STK11C88-NF45ITR [SIMTEK]

32Kx8 SoftStore nvSRAM; 32Kx8 SoftStore的nvSRAM
STK11C88-NF45ITR
型号: STK11C88-NF45ITR
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

32Kx8 SoftStore nvSRAM
32Kx8 SoftStore的nvSRAM

存储 内存集成电路 静态存储器 光电二极管
文件: 总14页 (文件大小:389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK11C88  
32Kx8 SoftStore nvSRAM  
FEATURES  
DESCRIPTION  
• 25, 45 ns Read Access & R/W Cycle Time  
• Unlimited Read/Write Endurance  
• Pin Compatible with Industry Standard SRAMs  
• Software-initiated STORE and RECALL  
• Automatic RECALL to SRAM on Power Up  
• Unlimited RECALL Cycles  
The Simtek STK11C88 is a 256Kb fast static RAM  
with a non-volatile Quantum Trap storage element  
included with each memory cell.  
The SRAM provides the fast access & cycle times,  
ease of use and unlimited read & write endurance of  
a normal SRAM.  
• 1 Million Store Cycles  
Data transfers under software control to the non-vol-  
atile storage cell (the STORE operation). On power  
up, data is automatically restored to the SRAM (the  
RECALL operation). RECALL operations are also  
available under software control.  
• 100-Year Non-volatile Data Retention  
• Single 5V ± 10% Power Supply  
• Commercial and Industrial Temperatures  
• 28-pin 300-mil and 330-mil SOIC Packages  
(RoHS-Compliant)  
The Simtek nvSRAM is the first monolithic non-  
volatile memory to offer unlimited writes and reads.  
It is the highest performance, most reliable non-  
volatile memory available.  
BLOCK DIAGRAM  
QUANTUM TRAP  
512 x 512  
STORE/  
RECALL  
CONTROL  
A5  
A6  
A7  
A8  
STORE  
STATIC RAM  
ARRAY  
512 X 512  
RECALL  
A9  
A11  
A12  
A13  
A14  
SOFTWARE  
DETECT  
A13 – A0  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
COLUMN I/O  
COLUMN DEC  
A0 A1 A2 A3 A4 A10  
G
E
W
This product conforms to specifications per the  
terms of Simtek standard warranty. The product  
has completed Simtek internal qualification testing  
and has reached production status.  
Rev 0.3  
Document Control #ML0012  
February 2007  
1
STK11C88  
PIN CONFIGURATIONS  
A14  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
1
2
3
4
VCC  
A12  
A7  
A6  
A5  
A4  
A3  
W
A13  
A8  
5
6
7
8
A9  
A11  
G
A10  
E
A2  
A1  
9
10  
11  
12  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A0  
DQ0  
DQ1  
DQ2  
VSS  
17  
16  
15  
13  
14  
28 - Pin 300 mil SOIC  
28 - Pin 330 mil SOIC  
PIN DESCRIPTIONS  
Pin Name  
-A  
I/O  
Description  
A
Input  
I/O  
Address: The 15 address inputs select one of 32,768 bytes in the nvSRAM array  
Data: Bi-directional 8-bit data bus for accessing the nvSRAM  
Chip Enable: The active low E input selects the device  
14  
0
DQ -DQ  
7
0
E
Input  
Input  
W
Write Enable: The active low W enables data on the DQ pins to be written to the address  
location latched by the falling edge of E  
G
Input  
Output Enable: The active low G input enables the data output buffers during read cycles.  
De-asserting G high caused the DQ pins to tri-state.  
V
V
Power Supply  
Power Supply  
Power: 5.0V, ±10%  
Ground  
CC  
SS  
Rev 0.3  
Document Control #ML0012  
February 2007  
2
STK11C88  
a
ABSOLUTE MAXIMUM RATINGS  
Voltage on Input Relative to Ground. . . . . . . . . . . . . .0.5V to 7.0V  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (VCC + 0.5V)  
Voltage on DQ0-7 . . . . . . . . . . . . . . . . . . . . . . –0.5V to (VCC + 0.5V)  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration). . . . . . . . 15mA  
Note a: Stresses greater than those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at condi-  
tions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
DC CHARACTERISTICS  
(V = 5.0V 10%)  
CC  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
Average V Current  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
97  
70  
100  
70  
mA  
mA  
t
t
= 25ns  
= 45ns  
CC  
CC  
AVAV  
AVAV  
1
c
I
I
Average V Current during STORE  
3
3
mA  
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
CC  
2
3
b
Average V Current at t  
CC  
= 200ns  
W (V – 0.2V)  
AVAV  
CC  
10  
10  
5V, 25°C, Typical  
All Others Cycling, CMOS Levels  
d
d
I
I
I
I
Average V Current  
CC  
(Standby, Cycling TTL Input Levels)  
30  
22  
31  
23  
mA  
mA  
t
t
= 25ns, E V  
IH  
SB  
SB  
AVAV  
AVAV  
1
2
= 45ns, E V  
IH  
V
Standby Current  
E (V - 0.2V)  
CC  
All Others V 0.2V or (V – 0.2V)  
CC  
750  
1
750  
1
μA  
μA  
μA  
(Standby, Stable CMOS Input Levels)  
IN CC  
Input Leakage Current  
V
V
= max  
CC  
ILK  
= V to V  
CC  
IN  
SS  
Off-State Output Leakage Current  
V
V
= max  
CC  
OLK  
5
5
= V to V , E or G V  
IN  
SS  
CC  
IH  
V
V
V
V
T
Input Logic “1” Voltage  
Input Logic “0” Voltage  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Operating Temperature  
2.2  
V
+ .5  
2.2  
V + .5  
CC  
V
V
All Inputs  
All Inputs  
IH  
CC  
V
– .5  
0.8  
V – .5  
SS  
0.8  
IL  
SS  
2.4  
2.4  
V
I
I
=– 4mA  
= 8mA  
OH  
OL  
OUT  
OUT  
0.4  
70  
0.4  
85  
V
0
40  
°C  
A
Note b: ICC and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 is the average current required for the duration of the STORE cycle (tSTORE ).  
Note d: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1  
5.0V  
e
CAPACITANCE  
(T = 25°C, f = 1.0MHz)  
A
480 Ohms  
SYMBOL  
PARAMETER  
Input Capacitance  
Output Capacitance  
MAX  
UNITS  
CONDITIONS  
ΔV = 0 to 3V  
ΔV = 0 to 3V  
C
5
7
pF  
IN  
OUTPUT  
30 pF  
C
pF  
OUT  
INCLUDING  
SCOPE AND  
FIXTURE  
255 Ohms  
Note e: These parameters are guaranteed but not tested.  
Figure 1: AC Output Loading  
Rev 0.3  
Document Control #ML0012  
February 2007  
3
STK11C88  
SRAM READ CYCLES #1 & #2  
(V = 5.0V + 10%)  
CC  
SYMBOLS  
NO.  
STK11C88-25 STK11C88-45  
UNITS  
PARAMETER  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
Read Cycle Time  
25  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
f
25  
45  
AVAV  
RC  
AA  
g
3
Address Access Time  
Output Enable to Data Valid  
25  
10  
45  
20  
AVQV  
4
GLQV  
OE  
OH  
LZ  
g
5
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
5
5
5
5
AXQX  
6
ELQX  
h
7
10  
10  
25  
15  
15  
45  
EHQZ  
HZ  
8
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
h
9
GHQZ  
e
10  
11  
ELICCH  
EHICCL  
d, e  
PS  
Note f: W must be high during SRAM READ cycles and low during SRAM WRITE cycles.  
Note g: I/O state assumes E, G < VIL and W > VIH; device is continuously selected.  
Note h: Measured 200mV from steady state output voltage.  
f, g  
SRAM READ CYCLE #1: Address Controlled  
2
t
AVAV  
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DQ (DATA OUT)  
DATA VALID  
f
SRAM READ CYCLE #2: E Controlled  
2
t
AVAV  
ADDRESS  
E
1
11  
EHICCL  
t
ELQV  
t
6
t
ELQX  
7
t
EHQZ  
G
9
t
4
GHQZ  
t
GLQV  
8
t
GLQX  
DQ (DATA OUT)  
DATA VALID  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
Rev 0.3  
Document Control #ML0012  
February 2007  
4
STK11C88  
SRAM WRITE CYCLES #1 & #2  
(V = 5.0V + 10%)  
CC  
SYMBOLS  
NO.  
STK11C88-25  
STK11C88-45  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
WC  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
t
t
t
Write Pulse Width  
WLWH  
WLEH  
WP  
CW  
DW  
t
t
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
DH  
t
t
t
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
20  
0
30  
0
AVWH  
AVEH  
AW  
t
t
t
AS  
AVWL  
AVEL  
t
t
t
0
0
WHAX  
h, i  
EHAX  
WR  
t
t
10  
15  
WLQZ  
WZ  
t
t
5
5
WHQX  
OW  
Note i: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note j: E or W must be VIH during address transitions.  
j
SRAM WRITE CYCLE #1: W Controlled  
12  
AVAV  
t
ADDRESS  
19  
WHAX  
14  
ELWH  
t
t
E
17  
AVWH  
t
18  
AVWL  
t
13  
WLWH  
t
W
15  
DVWH  
16  
WHDX  
t
t
DATA IN  
DATA VALID  
20  
WLQZ  
t
21  
WHQX  
t
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
j
SRAM WRITE CYCLE #2: E Controlled  
12  
AVAV  
t
ADDRESS  
14  
ELEH  
18  
AVEL  
19  
EHAX  
t
t
t
E
17  
AVEH  
t
13  
WLEH  
t
W
15  
DVEH  
16  
EHDX  
t
t
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
Rev 0.3  
Document Control #ML0012  
February 2007  
5
STK11C88  
STORE INHIBIT/POWER-UP RECALL  
(V = 5.0V + 10%)  
CC  
SYMBOLS  
STK11C88  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
MIN  
MAX  
550  
10  
22  
23  
24  
25  
t
t
Power-up RECALL Duration  
STORE Cycle Duration  
μs  
ms  
V
k
RESTORE  
STORE  
g
V
V
Low Voltage Trigger Level  
Low Voltage Reset Level  
4.0  
4.5  
SWITCH  
RESET  
3.6  
V
Note k: tRESTORE starts from the time VCC rises above VSWITCH  
.
STORE INHIBIT/POWER-UP RECALL  
V
CC  
5V  
24  
V
SWITCH  
25  
RESET  
V
STORE INHIBIT  
POWER-UP RECALL  
22  
RESTORE  
t
DQ (DATA OUT)  
POWER-UP  
BROWN OUT  
BROWN OUT  
BROWN OUT  
RECALL  
STORE INHIBIT  
STORE INHIBIT  
STORE INHIBIT  
NO RECALL  
NO RECALL  
RECALL WHEN  
(V DID NOT GO  
(V DID NOT GO  
V
RETURNS  
CC  
CC  
CC  
BELOW V  
)
BELOW V  
)
ABOVE V  
SWITCH  
RESET  
RESET  
Rev 0.3  
Document Control #ML0012  
February 2007  
6
STK11C88  
SOFTWARE STORE/RECALL MODE SELECTION  
E
W
A
- A (hex)  
MODE  
I/O  
NOTES  
13  
0
0E38  
31C7  
03E0  
3C1F  
303F  
0FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
L
H
m, n  
Nonvolatile STORE  
0E38  
31C7  
03E0  
3C1F  
303F  
0C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
L
H
m, n  
Nonvolatile RECALL  
Note l: The six consecutive addresses must be in the order listed. W must be high during all six consecutive cycles to enable a nonvolatile cycle.  
Note m: While there are 15 addresses on the STK11C88, only the lower 14 are used to control software modes.  
n, o  
SOFTWARE STORE/RECALL CYCLE  
(V = 5.0V 10%)  
CC  
STK11C88-25  
STK11C88-45  
UNITS  
NO.  
SYMBOLS  
PARAMETER  
MIN  
25  
0
MAX  
MIN  
45  
0
MAX  
26  
27  
28  
29  
30  
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
ns  
ns  
ns  
ns  
μs  
AVAV  
n
n
Address Set-up Time  
Clock Pulse Width  
Address Hold Time  
RECALL Duration  
AVEL  
20  
20  
30  
20  
ELEH  
n
ELAX  
n
20  
20  
RECALL  
Note n: The software sequence is clocked with E controlled reads.  
Note o: The six consecutive addresses must be in the order listed in the Software STORE/RECALL Mode Selection Table: (0E38, 31C7, 03E0, 3C1F,  
303F, 0FC0) for a STORE cycle or (0E38, 31C7, 03E0, 3C1F, 303F, 0C63) for a RECALL cycle. W must be high during all six consecutive  
cycles.  
o
SOFTWARE STORE/RECALL CYCLE: E Controlled  
26  
AVAV  
26  
t
AVAV  
t
ADDRESS #1  
ADDRESS #6  
ADDRESS  
27  
AVEL  
28  
t
ELEH  
t
E
29  
ELAX  
t
23  
30  
RECALL  
t
STORE / t  
HIGH IMPEDANCE  
DATA VALID  
DATA VALID  
DQ (DATA  
Rev 0.3  
Document Control #ML0012  
February 2007  
7
STK11C88  
nvSRAM OPERATION  
The STK11C88 is a versatile memory chip that pro-  
SOFTWARE NONVOLATILE STORE  
vides several modes of operation. The STK11C88  
operates like a standard 32K x 8 SRAM. A 32K x 8  
array of non-volatile storage elements shadow the  
SRAM. SRAM data can be copied to non-volatile  
memory or non-volatile data can be recalled to the  
SRAM.  
The STK11C88 software STORE cycle is initiated by  
executing sequential READ cycles from six specific  
address locations. During the STORE cycle an erase  
of the previous nonvolatile data is first performed,  
followed by a program of the nonvolatile elements.  
The program operation copies the SRAM data into  
nonvolatile memory. Once a STORE cycle is initi-  
ated, further input and output are disabled until the  
cycle is completed.  
NOISE CONSIDERATIONS  
Note that the STK11C88 is a high-speed memory  
and so must have a high-frequency bypass capaci-  
Because a sequence of READs from specific  
addresses is used for STORE initiation, it is impor-  
tant that no other READ or WRITE accesses inter-  
vene in the sequence or the sequence will be  
aborted and no STORE or RECALL will take place.  
tor of approximately 0.1μF connected between V  
cc  
and V , using leads and traces that are as short as  
ss  
possible. As with all high-speed CMOS ICs, normal  
careful routing of power, ground and signals will help  
prevent noise problems.  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
SRAM READ  
The STK11C88 performs a READ cycle whenever E  
and G are low and W is high. The address specified  
on pins A0-14 determines which of the 32,768 data  
bytes will be accessed. When the READ is initiated  
by an address transition, the outputs will be valid  
after a delay of tAVQV (READ cycle #1). If the READ is  
initiated by E or G, the outputs will be valid at tELQV or  
at tGLQV, whichever is later (READ cycle #2). The data  
outputs will repeatedly respond to address changes  
within the tAVQV access time without the need for tran-  
sitions on any control input pins, and will remain valid  
until another address change or until E or G is  
brought high.  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0FC0 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE cycle  
The software sequence must be clocked with E con-  
trolled READs.  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ cycles  
and not WRITE cycles be used in the sequence,  
although it is not necessary that G be low for the  
sequence to be valid. After the tSTORE cycle time has  
been fulfilled, the SRAM will again be activated for  
READ and WRITE operation.  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
low. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable  
until either E or W goes high at the end of the cycle.  
The data on the common I/O pins DQ0-7 will be writ-  
ten into the memory if it is valid tDVWH before the end  
of a W controlled WRITE or tDVEH before the end of an  
E controlled WRITE.  
SOFTWARE NONVOLATILE RECALL  
A software RECALL cycle is initiated with a sequence  
of READ operations in a manner similar to the soft-  
ware STORE initiation. To initiate the RECALL cycle,  
the following sequence of READ operations must be  
performed:  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
the common I/O lines. If G is left low, internal cir-  
cuitry will turn off the output buffers tWLQZ after W  
goes low.  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0C63 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL cycle  
Rev 0.3  
Document Control #ML0012  
February 2007  
8
STK11C88  
Internally, RECALL is a two-step procedure. First,  
the SRAM data is cleared, and second, the nonvola-  
tile information is transferred into the SRAM cells.  
After the tRECALL cycle time the SRAM will once again  
be ready for READ and WRITE operations. The  
RECALL operation in no way alters the data in the  
Nonvolatile Elements. The nonvolatile data can be  
recalled an unlimited number of times.  
HARDWARE PROTECT  
The STK11C88 offers hardware protection against  
inadvertent STORE operation during low-voltage  
conditions. When VCC < VSWITCH, all software STORE  
operations are inhibited.  
LOW AVERAGE ACTIVE POWER  
The STK11C88 draws significantly less current  
when it is cycled at times longer than 50ns. Figure 2  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 5.5V, 100% duty cycle on chip  
enable). Figure 3 shows the same relationship for  
WRITE cycles. If the chip enable duty cycle is less  
than 100%, only standby current is drawn when the  
chip is disabled. The overall average current drawn  
by the STK11C88 depends on the following items:  
1) CMOS vs. TTL input levels; 2) the duty cycle of  
chip enable; 3) the overall cycle rate for accesses;  
4) the ratio of READs to WRITEs; 5) the operating  
POWER-UP RECALL  
During power up, or after any low-power condition  
(VCC < VRESET), an internal RECALL request will be  
latched. When VCC once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
If the STK11C88 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10K Ohm resistor  
should be connected either between W and system  
VCC or between E and system VCC.  
temperature; 6) the V level; and 7) I/O loading.  
cc  
100  
80  
60  
40  
20  
0
100  
80  
60  
TTL  
CMOS  
40  
TTL  
20  
CMOS  
0
50  
100  
150  
200  
50  
100  
150  
200  
Cycle Time (ns)  
Cycle Time (ns)  
Figure 2: ICC (max) Reads  
Figure 3: ICC (max) Writes  
Rev 0.3  
Document Control #ML0012  
February 2007  
9
STK11C88  
ORDERING INFORMATION  
STK11C88 - N F 25 I TR  
Packaging Option  
Blank = Tube  
TR = Tape and Reel  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (–40 to 85°C)  
Access Time  
25 = 25ns  
45 = 45ns  
Lead Finish (Lead-Free Only)  
F = 100% Sn (Matte Tin)  
Package  
S=Plastic 28-pin 330 mil SOIC  
N=Plastic 28-pin 300 mil SOIC  
Rev 0.3  
Document Control #ML0012  
February 2007  
10  
STK11C88  
Ordering Codes  
Part Number  
STK11C88-SF25  
Description  
Temperature  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
5V 32Kx8 SoftStore nvSRAM SOP28-330  
5V 32Kx8 SoftStore nvSRAM SOP28-330  
5V 32Kx8 SoftStore nvSRAM SOP28-300  
5V 32Kx8 SoftStore nvSRAM SOP28-300  
5V 32Kx8 SoftStore nvSRAM SOP28-330  
5V 32Kx8 SoftStore nvSRAM SOP28-330  
5V 32Kx8 SoftStore nvSRAM SOP28-300  
5V 32Kx8 SoftStore nvSRAM SOP28-300  
5V 32Kx8 SoftStore nvSRAM SOP28-330  
5V 32Kx8 SoftStore nvSRAM SOP28-330  
5V 32Kx8 SoftStore nvSRAM SOP28-300  
5V 32Kx8 SoftStore nvSRAM SOP28-300  
5V 32Kx8 SoftStore nvSRAM SOP28-330  
5V 32Kx8 SoftStore nvSRAM SOP28-330  
5V 32Kx8 SoftStore nvSRAM SOP28-300  
5V 32Kx8 SoftStore nvSRAM SOP28-300  
STK11C88-SF45  
STK11C88-NF25  
STK11C88-NF45  
STK11C88-SF25TR  
STK11C88-SF45TR  
STK11C88-NF25TR  
STK11C88-NF45TR  
STK11C88-SF25I  
STK11C88-SF45I  
STK11C88-NF25I  
STK11C88-NF45I  
STK11C88-SF25ITR  
STK11C88-SF45ITR  
STK11C88-NF25ITR  
STK11C88-NF45ITR  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Rev 0.3  
Document Control #ML0012  
February 2007  
11  
STK11C88  
Package Drawings  
28 - Pin 300 mil SOIC  
0.292 7.42  
0.300 7.59  
(
)
0.400 10.16  
( )  
0.410 10.41  
Pin 1  
Index  
.050 (1.27)  
BSC  
0.701 17.81  
0.711 18.06  
(
)
0.097 2.46  
( )  
0.104 2.64  
0.090 2.29  
0.094 2.39  
)
(
0.005 0.12  
0.012 0.29  
(
)
0.014 0.35  
0.019 0.48  
)
(
MIN  
MAX  
DIM = INCHES  
0°  
8°  
0.009 0.23  
( )  
0.013 0.32  
MIN  
MAX  
DIM = mm  
)
(
0.024 0.61  
(
)
Rev 0.3  
Document Control #ML0012  
February 2007  
12  
STK11C88  
28 - Pin 330 mil SOIC  
0.713  
18.11  
18.62  
(
)
0.733  
0.112  
0.004  
(2.845)  
(0.102)  
0.020  
0.014  
0.508  
0.356  
0.050 (1.270)  
(
)
0.103  
0.093  
2.616  
2.362  
(
)
0.336  
0.326  
8.534  
8.280  
0.477  
12.116  
11.506  
(
)
(
)
0.453  
Pin 1  
10°  
0°  
0.014  
0.008  
0.356  
0.203  
(
)
0.044  
1.117  
(
)
0.028  
0.711  
MIN  
MAX  
DIM = INCHES  
DIM = mm  
MIN  
( MAX )  
Rev 0.3  
Document Control #ML0012  
February 2007  
13  
STK11C88  
Document Revision History  
Revision  
0.0  
Date  
December 2002  
September 2003  
March 2006  
Summary  
Removed 20 nsec device  
0.1  
Added lead free lead finish  
0.2  
Removed 35ns device, Removed Leaded Lead Finish, Removed DIP packages.  
February 2007  
Add fast power-down slew rate information  
Add Tape & Reel Ordering Options  
Add Product Ordering Code Listing  
Add Package Outline Drawings  
Reformat Entire Document  
0.3  
SIMTEK STK11C88 Datasheet, February 2007  
Copyright 2007, Simtek Corporation. All rights reserved.  
This datasheet may only be printed for the expressed use of Simtek Customers. No part of the datasheet may be reproduced in any other  
form or means without the express written permission from Simtek Corporation. The information contained in this publication is believed to be  
accurate, but changes may be made without notice. Simtek does not assume responsibility for, or grant or imply any warranty, including  
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE regarding this information, the product or its use. Nothing herein consti-  
tutes a license, grant or transfer of any rights to any Simtek patent, copyright, trademark, or other proprietary right.  
Rev 0.3  
Document Control #ML0012  
February 2007  
14  

相关型号:

STK11C88-NF45TR

32Kx8 SoftStore nvSRAM
SIMTEK

STK11C88-NF45TR

256 Kbit (32K x 8) SoftStore nvSRAM
CYPRESS

STK11C88-P20

32K x 8 nvSRAM QUANTUM TRAP CMOS NONVOLATILE STATIC RAM
ETC

STK11C88-P20I

32K x 8 nvSRAM QUANTUM TRAP CMOS NONVOLATILE STATIC RAM
ETC

STK11C88-P25

32K x 8 nvSRAM QUANTUM TRAP CMOS NONVOLATILE STATIC RAM
ETC

STK11C88-P25I

32KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.300 INCH, PLASTIC, DIP-28
CYPRESS

STK11C88-P35

32KX8 NON-VOLATILE SRAM, 35ns, PDIP28, 0.300 INCH, PLASTIC, DIP-28
CYPRESS

STK11C88-P35I

32KX8 NON-VOLATILE SRAM, 35ns, PDIP28, 0.300 INCH, PLASTIC, DIP-28
CYPRESS

STK11C88-P45

32KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.300 INCH, PLASTIC, DIP-28
CYPRESS

STK11C88-P45I

32KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.300 INCH, PLASTIC, DIP-28
CYPRESS

STK11C88-PF25I

32KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.300 INCH, PLASTIC, DIP-28
SIMTEK

STK11C88-PF45I

32KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.300 INCH, PLASTIC, DIP-28
SIMTEK