100% Sn (Matte Tin)  
Package  
W = Plastic 28-pin 600 mil DIP  
ORDERING CODES  
Part Number  
Description  
Temperature  
Commercial  
Commercial  
Industrial  
STK16C88-WF25  
STK16C88-WF45  
STK16C88-WF25I  
STK16C88-WF45I  
5V 32Kx8 AutoStore+ nvSRAM PDIP28-600  
5V 32Kx8 AutoStore+ nvSRAM PDIP28-600  
5V 32Kx8 AutoStore+ nvSRAM PDIP28-600  
5V 32Kx8 AutoStore+ nvSRAM PDIP28-600  
Industrial  
Rev 0.3  
Document Control #ML0018  
February, 2007  
10  
STK16C88  
PACKAGE DRAWING  
28 Pin 600 mil PDIP  
0.530 13.46  
0.550 13.97  
(
)
Pin 1  
Index  
Darla  
0.040 1.02  
0.050(1.27 )  
1.440 36.58  
1.460 (37.08)  
---- ----  
(4.57) .180  
0.015 (0.38)  
----  
----  
0.125 (3.18)  
MIN  
0.10  
(2.54)  
BSC  
0.36  
0.014  
0.022  
0.045 1.14  
( )  
)
(
0.56  
0.060 1.52  
15.11  
15.88  
0.595  
0.625  
(
)
MIN  
MAX  
DIM = INCHES  
MIN  
MAX  
)
DIM = mm  
(
0o  
15o  
0.20  
0.38  
0.008  
0.015  
(
)
0.600  
0.660  
15.24  
16.76  
)
(
Rev 0.3  
Document Control #ML0018  
February, 2007  
11  
STK16C88  
Document Revision History  
Revision  
0.0  
Date  
December 2002  
September 2003  
March 2006  
Summary  
0.1  
Added lead-free lead finish  
0.2  
Removed 35ns speed Grade, Removed Leaded lead finish  
0.3  
February 2007  
Add fast power-down slew rate information  
Add Product Ordering Code Listing  
Add Package Drawings  
Reformat Entire Document  
SIMTEK STK16C88 Datasheet, February 2007  
Copyright 2007, Simtek Corporation. All rights reserved.  
This datasheet may only be printed for the expressed use of Simtek Customers. No part of the datasheet may be reproduced in any other  
form or means without the express written permission from Simtek Corporation. The information contained in this publication is believed to be  
accurate, but changes may be made without notice. Simtek does not assume responsibility for, or grant or imply any warranty, including  
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE regarding this information, the product or its use. Nothing herein consti-  
tutes a license, grant or transfer of any rights to any Simtek patent, copyright, trademark, or other proprietary right.  
Rev 0.3  
Document Control #ML0018  
February, 2007  
12  

相关型号:

STK16C88-WF25

32Kx8 AutoStore+ nvSRAM
SIMTEK

STK16C88-WF25

256 Kbit (32K x 8) AutoStore+ nvSRAM
CYPRESS

STK16C88-WF25I

32Kx8 AutoStore+ nvSRAM
SIMTEK

STK16C88-WF25I

256 Kbit (32K x 8) AutoStore+ nvSRAM
CYPRESS

STK16C88-WF45

32Kx8 AutoStore+ nvSRAM
SIMTEK

STK16C88-WF45

256 Kbit (32K x 8) AutoStore+ nvSRAM
CYPRESS

STK16C88-WF45I

32Kx8 AutoStore+ nvSRAM
SIMTEK

STK16C88-WF45I

256 Kbit (32K x 8) AutoStore+ nvSRAM
CYPRESS

STK16C88_08

32Kx8 AutoStore+ nvSRAM
SIMTEK

STK16CA8

128K x 8 AutoStorePlus⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
SIMTEK

STK16CA8-W25

128K x 8 AutoStorePlus™ nvSRAM QuantumTrap™ CMOS Nonvolatile Static RAM
SIMTEK

STK16CA8-W25I

128K x 8 AutoStorePlus™ nvSRAM QuantumTrap™ CMOS Nonvolatile Static RAM
SIMTEK