EFM32G280 [SILICON]

Wake-up Interrupt Controller;
EFM32G280
型号: EFM32G280
厂家: SILICON    SILICON
描述:

Wake-up Interrupt Controller

文件: 总72页 (文件大小:1923K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EFM32G280 DATASHEET  
F128/F64/F32  
ARM Cortex-M3 CPU platform  
• High Performance 32-bit processor @ up to 32 MHz  
• Memory Protection Unit  
External Bus Interface for up to 4x64 MB of external  
memory mapped space  
Communication interfaces  
• 3× Universal Synchronous/Asynchronous Receiv-  
er/Transmitter  
• UART/SPI/SmartCard (ISO 7816)/IrDA  
• Triple buffered full/half-duplex operation  
• 1× Universal Asynchronous Receiver/Transmitter  
• 2× Low Energy UART  
• Wake-up Interrupt Controller  
Flexible Energy Management System  
• 20 nA @ 3 V Shutoff Mode  
• 0.6 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out  
Detector, RAM and CPU retention  
• 0.9 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz  
oscillator, Power-on Reset, Brown-out Detector, RAM and CPU  
retention  
• Autonomous operation with DMA in Deep Sleep  
Mode  
• 45 µA/MHz @ 3 V Sleep Mode  
• 180 µA/MHz @ 3 V Run Mode, with code executed from flash  
128/64/32 KB Flash  
16/16/8 KB RAM  
86 General Purpose I/O pins  
• Configurable push-pull, open-drain, pull-up/down, input filter, drive  
strength  
• Configurable peripheral I/O locations  
• 16 asynchronous external interrupts  
• Output state retention and wake-up from Shutoff Mode  
8 Channel DMA Controller  
• I2C Interface with SMBus support  
• Address recognition in Stop Mode  
Ultra low power precision analog peripherals  
• 12-bit 1 Msamples/s Analog to Digital Converter  
• 8 single ended channels/4 differential channels  
• On-chip temperature sensor  
• 12-bit 500 ksamples/s Digital to Analog Converter  
• 2 single ended channels/1 differential channel  
• 2× Analog Comparator  
• Capacitive sensing with up to 16 inputs  
• Supply Voltage Comparator  
8 Channel Peripheral Reflex System (PRS) for autonomous in-  
ter-peripheral signaling  
Ultra efficient Power-on Reset and Brown-Out Detec-  
tor  
Hardware AES with 128/256-bit keys in 54/75 cycles  
Timers/Counters  
2-pin Serial Wire Debug interface  
• 1-pin Serial Wire Viewer  
• 3× 16-bit Timer/Counter  
• 3×3 Compare/Capture/PWM channels  
• Dead-Time Insertion on TIMER0  
Pre-Programmed UART Bootloader  
Temperature range -40 to 85 ºC  
Single power supply 1.98 to 3.8 V  
LQFP100 package  
• 16-bit Low Energy Timer  
• 1× 24-bit Real-Time Counter  
• 3× 8-bit Pulse Counter  
• Watchdog Timer with dedicated RC oscillator @ 50 nA  
32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for:  
• Energy, gas, water and smart metering  
• Health and fitness applications  
• Smart accessories  
• Alarm and security systems  
• Industrial and home automation  
...the world's most energy friendly microcontrollers  
1 Ordering Information  
Table 1.1 (p. 2) shows the available EFM32G280 devices.  
Table 1.1. Ordering Information  
Ordering Code  
Flash (kB) RAM (kB)  
Max  
Speed  
(MHz)  
Supply  
Voltage  
(V)  
Temperature  
(ºC)  
Package  
EFM32G280F32-QFP100  
EFM32G280F64-QFP100  
EFM32G280F128-QFP100  
32  
8
32  
32  
32  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
-40 - 85  
-40 - 85  
-40 - 85  
LQFP100  
LQFP100  
LQFP100  
64  
16  
16  
128  
Adding the suffix 'T' to the part number (e.g. EFM32G280F32-QFP100T) denotes tray.  
Visit www.silabs.com for information on global distributors and representatives.  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
2
 
 
...the world's most energy friendly microcontrollers  
2 System Summary  
2.1 System Introduction  
The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of  
the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy  
saving modes, and a wide selection of peripherals, the EFM32G microcontroller is well suited for any  
battery operated application as well as other systems requiring high performance and low-energy con-  
sumption. This section gives a short introduction to each of the modules in general terms and also shows  
a summary of the configuration for the EFM32G280 devices. For a complete feature set and in-depth  
information on the modules, the reader is referred to the EFM32G Reference Manual.  
A block diagram of the EFM32G280 is shown in Figure 2.1 (p. 3) .  
Figure 2.1. Block Diagram  
G280F32/ 64/ 128  
Core andMemory  
Clock Management  
Energy Management  
High Frequency  
Crystal  
High Frequency  
RC  
Memory  
Protection  
Unit  
Voltage  
Regulator  
Voltage  
Comparator  
Oscillator  
Oscillator  
ARM Cortex- M3 processor  
Low Frequency  
RC  
Aux High Freq  
RC  
Oscillator  
Oscillator  
Flash  
Memory  
[KB]  
RAM  
Memory  
[KB]  
Debug  
Interface  
DMA  
Controller  
Power-on  
Reset  
Brown-out  
Detector  
Low Frequency  
Crystal  
Oscillator  
Watchdog  
Oscillator  
32/ 64/ 128  
8/ 16/ 16  
32-bit bus  
Peripheral Reflex System  
Serial Interfaces  
I/O Ports  
Timers andTriggers  
Analog Interfaces  
Security  
Timer/  
Counter  
Peripheral  
Reflex  
System  
General  
Purpose  
I/ O  
External  
Bus  
Interface  
USART  
3x  
UART  
ADC  
DAC  
2x  
AES  
3x  
86 pins  
Low Energy Real Time  
Timer™  
Counter  
Low  
Analog  
Comparator  
Energy  
UART™  
External  
Interrupts  
Pin  
Reset  
I2C  
Pulse  
Counter  
3x  
Watchdog  
Timer  
2x  
2x  
2.1.1 ARM Cortex-M3 Core  
The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone  
MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well  
as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32  
implementation of the Cortex-M3 is described in detail in EFM32G Cortex-M3 Reference Manual.  
2.1.2 Debug Interface (DBG)  
This device includes hardware debug support through a 2-pin serial-wire debug interface . In addition  
there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace  
and software-generated messages.  
2.1.3 Memory System Controller (MSC)  
The Memory System Controller (MSC) is the program memory unit of the EFM32G microcontroller. The  
flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
3
 
 
 
...the world's most energy friendly microcontrollers  
into two blocks; the main block and the information block. Program code is normally written to the main  
block. Additionally, the information block is available for special user data and flash lock bits. There is  
also a read-only page in the information block containing system and device calibration data. Read and  
write operations are supported in the energy modes EM0 and EM1.  
2.1.4 Direct Memory Access Controller (DMA)  
The Direct Memory Access (DMA) controller performs memory operations independently of the CPU.  
This has the benefit of reducing the energy consumption and the workload of the CPU, and enables  
the system to stay in low energy modes when moving for instance data from the USART to RAM or  
from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA  
controller licensed from ARM.  
2.1.5 Reset Management Unit (RMU)  
The RMU is responsible for handling the reset functionality of the EFM32G.  
2.1.6 Energy Management Unit (EMU)  
The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32G microcon-  
trollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU  
can also be used to turn off the power to unused SRAM blocks.  
2.1.7 Clock Management Unit (CMU)  
The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board  
the EFM32G. The CMU provides the capability to turn on and off the clock on an individual basis to all  
peripheral modules in addition to enable/disable and configure the available oscillators. The high degree  
of flexibility enables software to minimize energy consumption in any specific application by not wasting  
power on peripherals and oscillators that are inactive.  
2.1.8 Watchdog (WDOG)  
The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase appli-  
cation reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a  
software failure.  
2.1.9 Peripheral Reflex System (PRS)  
The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module  
communicate directly with each other without involving the CPU. Peripheral modules which send out  
Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which  
apply actions depending on the data received. The format for the Reflex signals is not given, but edge  
triggers and other functionality can be applied by the PRS.  
2.1.10 External Bus Interface (EBI)  
The External Bus Interface provides access to external parallel interface devices such as SRAM, FLASH,  
ADCs and LCDs. The interface is memory mapped into the address bus of the Cortex-M3. This enables  
seamless access from software without manually manipulating the IO settings each time a read or write  
is performed. The data and address lines are multiplexed in order to reduce the number of pins required  
to interface the external devices. The timing is adjustable to meet specifications of the external devices.  
The interface is limited to asynchronous devices.  
2.1.11 Inter-Integrated Circuit Interface (I2C)  
The I2C module provides an interface between the MCU and a serial I2C-bus. It is capable of acting as  
both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-  
mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s.  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
4
...the world's most energy friendly microcontrollers  
Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system.  
The interface provided to software by the I2C module, allows both fine-grained control of the transmission  
process and close to automatic transfers. Automatic recognition of slave addresses is provided in all  
energy modes.  
2.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (US-  
ART)  
The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible  
serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI,  
MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, and IrDA devices.  
2.1.13 Pre-Programmed UART Bootloader  
The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Auto-  
baud and destructive write are supported. The autobaud feature, interface and commands are described  
further in the application note.  
2.1.14 Universal Asynchronous Receiver/Transmitter (UART)  
The Universal Asynchronous serial Receiver and Transmitter (UART) is a very flexible serial I/O module.  
It supports full- and half-duplex asynchronous UART communication.  
2.1.15 Low Energy Universal Asynchronous Receiver/Transmitter  
(LEUART)  
The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on  
a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/  
s. The LEUART includes all necessary hardware support to make asynchronous serial communication  
possible with minimum of software intervention and energy consumption.  
2.1.16 Timer/Counter (TIMER)  
The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-  
Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor  
control applications.  
2.1.17 Real Time Counter (RTC)  
The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal  
oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also  
available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where  
most of the device is powered down.  
2.1.18 Low Energy Timer (LETIMER)  
The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2  
in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most  
of the device is powered down, allowing simple tasks to be performed while the power consumption of  
the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms  
with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be  
configured to start counting on compare matches from the RTC.  
2.1.19 Pulse Counter (PCNT)  
The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature  
encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source.  
The module may operate in energy mode EM0 - EM3.  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
5
...the world's most energy friendly microcontrollers  
2.1.20 Analog Comparator (ACMP)  
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indi-  
cating which input voltage is higher. Inputs can either be one of the selectable internal references or from  
external pins. Response time and thereby also the current consumption can be configured by altering  
the current supply to the comparator.  
2.1.21 Voltage Comparator (VCMP)  
The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can  
be generated when the supply falls below or rises above a programmable threshold. Response time and  
thereby also the current consumption can be configured by altering the current supply to the comparator.  
2.1.22 Analog to Digital Converter (ADC)  
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits  
at up to one million samples per second. The integrated input mux can select inputs from 8 external  
pins and 6 internal signals.  
2.1.23 Digital to Analog Converter (DAC)  
The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC  
is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be  
combined into one differential output. The DAC may be used for a number of different applications such  
as sensor interfaces or sound output.  
2.1.24 Advanced Encryption Standard Accelerator (AES)  
The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or  
decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK  
cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data  
and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit  
operations are not supported.  
2.1.25 General Purpose Input/Output (GPIO)  
In the EFM32G280, there are 86 General Purpose Input/Output (GPIO) pins, which are divided into ports  
with up to 16 pins each. These pins can individually be configured as either an output or input. More  
advanced configurations like open-drain, filtering and drive strength can also be configured individually  
for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM  
outputs or USART communication, which can be routed to several locations on the device. The GPIO  
supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the  
device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other  
peripherals.  
2.2 Configuration Summary  
The features of the EFM32G280 is a subset of the feature set described in the EFM32G Reference  
Manual. Table 2.1 (p. 6) describes device specific implementation of the features.  
Table 2.1. Configuration Summary  
Module  
Configuration  
Pin Connections  
Cortex-M3  
Full configuration  
NA  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
6
 
 
...the world's most energy friendly microcontrollers  
Module  
Configuration  
Pin Connections  
DBG  
Full configuration  
DBG_SWCLK, DBG_SWDIO,  
DBG_SWO  
MSC  
DMA  
RMU  
EMU  
CMU  
WDOG  
PRS  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
NA  
NA  
NA  
CMU_OUT0, CMU_OUT1  
NA  
NA  
EBI  
EBI_ARDY, EBI_ALE, EBI_WEn,  
EBI_REn, EBI_CS[3:0], EBI_AD[15:0]  
I2C0  
Full configuration  
I2C0_SDA, I2C0_SCL  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
US2_TX, US2_RX, US2_CLK, US2_CS  
U0_TX, U0_RX  
USART0  
USART1  
USART2  
UART0  
LEUART0  
LEUART1  
TIMER0  
TIMER1  
TIMER2  
RTC  
Full configuration with IrDA  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
LEU0_TX, LEU0_RX  
LEU1_TX, LEU1_RX  
TIM0_CC[2:0], TIM0_CDTI[2:0]  
TIM1_CC[2:0]  
Full configuration  
Full configuration with DTI  
Full configuration  
Full configuration  
TIM2_CC[2:0]  
Full configuration  
NA  
LETIMER0  
PCNT0  
PCNT1  
PCNT2  
ACMP0  
ACMP1  
VCMP  
Full configuration  
LET0_O[1:0]  
Full configuration, 8-bit count register  
Full configuration, 8-bit count register  
Full configuration, 8-bit count register  
Full configuration  
PCNT0_S[1:0]  
PCNT1_S[1:0]  
PCNT2_S[1:0]  
ACMP0_CH[7:0], ACMP0_O  
ACMP1_CH[7:0], ACMP1_O  
NA  
Full configuration  
Full configuration  
ADC0  
Full configuration  
ADC0_CH[7:0]  
DAC0  
Full configuration  
DAC0_OUT[1:0]  
AES  
Full configuration  
NA  
GPIO  
86 pins  
Available pins are shown in  
Table 4.3 (p. 55)  
2.3 Memory Map  
The EFM32G280 memory map is shown in Figure 2.2 (p. 8), with RAM and Flash sizes for the  
largest memory configuration.  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
7
 
...the world's most energy friendly microcontrollers  
Figure 2.2. EFM32G280 Memory Map with largest RAM and Flash sizes  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
8
 
...the world's most energy friendly microcontrollers  
3 Electrical Characteristics  
3.1 Test Conditions  
3.1.1 Typical Values  
The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 9), by simu-  
lation and/or technology characterisation unless otherwise specified.  
3.1.2 Minimum and Maximum Values  
The minimum and maximum values represent the worst conditions of ambient temperature, supply volt-  
age and frequencies, as defined in Table 3.2 (p. 9), by simulation and/or technology characterisa-  
tion unless otherwise specified.  
3.2 Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings, and functional operation under such conditions are  
not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 9) may affect the device reliability  
or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p.  
9) .  
Table 3.1. Absolute Maximum Ratings  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1501 °C  
TSTG  
Storage tempera-  
ture range  
-40  
TS  
Maximum soldering Latest IPC/JEDEC J-STD-020  
260 °C  
temperature  
Standard  
VDDMAX  
External main sup-  
ply voltage  
0
3.8  
V
V
VIOPIN  
Voltage on any I/O  
pin  
-0.3  
VDD+0.3  
Current per I/O pin  
(sink)  
100 mA  
-100 mA  
IIOMAX  
Current per I/O pin  
(source)  
1Based on programmed devices tested for 10000 hours at 150°C. Storage temperature affects retention of preprogrammed cal-  
ibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data re-  
tention for different temperatures.  
3.3 General Operating Conditions  
3.3.1 General Operating Conditions  
Table 3.2. General Operating Conditions  
Symbol  
TAMB  
VDDOP  
fAPB  
Parameter  
Min  
Typ  
Max  
Unit  
85 °C  
3.8  
Ambient temperature range  
Operating supply voltage  
Internal APB clock frequency  
Internal AHB clock frequency  
-40  
1.98  
V
32 MHz  
32 MHz  
fAHB  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
9
 
 
 
 
 
 
...the world's most energy friendly microcontrollers  
3.4 Current Consumption  
Table 3.3. Current Consumption  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
32 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V  
180  
181  
183  
185  
186  
191  
220  
45  
µA/  
MHz  
28 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
206 µA/  
MHz  
21 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
207 µA/  
MHz  
EM0 current. No  
prescaling. Running  
prime number cal-  
culation code from  
Flash. (Production  
test condition = 14  
MHz)  
14 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
211 µA/  
MHz  
IEM0  
11 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
215 µA/  
MHz  
6.6 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
218 µA/  
MHz  
1.2 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
µA/  
MHz  
32 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V  
µA/  
MHz  
28 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
47  
62 µA/  
MHz  
21 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
48  
64 µA/  
MHz  
EM1 current (Pro-  
duction test condi-  
tion = 14 MHz)  
14 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
50  
69 µA/  
MHz  
IEM1  
11 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
51  
72 µA/  
MHz  
6.6 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
56  
83 µA/  
MHz  
1.2 MHz HFRCO. all peripheral  
clocks disabled, VDD= 3.0 V  
103  
0.9  
µA/  
MHz  
EM2 current with RTC  
prescaled to 1 Hz, 32.768  
kHz LFRCO, VDD= 3.0 V,  
TAMB=25°C  
1.5 µA  
IEM2  
EM2 current  
EM2 current with RTC  
prescaled to 1 Hz, 32.768  
kHz LFRCO, VDD= 3.0 V,  
TAMB=85°C  
3.0  
6.0 µA  
VDD= 3.0 V, TAMB=25°C  
VDD= 3.0 V, TAMB=85°C  
VDD= 3.0 V, TAMB=25°C  
VDD= 3.0 V, TAMB=85°C  
0.59  
2.75  
0.02  
0.25  
1.0 µA  
5.8 µA  
IEM3  
EM3 current  
EM4 current  
0.045 µA  
0.7 µA  
IEM4  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
10  
 
 
...the world's most energy friendly microcontrollers  
3.4.1 EM0 Current Consumption  
Figure 3.1. EM0 Current consumption while executing prime number calculation code from flash  
with HFRCO running at 28 MHz  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
85.0°C  
65.0°C  
45.0°C  
25.0°C  
5.0°C  
- 15.0°C  
- 40.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.2. EM0 Current consumption while executing prime number calculation code from flash  
with HFRCO running at 21 MHz  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
85.0°C  
65.0°C  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
45.0°C  
25.0°C  
5.0°C  
- 15.0°C  
- 40.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
11  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.3. EM0 Current consumption while executing prime number calculation code from flash  
with HFRCO running at 14 MHz  
2.75  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.75  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
85.0°C  
65.0°C  
45.0°C  
25.0°C  
5.0°C  
- 15.0°C  
- 40.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.4. EM0 Current consumption while executing prime number calculation code from flash  
with HFRCO running at 11 MHz  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
85.0°C  
65.0°C  
45.0°C  
25.0°C  
5.0°C  
- 15.0°C  
- 40.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
12  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.5. EM0 Current consumption while executing prime number calculation code from flash  
with HFRCO running at 7 MHz  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
85.0°C  
65.0°C  
45.0°C  
25.0°C  
5.0°C  
- 15.0°C  
- 40.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
3.4.2 EM1 Current Consumption  
Figure 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 28 MHz  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
Vdd= 2.0V  
Vdd= 2.4V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.4V  
Vdd= 3.8V  
85.0°C  
65.0°C  
45.0°C  
25.0°C  
5.0°C  
- 15.0°C  
- 40.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
13  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 21 MHz  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
Vdd= 2.0V  
Vdd= 2.4V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.4V  
Vdd= 3.8V  
85.0°C  
65.0°C  
45.0°C  
25.0°C  
5.0°C  
- 15.0°C  
- 40.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 14 MHz  
0.76  
0.74  
0.72  
0.70  
0.68  
0.66  
0.64  
0.76  
0.74  
0.72  
0.70  
0.68  
0.66  
0.64  
Vdd= 2.0V  
Vdd= 2.4V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.4V  
Vdd= 3.8V  
85.0°C  
65.0°C  
45.0°C  
25.0°C  
5.0°C  
- 15.0°C  
- 40.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
14  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 11 MHz  
0.62  
0.60  
0.58  
0.56  
0.54  
0.52  
0.62  
0.60  
0.58  
0.56  
0.54  
0.52  
85.0°C  
Vdd= 2.0V  
Vdd= 2.4V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.4V  
Vdd= 3.8V  
65.0°C  
45.0°C  
25.0°C  
5.0°C  
- 15.0°C  
- 40.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 7 MHz  
0.44  
0.43  
0.42  
0.41  
0.40  
0.39  
0.38  
0.37  
0.36  
0.44  
0.43  
0.42  
0.41  
0.40  
0.39  
0.38  
0.37  
0.36  
85.0°C  
Vdd= 2.0V  
Vdd= 2.4V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.4V  
Vdd= 3.8V  
65.0°C  
45.0°C  
25.0°C  
5.0°C  
- 15.0°C  
- 40.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
15  
 
 
...the world's most energy friendly microcontrollers  
3.4.3 EM2 Current Consumption  
Figure 3.11. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO.  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
- 40.0°C  
- 15.0°C  
5.0°C  
Vdd= 1.8V  
Vdd= 2.2V  
Vdd= 2.6V  
Vdd= 3.0V  
Vdd= 3.4V  
Vdd= 3.8V  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
3.4.4 EM3 Current Consumption  
Figure 3.12. EM3 current consumption.  
3.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
- 40.0°C  
Vdd= 1.8V  
Vdd= 2.2V  
Vdd= 2.6V  
Vdd= 3.0V  
Vdd= 3.4V  
Vdd= 3.8V  
- 15.0°C  
5.0°C  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
16  
 
 
...the world's most energy friendly microcontrollers  
3.4.5 EM4 Current Consumption  
Figure 3.13. EM4 current consumption.  
0.45  
0.45  
- 40.0°C  
Vdd= 1.8V  
- 15.0°C  
Vdd= 2.2V  
5.0°C  
Vdd= 2.6V  
Vdd= 3.0V  
Vdd= 3.4V  
Vdd= 3.8V  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
3.5 Transition between Energy Modes  
The transition times are measured from the trigger to the first clock edge in the CPU.  
Table 3.4. Energy Modes Transitions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tEM10  
Transition time from EM1 to EM0  
0
HF-  
CORE-  
CLK  
cycles  
tEM20  
tEM30  
tEM40  
Transition time from EM2 to EM0  
Transition time from EM3 to EM0  
Transition time from EM4 to EM0  
2
2
µs  
µs  
µs  
163  
3.6 Power Management  
The EFM32G requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with  
optional filter) at the PCB level. For practical schematic recommendations, please see the application  
note, "AN0002 EFM32 Hardware Design Considerations".  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
17  
 
 
 
 
...the world's most energy friendly microcontrollers  
Table 3.5. Power Management  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VBODextthr-  
BOD threshold on  
falling external sup-  
ply voltage  
1.74  
1.96  
1.98  
V
VBODextthr+  
BOD threshold on  
rising external sup-  
ply voltage  
1.85  
V
V
VPORthr+  
Power-on Reset  
(POR) threshold on  
rising external sup-  
ply voltage  
tRESETdly  
Delay from reset  
is released until  
program execution  
starts  
Applies to Power-on Reset,  
Brown-out Reset and pin reset.  
163  
µs  
ns  
µF  
tRESET  
negative pulse  
length to ensure  
complete reset of  
device  
50  
CDECOUPLE  
Voltage regulator  
decoupling capaci-  
tor.  
X5R capacitor recommended.  
Apply between DECOUPLE pin  
and GROUND  
1
3.7 Flash  
Table 3.6. Flash  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
ECFLASH  
Flash erase cycles  
before failure  
20000  
cycles  
TAMB<150°C  
10000  
10  
h
RETFLASH  
Flash data retention TAMB<85°C  
TAMB<70°C  
years  
years  
µs  
20  
tW_PROG  
Word (32-bit) pro-  
gramming time  
20  
tP_ERASE  
tD_ERASE  
IERASE  
Page erase time  
Device erase time  
Erase current  
20  
40  
20.4  
40.8  
20.8 ms  
41.6 ms  
71 mA  
IWRITE  
Write current  
71 mA  
VFLASH  
Supply voltage dur-  
ing flash erase and  
write  
1.98  
3.8  
V
1Measured at 25°C  
3.8 General Purpose Input Output  
Table 3.7. GPIO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
0.30VDD  
Unit  
1
VIOIL  
Input low voltage  
V
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
18  
 
 
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
0.70VDD  
Typ  
Max  
Unit  
V
1
VIOIH  
Input high voltage  
Sourcing 0.1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
0.80VDD  
0.90VDD  
0.85VDD  
0.90VDD  
V
Sourcing 0.1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Sourcing 1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Sourcing 1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Output high volt-  
age (Production test  
condition = 3.0V,  
DRIVEMODE =  
STANDARD)  
VIOOH  
Sourcing 6 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.75VDD  
0.85VDD  
0.60VDD  
0.80VDD  
Sourcing 6 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
Sourcing 20 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
Sourcing 20 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
Sinking 0.1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
0.20VDD  
0.10VDD  
0.10VDD  
0.05VDD  
Sinking 0.1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
Sinking 1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Sinking 1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Output low voltage  
(Production test  
condition = 3.0V,  
DRIVEMODE =  
STANDARD)  
VIOOL  
Sinking 6 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.30VDD  
Sinking 6 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.20VDD  
0.35VDD  
0.25VDD  
Sinking 20 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
Sinking 20 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
IIOLEAK  
Input leakage cur-  
rent  
High Impedance IO connected  
to GROUND or VDD  
±0.1  
±40 nA  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
19  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
RPU  
I/O pin pull-up resis-  
tor  
40  
40  
kOhm  
RPD  
I/O pin pull-down re-  
sistor  
kOhm  
Ohm  
RIOESD  
Internal ESD series  
resistor  
200  
tIOGLITCH  
Pulse width of puls-  
es to be removed  
by the glitch sup-  
pression filter  
10  
50 ns  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST and load capaci-  
tance CL=12.5-25pF.  
20+0.1CL  
20+0.1CL  
0.1VDD  
250 ns  
250 ns  
V
tIOOF  
Output fall time  
GPIO_Px_CTRL DRIVEMODE  
= LOW and load capacitance  
CL=350-600pF  
VIOHYST  
I/O pin hysteresis  
VDD = 1.98 - 3.8 V  
(VIOTHR+ - VIOTHR-  
)
1If the GPIO input voltage is between 0.3VDD and 0.7VDD, the current consumption will increase.  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
20  
...the world's most energy friendly microcontrollers  
Figure 3.14. Typical Low-Level Output Current, 2V Supply Voltage  
0.20  
0.15  
0.10  
0.05  
0.00  
5
4
3
2
1
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
20  
45  
40  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
- 40°C  
25°C  
- 40°C  
25°C  
85°C  
85°C  
0
0.0  
0
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
21  
 
...the world's most energy friendly microcontrollers  
Figure 3.15. Typical High-Level Output Current, 2V Supply Voltage  
0.00  
0.05  
0.10  
0.15  
0.20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
–5  
10  
15  
20  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
22  
 
...the world's most energy friendly microcontrollers  
Figure 3.16. Typical Low-Level Output Current, 3V Supply Voltage  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
10  
8
6
4
2
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
40  
35  
30  
25  
20  
15  
10  
50  
40  
30  
20  
10  
0
5
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
23  
 
...the world's most energy friendly microcontrollers  
Figure 3.17. Typical High-Level Output Current, 3V Supply Voltage  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
24  
 
...the world's most energy friendly microcontrollers  
Figure 3.18. Typical Low-Level Output Current, 3.8V Supply Voltage  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
14  
12  
10  
8
6
4
2
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
0
- 40°C  
25°C  
- 40°C  
25°C  
85°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
25  
 
...the world's most energy friendly microcontrollers  
Figure 3.19. Typical High-Level Output Current, 3.8V Supply Voltage  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
26  
 
...the world's most energy friendly microcontrollers  
3.9 Oscillators  
3.9.1 LFXO  
Table 3.8. LFXO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fLFXO  
Supported nominal  
crystal frequency  
32.768  
30  
kHz  
ESRLFXO  
Supported crystal  
equivalent series re-  
sistance (ESR)  
120 kOhm  
CLFXOL  
Supported crystal  
external load range  
X1  
25 pF  
nA  
ILFXO  
Current consump-  
tion for core and  
buffer after startup.  
ESR=30 kOhm, CL=10 pF,  
LFXOBOOST in CMU_CTRL is  
1
190  
400  
tLFXO  
Start- up time.  
ESR=30 kOhm, CL=10 pF,  
40% - 60% duty cycle has  
been reached, LFXOBOOST in  
CMU_CTRL is 1  
ms  
1See Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup in Configurator in Simplicity Studio  
For safe startup of a given crystal, the Configurator tool in Simplicity Studio contains a tool to help  
users configure both load capacitance and software settings for using the LFXO. For details regarding  
the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design  
Consideration".  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
27  
 
 
...the world's most energy friendly microcontrollers  
3.9.2 HFXO  
Table 3.9. HFXO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fHFXO  
Supported nominal  
crystal Frequency  
4
32 MHz  
Supported crystal  
equivalent series re-  
sistance (ESR)  
Crystal frequency 32 MHz  
Crystal frequency 4 MHz  
30  
60 Ohm  
ESRHFXO  
400  
1500 Ohm  
gmHFXO  
The transconduc-  
tance of the HFXO  
input transistor at  
crystal startup  
HFXOBOOST in CMU_CTRL  
equals 0b11  
20  
5
mS  
CHFXOL  
Supported crystal  
external load range  
25 pF  
µA  
4 MHz: ESR=400 Ohm,  
CL=20 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
85  
165  
400  
Current consump-  
tion for HFXO after  
startup  
IHFXO  
32 MHz: ESR=30 Ohm,  
CL=10 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
µA  
µs  
Startup time  
32 MHz: ESR=30 Ohm,  
CL=10 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
tHFXO  
Pulse width re-  
moved by glitch de-  
tector  
1
4
ns  
3.9.3 LFRCO  
Table 3.10. LFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fLFRCO  
Oscillation frequen-  
cy , VDD= 3.0 V,  
TAMB=25°C  
31.29  
32.768  
150  
34.24 kHz  
tLFRCO  
Startup time not in-  
cluding software  
calibration  
µs  
ILFRCO  
Current consump-  
tion  
190  
±0.02  
±15  
nA  
TCLFRCO  
Temperature coeffi-  
cient  
%/°C  
%/V  
%
VCLFRCO  
Supply voltage co-  
efficient  
TUNESTEPL- Frequency step  
1.5  
for LSB change in  
FRCO  
TUNING value  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
28  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage  
42  
40  
38  
36  
34  
32  
30  
42  
40  
38  
36  
34  
32  
30  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
3.9.4 HFRCO  
Table 3.11. HFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
28 MHz frequency band  
21 MHz frequency band  
14 MHz frequency band  
11 MHz frequency band  
7 MHz frequency band  
1 MHz frequency band  
fHFRCO = 14 MHz  
27.16  
20.37  
13.58  
10.67  
6.402  
1.164  
28  
21  
28.84 MHz  
21.63 MHz  
14.42 MHz  
11.33 MHz  
6.798 MHz  
1.236 MHz  
Oscillation frequen-  
cy, VDD= 3.0 V,  
TAMB=25°C  
14  
fHFRCO  
11  
6.61  
1.22  
0.6  
Settling time after  
start-up  
Cycles  
tHFRCO_settling  
Settling time after  
band switch  
25  
Cycles  
fHFRCO = 28 MHz  
fHFRCO = 21 MHz  
fHFRCO = 14 MHz  
fHFRCO = 11 MHz  
fHFRCO = 6.6 MHz  
fHFRCO = 1.2 MHz  
fHFRCO = 14 MHz  
106  
93  
190 µA  
155 µA  
120 µA  
110 µA  
90 µA  
Current consump-  
tion (Production test  
condition = 14 MHz)  
77  
IHFRCO  
72  
63  
22  
32 µA  
DCHFRCO  
Duty cycle  
48.5  
50  
51  
%
%
TUNESTEPH- Frequency step  
0.33  
for LSB change in  
FRCO  
TUNING value  
1For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable.  
2For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.  
3The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment  
range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By  
using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the  
frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
29  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.21. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature  
6.70  
6.65  
6.60  
6.55  
6.50  
6.45  
6.40  
6.35  
6.30  
6.70  
6.65  
6.60  
6.55  
6.50  
6.45  
6.40  
6.35  
6.30  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.23. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature  
11.2  
11.1  
11.0  
10.9  
10.8  
10.7  
10.6  
11.2  
11.1  
11.0  
10.9  
10.8  
10.7  
10.6  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
30  
 
 
 
...the world's most energy friendly microcontrollers  
Figure 3.24. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature  
21.2  
21.0  
20.8  
20.6  
20.4  
20.2  
21.2  
21.0  
20.8  
20.6  
20.4  
20.2  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.26. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature  
28.2  
28.0  
27.8  
27.6  
27.4  
27.2  
27.0  
26.8  
28.4  
28.2  
28.0  
27.8  
27.6  
27.4  
27.2  
27.0  
26.8  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
31  
 
 
 
...the world's most energy friendly microcontrollers  
3.9.5 AUXHFRCO  
Table 3.12. AUXHFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fAUXHFRCO  
Oscillation frequen- 14 MHz frequency band  
cy, VDD= 3.0 V,  
TAMB=25°C  
13.580  
48.5  
14.0  
0.6  
14.420 MHz  
tAUXHFRCO_settlingSettling time after  
start-up  
fAUXHFRCO = 14 MHz  
fAUXHFRCO = 14 MHz  
Cycles  
DCAUXHFRCO  
Duty cycle  
50  
51 %  
TUNESTEPAUX-Frequency step  
0.31  
%
for LSB change in  
HFRCO  
TUNING value  
1The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. By using a stable  
frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band  
to maintain the AUXHFRCO frequency at any arbitrary value in the 14 MHz range across operating conditions.  
3.9.6 ULFRCO  
Table 3.13. ULFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fULFRCO  
Oscillation frequen- 25°C, 3V  
cy  
0.70  
1.75 kHz  
TCULFRCO  
Temperature coeffi-  
cient  
0.05  
%/°C  
%/V  
VCULFRCO  
Supply voltage co-  
efficient  
-18.2  
3.10 Analog Digital Converter (ADC)  
Table 3.14. ADC  
Symbol  
VADCIN  
Parameter  
Condition  
Single ended  
Differential  
Min  
Typ  
Max  
Unit  
0
-VREF/2  
1.25  
VREF  
VREF/2  
VDD  
V
V
V
Input voltage range  
VADCREFIN  
Input range of exter-  
nal reference volt-  
age, single ended  
and differential  
VADCREFIN_CH7 Input range of ex-  
ternal negative ref-  
erence voltage on  
See VADCREFIN  
0
0.625  
0
VDD - 1.1  
V
V
channel 7  
VADCREFIN_CH6 Input range of ex-  
ternal positive ref-  
See VADCREFIN  
VDD  
erence voltage on  
channel 6  
VADCCMIN  
Common mode in-  
put range  
VDD  
V
IADCIN  
Input current  
2pF sampling capacitors  
<100  
nA  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
32  
 
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
CMRRADC  
Analog input com-  
mon mode rejection  
ratio  
65  
dB  
1 MSamples/s, 12 bit, external  
reference  
351  
411  
67  
µA  
µA  
µA  
1 MSamples/s, 12 bit, internal  
reference  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b00, ADC_CLK running at  
13MHz  
Average active cur-  
rent  
IADC  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b01, ADC_CLK running at  
13MHz  
63  
64  
2
µA  
µA  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b10, ADC_CLK running at  
13MHz  
CADCIN  
RADCIN  
RADCFILT  
Input capacitance  
pF  
Input ON resistance  
1
MOhm  
kOhm  
Input RC filter resis-  
tance  
10  
CADCFILT  
Input RC filter/de-  
coupling capaci-  
tance  
250  
fF  
fADCCLK  
ADC Clock Fre-  
quency  
13 MHz  
6 bit  
7
11  
13  
1
ADC-  
CLK  
Cycles  
8 bit  
ADC-  
CLK  
Cycles  
tADCCONV  
Conversion time  
Acquisition time  
12 bit  
ADC-  
CLK  
Cycles  
tADCACQ  
Programmable  
256 ADC-  
CLK  
Cycles  
tADCACQVDD3  
Required acquisi-  
tion time for VDD/3  
reference  
2
µs  
Startup time of ref-  
erence generator  
and ADC core in  
NORMAL mode  
5
1
µs  
tADCSTART  
Startup time of ref-  
erence generator  
and ADC core in  
µs  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
33  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
KEEPADCWARM  
mode  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
59  
dB  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V reference  
63  
65  
60  
65  
54  
67  
69  
62  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
1 MSamples/s, 12 bit, differen-  
tial, 5V reference  
1 MSamples/s, 12 bit, differen-  
tial, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
Signal to Noise Ra-  
tio (SNR)  
SNRADC  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
63  
67  
63  
66  
66  
69  
70  
58  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
63  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V reference  
62  
64  
60  
64  
54  
dB  
dB  
dB  
dB  
dB  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
SIgnal-to-Noise  
And Distortion-ratio  
(SINAD)  
SINADADC  
1 MSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
1 MSamples/s, 12 bit, differen-  
tial, 5V reference  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
34  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1 MSamples/s, 12 bit, differen-  
tial, VDD reference  
66  
68  
61  
dB  
1 MSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
dB  
dB  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
65  
66  
63  
66  
66  
68  
69  
64  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dBc  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
62  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V reference  
76  
73  
66  
77  
76  
75  
69  
75  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
1 MSamples/s, 12 bit, differen-  
tial, VDD reference  
Spurious-Free Dy-  
namic Range (SF-  
DR)  
1 MSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
SFDRADC  
1 MSamples/s, 12 bit, differen-  
tial, 5V reference  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
75  
76  
79  
79  
dBc  
dBc  
dBc  
dBc  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
35  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
78  
79  
79  
dBc  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
68  
-4  
dBc  
dBc  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
After calibration, single ended  
After calibration, differential  
0.3  
0.3  
4
mV  
VADCOFFSET  
Offset voltage  
mV  
-1.92  
-6.3  
mV/°C  
Thermometer out-  
put gradient  
ADC  
Codes/  
°C  
TGRADADCTH  
DNLADC  
INLADC  
Differential non-lin-  
earity (DNL)  
VDD = 3.0 V, external 2.5V ref-  
erence  
-1  
±0.7  
±1.2  
4
LSB  
Integral non-linear-  
ity (INL), End point  
method  
VDD = 3.0 V, external 2.5V ref-  
erence  
±3 LSB  
MCADC  
No missing codes  
11.9991  
12  
bits  
1On the average every ADC will have one missing code, most likely to appear around 2048 ± n*512 where n can be a value in  
the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic  
at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is  
missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale  
input for chips that have the missing code issue.  
The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.27 (p.  
36) and Figure 3.28 (p. 37) , respectively.  
Figure 3.27. Integral Non-Linearity (INL)  
Digital ouput code  
INL= |[(VD- VSS)/ VLSBIDEAL] - D| where 0 < D < 2N - 1  
4095  
4094  
Actual ADC  
tranfer function  
before offset and  
4093  
Actual ADC  
gain correction  
4092  
tranfer function  
after offset and  
gain correction  
INL Error  
(End Point INL)  
Ideal transfer  
curve  
3
2
1
0
VOFFSET  
Analog Input  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
36  
 
...the world's most energy friendly microcontrollers  
Figure 3.28. Differential Non-Linearity (DNL)  
Digital  
ouput  
DNL= |[(VD+ 1 - VD)/ VLSBIDEAL] - 1| where 0 < D < 2N - 2  
code  
4095  
4094  
4093  
4092  
Full Scale Range  
Example: Adjacent  
input value VD+ 1  
corrresponds to digital  
output code D+ 1  
Actual transfer  
function with one  
missing code.  
Example: Input value  
VD corrresponds to  
digital output code D  
Code width = 2 LSB  
DNL= 1 LSB  
Ideal transfer  
curve  
0.5  
LSB  
Ideal spacing  
between two  
adjacent codes  
VLSBIDEAL= 1 LSB  
5
4
3
2
1
0
Ideal 50%  
Transition Point  
Ideal Code Center  
Analog Input  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
37  
 
...the world's most energy friendly microcontrollers  
3.10.1 Typical performance  
Figure 3.29. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C  
1.25V Reference  
2XVDDVSS Reference  
VDD Reference  
2.5V Reference  
5VDIFF Reference  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
38  
 
...the world's most energy friendly microcontrollers  
Figure 3.30. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C  
1.25V Reference  
2.5V Reference  
2XVDDVSS Reference  
5VDIFF Reference  
VDD Reference  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
39  
 
...the world's most energy friendly microcontrollers  
Figure 3.31. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C  
1.25V Reference  
2.5V Reference  
2XVDDVSS Reference  
5VDIFF Reference  
VDD Reference  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
40  
 
...the world's most energy friendly microcontrollers  
Figure 3.32. ADC Absolute Offset, Common Mode = Vdd /2  
5
4
3
2
1
0
2.0  
1.5  
Vref= 1V25  
VRef= 1V25  
Vref= 2V5  
VRef= 2V5  
Vref= 2XVDDVSS  
Vref= 5VDIFF  
Vref= VDD  
VRef= 2XVDDVSS  
VRef= 5VDIFF  
VRef= VDD  
1.0  
0.5  
–1  
0.0  
–2  
–3  
–4  
0.5  
1.0  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd (V)  
Temp (C)  
Offset vs Supply Voltage, Temp = 25°C  
Offset vs Temperature, Vdd = 3V  
Figure 3.33. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V  
71  
70  
69  
68  
67  
66  
65  
64  
63  
79.4  
79.2  
79.0  
78.8  
78.6  
78.4  
78.2  
78.0  
2XVDDV  
Vdd  
1V25  
Vdd  
2V5  
5VDIFF  
2V5  
2XVDDV  
5VDIFF  
1V25  
40  
15  
5
25  
45  
65  
85  
40  
15  
5
25  
45  
65  
85  
Temperature [°C]  
Temperature [°C]  
Signal to Noise Ratio (SNR)  
Spurious-Free Dynamic Range (SFDR)  
3.11 Digital Analog Converter (DAC)  
Table 3.15. DAC  
Symbol  
VDACOUT  
VDACCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VDD voltage reference, single  
ended  
0
-VDD  
0
VDD  
VDD  
VDD  
V
V
V
Output voltage  
range  
VDD voltage reference, differ-  
ential  
Output common  
mode voltage range  
500 kSamples/s, 12bit  
100 kSamples/s, 12 bit  
1 kSamples/s 12 bit  
4001  
2001  
171  
650 µA  
250 µA  
25 µA  
Active current in-  
cluding references  
for 2 channels  
IDAC  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
41  
 
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
SRDAC  
Sample rate  
500 ksam-  
ples/s  
Continuous Mode  
Sample/Hold Mode  
Sample/Off Mode  
1000 kHz  
250 kHz  
250 kHz  
DAC clock frequen-  
cy  
fDAC  
CYCDACCONV Clock cyckles per  
conversion  
2
tDACCONV  
Conversion time  
Settling time  
2
µs  
µs  
dB  
tDACSETTLE  
5
500 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
58  
500 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
59  
58  
58  
59  
57  
dB  
dB  
dB  
dB  
dB  
Signal to Noise Ra-  
tio (SNR)  
SNRDAC  
500 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
500 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
500 kSamples/s, 12 bit, differ-  
ential, VDD reference  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
500 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
54  
56  
53  
55  
62  
dB  
dB  
dB  
dB  
dBc  
Signal to Noise-  
SNDRDAC  
pulse Distortion Ra- 500 kSamples/s, 12 bit, differ-  
tio (SNDR)  
ential, internal 1.25V reference  
500 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
500 kSamples/s, 12 bit, differ-  
ential, VDD reference  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
500 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
56  
61  
55  
60  
dBc  
dBc  
dBc  
dBc  
Spurious-Free  
Dynamic  
Range(SFDR)  
SFDRDAC  
500 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
500 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
500 kSamples/s, 12 bit, differ-  
ential, VDD reference  
After calibration, single ended  
After calibration, differential  
2
2
mV  
VDACOFFSET  
Offset voltage  
mV  
VDACSHMDRIFT Sample-hold mode  
voltage drift  
540  
µV/ms  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
42  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
DNLDAC  
Differential non-lin-  
earity  
±1  
±5  
12  
LSB  
INLDAC  
MCDAC  
Integral non-lineari-  
ty  
LSB  
bits  
No missing codes  
1Measured with a static input code and no loading on the output.  
3.12 Analog Comparator (ACMP)  
Table 3.16. ACMP  
Symbol  
VACMPIN  
VACMPCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Input voltage range  
0
0
VDD  
VDD  
ACMP Common  
V
Mode voltage range  
BIASPROG=0b0000, FULL-  
BIAS=0 and HALFBIAS=1 in  
ACMPn_CTRL register  
55  
2.82  
195  
0
600 nA  
12 µA  
BIASPROG=0b1111, FULL-  
BIAS=0 and HALFBIAS=0 in  
ACMPn_CTRL register  
IACMP  
Active current  
BIASPROG=0b1111, FULL-  
BIAS=1 and HALFBIAS=0 in  
ACMPn_CTRL register  
520 µA  
0.5 µA  
Internal voltage reference off.  
Using external voltage refer-  
ence  
Current consump-  
tion of internal volt-  
age reference  
IACMPREF  
Internal voltage reference,  
LPREF=1  
0.050  
3
µA  
µA  
Internal voltage reference,  
LPREF=0  
6
0
VACMPOFFSET Offset voltage  
BIASPROG= 0b1010, FULL-  
BIAS=0 and HALFBIAS=0 in  
ACMPn_CTRL register  
-12  
12 mV  
VACMPHYST  
ACMP hysteresis  
Programmable  
17  
39  
mV  
CSRESSEL=0b00 in  
ACMPn_INPUTSEL  
kOhm  
CSRESSEL=0b01 in  
ACMPn_INPUTSEL  
71  
104  
136  
kOhm  
kOhm  
kOhm  
Capacitive Sense  
Internal Resistance  
RCSRES  
CSRESSEL=0b10 in  
ACMPn_INPUTSEL  
CSRESSEL=0b11 in  
ACMPn_INPUTSEL  
tACMPSTART  
Startup time  
10 µs  
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference  
as given in Equation 3.1 (p. 43) . IACMPREF is zero if an external voltage reference is used.  
Total ACMP Active Current  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
43  
 
 
 
...the world's most energy friendly microcontrollers  
IACMPTOTAL = IACMP + IACMPREF (3.1)  
Figure 3.34. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
HYSTSEL= 0.0  
HYSTSEL= 2.0  
HYSTSEL= 4.0  
HYSTSEL= 6.0  
0
4
8
12  
0
2
4
6
8
10  
12  
14  
ACMP_CTRL_BIASPROG  
ACMP_CTRL_BIASPROG  
Current consumption, HYSTSEL = 4  
Response time  
100  
80  
60  
40  
20  
0
BIASPROG= 0.0  
BIASPROG= 4.0  
BIASPROG= 8.0  
BIASPROG= 12.0  
0
1
2
3
4
5
6
7
ACMP_CTRL_HYSTSEL  
Hysteresis  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
44  
 
...the world's most energy friendly microcontrollers  
3.13 Voltage Comparator (VCMP)  
Table 3.17. VCMP  
Symbol  
VVCMPIN  
VVCMPCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Input voltage range  
VDD  
VDD  
VCMP Common  
V
Mode voltage range  
BIASPROG=0b0000 and  
HALFBIAS=1 in VCMPn_CTRL  
register  
0.3  
22  
10  
1
µA  
IVCMP  
Active current  
BIASPROG=0b1111 and  
HALFBIAS=0 in VCMPn_CTRL  
register. LPREF=0.  
30 µA  
µs  
tVCMPREF  
Startup time refer-  
ence generator  
NORMAL  
Single ended  
Differential  
10  
10  
17  
mV  
mV  
VVCMPOFFSET Offset voltage  
VVCMPHYST  
tVCMPSTART  
VCMP hysteresis  
Startup time  
mV  
10 µs  
The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in  
accordance with the following equation:  
VCMP Trigger Level as a Function of Level Setting  
VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL  
(3.2)  
3.14 I2C  
Table 3.18. I2C Standard-mode (Sm)  
Symbol  
fSCL  
Parameter  
Min  
Typ  
Max  
Unit  
SCL clock frequency  
0
4.7  
4.0  
250  
8
1001 kHz  
tLOW  
SCL clock low time  
µs  
tHIGH  
SCL clock high time  
µs  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
SDA set-up time  
ns  
SDA hold time  
34502,3 ns  
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
Bus free time between a STOP and START condition  
4.7  
4.0  
4.0  
4.7  
µs  
µs  
µs  
µs  
1For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32G Reference Manual.  
2The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
3When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10-9 [s] * fHFPERCLK [Hz]) - 4).  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
45  
 
 
 
 
 
...the world's most energy friendly microcontrollers  
Table 3.19. I2C Fast-mode (Fm)  
Symbol  
fSCL  
Parameter  
Min  
Typ  
Max  
Unit  
SCL clock frequency  
0
1.3  
0.6  
100  
8
4001 kHz  
tLOW  
SCL clock low time  
µs  
tHIGH  
SCL clock high time  
µs  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
SDA set-up time  
ns  
SDA hold time  
9002,3 ns  
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
Bus free time between a STOP and START condition  
0.6  
0.6  
0.6  
1.3  
µs  
µs  
µs  
µs  
1For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32G Reference Manual.  
2The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
3When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10-9 [s] * fHFPERCLK [Hz]) - 4).  
Table 3.20. I2C Fast-mode Plus (Fm+)  
Symbol  
fSCL  
Parameter  
Min  
Typ  
Max  
Unit  
SCL clock frequency  
0
0.5  
10001 kHz  
tLOW  
SCL clock low time  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
tHIGH  
SCL clock high time  
0.26  
50  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
SDA set-up time  
SDA hold time  
8
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
Bus free time between a STOP and START condition  
0.26  
0.26  
0.26  
0.5  
1For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32G Reference Manual.  
3.15 Digital Peripherals  
Table 3.21. Digital Peripherals  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IUSART  
USART current  
USART idle current, clock en-  
abled  
7.5  
5.63  
150  
µA/  
MHz  
IUART  
UART current  
LEUART current  
I2C current  
UART idle current, clock en-  
abled  
µA/  
MHz  
ILEUART  
LEUART idle current, clock en-  
abled  
nA  
II2C  
I2C idle current, clock enabled  
6.25  
8.75  
150  
µA/  
MHz  
ITIMER  
TIMER current  
LETIMER current  
TIMER_0 idle current, clock  
enabled  
µA/  
MHz  
ILETIMER  
LETIMER idle current, clock  
enabled  
nA  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
46  
 
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IPCNT  
PCNT current  
PCNT idle current, clock en-  
abled  
100  
nA  
IRTC  
IAES  
RTC current  
AES current  
RTC idle current, clock enabled  
AES idle current, clock enabled  
100  
2.5  
nA  
µA/  
MHz  
IGPIO  
GPIO current  
EBI current  
PRS current  
DMA current  
GPIO idle current, clock en-  
abled  
5.31  
1.56  
2,81  
8.12  
µA/  
MHz  
IEBI  
EBI idle current, clock enabled  
µA/  
MHz  
IPRS  
PRS idle current  
µA/  
MHz  
IDMA  
Clock enable  
µA/  
MHz  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
47  
...the world's most energy friendly microcontrollers  
4 Pinout and Package  
Note  
Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for  
guidelines on designing Printed Circuit Boards (PCB's) for the EFM32G280.  
4.1 Pinout  
The EFM32G280 pinout is shown in Figure 4.1 (p. 48) and Table 4.1 (p. 48). Alternate locations  
are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/").  
Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module  
in question.  
Figure 4.1. EFM32G280 Pinout (top view, not to scale)  
Table 4.1. Device Pinout  
LQFP100 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
EBI  
Timers  
Communication  
Other  
1
2
3
PA0  
PA1  
PA2  
EBI_AD09 #0  
EBI_AD10 #0  
EBI_AD11 #0  
TIM0_CC0 #0/1  
TIM0_CC1 #0/1  
TIM0_CC2 #0/1  
I2C0_SDA #0  
I2C0_SCL #0  
CMU_CLK1 #0  
CMU_CLK0 #0  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
48  
 
 
 
 
...the world's most energy friendly microcontrollers  
LQFP100 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
EBI  
Timers  
Communication  
Other  
4
5
6
7
8
9
PA3  
PA4  
EBI_AD12 #0  
EBI_AD13 #0  
EBI_AD14 #0  
EBI_AD15 #0  
TIM0_CDTI0 #0  
TIM0_CDTI1 #0  
TIM0_CDTI2 #0  
U0_TX #2  
U0_RX #2  
PA5  
LEU1_TX #1  
LEU1_RX #1  
PA6  
IOVDD_0  
PB0  
Digital IO power supply 0.  
TIM1_CC0 #2  
TIM1_CC1 #2  
TIM1_CC2 #2  
PCNT1_S0IN #1  
PCNT1_S1IN #1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
PB1  
PB2  
PB3  
US2_TX #1  
US2_RX #1  
US2_CLK #1  
US2_CS #1  
PB4  
PB5  
PB6  
VSS  
Ground.  
IOVDD_1  
PC0  
Digital IO power supply 1.  
ACMP0_CH0  
ACMP0_CH1  
ACMP0_CH2  
ACMP0_CH3  
PCNT0_S0IN #2  
PCNT0_S1IN #2  
US1_TX #0  
US1_RX #0  
US2_TX #0  
US2_RX #0  
PC1  
PC2  
PC3  
LETIM0_OUT0 #3  
PCNT1_S0IN #0  
22  
23  
PC4  
PC5  
ACMP0_CH4  
ACMP0_CH5  
US2_CLK #0  
US2_CS #0  
LETIM0_OUT1 #3  
PCNT1_S1IN #0  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
PB7  
PB8  
LFXTAL_P  
LFXTAL_N  
US1_CLK #0  
US1_CS #0  
PA7  
PA8  
TIM2_CC0 #0  
TIM2_CC1 #0  
TIM2_CC2 #0  
PA9  
PA10  
PA11  
IOVDD_2  
VSS  
Digital IO power supply 2.  
Ground.  
PA12  
PA13  
PA14  
TIM2_CC0 #1  
TIM2_CC1 #1  
TIM2_CC2 #1  
Reset input, active low.  
36  
RESETn  
To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure  
that reset is released.  
37  
38  
39  
40  
PB9  
PB10  
PB11  
PB12  
DAC0_OUT0  
DAC0_OUT1  
LETIM0_OUT0 #1  
LETIM0_OUT1 #1  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
49  
...the world's most energy friendly microcontrollers  
LQFP100 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
EBI  
Timers  
Communication  
Other  
41  
AVDD_1  
PB13  
Analog power supply 1.  
HFXTAL_P  
42  
43  
44  
45  
46  
LEU0_TX #1  
LEU0_RX #1  
PB14  
HFXTAL_N  
IOVDD_3  
AVDD_0  
PD0  
Digital IO power supply 3.  
Analog power supply 0.  
ADC0_CH0  
PCNT2_S0IN #0  
US1_TX #1  
US1_RX #1  
TIM0_CC0 #3  
PCNT2_S1IN #0  
47  
PD1  
ADC0_CH1  
48  
49  
50  
51  
52  
53  
54  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PD8  
ADC0_CH2  
ADC0_CH3  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
TIM0_CC1 #3  
TIM0_CC2 #3  
US1_CLK #1  
US1_CS #1  
LEU0_TX #0  
LEU0_RX #0  
I2C0_SDA #1  
I2C0_SCL #1  
LETIM0_OUT0 #0  
LETIM0_OUT1 #0  
CMU_CLK1 #1  
LEU1_TX #0  
I2C0_SDA #2  
55  
56  
PC6  
PC7  
ACMP0_CH6  
ACMP0_CH7  
LEU1_RX #0  
I2C0_SCL #2  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
VDD_DREG  
VSS  
Power supply for on-chip voltage regulator.  
Ground.  
DECOUPLE  
PE0  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin.  
PCNT0_S0IN #1  
PCNT0_S1IN #1  
U0_TX #1  
U0_RX #1  
PE1  
PE2  
ACMP0_O #1  
ACMP1_O #1  
PE3  
PE4  
US0_CS #1  
US0_CLK #1  
US0_RX #1  
US0_TX #1  
US0_CS #2  
US0_CLK #2  
US0_RX #2  
US0_TX #2  
PE5  
PE6  
PE7  
PC8  
ACMP1_CH0  
ACMP1_CH1  
ACMP1_CH2  
ACMP1_CH3  
ACMP1_CH4  
TIM2_CC0 #2  
TIM2_CC1 #2  
TIM2_CC2 #2  
PC9  
PC10  
PC11  
PC12  
CMU_CLK0 #1  
TIM0_CDTI0 #1/3  
TIM1_CC0 #0  
73  
PC13  
ACMP1_CH5  
PCNT0_S0IN #0  
TIM0_CDTI1 #1/3  
TIM1_CC1 #0  
PCNT0_S1IN #0  
74  
75  
PC14  
PC15  
ACMP1_CH6  
ACMP1_CH7  
U0_TX #3  
U0_RX #3  
TIM0_CDTI2 #1/3  
TIM1_CC2 #0  
DBG_SWO #1  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
50  
...the world's most energy friendly microcontrollers  
LQFP100 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
EBI  
Timers  
Communication  
Other  
76  
PF0  
PF1  
LETIM0_OUT0 #2  
LETIM0_OUT1 #2  
DBG_SWCLK #0/1  
DBG_SWDIO #0/1  
77  
78  
ACMP1_O #0  
DBG_SWO #0  
PF2  
EBI_ARDY #0  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
PF3  
PF4  
EBI_ALE #0  
EBI_WEn #0  
EBI_REn #0  
TIM0_CDTI0 #2  
TIM0_CDTI1 #2  
TIM0_CDTI2 #2  
PF5  
IOVDD_5  
VSS  
Digital IO power supply 5.  
Ground.  
PF6  
TIM0_CC0 #2  
TIM0_CC1 #2  
TIM0_CC2 #2  
U0_TX #0  
U0_RX #0  
PF7  
PF8  
PF9  
PD9  
EBI_CS0 #0  
EBI_CS1 #0  
EBI_CS2 #0  
EBI_CS3 #0  
EBI_AD00 #0  
EBI_AD01 #0  
EBI_AD02 #0  
EBI_AD03 #0  
EBI_AD04 #0  
EBI_AD05 #0  
EBI_AD06 #0  
EBI_AD07 #0  
EBI_AD08 #0  
PD10  
PD11  
PD12  
PE8  
PCNT2_S0IN #1  
PCNT2_S1IN #1  
TIM1_CC0 #1  
TIM1_CC1 #1  
TIM1_CC2 #1  
PE9  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PA15  
US0_TX #0  
US0_RX #0  
US0_CLK #0  
US0_CS #0  
LEU0_TX #2  
LEU0_RX #2  
BOOT_TX  
BOOT_RX  
ACMP0_O #0  
4.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in  
Table 4.2 (p. 51). The table shows the name of the alternate functionality in the first column, followed  
by columns showing the possible LOCATION bitfield settings.  
Note  
Some functionality, such as analog interfaces, do not have alternate settings or a LOCA-  
TION bitfield. In these cases, the pinout is shown in the column corresponding to LOCA-  
TION 0.  
Table 4.2. Alternate functionality overview  
Alternate  
LOCATION  
Functionality  
0
1
2
3
Description  
ACMP0_CH0  
PC0  
Analog comparator ACMP0, channel 0.  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
51  
 
 
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
ACMP0_CH1  
ACMP0_CH2  
ACMP0_CH3  
ACMP0_CH4  
ACMP0_CH5  
ACMP0_CH6  
ACMP0_CH7  
ACMP0_O  
0
1
2
3
Description  
PC1  
Analog comparator ACMP0, channel 1.  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PE13  
PC8  
PC9  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
PF2  
Analog comparator ACMP0, channel 2.  
Analog comparator ACMP0, channel 3.  
Analog comparator ACMP0, channel 4.  
Analog comparator ACMP0, channel 5.  
Analog comparator ACMP0, channel 6.  
Analog comparator ACMP0, channel 7.  
PE2  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 0.  
ACMP1_CH0  
ACMP1_CH1  
ACMP1_CH2  
ACMP1_CH3  
ACMP1_CH4  
ACMP1_CH5  
ACMP1_CH6  
ACMP1_CH7  
ACMP1_O  
Analog comparator ACMP1, channel 1.  
Analog comparator ACMP1, channel 2.  
Analog comparator ACMP1, channel 3.  
Analog comparator ACMP1, channel 4.  
Analog comparator ACMP1, channel 5.  
Analog comparator ACMP1, channel 6.  
Analog comparator ACMP1, channel 7.  
PE3  
Analog comparator ACMP1, digital output.  
Analog to digital converter ADC0, input channel number 0.  
Analog to digital converter ADC0, input channel number 1.  
Analog to digital converter ADC0, input channel number 2.  
Analog to digital converter ADC0, input channel number 3.  
Analog to digital converter ADC0, input channel number 4.  
Analog to digital converter ADC0, input channel number 5.  
Analog to digital converter ADC0, input channel number 6.  
Analog to digital converter ADC0, input channel number 7.  
Bootloader RX.  
ADC0_CH0  
ADC0_CH1  
ADC0_CH2  
ADC0_CH3  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
BOOT_RX  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PE11  
PE10  
PA2  
BOOT_TX  
Bootloader TX.  
CMU_CLK0  
CMU_CLK1  
DAC0_OUT0  
DAC0_OUT1  
PC12  
PD8  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
Digital to Analog Converter DAC0 output channel number 0.  
Digital to Analog Converter DAC0 output channel number 1.  
Debug-interface Serial Wire clock input.  
PA1  
PB11  
PB12  
DBG_SWCLK  
DBG_SWDIO  
DBG_SWO  
PF0  
PF1  
PF2  
PF0  
Note that this function is enabled to pin out of reset, and has a built-in pull  
down.  
Debug-interface Serial Wire data input / output.  
PF1  
Note that this function is enabled to pin out of reset, and has a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
PC15  
Note that this function is not enabled after reset, and must be enabled by  
software to be used.  
EBI_AD00  
EBI_AD01  
EBI_AD02  
EBI_AD03  
PE8  
External Bus Interface (EBI) address and data input / output pin 00.  
External Bus Interface (EBI) address and data input / output pin 01.  
External Bus Interface (EBI) address and data input / output pin 02.  
External Bus Interface (EBI) address and data input / output pin 03.  
PE9  
PE10  
PE11  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
52  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
EBI_AD04  
EBI_AD05  
EBI_AD06  
EBI_AD07  
EBI_AD08  
EBI_AD09  
EBI_AD10  
EBI_AD11  
EBI_AD12  
EBI_AD13  
EBI_AD14  
EBI_AD15  
EBI_ALE  
0
PE12  
PE13  
PE14  
PE15  
PA15  
PA0  
1
2
3
Description  
External Bus Interface (EBI) address and data input / output pin 04.  
External Bus Interface (EBI) address and data input / output pin 05.  
External Bus Interface (EBI) address and data input / output pin 06.  
External Bus Interface (EBI) address and data input / output pin 07.  
External Bus Interface (EBI) address and data input / output pin 08.  
External Bus Interface (EBI) address and data input / output pin 09.  
External Bus Interface (EBI) address and data input / output pin 10.  
External Bus Interface (EBI) address and data input / output pin 11.  
External Bus Interface (EBI) address and data input / output pin 12.  
External Bus Interface (EBI) address and data input / output pin 13.  
External Bus Interface (EBI) address and data input / output pin 14.  
External Bus Interface (EBI) address and data input / output pin 15.  
External Bus Interface (EBI) Address Latch Enable output.  
External Bus Interface (EBI) Hardware Ready Control input.  
External Bus Interface (EBI) Chip Select output 0.  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PF3  
EBI_ARDY  
EBI_CS0  
PF2  
PD9  
PD10  
PD11  
PD12  
PF5  
EBI_CS1  
External Bus Interface (EBI) Chip Select output 1.  
EBI_CS2  
External Bus Interface (EBI) Chip Select output 2.  
EBI_CS3  
External Bus Interface (EBI) Chip Select output 3.  
EBI_REn  
External Bus Interface (EBI) Read Enable output.  
EBI_WEn  
PF4  
External Bus Interface (EBI) Write Enable output.  
High Frequency Crystal negative pin. Also used as external optional clock in-  
put pin.  
HFXTAL_N  
PB14  
HFXTAL_P  
I2C0_SCL  
PB13  
PA1  
PA0  
PD6  
PD7  
PD5  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
PD7  
PD6  
PC7  
PC6  
PF0  
PF1  
PE15  
I2C0_SDA  
LETIM0_OUT0  
LETIM0_OUT1  
LEU0_RX  
PB11  
PB12  
PB14  
PC4  
PC5  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
LEUART0 Transmit output. Also used as receive input in half duplex commu-  
nication.  
LEU0_TX  
LEU1_RX  
LEU1_TX  
PD4  
PC7  
PC6  
PB13  
PA6  
PA5  
PE14  
LEUART1 Receive input.  
LEUART1 Transmit output. Also used as receive input in half duplex commu-  
nication.  
Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an  
optional external clock input pin.  
LFXTAL_N  
PB8  
LFXTAL_P  
PB7  
PC13  
PC14  
PC4  
PC5  
PD0  
PD1  
PA0  
Low Frequency Crystal (typically 32.768 kHz) positive pin.  
Pulse Counter PCNT0 input number 0.  
PCNT0_S0IN  
PCNT0_S1IN  
PCNT1_S0IN  
PCNT1_S1IN  
PCNT2_S0IN  
PCNT2_S1IN  
TIM0_CC0  
PE0  
PE1  
PB3  
PB4  
PE8  
PE9  
PA0  
PC0  
PC1  
Pulse Counter PCNT0 input number 1.  
Pulse Counter PCNT1 input number 0.  
Pulse Counter PCNT1 input number 1.  
Pulse Counter PCNT2 input number 0.  
Pulse Counter PCNT2 input number 1.  
PF6  
PD1  
Timer 0 Capture Compare input / output channel 0.  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
53  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
TIM0_CC1  
TIM0_CC2  
TIM0_CDTI0  
TIM0_CDTI1  
TIM0_CDTI2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
TIM2_CC0  
TIM2_CC1  
TIM2_CC2  
U0_RX  
0
1
2
3
Description  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
Timer 0 Complimentary Deat Time Insertion channel 0.  
Timer 0 Complimentary Deat Time Insertion channel 1.  
Timer 0 Complimentary Deat Time Insertion channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
Timer 2 Capture Compare input / output channel 0.  
Timer 2 Capture Compare input / output channel 1.  
Timer 2 Capture Compare input / output channel 2.  
UART0 Receive input.  
PA1  
PA2  
PA3  
PA4  
PA5  
PA1  
PA2  
PF7  
PF8  
PF3  
PF4  
PF5  
PB0  
PB1  
PB2  
PC8  
PC9  
PC10  
PA4  
PD2  
PD3  
PC13  
PC14  
PC15  
PE10  
PE11  
PE12  
PA12  
PA13  
PA14  
PE1  
PC13  
PC14  
PC15  
PC13  
PC14  
PC15  
PA8  
PA9  
PA10  
PF7  
PC15  
PC14  
UART0 Transmit output. Also used as receive input in half duplex communi-  
cation.  
U0_TX  
PF6  
PE0  
PA3  
US0_CLK  
US0_CS  
PE12  
PE13  
PE5  
PE4  
PC9  
PC8  
USART0 clock input / output.  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
US0_TX  
PE11  
PE10  
PE6  
PE7  
PC10  
PC11  
USART0 Synchronous mode Master Input / Slave Output (MISO).  
USART0 Asynchronous Transmit.Also used as receive input in half duplex  
communication.  
USART0 Synchronous mode Master Output / Slave Input (MOSI).  
USART1 clock input / output.  
US1_CLK  
US1_CS  
PB7  
PB8  
PD2  
PD3  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PC1  
PC0  
PD1  
PD0  
USART1 Synchronous mode Master Input / Slave Output (MISO).  
USART1 Asynchronous Transmit.Also used as receive input in half duplex  
communication.  
USART1 Synchronous mode Master Output / Slave Input (MOSI).  
USART2 clock input / output.  
US2_CLK  
US2_CS  
PC4  
PC5  
PB5  
PB6  
USART2 chip select input / output.  
USART2 Asynchronous Receive.  
US2_RX  
US2_TX  
PC3  
PC2  
PB4  
PB3  
USART2 Synchronous mode Master Input / Slave Output (MISO).  
USART2 Asynchronous Transmit.Also used as receive input in half duplex  
communication.  
USART2 Synchronous mode Master Output / Slave Input (MOSI).  
4.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32G280 is shown in Table 4.3 (p. 55). Each GPIO port is  
organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated  
by a number from 15 down to 0.  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
54  
 
...the world's most energy friendly microcontrollers  
Table 4.3. GPIO Pinout  
Port  
Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin  
Pin  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
PA15 PA14 PA13 PA12 PA11 PA10  
PB14 PB13 PB12 PB11 PB10  
PC15 PC14 PC13 PC12 PC11 PC10  
PD12 PD11 PD10  
PE15 PE14 PE13 PE12 PE11 PE10  
PA9  
PB9  
PC9  
PD9  
PE9  
PF9  
PA8  
PB8  
PC8  
PD8  
PE8  
PF8  
PA7  
PB7  
PC7  
PD7  
PE7  
PF7  
PA6  
PB6  
PC6  
PD6  
PE6  
PF6  
PA5  
PB5  
PC5  
PD5  
PE5  
PF5  
PA4  
PB4  
PC4  
PD4  
PE4  
PF4  
PA3  
PB3  
PC3  
PD3  
PE3  
PF3  
PA2  
PB2  
PC2  
PD2  
PE2  
PF2  
PA1  
PB1  
PC1  
PD1  
PE1  
PF1  
PA0  
PB0  
PC0  
PD0  
PE0  
PF0  
-
-
-
-
-
-
-
-
-
-
4.4 LQFP100 Package  
Figure 4.2. LQFP100  
Note:  
1. Datum 'T', 'U' and 'Z' to be determined at datum plane 'H'.  
2. Datum 'D' and 'E' to be determined at seating plane datum 'Y'.  
3. Dimension 'D1' and 'E1' do not include mold protrusions. Allowable protrusion is 0.25 per side. Di-  
mensions 'D1' and 'E1' do include mold mismatch and are determined at datum plane datum 'H'.  
4. Dimension 'b' does not include dambar protrusion. Allowable dambar protrusion shall not cause the  
lead width to exceed the maximum 'b' dimension by more than 0.08 mm. Dambar can not be located  
on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm  
5. Exact shape of each corner is optional.  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
55  
 
 
 
...the world's most energy friendly microcontrollers  
Table 4.4. LQFP100 (Dimensions in mm)  
SYMBOL  
MIN  
--  
NOM  
--  
MAX  
1.6  
total thickness  
stand off  
A
A1  
A2  
b
0.05  
1.35  
0.17  
0.17  
0.09  
0.09  
--  
0.15  
1.45  
0.27  
0.23  
0.2  
mold thickness  
lead width (plating)  
lead width  
1.4  
0.2  
b1  
c
--  
L/F thickness (plating)  
lead thickness  
x
--  
c1  
D
--  
0.16  
16 BSC  
16 BSC  
14 BSC  
14 BSC  
0.5 BSC  
0.6  
y
E
x
D1  
E1  
e
body size  
y
lead pitch  
footprint  
L
0.45  
0.75  
L1  
1 REF  
3.5°  
0°  
0°  
7°  
--  
θ
--  
θ1  
θ2  
11°  
11°  
12°  
12°  
13°  
13°  
θ3  
R1  
0.08  
0.08  
0.2  
--  
--  
0.2  
--  
R1  
--  
S
--  
package edge tolerance  
lead edge tolerance  
coplanarity  
aaa  
bbb  
ccc  
ddd  
eee  
0.2  
0.2  
0.08  
0.08  
0.05  
lead offset  
mold flatness  
The LQFP100 Package uses Nickel-Palladium-Gold preplated leadframe.  
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).  
For additional Quality and Environmental information, please see:  
http://www.silabs.com/support/quality/pages/default.aspx  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
56  
 
...the world's most energy friendly microcontrollers  
5 PCB Layout and Soldering  
5.1 Recommended PCB Layout  
Figure 5.1. LQFP100 PCB Land Pattern  
a
p8  
p7  
p6  
p1  
b
e
c
p2  
p5  
p3  
p4  
d
Table 5.1. QFP100 PCB Land Pattern Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
1.45  
Symbol  
P1  
Pin number  
Symbol  
Pin number  
a
b
c
d
e
1
P6  
P7  
P8  
-
75  
76  
100  
-
0.30  
P2  
25  
26  
50  
51  
0.50  
P3  
15.40  
15.40  
P4  
P5  
-
-
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
57  
 
 
 
 
...the world's most energy friendly microcontrollers  
Figure 5.2. LQFP100 PCB Solder Mask  
a
b
c
e
d
Table 5.2. QFP100 PCB Solder Mask Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
a
b
c
d
e
1.57  
0.42  
0.50  
15.40  
15.40  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
58  
 
 
...the world's most energy friendly microcontrollers  
Figure 5.3. LQFP100 PCB Stencil Design  
a
b
c
e
d
Table 5.3. QFP100 PCB Stencil Design Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
a
b
c
d
e
1.35  
0.20  
0.50  
15.40  
15.40  
1. The drawings are not to scale.  
2. All dimensions are in millimeters.  
3. All drawings are subject to change without notice.  
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.  
5. Stencil thickness 0.125 mm.  
6. For detailed pin-positioning, see Figure 4.2 (p. 55) .  
5.2 Soldering Information  
The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
59  
 
 
 
...the world's most energy friendly microcontrollers  
6 Chip Marking, Revision and Errata  
6.1 Chip Marking  
In the illustration below package fields and position are shown.  
Figure 6.1. Example Chip Marking (top view)  
6.2 Revision  
The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 60) .  
6.3 Errata  
Please see the errata document for EFM32G280 for description and resolution of device erratas. This  
document is available in Simplicity Studio and online at:  
http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
60  
 
 
 
 
 
...the world's most energy friendly microcontrollers  
7 Revision History  
7.1 Revision 1.90  
May 22nd, 2015  
Added clarification on conditions for INLADC and DNLADC parameters.  
Corrected EM2 current consumption condition in Electrical Characteristics section.  
Added AUXHFRCO to block diagram and Electrical Characteristics.  
Updated HFRCO table in the Electrical Characteristics section.  
Updated EM0, EM2, EM3, and EM4 maximum current specifications in the Electrical Characteristics  
section.  
Updated the Output Low Voltage maximum for sinking 20 mA with VDD = 3.0 V in the Electrical Char-  
acteristics section.  
Updated the Input Leakage Current maximum in the Electrical Characteristics section.  
Updated the minimum and maximum frequency specifications for the LFRCO, HFRCO, and AUXHFRCO  
in the Electrical Characteristics section.  
Updated the maximum current consumption of the HFRCO in the Electrical Characteristics section.  
Updated the maximum current consumption of the HFRCO in the Electrical Characteristics section.  
Added some minimum ADC SNR, SNDR, and SFDR specifications in the Electrical Characteristics sec-  
tion.  
Added some minimum and maximum ADC offset voltage, DNL, and INL specifications in the Electrical  
Characteristics section.  
Added maximum DAC current specifications in the Electrical Characteristics section.  
Added maximum ACMP current and maximum and minimum offset voltage specifications in the Electrical  
Characteristics section.  
Added maximum VCMP current and updated typical VCMP current specifications in the Electrical Char-  
acteristics section.  
Updated references to energyAware Designer to Configurator.  
7.2 Revision 1.80  
July 2nd, 2014  
Corrected single power supply voltage minimum value from 1.85V to 1.98V.  
Updated current consumption.  
Updated transition between energy modes.  
Updated power management data.  
Updated GPIO data.  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
61  
 
 
 
...the world's most energy friendly microcontrollers  
Updated LFXO, HFXO, HFRCO and ULFRCO data.  
Updated LFRCO and HFRCO plots.  
Updated ACMP data.  
7.3 Revision 1.71  
November 21st, 2013  
Updated figures.  
Updated errata-link.  
Updated chip marking.  
Added link to Environmental and Quality information.  
Re-added missing DAC-data.  
7.4 Revision 1.70  
September 30th, 2013  
Added I2C characterization data.  
Corrected GPIO operating voltage from 1.8 V to 1.85 V.  
Corrected the ADC resolution from 12, 10 and 6 bit to 12, 8 and 6 bit.  
Updated Environmental information.  
Updated trademark, disclaimer and contact information.  
Other minor corrections.  
7.5 Revision 1.60  
June 28th, 2013  
Updated power requirements in the Power Management section.  
Removed minimum load capacitance figure and table. Added reference to application note.  
Other minor corrections.  
7.6 Revision 1.50  
September 11th, 2012  
Updated the HFRCO 1 MHz band typical value to 1.2 MHz.  
Updated the HFRCO 7 MHz band typical value to 6.6 MHz.  
Other minor corrections.  
7.7 Revision 1.40  
February 27th, 2012  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
62  
 
 
 
 
 
...the world's most energy friendly microcontrollers  
Updated Power Management section.  
Corrected operating voltage from 1.8 V to 1.85 V.  
Corrected TGRADADCTH parameter.  
Corrected LQFP100 package drawing.  
Updated PCB land pattern, solder mask and stencil design.  
7.8 Revision 1.30  
May 20th, 2011  
Updated LFXO load capacitance section.  
7.9 Revision 1.20  
December 17th, 2010  
Increased max storage temperature.  
Added data for <150°C and <70°C on Flash data retention.  
Changed latch-up sensitivity test description.  
Added IO leakage current.  
Updated ESD CDM value.  
Added Flash current consumption.  
Updated HFRCO data.  
Updated LFRCO data.  
Added graph for ADC Absolute Offset over temperature.  
Added graph for ADC Temperature sensor readout.  
7.10 Revision 1.11  
November 17th, 2010  
Corrected maximum DAC clock speed for continuous mode.  
Added DAC sample-hold mode voltage drift rate.  
Added pulse widths detected by the HFXO glitch detector.  
Added power sequencing information to Power Management section.  
7.11 Revision 1.10  
September 13th, 2010  
Corrected number of GPIO pins.  
Added typical values for RADCFILT and CADCFILT  
.
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
63  
 
 
 
 
...the world's most energy friendly microcontrollers  
Added two conditions for DAC clock frequency; one for sample/hold and one for sample/off.  
Added RoHS information and specified leadframe/solderballs material.  
Added Serial Bootloader to feature list and system summary.  
Updated ADC characterization data.  
Updated DAC characterization data.  
Updated RCO characterization data.  
Updated ACMP characterization data.  
Updated VCMP characterization data.  
7.12 Revision 1.00  
April 23rd, 2010  
ADC_VCM line removed.  
Added pinout illustration and additional pinout table.  
Changed "Errata" chapter. Errata description moved to separate document.  
Document changed status from "Preliminary".  
Updated "Electrical Characteristics" chapter.  
7.13 Revision 0.85  
February 19th, 2010  
Renamed DBG_SWV pin to DBG_SWO.  
7.14 Revision 0.83  
January 25th, 2010  
Updated errata section.  
Specified flash word width in Section 3.7 (p. 18) .  
Added Capacitive Sense Internal Resistor values in Section 3.12 (p. 43) .  
7.15 Revision 0.82  
December 9th, 2009  
Incorrect pin 0 removed from Table 4.1 (p. 48) .  
Updated contact information.  
ADC current consumption numbers updated in Section 3.10 (p. 32) .  
7.16 Revision 0.81  
November 20th, 2009  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
64  
 
 
 
 
 
...the world's most energy friendly microcontrollers  
Section 3.1 (p. 9) updated.  
Storage temperature in Section 3.2 (p. 9) updated.  
Temperature coefficient of band-gap reference in Section 3.6 (p. 17) added.  
Erase times in Section 3.7 (p. 18) updated.  
Definitions of DNL and INL added in Figure 3.27 (p. 36) and Figure 3.28 (p. 37) .  
Current consumption of digital peripherals added in Section 3.15 (p. 46) .  
Package information in Section 4.4 (p. 55) corrected.  
Updated errata section.  
7.17 Revision 0.80  
Initial preliminary revision, October 19th, 2009  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
65  
 
...the world's most energy friendly microcontrollers  
A Disclaimer and Trademarks  
A.1 Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation  
of all peripherals and modules available for system and software implementers using or intending to use  
the Silicon Laboratories products. Characterization data, available modules and peripherals, memory  
sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and  
do vary in different applications. Application examples described herein are for illustrative purposes only.  
Silicon Laboratories reserves the right to make changes without further notice and limitation to product  
information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the conse-  
quences of use of the information supplied herein. This document does not imply or express copyright  
licenses granted hereunder to design or fabricate any integrated circuits. The products must not be  
used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life  
Support System" is any product or system intended to support or sustain life and/or health, which, if it  
fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories  
products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological  
or chemical weapons, or missiles capable of delivering such weapons.  
A.2 Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®,  
EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most ener-  
gy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISO-  
modem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered  
trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or reg-  
istered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products  
or brand names mentioned herein are trademarks of their respective holders.  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
66  
 
 
 
...the world's most energy friendly microcontrollers  
B Contact Information  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Please visit the Silicon Labs Technical Support web page:  
http://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
67  
 
 
...the world's most energy friendly microcontrollers  
Table of Contents  
1. Ordering Information .................................................................................................................................. 2  
2. System Summary ...................................................................................................................................... 3  
2.1. System Introduction ......................................................................................................................... 3  
2.2. Configuration Summary .................................................................................................................... 6  
2.3. Memory Map ................................................................................................................................. 7  
3. Electrical Characteristics ............................................................................................................................. 9  
3.1. Test Conditions .............................................................................................................................. 9  
3.2. Absolute Maximum Ratings .............................................................................................................. 9  
3.3. General Operating Conditions ........................................................................................................... 9  
3.4. Current Consumption ..................................................................................................................... 10  
3.5. Transition between Energy Modes .................................................................................................... 17  
3.6. Power Management ....................................................................................................................... 17  
3.7. Flash .......................................................................................................................................... 18  
3.8. General Purpose Input Output ......................................................................................................... 18  
3.9. Oscillators .................................................................................................................................... 27  
3.10. Analog Digital Converter (ADC) ...................................................................................................... 32  
3.11. Digital Analog Converter (DAC) ...................................................................................................... 41  
3.12. Analog Comparator (ACMP) .......................................................................................................... 43  
3.13. Voltage Comparator (VCMP) ......................................................................................................... 45  
3.14. I2C ........................................................................................................................................... 45  
3.15. Digital Peripherals ....................................................................................................................... 46  
4. Pinout and Package ................................................................................................................................. 48  
4.1. Pinout ......................................................................................................................................... 48  
4.2. Alternate Functionality Pinout .......................................................................................................... 51  
4.3. GPIO Pinout Overview ................................................................................................................... 54  
4.4. LQFP100 Package ........................................................................................................................ 55  
5. PCB Layout and Soldering ........................................................................................................................ 57  
5.1. Recommended PCB Layout ............................................................................................................ 57  
5.2. Soldering Information ..................................................................................................................... 59  
6. Chip Marking, Revision and Errata .............................................................................................................. 60  
6.1. Chip Marking ................................................................................................................................ 60  
6.2. Revision ...................................................................................................................................... 60  
6.3. Errata ......................................................................................................................................... 60  
7. Revision History ...................................................................................................................................... 61  
7.1. Revision 1.90 ............................................................................................................................... 61  
7.2. Revision 1.80 ............................................................................................................................... 61  
7.3. Revision 1.71 ............................................................................................................................... 62  
7.4. Revision 1.70 ............................................................................................................................... 62  
7.5. Revision 1.60 ............................................................................................................................... 62  
7.6. Revision 1.50 ............................................................................................................................... 62  
7.7. Revision 1.40 ............................................................................................................................... 62  
7.8. Revision 1.30 ............................................................................................................................... 63  
7.9. Revision 1.20 ............................................................................................................................... 63  
7.10. Revision 1.11 .............................................................................................................................. 63  
7.11. Revision 1.10 .............................................................................................................................. 63  
7.12. Revision 1.00 .............................................................................................................................. 64  
7.13. Revision 0.85 .............................................................................................................................. 64  
7.14. Revision 0.83 .............................................................................................................................. 64  
7.15. Revision 0.82 .............................................................................................................................. 64  
7.16. Revision 0.81 .............................................................................................................................. 64  
7.17. Revision 0.80 .............................................................................................................................. 65  
A. Disclaimer and Trademarks ....................................................................................................................... 66  
A.1. Disclaimer ................................................................................................................................... 66  
A.2. Trademark Information ................................................................................................................... 66  
B. Contact Information ................................................................................................................................. 67  
B.1. ................................................................................................................................................. 67  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
68  
...the world's most energy friendly microcontrollers  
List of Figures  
2.1. Block Diagram ....................................................................................................................................... 3  
2.2. EFM32G280 Memory Map with largest RAM and Flash sizes .......................................................................... 8  
3.1. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 28  
MHz ........................................................................................................................................................ 11  
3.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 21  
MHz ........................................................................................................................................................ 11  
3.3. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 14  
MHz ........................................................................................................................................................ 12  
3.4. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 11  
MHz ........................................................................................................................................................ 12  
3.5. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 7  
MHz ........................................................................................................................................................ 13  
3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 28 MHz .............................. 13  
3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21 MHz .............................. 14  
3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz .............................. 14  
3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz .............................. 15  
3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 7 MHz .............................. 15  
3.11. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. ....................................................... 16  
3.12. EM3 current consumption. ................................................................................................................... 16  
3.13. EM4 current consumption. ................................................................................................................... 17  
3.14. Typical Low-Level Output Current, 2V Supply Voltage ................................................................................ 21  
3.15. Typical High-Level Output Current, 2V Supply Voltage ................................................................................ 22  
3.16. Typical Low-Level Output Current, 3V Supply Voltage ................................................................................ 23  
3.17. Typical High-Level Output Current, 3V Supply Voltage ................................................................................ 24  
3.18. Typical Low-Level Output Current, 3.8V Supply Voltage .............................................................................. 25  
3.19. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................. 26  
3.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage .............................................................. 29  
3.21. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 30  
3.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 30  
3.23. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30  
3.24. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31  
3.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31  
3.26. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31  
3.27. Integral Non-Linearity (INL) ................................................................................................................... 36  
3.28. Differential Non-Linearity (DNL) .............................................................................................................. 37  
3.29. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C ................................................................................. 38  
3.30. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C ................................................................... 39  
3.31. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C ............................................................... 40  
3.32. ADC Absolute Offset, Common Mode = Vdd /2 ........................................................................................ 41  
3.33. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V .............................................. 41  
3.34. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 ............................................. 44  
4.1. EFM32G280 Pinout (top view, not to scale) ............................................................................................... 48  
4.2. LQFP100 ............................................................................................................................................. 55  
5.1. LQFP100 PCB Land Pattern ................................................................................................................... 57  
5.2. LQFP100 PCB Solder Mask .................................................................................................................... 58  
5.3. LQFP100 PCB Stencil Design ................................................................................................................. 59  
6.1. Example Chip Marking (top view) ............................................................................................................. 60  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
69  
...the world's most energy friendly microcontrollers  
List of Tables  
1.1. Ordering Information ................................................................................................................................ 2  
2.1. Configuration Summary ............................................................................................................................ 6  
3.1. Absolute Maximum Ratings ...................................................................................................................... 9  
3.2. General Operating Conditions ................................................................................................................... 9  
3.3. Current Consumption ............................................................................................................................. 10  
3.4. Energy Modes Transitions ...................................................................................................................... 17  
3.5. Power Management ............................................................................................................................... 18  
3.6. Flash .................................................................................................................................................. 18  
3.7. GPIO .................................................................................................................................................. 18  
3.8. LFXO .................................................................................................................................................. 27  
3.9. HFXO ................................................................................................................................................. 28  
3.10. LFRCO .............................................................................................................................................. 28  
3.11. HFRCO ............................................................................................................................................. 29  
3.12. AUXHFRCO ....................................................................................................................................... 32  
3.13. ULFRCO ............................................................................................................................................ 32  
3.14. ADC .................................................................................................................................................. 32  
3.15. DAC .................................................................................................................................................. 41  
3.16. ACMP ............................................................................................................................................... 43  
3.17. VCMP ............................................................................................................................................... 45  
3.18. I2C Standard-mode (Sm) ...................................................................................................................... 45  
3.19. I2C Fast-mode (Fm) ............................................................................................................................ 46  
3.20. I2C Fast-mode Plus (Fm+) .................................................................................................................... 46  
3.21. Digital Peripherals ............................................................................................................................... 46  
4.1. Device Pinout ....................................................................................................................................... 48  
4.2. Alternate functionality overview ................................................................................................................ 51  
4.3. GPIO Pinout ........................................................................................................................................ 55  
4.4. LQFP100 (Dimensions in mm) ................................................................................................................. 56  
5.1. QFP100 PCB Land Pattern Dimensions (Dimensions in mm) ......................................................................... 57  
5.2. QFP100 PCB Solder Mask Dimensions (Dimensions in mm) ......................................................................... 58  
5.3. QFP100 PCB Stencil Design Dimensions (Dimensions in mm) ....................................................................... 59  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
70  
...the world's most energy friendly microcontrollers  
List of Equations  
3.1. Total ACMP Active Current ..................................................................................................................... 43  
3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 45  
www.silabs.com  
2015-05-22 - EFM32G280FXX - d0006_Rev1.90  
71  

相关型号:

EFM32G280F128-QFP100

Updated specifications based on the results of additional silicon characterization
SILICON

EFM32G280F32-QFP100

Wake-up Interrupt Controller
SILICON

EFM32G280F64-QFP100

Wake-up Interrupt Controller
SILICON

EFM32G290

Wake-up Interrupt Controller
SILICON

EFM32G290F128-BGA112

Wake-up Interrupt Controller
SILICON

EFM32G290F32-BGA112

Wake-up Interrupt Controller
SILICON

EFM32G290F64-BGA112

Wake-up Interrupt Controller
SILICON

EFM32G800

Memory Protection Unit
SILICON

EFM32G800F128G-D-D1I

Memory Protection Unit
SILICON

EFM32G840

ARM Cortex-M3 CPU platform
SILICON

EFM32G840F128

ARM Cortex-M3 CPU platform
SILICON

EFM32G840F128-QFN64

Updated specifications based on the results of additional silicon characterization
SILICON