STK16C88-3_08 [SIMTEK]

32Kx8 AutoStore+ nvSRAM; 32Kx8自动存储+的nvSRAM
STK16C88-3_08
型号: STK16C88-3_08
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

32Kx8 AutoStore+ nvSRAM
32Kx8自动存储+的nvSRAM

存储 静态存储器
文件: 总13页 (文件大小:365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK16C88-3  
32Kx8 AutoStore+ nvSRAM  
DESCRIPTION  
FEATURES  
The Simtek STK16C88-3 is a 256Kb fast static RAM  
with a non-volatile Quantum Trap storage element  
included with each memory cell.  
• Fast 35 ns Read Access & R/W Cycle Time  
• Directly Replaces Battery-Backed SRAM  
Modules such as Dallas/Maxim DS1230W  
The SRAM provides the fast access & cycle times,  
ease of use and unlimited read & write endurance of  
a normal SRAM.  
• Unlimited Read/Write Endurance  
• Automatic Non-volatile STORE on Power Loss  
• Automatic RECALL to SRAM on Power Up  
Data transfers automatically to the non-volatile stor-  
age cells when power loss is detected (the STORE  
operation). On power up, data is automatically  
restored to the SRAM (the RECALL operation). Both  
STORE and RECALL operations are also available  
under software control.  
• Non-Volatile STORE and RECALL Under  
Software Control  
• 1 Million STORE Cycles  
• 100-Year Non-volatile Data Retention  
• Single 3.3V +0.3V Power Supply  
The Simtek nvSRAM is the first monolithic non-vola-  
tile memory to offer unlimited writes and reads. It is  
the highest performance, most reliable non-volatile  
memory available.  
• Commercial and Industrial Temperatures  
• 28-pin 600-mil PDIP Package (RoHS-Compliant)  
BLOCK DIAGRAM  
QUANTUM TRAP  
512 x 512  
STORE/  
RECALL  
CONTROL  
A5  
A6  
A7  
A8  
STORE  
STATIC RAM  
ARRAY  
512 X 512  
RECALL  
A9  
A11  
A12  
A13  
A14  
SOFTWARE  
A13 – A0  
DETECT  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
COLUMN I/O  
COLUMN DEC  
A0 A1 A2 A3 A4 A10  
G
E
W
This product conforms to specifications per the  
terms of Simtek standard warranty. The product  
has completed Simtek internal qualification testing  
and has reached production status.  
Rev 2.0  
Document Control #ML0019  
Jan, 2008  
1
STK16C88-3  
PIN CONFIGURATIONS  
A14  
1
VCC  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
A12  
A7  
2
W
A13  
A8  
3
A6  
A5  
A4  
A3  
4
5
A9  
A11  
6
(TOP)  
7
G
A10  
A2  
8
A1  
A0  
E
9
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
10  
11  
12  
13  
14  
DQ0  
DQ1  
DQ2  
VSS  
28 Pin 600 mil PDIP  
PIN DESCRIPTIONS  
Pin Name  
I/O  
Description  
A
-A  
Input  
I/O  
Address: The 15 address inputs select one of 32,768 bytes in the nvSRAM array  
Data: Bi-directional 8-bit data bus for accessing the nvSRAM  
Chip Enable: The active low E input selects the device  
14  
0
DQ -DQ  
7
0
E
Input  
Input  
W
Write Enable: The active low W enables data on the DQ pins to be written to the address  
location latched by the falling edge of E  
G
Input  
Output Enable: The active low G input enables the data output buffers during read cycles.  
De-asserting G high caused the DQ pins to tri-state.  
V
V
Power Supply  
Power Supply  
Power: 3.3V, ±0.3V  
Ground  
CC  
SS  
Rev 2.0  
Document Control #ML0019  
Jan, 2008  
2
STK16C88-3  
ABSOLUTE MAXIMUM RATINGSa  
Note a: Stresses greater than those listed under “Absolute Maximum Rat-  
ings” may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at conditions  
above those indicated in the operational sections of this specifica-  
tion is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect reliability.  
Voltage on Input Relative to Ground. . . . . . . . . . . . . .0.5V to 4.5V  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (VCC + 0.5V)  
Voltage on DQ0-7. . . . . . . . . . . . . . . . . . . . . . –0.5V to (VCC + 0.5V)  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration). . . . . . . . 15mA  
DC CHARACTERISTICS  
(VCC = 3.0V-3.6V)  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
Average V Current  
UNITS  
NOTES  
MIN  
MAX  
50  
MIN  
MAX  
52  
b
I
I
I
mA  
mA  
t
= 35ns  
CC  
CC  
CC  
CC  
AVAV  
1
2
3
c
Average V Current during STORE  
3
3
All Inputs Don’t Care, V = max  
CC  
CC  
b
Average V  
Current at t  
AVAV  
= 200ns  
W (V  
– 0.2V)  
CC  
3.3V, 25°C, Typical  
CC  
All Others Cycling, CMOS Levels  
8
8
mA  
mA  
mA  
μA  
d
d
I
I
I
I
Average V Current  
t
= 35ns, E V  
AVAV IH  
SB  
SB  
CC  
1
2
18  
1
19  
1
(Standby, Cycling TTL Input Levels)  
V
Standby Current  
E (V  
– 0.2V)  
CC  
CC  
All Others V 0.2V or (V  
(Standby, Stable CMOS Input Levels)  
– 0.2V)  
CC  
IN  
Input Leakage Current  
V
V
= max  
CC  
ILK  
±1  
±1  
±1  
±1  
= V to V  
IN  
SS  
CC  
Off-State Output Leakage Current  
V
V
= max  
CC  
OLK  
μA  
= V to V , E or G V  
IN  
SS CC  
IH  
V
V
V
V
Input Logic “1” Voltage  
Input Logic “0” Voltage  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Operating Temperature  
2.2  
V
+ .5  
2.2  
V
+ .5  
V
V
All Inputs  
All Inputs  
IH  
CC  
CC  
V
– .5  
0.8  
V
– .5  
SS  
0.8  
IL  
SS  
2.4  
2.4  
V
I
I
=– 4mA  
= 8mA  
OH  
OL  
OUT  
OUT  
0.4  
70  
0.4  
85  
V
T
0
40  
°C  
A
Note b: ICC and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 and ICC are the average currents required for the duration of the respective STORE cycles (tSTORE ).  
4
Note d: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1  
3.3V  
317 Ohms  
CAPACITANCEe  
(TA = 25°C, f = 1.0MHz)  
OUTPUT  
30 pF  
INCLUDING  
SCOPE AND  
FIXTURE  
351 Ohms  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
ΔV = 0 to 3V  
ΔV = 0 to 3V  
C
Input Capacitance  
5
7
pF  
IN  
C
Output Capacitance  
pF  
OUT  
Note e: These parameters are guaranteed but not tested.  
Figure 1: AC Output Loading  
Rev 2.0  
Document Control #ML0019  
Jan, 2008  
3
STK16C88-3  
SRAM READ CYCLES #1 & #2 (VCC = 3.0V-3.6V)  
SYMBOLS  
STK16C88-3-35  
PARAMETER  
UNITS  
NO.  
#1, #2  
Alt.  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
AVAVf, t  
Read Cycle Time  
35  
f
ELEH  
RC  
AA  
g
3
Address Access Time  
35  
15  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Address Change or Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
OE  
OH  
LZ  
g
5
5
5
AXQX  
6
ELQX  
h
7
13  
13  
35  
EHQZ  
HZ  
8
0
0
GLQX  
OLZ  
OHZ  
PA  
h
9
GHQZ  
e
10  
11  
ELICCH  
,
d
e
EHICCL  
PS  
Note f: W must be high during SRAM READ cycles and low during SRAM WRITE cycles.  
Note g: I/O state assumes E, G < VIL and W > VIH; device is continuously selected.  
Note h: Measured + 200mV from steady state output voltage.  
SRAM READ CYCLE #1: Address Controlledf, g  
2
AVAV  
t
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DATA VALID  
DQ (DATA OUT)  
SRAM READ CYCLE #2: E and G Controlledf  
2
t
ELEH  
ADDRESS  
3
t
AVQV  
1
11  
EHICCL  
t
ELQV  
t
6
E
t
ELQX  
7
27  
AVEL  
t
EHQZ  
t
G
9
t
4
GHQZ  
t
GLQV  
8
t
GLQX  
DQ (DATA OUT)  
DATA VALID  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
Rev 2.0  
Document Control #ML0019  
Jan, 2008  
4
STK16C88-3  
SRAM WRITE CYCLES #1 & #2  
(VCC = 3.0V-3.6V)  
SYMBOLS  
NO.  
STK16C88-3-35  
UNITS  
PARAMETER  
#1  
#2  
Alt.  
MIN  
35  
25  
25  
12  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
WC  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
WLEH  
ELEH  
DVEH  
EHDX  
AVEH  
AVEL  
EHAX  
t
Write Pulse Width  
WLWH  
ELWH  
DVWH  
WHDX  
AVWH  
AVWL  
WHAX  
WLQZ  
WHQX  
WP  
CW  
DW  
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
t
DH  
t
25  
0
AW  
t
AS  
t
0
WR  
h, i  
t
13  
WZ  
t
5
OW  
Note i: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note j: E or W must be VIH during address transitions.  
SRAM WRITE CYCLE #1: W Controlledj  
12  
AVAV  
t
ADDRESS  
19  
WHAX  
14  
ELWH  
t
t
E
17  
AVWH  
t
18  
AVWL  
t
13  
WLWH  
t
W
15  
DVWH  
16  
WHDX  
t
t
DATA IN  
DATA VALID  
20  
WLQZ  
t
21  
WHQX  
t
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
SRAM WRITE CYCLE #2: E Controlledj  
12  
AVAV  
t
ADDRESS  
18  
AVEL  
14  
ELEH  
19  
EHAX  
t
t
t
E
17  
AVEH  
t
13  
WLEH  
t
W
15  
DVEH  
16  
EHDX  
t
t
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
Rev 2.0  
Document Control #ML0019  
Jan, 2008  
5
STK16C88-3  
AutoStorePlus/POWER-UP RECALL  
(VCC = 3.0V-3.6V)  
SYMBOLS  
STK16C88-3  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
MIN  
MAX  
22  
23  
24  
25  
t
Power-up RECALL Duration  
550  
μs  
ns  
k
RESTORE  
t
Minimum V Slew Time to Ground  
CC  
500  
2.7  
e, g  
stg  
V
Low Voltage Trigger Level  
Low Voltage Reset Level  
2.95  
2.4  
V
V
SWITCH  
RESET  
V
e
Note k: tRESTORE starts from the time VCC rises above VSWITCH  
.
AutoStorePlus/POWER-UP RECALL  
VCC  
3.3V  
24  
VSWITCH  
25  
VRESET  
23  
t
stg  
AutoStore™  
31  
STORE  
t
POWER-UP RECALL  
22  
RESTORE  
t
W
DQ (DATA OUT)  
BROWN OUT  
AutoStorePlus  
BROWN OUT  
AutoStorePlus  
POWER-UP  
RECALL  
BROWN OUT  
NO STORE DUE TO  
NO SRAM WRITES  
NO RECALL  
RECALL WHEN  
NO RECALL  
(VCC DID NOT GO  
V
RETURNS  
CC  
(VCC DID NOT GO  
BELOW VRESET  
)
ABOVE VSWITCH  
BELOW VRESET  
)
Rev 2.0  
Document Control #ML0019  
Jan, 2008  
6
STK16C88-3  
SOFTWARE STORE/RECALL MODE SELECTION  
E
W
A
- A (hex)  
MODE  
I/O  
NOTES  
13  
0
0E38  
31C7  
03E0  
3C1F  
303F  
0FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
L
H
l, m  
Nonvolatile STORE  
0E38  
31C7  
03E0  
3C1F  
303F  
0C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
L
H
l, m  
Nonvolatile RECALL  
Note l: The six consecutive addresses must be in the order listed. W must be high during all six consecutive E controlled cycles to enable a nonvolatile  
cycle.  
Note m: While there are 15 addresses on the STK16C88-3, only the lower 14 are used to control software modes.  
SOFTWARE STORE/RECALL CYCLEn, o  
(VCC = 3.0V-3.6V)  
STK16C88-3-35  
UNITS  
NO.  
SYMBOLS  
PARAMETER  
MIN  
35  
0
MAX  
26  
27  
28  
29  
30  
31  
t
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
Address Set-up Time  
ns  
ns  
ns  
ns  
μs  
ms  
AVAV  
n
n
AVEL  
Clock Pulse Width  
25  
20  
ELEH  
g, n  
Address Hold Time  
ELAX  
RECALL Cycle Duration  
STORE Cycle Duration  
20  
10  
RECALL  
STORE  
Note n: The software sequence is clocked on the falling edge of E controlled Reads without involving G (double clocking will abort the sequence). See  
application note: MA0002 http://www.simtek.com(/attachments/AppNote02.pdf.  
Note o: The six consecutive addresses must be in the order listed in the Software STORE/RECALL Mode Selection Table: (0E38, 31C7, 03E0, 3C1F,  
303F, 0FC0) for a STORE cycle or (0E38, 31C7, 03E0, 3C1F, 303F, 0C63) for a RECALL cycle. W must be high during all six consecutive  
cycles.  
SOFTWARE STORE/RECALL CYCLE: E Controlledo  
26  
AVAV  
26  
t
AVAV  
t
ADDRESS #1  
ADDRESS #6  
ADDRESS  
27  
AVEL  
28  
t
ELEH  
t
E
29  
ELAX  
t
31  
30  
RECALL  
t
STORE / t  
HIGH IMPEDANCE  
DATA VALID  
DATA VALID  
DQ (DATA  
Rev 2.0  
Document Control #ML0019  
Jan, 2008  
7
STK16C88-3  
nvSRAM OPERATION  
The AutoStore+ STK16C88-3 is a fast 32K x 8  
SRAM that does not lose its data on power-down.  
The data is preserved in integral Quantum Trap non-  
volatile storage elements when power is lost. Auto-  
matic STORE on power-down and automatic  
RECALL on power-up guarantee data integrity with-  
out the use of batteries.  
AutoStore+ OPERATION  
The STK16C88-3’s automatic STORE on power-  
down is completely transparent to the system. The  
STORE initiation takes less than 500ns when power  
is lost (VCC < VSWITCH) at which point the part depends  
only on its internal capacitor for STORE completion.  
If the power supply drops faster than 20μs/volt  
before Vcc reaches Vswitch, then a 1 ohm resistor  
should be inserted between Vcc and the system  
supply to avoid a momentary excess of current  
between Vcc and internal capacitor.  
NOISE CONSIDERATIONS  
Note that the STK16C88-3 is a high-speed memory  
and so must have a high-frequency bypass capaci-  
tor of approximately 0.1μF connected between VCC  
and VSS, using leads and traces that are as short as  
possible. As with all high-speed CMOS ICs, normal  
careful routing of power, ground and signals will help  
prevent noise problems.  
In order to prevent unneeded STORE operations,  
automatic STOREs will be ignored unless at least  
one WRITE operation has taken place since the most  
recent STORE or RECALL cycle. Software initiated  
STORE cycles are performed regardless of whether  
or not a WRITE operation has taken place.  
SRAM READ  
The STK16C88-3 performs a READ cycle whenever  
E and G are low and W is high. The address speci-  
fied on pins A0-14 determines which of the 32,768  
data bytes will be accessed. When the READ is initi-  
ated by an address transition, the outputs will be  
valid after a delay of tAVQV (READ cycle #1). If the  
READ is initiated by E or G, the outputs will be valid  
at tELQV or at tGLQV, whichever is later (READ cycle #2).  
The data outputs will repeatedly respond to address  
changes within the tAVQV access time without the need  
for transitions on any control input pins, and will  
remain valid until another address change or until E  
or G is brought high.  
POWER-UP RECALL  
During power up, or after any low-power condition  
(VCC < VRESET), an internal RECALL request will be  
latched. When VCC once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
If the STK16C88-3 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10kΩ resistor should  
be connected either between W and system VCC or  
between E and system VCC.  
SOFTWARE NONVOLATILE STORE  
SRAM WRITE  
The STK16C88-3 software STORE cycle is initiated  
by executing sequential READ cycles from six spe-  
cific address locations. During the STORE cycle, pre-  
vious nonvolatile data is erased and then the SRAM  
contents are written to the nonvolatile storage ele-  
ments. Once a STORE cycle is initiated, further input  
and output are disabled until the cycle is completed.  
A WRITE cycle is performed whenever E and W are  
low. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable  
until either E or W goes high at the end of the cycle.  
The data on the common I/O pins DQ0-7 will be writ-  
ten into the memory if it is valid tDVWH before the end  
of a W controlled WRITE or tDVEH before the end of an  
E controlled WRITE.  
Because a sequence of READs from specific  
addresses is used for STORE initiation, it is impor-  
tant that no other READ or WRITE accesses inter-  
vene in the sequence or the sequence will be  
aborted and no STORE or RECALL will take place.  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
the common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
Rev 2.0  
Document Control #ML0019  
Jan, 2008  
8
STK16C88-3  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0FC0 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE cycle  
RECALL operation in no way alters the data in the  
nonvolatile storage elements. The nonvolatile data  
can be recalled an unlimited number of times.  
HARDWARE PROTECT  
The STK16C88-3 offers hardware protection  
against inadvertent STORE operation and SRAM  
The software sequence must be clocked with E  
controlled READs.  
WRITEs during low-voltage conditions. When VCC  
<
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ  
cycles and not WRITE cycles be used in the  
sequence, although it is not necessary that G be  
low for the sequence to be valid. After the tSTORE  
cycle time has been fulfilled, the SRAM will again be  
activated for READ and WRITE operation.  
VSWITCH, all software STORE operations and SRAM  
WRITEs are inhibited.  
LOW AVERAGE ACTIVE POWER  
The STK16C88-3 draws significantly less current  
when it is cycled at rates slower than 35ns. Figure 2  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 3.6V, 100% duty cycle on chip  
enable). Figure 3 shows the same relationship for  
WRITE cycles. If the chip enable duty cycle is less  
than 100%, only standby current is drawn when the  
chip is disabled. The overall average current drawn  
by the STK16C88-3 depends on the following  
items: 1) CMOS vs. TTL input levels; 2) the duty  
cycle of chip enable; 3) the overall cycle rate for  
accesses; 4) the ratio of READs to WRITEs; 5) the  
operating temperature; 6) the VCC level; and 7) I/O  
loading.  
SOFTWARE NONVOLATILE RECALL  
A software RECALL cycle is initiated with a  
sequence of READ operations in a manner similar  
to the software STORE initiation. To initiate the  
RECALL cycle, the following sequence of READ  
operations must be performed:  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0C63 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL cycle  
Internally, RECALL is a two-step procedure. First,  
the SRAM data is cleared, and second, the nonvola-  
tile information is transferred into the SRAM cells.  
After the tRECALL cycle time the SRAM will once again  
be ready for READ and WRITE operations. The  
50  
40  
30  
50  
40  
30  
20  
TTL  
CMOS  
20  
TTL  
10  
10  
CMOS  
0
0
50  
100  
150  
200  
50  
100  
Cycle Time (ns)  
Figure 2: ICC (max) Reads  
150  
200  
Cycle Time (ns)  
Figure 3: ICC (max) Writes  
Rev 2.0  
Document Control #ML0019  
Jan, 2008  
9
STK16C88-3  
cold or warm boot status, etc. should always pro-  
gram a unique NV pattern (e.g., complex 4-byte  
pattern of 46 E6 49 53 hex or more random  
bytes) as part of the final system manufacturing  
test to ensure these system routines work consis-  
tently.  
BEST PRACTICES  
nvSRAM products have been used effectively for  
over 15 years. While ease-of-use is one of the prod-  
uct’s main system values, experience gained work-  
ing with hundreds of applications has resulted in the  
following suggestions as best practices:  
• Power up boot firmware routines should rewrite  
the nvSRAM into the desired state. While the  
nvSRAM is shipped in a preset state, best prac-  
tice is to again rewrite the nvSRAM into the  
desired state as a safeguard against events that  
might flip the bit inadvertently (program bugs,  
incoming inspection routines, etc.).  
• The non-volatile cells in an nvSRAM are pro-  
grammed on the test floor during final test and  
quality assurance. Incoming inspection routines  
at customer or contract manufacturer’s sites will  
sometimes reprogram these values. Final NV pat-  
terns are typically repeating patterns of AA, 55,  
00, FF, A5, or 5A. End product’s firmware should  
not assume an NV array is in a set programmed  
state. Routines that check memory content val-  
ues to determine first time system configuration,  
Rev 2.0  
Document Control #ML0019  
Jan, 2008  
10  
STK16C88-3  
ORDERING INFORMATION  
STK16C88-3 W F 35 I  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (–40 to 85°C)  
Access Time  
35 = 35ns  
Lead Finish  
F = 100% Sn (Matte Tin)  
Package  
W = Plastic 28-pin 600 mil DIP  
ORDERING CODES  
Part Number  
Description  
Access Times  
35 ns access times  
35 ns access times  
Temperature  
STK16C88-3WF35  
3.3V 32Kx8 AutoStore+ nvSRAM PDIP28-600  
3.3V 32Kx8 AutoStore+ nvSRAM PDIP28-600  
Commercial  
Industrial  
STK16C88-3WF35I  
Rev 2.0  
11  
Document Control #ML0019  
Jan, 2008  
STK16C88-3  
PACKAGE DRAWING  
28 Pin 600 mil PDIP  
0.530 13.46  
0.550 13.97  
(
)
Pin 1  
Index  
0.040 1.02  
0.050(1.27 )  
1.440 36.58  
1.460 (37.08)  
---- ----  
(4.57) .180  
0.015 (0.38)  
----  
----  
0.125 (3.18)  
MIN  
0.10  
(2.54)  
BSC  
0.36  
0.56  
0.014  
0.022  
0.045 1.14  
(
)
)
(
0.060 1.52  
15.11  
15.88  
0.595  
0.625  
(
)
MIN  
MAX  
DIM = INCHES  
MIN  
MAX  
)
DIM = mm  
(
0o  
15o  
0.20  
0.38  
0.008  
0.015  
(
)
0.600  
0.660  
15.24  
16.76  
)
(
Rev 2.0  
Document Control #ML0019  
Jan, 2008  
12  
STK16C88-3  
Document Revision History  
Revision  
0.0  
Date  
December 2002  
September 2003  
March 2006  
Summary  
0.1  
Added lead-free lead finish  
0.2  
Removed 45ns and 55ns speed grades, Removed Leaded lead finish.  
0.3  
February 2007  
Add fast power-down slew rate information  
Add Product Ordering Code Listing  
Add Package Drawings  
Reformat Entire Document  
2.0  
January 2008  
Extend definition of t (#7)  
HZ  
Page 4: updated the SRAM READ CYCLE #2 figure, SRAM WRITE CYCLE #1 figure, Note  
l, and Note n to clarify product usage  
Page 10: added best practices section.  
Page 11: added access times column to the Ordering codes.  
SIMTEK STK16C88-3 Datasheet, January 2008  
Copyright 2007, Simtek Corporation. All rights reserved.  
This datasheet may only be printed for the expressed use of Simtek Customers. No part of the datasheet may be reproduced in any other  
form or means without the express written permission from Simtek Corporation. The information contained in this publication is believed to be  
accurate, but changes may be made without notice. Simtek does not assume responsibility for, or grant or imply any warranty, including  
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE regarding this information, the product or its use. Nothing herein consti-  
tutes a license, grant or transfer of any rights to any Simtek patent, copyright, trademark, or other proprietary right.  
Rev 2.0  
Document Control #ML0019  
Jan, 2008  
13  

相关型号:

STK16C88-45

32K x 8 AutoStorePlus nvSRAM QuantumTrap CMOS Nonvolatile Static RAM
ETC

STK16C88-45I

32K x 8 AutoStorePlus nvSRAM QuantumTrap CMOS Nonvolatile Static RAM
ETC

STK16C88-S20

Non-Volatile SRAM, 32KX8, 22ns, CMOS, PDSO28, 0.350 INCH, PLASTIC, SOIC-28
SIMTEK

STK16C88-S25

NVRAM (EEPROM Based)
ETC

STK16C88-S25I

NVRAM (EEPROM Based)
ETC

STK16C88-S35

NVRAM (EEPROM Based)
ETC

STK16C88-S35I

NVRAM (EEPROM Based)
ETC

STK16C88-S45

Non-Volatile SRAM, 32KX8, 45ns, CMOS, PDSO28, 0.350 INCH, PLASTIC, SOIC-28
SIMTEK

STK16C88-S45I

Non-Volatile SRAM, 32KX8, 45ns, CMOS, PDSO28, 0.350 INCH, PLASTIC, SOIC-28
SIMTEK

STK16C88-W20

NVRAM (EEPROM Based)
ETC

STK16C88-W25

32Kx8 AutoStore+ nvSRAM
SIMTEK

STK16C88-W25

32KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS