SI82390AD-IS [SILICON]

Buffer/Inverter Based Peripheral Driver,;
SI82390AD-IS
型号: SI82390AD-IS
厂家: SILICON    SILICON
描述:

Buffer/Inverter Based Peripheral Driver,

驱动 光电二极管 接口集成电路
文件: 总38页 (文件大小:1152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si8239x Data Sheet  
4.0 A ISODrivers with 2.5 V VDDI and Safety Features  
KEY FEATURES  
The Si8239x combines two isolated drivers with either an independent input control or a  
single input into a single package for high power applications. All drivers operate with a  
2.5 V input VDD and a maximum drive supply voltage of 24 V.  
• Two isolated drivers in one package  
• Up to 5 kVRMS isolation  
• Up to 1500 VDC peak driver-to-driver  
differential voltage  
The Si8239x isolators are ideal for driving power MOSFETs and IGBTs used in a wide  
variety of switched power and motor control applications. These drivers utilize Silicon  
Laboratories' proprietary silicon isolation technology, supporting up to 5 kVRMS with-  
stand voltage. This technology enables high CMTI (100 kV/µs), lower prop delays and  
skew, reduced variation with temperature and age and tighter part-to-part matching.  
• Enhanced output UVLO safety  
• Status feedback to controller  
• Both outputs drive low on UVLO  
• EN pin for enhanced safety  
• Extended VDDI: 2.5 V – 5.5 V  
• PWM and dual driver versions  
• 4.0 A peak output  
It also offers some unique features such as an output UVLO fault detection and feed-  
back, and automatic shutdown for both drivers, an EN (active high) pin, a safe delayed  
start-up time of 1 ms, fail-safe drivers with default low in case of VDDI power-down, and  
dead time programmability. The Si8239x family offers longer service life and dramatically  
higher reliability compared to opto-coupled gate drivers.  
• High electromagnetic immunity  
• Extended start-up time (1ms) for safe  
initialization sequence  
Applications  
• 30 ns propagation delay  
• Power Delivery Systems  
• Motor Control Systems  
• Isolated DC-DC Power Supplies  
• Lighting Control Systems  
• Solar and Industrial Inverters  
• Transient immunity: 100 kV/µs  
• Programmable dead time  
• 10–200 ns  
• 40–600 ns  
• Deglitch option for filtering noise  
• Wide operating range  
• –40 to +125 °C  
Safety Approvals (Pending)  
• UL 1577 recognized  
• RoHS-compliant packages  
• SOIC-16 wide body  
• Up to 5000 Vrms for 1 minute  
• CSA component notice 5A approval  
• IEC 60950-1  
• SOIC-16 narrow body  
• AEC-Q100 qualified  
• VDE certification conformity  
• VDE 0884-10  
• EN 60950-1 (reinforced insulation)  
• CQC certification approval  
• GB4943.1  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0  
Si8239x Data Sheet  
Ordering Guide  
1. Ordering Guide  
Table 1.1. Si8239x Ordering Guide  
Ordering Part  
Number  
Configuration Output Enhanced  
UVLO  
Status  
Pin  
Delayed Dead-Time Deglitch  
Package  
Type  
Isolation  
Rating  
UVLO  
UVLO  
Startup  
Time  
Setting  
Available Now  
Si82390AD-IS  
Si82390BD-IS  
Si82390CD-IS  
Si82395AD-IS  
Si82395BD-IS  
Si82395CD-IS  
Si82397AD-IS  
Si82397BD-IS  
Si82397CD-IS  
Si82391AD-IS  
Si82391BD-IS  
Si82391CD-IS  
Si82393CD-IS  
Dual, VIA, VIB  
Dual, VIA, VIB  
Dual, VIA, VIB  
Dual, VIA, VIB  
Dual, VIA, VIB  
Dual, VIA, VIB  
Dual, VIA, VIB  
Dual, VIA, VIB  
Dual, VIA, VIB  
Dual, VIA, VIB  
Dual, VIA, VIB  
Dual, VIA, VIB  
6 V  
8 V  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
12 V  
6 V  
8 V  
No  
12 V  
6 V  
No  
No  
8 V  
No  
No  
12 V  
6 V  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
8 V  
No  
12 V  
12 V  
No  
HS/LS,  
No  
VIA/VIB  
Si82396AD-IS  
Si82396BD-IS  
Si82396CD-IS  
Si82394AD-IS  
Si82394BD-IS  
Si82394CD-IS  
Si82398AD-IS  
Si82398BD-IS  
Si82398CD-IS  
Si82390AB-IS1  
Dual, VIA, VIB  
Dual, VIA, VIB  
Dual, VIA, VIB  
HS/LS, PWM  
HS/LS, PWM  
HS/LS, PWM  
HS/LS, PWM  
HS/LS, PWM  
HS/LS, PWM  
Dual, VIA, VIB  
6 V  
8 V  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
N/A  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
N/A  
12 V  
6 V  
No  
N/A  
Yes  
Yes  
Yes  
No  
10–200 ns  
10–200 ns  
10–200 ns  
10–200 ns  
10–200 ns  
10–200 ns  
N/A  
8 V  
12 V  
6 V  
8 V  
No  
12 V  
6 V  
No  
Yes  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
2.5  
kVrms  
Si82390BB-IS1  
Si82390CB-IS1  
Si82392BB-IS1  
Si82395AB-IS1  
Si82395BB-IS1  
Dual, VIA, VIB  
Dual, VIA, VIB  
8 V  
12 V  
8 V  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
N/A  
N/A  
N/A  
N/A  
N/A  
No  
No  
No  
No  
No  
2.5  
kVrms  
2.5  
kVrms  
HS/LS,  
VIA/VIB  
2.5  
kVrms  
Dual, VIA, VIB  
6 V  
No  
Yes  
Yes  
2.5  
kVrms  
Dual, VIA, VIB  
8 V  
No  
2.5  
kVrms  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 1  
 
Si8239x Data Sheet  
Ordering Guide  
Ordering Part  
Number  
Configuration Output Enhanced  
UVLO  
Status  
Pin  
Delayed Dead-Time Deglitch  
Package  
Type  
Isolation  
Rating  
UVLO  
12 V  
6 V  
UVLO  
Startup  
Time  
Setting  
Si82395CB-IS1  
Si82394AB4-IS1  
Si82394BB4-IS1  
Dual, VIA, VIB  
HS/LS, PWM  
HS/LS, PWM  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
N/A  
No  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
2.5  
kVrms  
No  
40–600 ns  
40–600 ns  
40–600 ns  
Yes  
Yes  
Yes  
2.5  
kVrms  
8 V  
No  
2.5  
kVrms  
Si82394CB4-IS1 HS/LS, PWM  
12 V  
No  
2.5  
kVrms  
Si82394AD4-IS  
Si82394BD4-IS  
Si82394CD4-IS  
Si82391AB-IS1  
HS/LS, PWM  
HS/LS, PWM  
HS/LS, PWM  
Dual, VIA, VIB  
6 V  
8 V  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
40–600 ns  
40–600 ns  
40–600 ns  
N/A  
Yes  
Yes  
Yes  
No  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
12 V  
6 V  
No  
Yes  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
2.5  
kVrms  
Si82391BB-IS1  
Si82391CB-IS1  
Si82396AB-IS1  
Si82396BB-IS1  
Si82396CB-IS1  
Si82398AB4-IS1  
Si82398BB4-IS1  
Dual, VIA, VIB  
Dual, VIA, VIB  
Dual, VIA, VIB  
Dual, VIA, VIB  
Dual, VIA, VIB  
HS/LS, PWM  
HS/LS, PWM  
8 V  
12 V  
6 V  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
N/A  
N/A  
No  
No  
2.5  
kVrms  
2.5  
kVrms  
N/A  
No  
2.5  
kVrms  
8 V  
N/A  
No  
2.5  
kVrms  
12 V  
6 V  
N/A  
No  
2.5  
kVrms  
40–600 ns  
40–600 ns  
40–600 ns  
Yes  
Yes  
Yes  
2.5  
kVrms  
8 V  
2.5  
kVrms  
Si82398CB4-IS1 HS/LS, PWM  
12 V  
2.5  
kVrms  
Si82398AD4-IS  
Si82398BD4-IS  
Si82398CD4-IS  
HS/LS, PWM  
HS/LS, PWM  
HS/LS, PWM  
6 V  
8 V  
No  
No  
No  
Yes  
Yes  
Yes  
No  
No  
No  
40–600 ns  
40–600 ns  
40–600 ns  
Yes  
Yes  
Yes  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
SOIC-16 WB 5 kVrms  
12 V  
Note:  
1. All products are rated at 4 A output drive current max, VDDI = 2.5 V – 5.5 V, EN (active high).  
2. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifica-  
tions and peak solder temperatures.  
3. “Si” and “SI” are used interchangeably.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 2  
Si8239x Data Sheet  
System Overview  
2. System Overview  
The operation of an Si8239x channel is analogous to that of an optocoupler and gate driver, except an RF carrier is modulated instead  
of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up.  
A simplified block diagram for a single Si8239x channel is shown in the following figure.  
Figure 2.1. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the  
Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that  
decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying  
scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to  
magnetic fields. See the following figure for more details.  
Figure 2.2. Modulation Scheme  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 3  
 
Si8239x Data Sheet  
System Overview  
2.1 Typical Performance Characteristics  
The typical performance characteristics depicted in the following figures are for information purposes only. Refer to the Electrical Char-  
acteristics table for actual specification limits.  
Figure 2.4. Propagation Delay vs. Supply Voltage  
Figure 2.3. Rise/Fall Time vs. Supply Voltage  
Figure 2.5. Rise/Fall Time vs. Load  
Figure 2.6. Propagation Delay vs. Load  
Figure 2.7. Propagation Delay vs. Temperature  
Figure 2.8. Supply Current vs. Supply Voltage  
Figure 2.9. Supply Current vs. Supply Voltage  
Figure 2.10. Supply Current vs. Temperature  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 4  
 
Si8239x Data Sheet  
System Overview  
Figure 2.11. Output Sink Current vs. Supply Voltage  
Figure 2.12. Output Source Current vs. Supply Voltage  
Figure 2.13. Output Sink Current vs. Temperature  
Figure 2.14. Output Source Current vs. Temperature  
2.2 Family Overview and Logic Operation During Startup  
The Si8239x family of isolated drivers consists of high-side/low-side and dual driver configurations.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 5  
 
Si8239x Data Sheet  
System Overview  
2.2.1 Device Behavior  
The following are truth tables for the Si8239x families.  
Table 2.1. Si82390/1/3 Drivers Enhanced UVLO and Status  
EN1  
VIA  
VIB  
VDDI  
VDDA  
VDDB  
VOA  
H
VOB  
L
RDY  
Notes  
P2  
P
H
L
H
P
P
H
L
H
H
H
H
P
P
P
P
L
H
H
H
H / L4  
H / L4  
H
P
L
X
X
L
X
X
H
L/NC  
X
P
P
P
P
P
P
P
P
L
L
L
L
L
L
H
H
Device disabled  
UP2  
UD3  
Fail-safe output when  
VDDI unpowered  
X
X
X
X
H
H
P
P
P
UP  
P
L
UD  
L
L
L
VOA, VOB are actively  
driven low if either  
VDDA or VDDB is UP  
UP  
UD  
Note:  
1. The EN pin needs to be pulled down with a 100 kΩ resistor externally to GND.  
2. The chip can be powered through the VIA,VIB input ESD diodes even if VDDI is unpowered. It is recommended that inputs be left  
unpowered when VDDI is unpowered. The EN pin has a special ESD circuit that prevents the IC from powering up through the  
EN pin.  
3. UD = undetermined if same side power is UP.  
4. VOA = VOB = L for Si82393 only  
Table 2.2. Si82392/5/6 Drivers with UVLO Status  
EN1  
H
VIA  
VIB  
VDDI  
VDDA  
VDDB  
VOA  
VOB  
RDY  
Notes  
H
L
L
H
H
P
P
P
P
P
P
P
P
P
H
L
L
H
H
H
H
H
H / L4  
H / L4  
H
H
L
X
X
L
X
X
H
L/NC  
X
P
P
P
P
P
P
P
P
L
L
L
L
L
L
H
H
Device disabled  
UP2  
UD3  
Fail-safe output when  
VDDI unpowered  
H
L
X
X
H
L
H
H
H
H
P
P
P
P
P
P
UP  
UP  
P
H
L
UD  
UD  
H
L
L
L
L
VOA depends on  
VDDA state  
X
X
UP  
UP  
UD  
UD  
VOB depends on  
VDDB state  
P
L
Note:  
1. The EN pin needs to be pulled down with a 100 kΩ resistor externally to GND.  
2. The chip can be powered through the VIA,VIB input ESD diodes even if VDDI is unpowered. It is recommended that inputs be left  
unpowered when VDDI is unpowered. The EN pin has a special ESD circuit that prevents the IC from powering up through the  
EN pin.  
3. UD = undetermined if same side power is UP.  
4. VOA = VOB = L for Si82392 only  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 6  
 
 
 
 
 
 
 
Si8239x Data Sheet  
System Overview  
Table 2.3. Si82397 Dual Drivers with No UVLO Status  
EN1  
H
VIA  
VIB  
VDDI  
VDDA  
VDDB  
VOA  
VOB  
Notes  
H
L
L
H
H
L
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
H
L
H
L
L
L
L
H
H
L
H
H
L
H
H
X
X
X
X
L/NC  
X
L
Device disabled  
UP2  
L
Fail-safe output when  
VDDI is unpowered  
UD3  
UD  
H
H
X
H
P
P
UP  
H
VOA depends on VDDA  
state  
L
X
X
X
H
L
H
H
H
P
P
P
P
UP  
P
L
UP  
UP  
UD  
UD  
VOB depends on VDDB  
state  
P
L
Note:  
1. The EN pin needs to be pulled down with a 100 kΩ resistor externally to GND.  
2. The chip can be powered through the VIA,VIB input ESD diodes even if VDDI is unpowered. It is recommended that inputs be left  
unpowered when VDDI is unpowered. The EN pin has a special ESD circuit that prevents the IC from powering up through the  
EN pin.  
3. UD = undetermined if same side power is UP.  
Table 2.4. Si82394/8 PWM Input HS/LS Drivers with UVLO Status  
EN1  
PWM  
VDDI  
VDDA  
VDDB  
VOA  
VOB  
RDY  
Notes  
H
H
P
P
P
H
L
H
See Dead-time note and  
Figure 2.18 Dead Time  
Waveforms for High-  
Side/Low-Side Drivers on  
page 13 for timing  
L
X
X
H
L/NC  
X
P
P
P
P
P
P
P
P
L
L
L
H
L
L
H
H
Device disabled  
UP2  
UD3  
Fail-safe output when  
VDDI unpowered  
H
L
H
H
H
H
P
P
P
P
P
P
UP  
UP  
P
H
L
UD  
UD  
L
L
L
L
L
VOA depends on VDDA  
state  
H
L
UP  
UP  
UD  
UD  
VOB depends on VDDB  
state  
P
H
Note:  
1. The EN pin needs to be pulled down with a 100 kΩ resistor externally to GND.  
2. The chip can be powered through the PWM input ESD diodes even if VDDI is unpowered. It is recommended that inputs be left  
unpowered when VDDI is unpowered. The EN pin has a special ESD circuit that prevents the IC from powering up through the  
EN pin.  
3. UD = undetermined if same side power is UP.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 7  
 
 
 
 
 
 
Si8239x Data Sheet  
System Overview  
2.3 Power Supply Connections  
Isolation requirements mandate separating VDDI from the driver supplies. The decoupling caps for these supplies must be placed as  
close to the VDD and GND pins of the Si8239x as possible. The optimum values for these capacitors are 1 μF and 0.1 μF for VDDI and  
10 μF and 0.1 μF for each driver supply. Low effective series resistance (ESR) capacitors, such as Tantalum, are recommended.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 8  
 
Si8239x Data Sheet  
System Overview  
2.4 Power Dissipation Considerations  
Proper system design must assure that the Si8239x operates within safe thermal limits across the entire load range. The Si8239x total  
power dissipation is the sum of the power dissipated by bias supply current, internal parasitic switching losses, and power dissipated by  
the series gate resistor and load. Equation 1 shows Si8239x power dissipation.  
R
R
n
p
2
DD2  
2
DD2  
2
DD2  
P
= V  
* I  
+ 2 * V  
* I  
+ f * C *V  
*
+ f * C * V  
*
+ 2* f * C * V  
D
DDI DDI  
DD2 DD2  
L
L
int  
(
)
(
)
R + R  
R + R  
p
g
n
g
Equation 1.  
Note: Where:  
• PD is the total Si8239x device power dissipation (W)  
• IDDI is the input side maximum bias current (from table 4.1, 3.8 mA)  
• IDD2 is the driver side maximum bias current (from table 4.1, 6.5 mA)  
• Cint is the internal parasitic capacitance (370 pf)  
• VDDI is the input side VDD supply voltage (2.5 V to 5. 5V)  
• VDD2 is the driver side supply voltage (10 V to 24 V)  
• f is the switching frequency (Hz)  
• CL is the load capacitance (F)  
• RG is the external gate resistor (Ω)  
• RP is the RDS(ON) of the driver pull-up device (2.7 Ω)  
• Rn is the RDS(ON) of the driver pull-down device (1 Ω)  
Example calculation (using IDDx values from Table 4.1 for Si82397)  
VDDI = 5 V  
VDD2 = 12 V  
f = 350 kHz  
RG = 22 Ω  
CL = 2 nF  
2.7  
2.7 + 22  
1
9  
)
9  
)
12  
P
= 5 * .0021 + 2 * 12 *.0025 + 350000 * 2 *10  
(
* 144 *  
+ 350000 * 2 * 10  
(
* 144 *  
+ 2 * 350000 * 370 *10  
(
* 144  
(
)
(
)
)
D
1 + 22  
PD = 0.123 W is the total dissipated power by the Si8239x package.  
From this, the driver junction temperature can be calculated using Equation 2.  
T = T + P * θ  
ja  
j
A
D
Equation 2.  
Note: Where:  
• Tj is the junction temperature (°C)  
• TA is the ambient temperature (°C)  
• PD is the power dissipated in the package (W)  
• Θja is the thermal resistance of the package (100 °C/W from table 4.7)  
For this example, assume that TA is 25 °C.  
T = 25 + 0.123 * 100  
j
Tj is 37.3 °C.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 9  
 
Si8239x Data Sheet  
System Overview  
Equation 2 can be rearranged to determine the maximum package power dissipation for a given ambient temperature.  
T
T  
A
jmax  
P
=
Dmax  
(
)
θ
ja  
Note: Where:  
• PDmax is the maximum allowed power dissipation (W)  
• Tjmax is the maximum allowed junction temperature (150 °C from table 4.8)  
• TA is the ambient temperature (25 °C in this example)  
• Θja is the thermal resistance of the package (100 °C/W from table 4.7)  
PDmax = 1.25 W  
Substituting values used in this example back into Equation 1, establishes a relationship between the maximum capacitive load and  
switching frequency.  
The following figure shows the relationship between the capacitive load and the switching frequency for four different driver supply vol-  
tages. In the figure, the points along the load line represent the package dissipation-limited value of CL as a function of switching fre-  
quency.  
Figure 2.15. Max Load vs. Switching Frequency  
2.5 Layout Considerations  
It is most important to minimize ringing in the drive path and noise on the Si8239x VDD lines. Care must be taken to minimize parasitic  
inductance in these paths by locating the Si8239x as close to the device it is driving as possible. In addition, the VDD supply and  
ground trace paths must be kept short. For this reason, the use of power and ground planes is highly recommended. A split ground  
plane system having separate ground and VDD planes for power devices and small signal components provides the best overall noise  
performance.  
2.6 Undervoltage Lockout Operation  
Device behavior during start-up, normal operation and shutdown is shown in Figure 2.16 Si82391/2/3/6/8 Device Behavior during Nor-  
mal Operation and Shutdown on page 11, where UVLO+ and UVLO- are the positive-going and negative-going thresholds respective-  
ly. Note that outputs VOA and VOB default low when input side power supply (VDDI) is not present.  
2.6.1 Device Startup  
Outputs VOA and VOB are held low during power-up until VDD is above the UVLO threshold for time period tSTART. Following this,  
the outputs follow the states of inputs VIA and VIB.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 10  
 
 
 
Si8239x Data Sheet  
System Overview  
2.6.2 Undervoltage Lockout  
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its  
specified operating circuits range. The input (control) side, Driver A and Driver B, each have their own undervoltage lockout monitors.  
The Si8239x input side enters UVLO when VDDI < VDDIUV–, and exits UVLO when VDDI > VDDIUV+. The driver outputs, VOA and  
VOB, remain low when the input side of the Si8239x is in UVLO and their respective VDD supply (VDDA, VDDB) is within tolerance.  
Each driver output can enter or exit UVLO independently for the Si82394/5/6/7/8 products. For example, VOA unconditionally enters  
UVLO when VDDA falls below VDDAUV– and exits UVLO when VDDA rises above VDDAUV+. For the Si82390/1/3 products, when  
either VDDA or VDDB falls under VDDxUV–, this information is fed back through the isolation barrier to the input side logic which forces  
VOB or VOA to be driven low respectively under these conditions. If the application is driving a transformer for an isolated power con-  
verter, for example, this behavior is useful to prevent flux imbalances in the transformer. Please note that this feature implies that it can  
only be implemented when the VDDA and VDDB power supplies are independent from each other. If a bootstrap circuit is used for  
Si82390/1/3, it will prevent the IC from powering up. Do not use the Si82390/1/3 in conjunction with a bootstrap circuit for driver power.  
Figure 2.16. Si82391/2/3/6/8 Device Behavior during Normal Operation and Shutdown  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 11  
 
 
Si8239x Data Sheet  
System Overview  
Figure 2.17. Si82390/4/5/7 Device Behavior during Normal Operation and Shutdown  
2.6.3 Control Inputs  
VIA, VIB, and PWM inputs are high-true, TTL level-compatible logic inputs. A logic high signal on VIA or VIB causes the corresponding  
output to go high. For PWM input versions (Si82394/8), VOA is high and VOB is low when the PWM input is high, and VOA is low and  
VOB is high when the PWM input is low.  
2.6.4 Enable Input  
When brought low, the EN input unconditionally drives VOA and VOB low regardless of the states of VIA and VIB. Device operation  
terminates within tSD after EN = VIL and resumes within tRESTART after EN = VIH. The EN input has no effect if VDDI is below its  
UVLO level (i.e., VOA, VOB remain low). The EN pin should be connected to GNDI through a 100 kΩ pull-down resistor.  
2.6.5 Delayed Startup Time  
Product options Si82390/4/5/7 have a safe startup time (tSTARTUP_SAFE) of 1ms typical from input power valid to output showing  
valid data. This feature allows users to proceed through a safe initialization sequence with a monotonic output behavior.  
2.6.6 RDY Pin  
This is a digital output pin available on all options except the Si82397. The RDY pin is “H” if all the UVLO circuits monitoring VDDI,  
VDDA, and VDDB are above UVLO threshold. It indicates that device is ready for operation. An “L” status indicates that one of the  
power supplies (VDDI, VDDA, or VDDB) is in an unpowered state.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 12  
 
 
 
 
Si8239x Data Sheet  
System Overview  
2.7 Programmable Dead Time and Overlap Protection  
All high-side/low-side drivers (Si82394/8) include programmable dead time, which adds a user-programmable delay between transitions  
of VOA and VOB. When enabled, dead time is present on all transitions. The amount of dead time delay (DT) is programmed by a  
single resistor (RDT) connected from the DT input to ground per the equation below. Note that the dead time pin should be connected  
to GND1 through a resistor between the values of 6 kΩ and 100 kΩ and a filter capacitor of 100 pF in parallel as shown in Figure  
3.1 Si82394/8 Application Diagram on page 14. It is highly recommended it not be tied to VDDI. See Figure 2.18 Dead Time Wave-  
forms for High-Side/Low-Side Drivers on page 13 below.  
Figure 2.18. Dead Time Waveforms for High-Side/Low-Side Drivers  
2.8 De-glitch Feature  
A de-glitch feature is provided on some options, as defined in the Ordering Guide. The de-glitch basically provides an internal time de-  
lay during which any noise is ignored and will not pass through the IC. It is about 30 ns; so, for these product options, the prop delay will  
be extended by 30 ns.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 13  
 
 
 
Si8239x Data Sheet  
Applications  
3. Applications  
The following examples illustrate typical circuit configurations using the Si8239x.  
3.1 High-Side/Low-Side Driver  
The following figure shows the Si82394/8 controlled by a single PWM signal.  
Figure 3.1. Si82394/8 Application Diagram  
In the above figure, D1 and CB form a conventional bootstrap circuit that allows VOA to operate as a high-side driver for Q1, which has  
a maximum drain voltage of 1500 V. VOB is connected as a conventional low-side driver. Note that the input side of the Si8239x re-  
quires VDDI in the range of 2.5 to 5.5 V, while the VDDA and VDDB output side supplies must be between 6.5 and 24 V with respect to  
their respective grounds. The boot-strap start up time will depend on the CB cap chosen. Also note that the bypass capacitors on the  
Si8239x should be located as close to the chip as possible.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 14  
 
 
 
Si8239x Data Sheet  
Applications  
3.2 Dual Driver  
The following figure shows the Si82390/1/5/6/7 configured as a dual driver. Note that the drain voltages of Q1 and Q2 can be refer-  
enced to a common ground or to different grounds with as much as 1500 Vdc between them.  
VDDB  
C3  
D1  
1 µF  
VDDI  
VDDI  
GNDI  
C2  
0.1 µF  
C1  
1 µF  
VDDA  
1500 V max  
Q1  
CB  
VOA  
VIA  
VIB  
OUT 1  
OUT 2  
GNDA  
Si82392/5/6/7  
CONTROLLER  
VDDB  
VDDB  
GNDB  
C4  
0.1 µF  
C5  
10 µF  
I/O  
I/O  
EN  
RPD  
RDY  
Q2  
(Not present  
on Si82397)  
VOB  
Figure 3.2. Si82392/5/6/7 Application Diagram  
VDDI  
VDDI  
Q1  
C2  
0.1 µF  
C1  
1 µF  
VOA  
GNDI  
VDDA  
VIA  
VIB  
OUT 1  
OUT 2  
VDDA  
C3  
0.1 µF  
C4  
10 µF  
Si82390/1/3  
CONTROLLER  
VDDB  
VDDB  
GNDB  
C5  
0.1 µF  
C6  
10 µF  
I/O  
I/O  
EN  
RPD  
RDY  
Q2  
VOB  
Figure 3.3. Si82390/1/3 with Enhanced UVLO Feature Application Diagram  
Because each output driver resides on its own die, the relative voltage polarities of VOA and VOB can reverse without damaging the  
driver. A dual driver can operate as a dual low-side or dual high-side driver and is unaffected by static or dynamic voltage polarity  
changes. The Si82390/1/3 come equipped with an enhanced UVLO feature as described in 2.6.2 Undervoltage Lockout. This feature is  
intended for systems which provide VDDA and VDDB as independent isolated power supplies. Si82390/1/3 are not recommended for  
use with bootstrap configuration for driver supply since the driver output will not be asserted unless both VDDA and VDDB are above  
the UVLO threshold.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 15  
 
Si8239x Data Sheet  
Electrical Characteristics  
4. Electrical Characteristics  
Table 4.1. Electrical Characteristics1,2  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DC Specifications  
Input-side Power Supply Voltage  
Driver Supply Voltage  
VDDI  
2.5  
6.5  
3.3  
5.5  
24  
V
V
VDDA, VDDB  
Voltage between VDDA and  
GNDA, and VDDB and  
GNDB  
Input Supply Quiescent Current EN = 0  
IDDI(Q)  
Si82390/1/2/3/4/5/6/8  
Si82397  
2.8  
1.5  
4.2  
3.8  
2.1  
6.5  
mA  
mA  
mA  
Output Supply Quiescent Current, per  
channel EN = 0  
IDDA(Q),  
IDDB(Q)  
Si82390/1/2/3/4/5/6/8  
Si82397  
1.5  
5.0  
2.5  
7.2  
mA  
mA  
Input Supply Active Current  
IDDI  
Si82390/1/2/3/5/6 VIA, VIB  
freq = 1 MHz  
Si82394/8: PWM freq = 1  
MHz  
5.2  
3.7  
7.1  
4.4  
7.3  
5.6  
Si82397: VIA, VIB freq = 1  
MHz  
Output Supply Active Current, per  
channel  
IDDA/B  
Si82390/1/2/3/4/5/6/8: Input  
freq = 1 MHz, no load  
16.0  
12.4  
+10  
mA  
µA  
Si82397: Input freq = 1 MHz,  
no load  
Input Pin Leakage Current, VIA, VIB,  
PWM  
IVIA, IVIB, IPWM  
–10  
Input Pin Leakage Current, EN  
Logic High Input Threshold  
Logic Low Input Threshold  
Input Hysteresis  
IENABLE  
VIH  
–10  
2.0  
+10  
µA  
V
TTL Levels  
TTL Levels  
VIL  
0.8  
V
VIHYST  
400  
450  
mV  
V
Logic High Output Voltage  
VOAH, VOBH  
IOA, IOB = –1 mA  
VDDA,  
VDDB –  
0.04  
Logic Low Output Voltage  
VOAL, VOBL  
IOA, IOB = 1 mA  
0.04  
V
A
Output Short-Circuit Pulsed Source  
Current  
IOA(SCL),  
IOB(SCL)  
See Figure 4.1 IOL Sink Cur-  
rent Test on page 19  
4.0  
Output Short-Circuit Pulsed Source  
Current  
IOA(SCH),  
IOB(SCH)  
See Figure 4.2 IOH Source  
Current Test on page 19  
2.0  
A
Output Sink Resistance  
RON(SINK)  
RON(SOURCE)  
VDDIUV+  
1.0  
2.7  
2.3  
2.2  
100  
Ω
Ω
Output Source Resistance  
VDDI Undervoltage Threshold  
VDDI Undervoltage Threshold  
VDDI Lockout Hysteresis  
VDDI rising  
VDDI falling  
2.15  
2.1  
80  
2.5  
2.4  
V
VDDIUV–  
V
VDDIHYS  
mV  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 16  
 
 
Si8239x Data Sheet  
Electrical Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
VDDA, VDDB Undervoltage Threshold  
VDDAUV+  
,
VDDA, VDDB rising  
V
VDDBUV+  
6 V  
5.0  
7.2  
9.2  
6.0  
8.6  
7.0  
8 V  
10.0  
12.8  
12 V  
11.1  
VDDA, VDDB Undervoltage Threshold  
VDDAUV–  
,
VDDA, VDDB falling  
V
VDDBUV–  
6 V  
4.7  
6.6  
5.8  
8.0  
6.7  
9.3  
11.6  
8 V  
12 V  
8.7  
10.1  
280  
600  
1000  
VDDA, VDDB Lockout Hysteresis  
VDDAHYS  
VDDBHYS  
,
UVLO = 6 V  
UVLO = 8 V  
UVLO = 12 V  
200  
450  
600  
mV  
AC Specifications  
UVLO Fault Shutdown Time Enhanced  
Mode  
VDDAUV– to VOB low  
VDDBUV– to VOA low  
120  
10  
ns  
ns  
Si82390/1/3 only  
UVLO Fault Shutdown Time  
VDDAUV– to VOA low  
VDDBUV– to VOB low  
UVLO fault to RDY  
Minimum Pulse Width  
Propagation Delay  
t_FLT  
20  
92  
30  
30  
40  
ns  
ns  
ns  
tpHL, tpLH  
Si82390/1/2/3/5/6/7 (with no  
de-glitch)  
VDDA/B = 12 V  
CL = 0 pF  
tpHL  
tpLH  
Si82394/8 (with no de-glitch)  
20  
35  
30  
45  
40  
55  
ns  
ns  
Si82394/8 (with no de-glitch;  
measured with 6 kΩ RDT re-  
sistor; includes minimum  
dead time)  
tpHL  
Si82394xx4/8xx4 (have de-  
glitch)  
60  
99  
77  
95  
ns  
ns  
tpLH  
Si82394xx4/8xx4 (have de-  
glitch and measured with 6  
kΩ RDT resistor; includes  
minimum dead time and de-  
glitch delay)  
116  
135  
Pulse Width Distortion |tPLH – tPHL  
|
PWD  
DT  
VDDA/B = 12 V  
CL = 0 pF  
2.7  
5.60  
ns  
ns  
Programmed Dead Time for product  
options with 40–600 ns dead time set-  
ting range  
RDT = 6 kΩ  
RDT = 15 kΩ  
RDT = 100 kΩ  
CL = 200 pF  
27  
70  
38  
90  
57  
130  
750  
12  
450  
590  
Output Rise and Fall Time  
tR,tF  
ns  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 17  
Si8239x Data Sheet  
Electrical Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
60  
Unit  
Shutdown Time from Enable False  
tSD  
All options with no de-glitch  
All options with de-glitch  
All options with no de-glitch  
All options with de-glitch  
ns  
113  
60  
Restart Time from Enable True  
Device Start-up Time Input  
tRESTART  
ns  
95  
Time from VDDI_ =  
VDDI_UV+ to VOA, VOB =  
VIA, VIB  
Si82390/4/5/7  
Si82391/2/3/6/8  
Device Start-up Time  
Output  
tSTART_SAFE  
tSTART  
1
ms  
µs  
µs  
40  
60  
tSTART_OUT  
Time from VDDA/B = VDDA/  
B_UV+ to VOA, VOB = VIA,  
VIB  
Common Mode Transient Immunity  
CMTI  
VIA, VIB, PWM = VDDI or 0  
V
35  
100  
kV/µs  
VCM = 1500 V  
Note:  
1. 2.5 V < VDDI < 5.5 V; 6.5 V < VDDA, VDDB < 24 V; TA = –40 to +125 °C.  
2. Typical specs at 25 °C, VDDA = VDDB = 12 V for 5 V and 8 V UVLO devices, otherwise 15 V.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 18  
 
Si8239x Data Sheet  
Electrical Characteristics  
The following figures depict sink current, source current, and common-mode transient immunity test circuits, respectively.  
Figure 4.1. IOL Sink Current Test  
Figure 4.2. IOH Source Current Test  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 19  
 
 
Si8239x Data Sheet  
Electrical Characteristics  
Figure 4.3. CMTI Test Circuit  
Table 4.2. Regulatory Information1,2,3  
CSA  
The Si8239x is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
VDE  
The Si8239x is certified according to VDE 0884-10. For more details, see File 5006301-4880-0001.  
VDE 0884-10: Up to 891 Vpeak for basic insulation working voltage.  
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
UL  
The Si8239x is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 5000 VRMS isolation voltage for basic protection.  
CQC  
The Si8239x is certified under GB4943.1-2011. For more details, see certificates CQCxxx (TBD).  
Rated up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
Note:  
1. Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec.  
2. Regulatory Certifications apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec.  
3. For more information, see Ordering Guide.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 20  
 
Si8239x Data Sheet  
Electrical Characteristics  
Table 4.3. Insulation and Safety-Related Specifications  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
WBSOIC-16  
NBSOIC-16  
Nominal Air Gap  
(Clearance)1  
L(1O1)  
L(1O2)  
8.0  
4.01  
mm  
Nominal External  
Tracking (Creepage)  
8.0  
4.01  
mm  
mm  
Minimum Internal  
Gap (Internal Clear-  
ance)  
0.014  
0.014  
Tracking Resistance  
(Proof Tracking In-  
dex)  
PTI  
IEC60112  
600  
600  
V
Erosion Depth  
ED  
0.019  
1012  
0.019  
1012  
mm  
Ω
Resistance (Input-  
Output)2  
RIO  
Capacitance (Input-  
Output)2  
CIO  
CI  
f = 1 MHz  
1.4  
4.0  
1.4  
4.0  
pF  
pF  
Input Capacitance3  
Note:  
1. The values in this table correspond to the nominal creepage and clearance values as detailed in 7. Package Outline: 16-Pin Wide  
Body SOIC and 9. Package Outline: 16-Pin Narrow Body SOIC. VDE certifies the clearance and creepage limits as 4.7 mm mini-  
mum for the NB SOIC-16 and 8.5 mm minimum for the WB SOIC-16 package. UL does not impose a clearance and creepage  
minimum for component level certifications. CSA certifies the clearance and creepage limits as 3.9 mm minimum for the NB SO-  
IC16 and 7.6 mm minimum for the WB SOIC-16 package.  
2. To determine resistance and capacitance, the Si8239x is converted into a 2-terminal device. Pins 1–8 are shorted together to  
form the first terminal,and pins 9–16 are shorted together to form the second terminal. The parameters are then measured be-  
tween these two terminals.  
3. Measured from input pin to ground.  
Table 4.4. IEC 60664-1 (VDE 0884) Ratings  
Parameter  
Test Condition  
Specification  
WB SOIC-16  
NB SOIC-16  
Basic Isolation Group  
Material Group  
I
I
Installation Classification  
Rated Mains Voltages < 150 VRMS  
Rated Mains Voltages < 300 VRMS  
Rated Mains Voltages < 400 VRMS  
Rated Mains Voltages < 600 VRMS  
I-IV  
I-IV  
I-III  
I-III  
I-IV  
I-III  
I-II  
I-II  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 21  
 
 
 
Si8239x Data Sheet  
Electrical Characteristics  
Table 4.5. IEC 60747-5-5 Insulation Characteristics  
Parameter  
Symbol  
Test Condition  
Characteristic  
Unit  
WB SOIC-16  
NB SOIC-16  
Maximum Working  
Insulation Voltage  
VIORM  
891  
560  
V peak  
V peak  
Input to Output Test  
Voltage  
VPR  
Method b1 (VIORM  
x
1671  
1050  
1.875 = VPR, 100%  
Production Test, tm  
= 1 sec, Partial Dis-  
charge < 5 pC)  
Transient Overvolt-  
age  
VIOTM  
t = 60 sec  
6000  
2
4000  
2
V peak  
Pollution Degree  
(DIN VDE 0110, See  
Table 4.1 Electrical  
Characteristics1,2 on  
page 16)  
>109  
>109  
Insulation Resist-  
RS  
Ω
ance at TS, VIO  
=
500 V  
Note:  
1. Maintenance of the safety data is ensured by protective circuits. The Si8239x provides a climate classification of 40/125/21.  
Table 4.6. IEC Safety Limiting Values1  
Parameter  
Symbol  
Test Condition  
WB SOIC-16  
NB SOIC-16  
Unit  
°C  
Safety Temperature  
Safety Input Current  
TS  
IS  
150  
50  
150  
50  
θJA = 100 °C/W (WB  
SOIC-16), 105 °C/W  
(NB SOIC-16)  
mA  
VDDI = 5.5 V,  
VDDA = VDDB = 24 V,  
TJ = 150 °C, TA = 25 °C  
Device Power Dissi-  
pation2  
PD  
1.2  
1.2  
W
Note:  
1. Maximum value allowed in the event of a failure. Refer to the thermal derating curve in Figure 4.4 WB SOIC-16, NB SOIC-16  
Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per VDE 0884-10 on page 24.  
2. The Si8239x is tested with VDDI = 5.5 V, VDDA = VDDB = 24 V, TJ = 150 ºC, CL = 100 pF, input 2 MHz 50% duty cycle square  
wave.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 22  
 
 
Si8239x Data Sheet  
Electrical Characteristics  
Table 4.7. Thermal Characteristics  
Parameter  
Symbol  
WB SOIC-16  
NB SOIC-16  
Unit  
IC Junction-to-Air Ther-  
mal Resistance  
θJA  
100  
105  
°C/W  
Table 4.8. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
Max  
Unit  
Ambient Temperature  
under Bias  
TA  
–40  
+125  
°C  
Storage Temperature  
Junction Temperature  
TSTG  
TJ  
–65  
+150  
+150  
6.0  
°C  
°C  
V
Input-side Supply Volt-  
age  
VDDI  
–0.6  
Driver-side Supply Volt-  
age  
VDDA, VDDB  
VIO  
–0.6  
–0.5  
30  
VDD + 0.5  
4.0  
V
V
A
Voltage on any Pin with  
respect to Ground  
Peak Output Current  
(tPW = 10 µs, duty cycle  
= 0.2%)  
IOPK  
Lead Solder Tempera-  
ture (10 s)  
260  
°C  
ESD per AEC-Q100  
HBM  
CDM  
4
2
kV  
kV  
Maximum Isolation (Input  
to Output) (1 s) WB SO-  
IC-16  
6500  
VRMS  
Maximum Isolation (Out-  
put to Output) (1 s) WB  
SOIC-16  
2500  
4500  
2500  
VRMS  
VRMS  
VRMS  
Maximum Isolation (Input  
to Output) (1 s) NB SO-  
IC-16  
Maximum Isolation (Out-  
put to Output) (1 s) NB  
SOIC-16  
Note:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to  
the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect device reliability.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 23  
 
Si8239x Data Sheet  
Electrical Characteristics  
Figure 4.4. WB SOIC-16, NB SOIC-16 Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature  
per VDE 0884-10  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 24  
 
Si8239x Data Sheet  
Top-Level Block Diagrams  
5. Top-Level Block Diagrams  
VDDA  
VIA  
VOA  
UVLO  
GNDA  
VDDI  
VDDI  
UVLO  
VDDB  
EN  
VOB  
UVLO  
GNDB  
VIB  
RDY  
GNDI  
Si82390/1/3  
Figure 5.1. Si82390/1/3 Dual Isolated Drivers with Enhanced UVLO Safety  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 25  
 
Si8239x Data Sheet  
Top-Level Block Diagrams  
VDDA  
VIA  
VOA  
UVLO  
GNDA  
VDDI  
VDDI  
UVLO  
VDDB  
EN  
VOB  
UVLO  
GNDB  
VIB  
RDY  
GNDI  
Si82392/5/6  
Figure 5.2. Si82392/5/6 Dual Isolated Drivers with RDY Pin  
Figure 5.3. Si82394/98 Single-Input High-Side/Low-Side Isolated Drivers  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 26  
Si8239x Data Sheet  
Top-Level Block Diagrams  
Figure 5.4. Si82397 Dual Isolated Drivers  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 27  
Si8239x Data Sheet  
Pin Descriptions  
6. Pin Descriptions  
VDDA  
VOA  
GNDA  
NC  
VDDA  
VOA  
GNDA  
NC  
VIA  
1
2
3
4
5
16  
15  
14  
13  
12  
PWM  
1
2
3
4
5
16  
15  
14  
13  
12  
VIB  
NC  
VDDI  
VDDI  
GNDI  
EN  
GNDI  
EN  
Si82390/91/3  
Si82392/5/96  
Si82394/8  
NC  
NC  
NC  
RDY  
DT  
RDY  
6
7
8
11  
10  
9
VDDB  
VOB  
6
7
8
11  
10  
9
VDDB  
VOB  
GNDB  
GNDB  
VDDI  
VDDI  
VDDA  
VOA  
GNDA  
NC  
VIA  
1
2
3
4
5
16  
15  
14  
13  
12  
VIB  
VDDI  
GNDI  
EN  
Si82397  
NC  
NC  
NC  
6
7
8
11  
10  
9
VDDB  
VOB  
GNDB  
VDDI  
Figure 6.1. Si8239x SOIC-16  
Table 6.1. Pin Descriptions  
Description  
Pin Name  
PWM  
VIA  
PWM input  
Non-inverting logic input terminal for Driver A.  
Non-inverting logic input terminal for Driver B.  
Input-side power supply terminal; connect to a source of 2.5 to 5.5 V.  
Input-side ground terminal.  
VIB  
VDDI  
GNDI  
EN  
Device ENABLE. When low or NC, this input unconditionally drives outputs VOA, VOB LOW. When high, device is ena-  
bled to perform in normal operating mode. It is strongly recommended that this input be connected to external logic level  
to avoid erroneous operation due to capacitive noise coupling.  
DT  
Dead time programming input. The value of the resistor connected from DT to ground sets the dead time between output  
transitions of VOA and VOB.  
RDY  
Power ready on secondary side for Driver A and Driver B (both UVLO thresholds for VDDA and VDDB need to be  
crossed). High state indicates UVLO thresholds crossed, low state indicates UVLO low condition. No reset is necessary.  
NC  
No connection.  
GNDB  
VOB  
Ground terminal for Driver B.  
Driver B output (low-side driver).  
VDDB  
GNDA  
VOA  
Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
Ground terminal for Driver A.  
Driver A output (high-side driver).  
VDDA  
Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 28  
 
Si8239x Data Sheet  
Package Outline: 16-Pin Wide Body SOIC  
7. Package Outline: 16-Pin Wide Body SOIC  
The following figure illustrates the package details for the Si8239x in a 16-Pin Wide Body SOIC. The table lists the values for the dimen-  
sions shown in the illustration.  
Figure 7.1. 16-Pin Wide Body SOIC  
Table 7.1. Package Diagram Dimensions  
Symbol  
Millimeters  
Min  
Max  
2.65  
0.30  
A
A1  
A2  
b
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
10.30 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
1.27  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 29  
 
Si8239x Data Sheet  
Package Outline: 16-Pin Wide Body SOIC  
Symbol  
Millimeters  
Min  
0.25  
0°  
Max  
0.75  
8°  
h
θ
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.33  
0.10  
0.25  
0.10  
0.20  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MS-013, Variation AA.  
4. Recommended reflow profile per JEDEC J-STD-020C specification for small body, lead-free components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 30  
Si8239x Data Sheet  
Land Pattern: 16-Pin Wide Body SOIC  
8. Land Pattern: 16-Pin Wide Body SOIC  
The following figure illustrates the recommended land pattern details for the Si8239x in a 16-Pin Wide-Body SOIC. The table lists the  
values for the dimensions shown in the illustration.  
Figure 8.1. 16-Pin Wide Body SOIC PCB Land Pattern  
Table 8.1. 16-Pin Wide Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Pad Length  
Note:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protru-  
sion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 31  
 
Si8239x Data Sheet  
Package Outline: 16-Pin Narrow Body SOIC  
9. Package Outline: 16-Pin Narrow Body SOIC  
The following figure illustrates the package details for the Si8239x in a 16-Pin Narrow-Body SOIC. The table lists the values for the  
dimensions shown in the illustration.  
Figure 9.1. 16-Pin Narrow Body SOIC  
Table 9.1. Package Diagram Dimensions  
Dimension  
Min  
Max  
1.75  
0.25  
Dimension  
Min  
Max  
A
A1  
A2  
b
L
0.40  
1.27  
0.10  
1.25  
0.31  
0.17  
L2  
0.25 BSC  
h
0.25  
0°  
0.50  
8°  
0.51  
0.25  
θ
c
aaa  
bbb  
ccc  
ddd  
0.10  
0.20  
0.10  
0.25  
D
9.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
E
E1  
e
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 32  
 
Si8239x Data Sheet  
Land Pattern: 16-Pin Narrow Body SOIC  
10. Land Pattern: 16-Pin Narrow Body SOIC  
The following figure illustrates the recommended land pattern details for the Si8239x in a 16-Pin Narrow-Body SOIC. The table lists the  
values for the dimensions shown in the illustration.  
Figure 10.1. 16-Pin Narrow Body SOIC PCB Land Pattern  
Table 10.1. 16-Pin Narrow Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Note:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 33  
 
Si8239x Data Sheet  
Top Markings  
11. Top Markings  
11.1 Si8239x Top Marking (16-Pin Wide Body SOIC)  
11.2 Top Marking Explanation (16-Pin Wide Body SOIC)  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si8239 = ISOdriver product series  
Y = Output configuration: 0, 1, 3, 4, 5, 6, 7, 8  
0, 1, 5, 6, 7 = Dual drivers  
See Ordering Guide for more informa-  
tion.  
3 = Dual input (VIA, VIB) High Side/Low Side drivers  
4, 8 = PWM input High side/Low side drivers  
U = UVLO level: A, B, C  
A = 6 V; B = 8 V; C = 12 V  
V = Isolation rating: B, D  
B = 2.5 kV; D = 5.0 kV  
D = Dead time setting range: none, 4  
none = 10–200 ns; 4 = 40–600 ns  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
Assigned by the Assembly House. Corresponds to the year  
and workweek of the mold date.  
WW = Workweek  
TTTTTT = Mfg Code  
Circle = 1.5 mm Diameter  
(Center Justified)  
Country of Origin  
ISO Code Abbreviation  
Manufacturing Code from Assembly Purchase Order form.  
“e4” Pb-Free Symbol  
TW = Taiwan  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 34  
 
 
 
Si8239x Data Sheet  
Top Markings  
11.3 Si8239x Top Marking (16-Pin Narrow Body SOIC)  
11.4 Top Marking Explanation (16-Pin Narrow Body SOIC)  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si8239 = ISOdriver product series  
Y = Output configuration: 0, 1, 2, 4, 5, 6, 7, 8  
0, 1, 5, 6, 7 = Dual drivers  
See Ordering Guide for more informa-  
tion.  
2 = Dual input (VIA, VIB) High side/Low side drivers  
4, 8 = PWM input High side/Low side drivers  
U = UVLO level: A, B, C  
A = 6 V; B = 8 V; C = 12 V  
V = Isolation rating: B, D  
B = 2.5 kV; D = 5.0 kV  
D = Dead time setting range: none, 4  
none = 10–200; 4 = 40–600  
Line 2 Marking:  
YY = Year  
Assigned by the Assembly House. Corresponds to the year  
and workweek of the mold date.  
WW = Workweek  
TTTTTT = Mfg Code  
Manufacturing Code from Assembly Purchase Order form.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 35  
 
 
Table of Contents  
1. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2.1 Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . 4  
2.2 Family Overview and Logic Operation During Startup . . . . . . . . . . . . . . . . 5  
2.2.1 Device Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.3 Power Supply Connections . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.4 Power Dissipation Considerations . . . . . . . . . . . . . . . . . . . . . . . 9  
2.5 Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.6 Undervoltage Lockout Operation . . . . . . . . . . . . . . . . . . . . . . .10  
2.6.1 Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.6.2 Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . .11  
2.6.3 Control Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.6.4 Enable Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.6.5 Delayed Startup Time . . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.6.6 RDY Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.7 Programmable Dead Time and Overlap Protection . . . . . . . . . . . . . . . . .13  
2.8 De-glitch Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3. Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1 High-Side/Low-Side Driver . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.2 Dual Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5. Top-Level Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7. Package Outline: 16-Pin Wide Body SOIC. . . . . . . . . . . . . . . . . . . . 29  
8. Land Pattern: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . 31  
9. Package Outline: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . 32  
10. Land Pattern: 16-Pin Narrow Body SOIC. . . . . . . . . . . . . . . . . . . . 33  
11. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
11.1 Si8239x Top Marking (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . .34  
11.2 Top Marking Explanation (16-Pin Wide Body SOIC). . . . . . . . . . . . . . . . .34  
11.3 Si8239x Top Marking (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . .35  
11.4 Top Marking Explanation (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . .35  
Table of Contents 36  
Smart.  
Connected.  
Energy-Friendly.  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of  
Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or  
brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

Si82390BB-IS1

Enhanced output UVLO safety
SILICON

Si82390BD-IS

Enhanced output UVLO safety
SILICON

Si82390CB-IS1

Enhanced output UVLO safety
SILICON

SI82390CD-IS

Buffer/Inverter Based Peripheral Driver,
SILICON

Si82391AB-IS1

4.0 A ISODrivers with 2.5 V VDDI and Safety Features
SILICON

Si82391AD-IS

Enhanced output UVLO safety
SILICON

Si82391BB-IS1

4.0 A ISODrivers with 2.5 V VDDI and Safety Features
SILICON

Si82391BD-IS

Enhanced output UVLO safety
SILICON

Si82391CB-IS1

4.0 A ISODrivers with 2.5 V VDDI and Safety Features
SILICON

Si82391CD-IS

Enhanced output UVLO safety
SILICON

Si82392BB-IS1

Enhanced output UVLO safety
SILICON

Si82393CD-IS

Enhanced output UVLO safety
SILICON