CY28405OXCT [SILICON]

Processor Specific Clock Generator, 200.9MHz, CMOS, PDSO48, LEAD FREE, SSOP-48;
CY28405OXCT
型号: CY28405OXCT
厂家: SILICON    SILICON
描述:

Processor Specific Clock Generator, 200.9MHz, CMOS, PDSO48, LEAD FREE, SSOP-48

时钟 光电二极管 外围集成电路 晶体
文件: 总18页 (文件大小:191K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY28405  
CK409-Compliant Clock Synthesizer  
• Three differential CPU clock pairs  
• Dial-A-Frequency®  
• Supports SMBus/I2C Byte, Word, and Block Read/Write  
Features  
• Supports Intel® Springdale/Prescott (CK409)  
• Selectable CPU frequencies  
• 3.3V power supply  
• Ideal Lexmark Spread Spectrum profile for maximum  
electromagnetic interference (EMI) reduction  
• Nine copies of PCI clock  
• 48-pin SSOP package  
• Four copies 3V66 clock with one optional VCH  
• Two copies 48 MHz USB clock  
• Two copies REF clock  
CPU  
x 3  
3V66  
x 4  
PCI  
x 9  
REF  
x 2  
48M  
x 2  
Block Diagram  
Pin Configuration  
**FS_A/REF_0  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDDA  
VSSA  
IREF  
**FS_B/REF_1  
VDD_REF  
XIN  
VDD_REF  
REF[0:1]  
XIN  
XTAL  
OSC  
CPUT_ITP  
CPUC_ITP  
VSS_CPU  
CPUT1  
CPUC1  
VDD_CPU  
CPUT0  
CPUC0  
VSS  
DNC***  
DNC***  
VDD  
VTT_PWRGD#  
SDATA  
SCLK  
3V66_0  
3V66_1  
VSS_3V66  
VDD_3V66  
XOUT  
PLL Ref Freq  
XOUT  
VDD_CPU  
VSS_REF  
CPUT[0:1,ITP], CPUC[0:1,ITP]  
Divider  
Network  
*FS_C/PCIF0  
PLL 1  
*FS_D/PCIF1  
*FS_E/PCIF2  
VDD_PCI  
VSS_PCI  
PCI0  
9
FS_[A:E]  
VTT_PWRGD#  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
IREF  
PCI1  
PCI2  
PCI3  
VDD_3V66  
3V66_[0:2]  
VDD_PCI  
PCIF[0:2]  
VDD_PCI  
VSS_PCI  
PCI4  
PLL2  
SELVCH  
2
PCI[0:5]  
PCI5  
MODE  
RESET#/PD#  
DOT_48  
USB_48  
VSS_48  
VDD_48  
3V66_3/VCH  
3V66_2/MODE*  
3V66_3/VCH/SELVCH**  
VDD_48MHz  
DOT_48  
PD#  
USB_48  
SSOP-48  
* 150k Internal Pull-up  
** 150k Internal Pull-down  
*** Do Not Connect  
2
SDATA  
SCLK  
I C  
WD  
Timer  
RESET#  
Logic  
Rev 1.0, November 20, 2006  
2200 Laurelwood Road, Santa Clara, CA 95054  
Page 1 of 18  
Tel:(408) 855-0555 Fax:(408) 855-0550  
www.SpectraLinear.com  
CY28405  
Pin Description  
Pin No.  
Name  
Type  
O, SE  
I
Description  
1, 2  
REF(0:1)  
Reference Clock. 3.3V 14.318-MHz clock output.  
1, 2, 7, 8, 9 FS_A, FS_B, FS_C,  
FS_D, FS_E  
3.3V LVTTL latched input for CPU frequency selection.  
4
XIN  
I
Crystal Connection or External Reference Frequency Input. This pin  
has dual functions. It can be used as an external 14.318-MHz crystal  
connection or as an external reference frequency input.  
5
XOUT  
O, SE  
Crystal Connection. Connection for an external 14.318-MHz crystal  
output.  
39, 42, 45 CPUT(0:1,ITP)  
38, 41, 44 CPUC(0:1,ITP)  
O, DIF CPU Clock Output. Differential CPU clock outputs.  
O, DIF CPU Clock Output. Differential CPU clock outputs.  
Do Not Connect.  
36, 35  
30, 29  
DNC  
3V66(0:1)  
O, SE  
66-MHz Clock Output. 3.3V 66-MHz clock from internal VCO.  
25  
3V66_3/VCH/SELVCH  
I/O, SE 48- or 66-MHz Clock Output. 3.3V selectable through external SELVCH  
PD  
strapping resistor and SMBus to be 66-MHz or 48-MHz. Default is 66-MHz.  
0 = 66 MHz, 1 = 48 MHz  
26  
3V66_2/MODE  
I/O, SE 66-MHz Clock Output. 3.3V 66-MHz clock from internal VCO. Reset or  
PU  
Power-down Mode Select. Selects between RESET# output or PWRDWN#  
input for the PWRDWN#/RESET# pin. Default is RESET#. 0 = PD#, 1 =  
RESET  
7, 8, 9  
PCIF(0:2)  
O, SE  
O, SE  
Free Running PCI Output. 33-MHz clocks divided down from 3V66.  
PCI Clock Output. 33-MHz clocks divided down from 3V66.  
12, 13, 14, PCI(0:5)  
15, 18, 19  
22  
21  
46  
USB_48  
DOT_48  
IREF  
O, SE  
O, SE  
I
Fixed 48-MHz clock output.  
Fixed 48-MHz clock output.  
Current Reference. A precision resistor is attached to this pin which is  
connected to the internal current reference.  
20  
33  
RESET#/PD#  
I/O, PU 3.3V LVTTL input for Power-down# active LOW. Watchdog Timeout  
Reset Output  
VTT_PWRGD#  
I
3.3V LVTTL input is a level sensitive strobe used to latch the FS[A:E]  
input (active LOW).  
32  
31  
48  
47  
SDATA  
SCLK  
VDDA  
VSSA  
I/O  
I
SMBus compatible SDATA.  
SMBus compatible SCLOCK.  
3.3V Power supply for PLL.  
Ground for PLL.  
PWR  
GND  
PWR  
3, 10, 16, VDD(REF,PCI,48,3V66,C  
3.3V Power supply for outputs.  
24, 27, 34, PU,ITP)  
40  
6, 11, 17, VSS(REF,PCI,48,3V66,  
GND  
Ground for outputs.  
23, 28, 37, CPU,ITP)  
43  
Rev 1.0,November 20, 2006  
Page 2 of 18  
CY28405  
MODE Select  
Frequency Select Pins  
The hardware strapping MODE input pin can be used to select  
the functionality of the RESET#/PD# pin. The default (internal  
pull up) configuration is for this pin to function as a RESET#  
Watchdog output. When pulled LOW during device power-up,  
the RESET#/PD# pin will be configured to function as a Power  
Down input pin.  
Host clock frequency selection is achieved by applying the  
appropriate logic levels to FS_A through FS_E inputs prior to  
VTT_PWRGD# assertion (as seen by the clock synthesizer).  
Upon VTT_PWRGD# being sampled low by the clock chip  
(indicating processor VTT voltage is stable), the clock chip  
samples the FS_A through FS_E input values. For all logic  
levels of FS_A through FS_E, VTT_PWRGD# employs a  
one-shot functionality in that once  
a valid low on  
VTT_PWRGD# has been sampled, all further VTT_PWRGD#  
and FS_A through FS_E transitions will be ignored.  
Table 1. Frequency Selection Table  
Input Conditions  
Output Frequency  
PLL Gear  
FS_E  
FS_D  
FS_C  
FS_B  
FS_A  
Constants  
FSEL_4 FSEL_3 FSEL_2 FSEL_1 FSEL_0  
CPU  
100.7  
3V66  
67.1  
PCI  
33.6  
33.4  
36.0  
33.7  
VCO Freq.  
805.6  
(G)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
24004009.32  
24004009.32  
24004009.32  
24004009.32  
Reserved  
100.2  
66.8  
801.6  
108.0  
72.0  
864.0  
101.2  
67.5  
809.6  
Reserved  
Reserved  
Reserved  
Reserved  
125.7  
Reserved  
Reserved  
Reserved  
Reserved  
62.9  
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
Reserved  
Reserved  
Reserved  
31.4  
32.6  
33.4  
33.6  
33.6  
37.0  
754.2  
781.6  
801.6  
805.2  
807.0  
888.0  
32005345.76  
32005345.76  
32005345.76  
32005345.76  
32005345.76  
32005345.76  
Reserved  
130.3  
65.1  
133.6  
66.8  
134.2  
67.1  
134.5  
67.3  
148.0  
74.0  
Reserved  
Reserved  
Reserved  
Reserved  
167.4  
Reserved  
Reserved  
Reserved  
Reserved  
55.8  
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
Reserved  
Reserved  
Reserved  
27.9  
28.3  
29.2  
30.0  
30.8  
31.7  
33.6  
33.5  
33.5  
669.6  
680.0  
700.0  
720.0  
740.0  
760.0  
807.2  
803.4  
803.6  
48008018.65  
48008018.65  
48008018.65  
48008018.65  
48008018.65  
48008018.65  
24004009.32  
32005345.76  
48008018.65  
Reserved  
170.0  
56.7  
175.0  
58.3  
180.0  
60.0  
185.0  
61.7  
190.0  
63.3  
100.9  
67.3  
133.9  
67.0  
200.9  
67.0  
Reserved  
100.0  
Reserved  
66.7  
Reserved Reserved  
33.3  
33.3  
33.3  
800.0  
800.0  
800.0  
24004009.32  
32005345.76  
48008018.65  
Reserved  
133.3  
66.7  
200.0  
66.7  
Reserved  
Reserved  
Reserved Reserved  
Rev 1.0,November 20, 2006  
Page 3 of 18  
CY28405  
Serial Data Interface  
Data Protocol  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers, can be individually enabled or disabled.  
The registers associated with the Serial Data Interface  
initializes to their default setting upon power-up, and therefore  
use of this interface is optional. The interface can also be  
accessed during power-down operation.  
The clock driver serial protocol accepts Byte Write, Byte Read,  
Block Write and Block Read operation from any external I2C  
controller. For Block Write/Read operation, the bytes must be  
accessed in sequential order from lowest to highest byte (most  
significant bit first) with the ability to stop after any complete  
byte has been transferred. For Byte Write and Byte Read  
operations, the system controller can access individual  
indexed bytes. The offset of the indexed byte is encoded in the  
command code, as described in Table 2.  
The Block Write and Block Read protocol is outlined in Table 3  
while Table 4 outlines the corresponding Byte Write and Byte  
Read protocol. The slave receiver address is 11010010 (D2h).  
Table 2. Command Code Definition  
Bit  
Description  
7
0 = Block Read or Block Write operation  
1 = Byte Read or Byte Write operation  
(6:0)  
Byte offset for Byte Read or Byte Write operation. For Block Read or Block Write operations, these bits  
should be ‘0000000’  
Table 3. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
2:8  
9
Slave address – 7 bits  
Write  
2:8  
9
Slave address – 7 bits  
Write  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
Command Code – 8-bit ‘00000000’ stands for  
block operation  
Command Code – 8-bit ‘00000000’ stands for  
block operation  
11:18  
11:18  
19  
20:27  
28  
Acknowledge from slave  
Byte Count – 8 bits  
19  
20  
Acknowledge from slave  
Repeat start  
Acknowledge from slave  
Data byte 0 – 8 bits  
21:27  
28  
Slave address – 7 bits  
Read  
29:36  
37  
Acknowledge from slave  
Data byte 1 – 8 bits  
29  
Acknowledge from slave  
Byte count from slave – 8 bits  
Acknowledge  
38:45  
46  
30:37  
38  
Acknowledge from slave  
Data Byte N/Slave Acknowledge...  
Data Byte N – 8 bits  
Acknowledge from slave  
Stop  
....  
39:46  
47  
Data byte from slave – 8 bits  
Acknowledge  
....  
....  
48:55  
56  
Data byte from slave – 8 bits  
Acknowledge  
....  
....  
Data bytes from slave/Acknowledge  
Data byte N from slave – 8 bits  
Not Acknowledge  
....  
....  
....  
Stop  
Rev 1.0,November 20, 2006  
Page 4 of 18  
CY28405  
Table 4. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
2:8  
9
Slave address – 7 bits  
Write = 0  
2:8  
9
Slave address – 7 bits  
Write = 0  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
11:18  
Command Code – 8 bits  
11:18  
Command Code – 8 bits  
‘1xxxxxxx’ stands for byte operation, bits[6:0] of  
the command code represents the offset of the  
byte to be accessed  
‘1xxxxxxx’ stands for byte operation, bits[6:0]  
of the command code represents the offset of  
the byte to be accessed  
19  
20:27  
28  
Acknowledge from slave  
Data byte from master – 8 bits  
Acknowledge from slave  
Stop  
19  
20  
Acknowledge from slave  
Repeat start  
21:27  
28  
Slave address – 7 bits  
Read = 1  
29  
29  
Acknowledge from slave  
Data byte from slave – 8 bits  
Not Acknowledge  
Stop  
30:37  
38  
39  
Byte 0: Control Register 0  
Bit  
@Pup  
Name  
Description  
7
0
Test Bit 3  
I2C_BYPASS_EN  
Reserved, Set= 0 IO PLL TEST  
6
1
PCIF  
PCI  
PCI Drive Strength Override  
0 = Force All PCI and PCIF Outputs to Low Drive Strength  
1= Force All PCI and PCIF Outputs to High Drive Strength  
5
4
3
2
1
0
0
Reserved  
FS_E  
Reserved, Set= 0 PLL CPU VCO process correction test bit  
Power up latched value of FS_E pin  
HW  
HW  
HW  
HW  
HW  
FS_D  
Power up latched value of FS_D pin  
FS_C  
Power up latched value of FS_C pin  
FS_B  
Power up latched value of FS_B pin  
FS_A  
Power up latched value of FS_A pin  
Byte 1: Control Register 1  
Bit  
7
@Pup  
Name  
Description  
Reserved, set = 0  
0
1
1
1
1
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6
Reserved, set = 1  
5
Reserved, set = 1  
4
Reserved, set = 1  
3
Reserved, set = 1  
2
CPUT_ITP, CPUC_ITP  
CPUT/C_ITP Output Enable  
0 = Disabled (three-state), 1 = Enabled  
1
0
1
1
CPUT1, CPUC1  
CPU(T/C)1 Output Enable,  
0 = Disabled (three-state), 1 = Enabled  
CPUT0, CPUC0  
CPU(T/C)0 Output Enable  
0 = Disabled (three-state), 1 = Enabled  
Rev 1.0,November 20, 2006  
Page 5 of 18  
CY28405  
Byte 2: Control Register 2  
Bit  
7
@Pup  
Name  
Description  
0
0
0
Reserved  
Reserved  
Reserved, set = 0  
Reserved, set = 0  
6
5
CPUT_ITP, CPUC_ITP  
CPUT/C_ITP Pwrdwn drive mode  
0 = Driven in power- down, 1 = three-state  
4
3
0
0
CPUT1, CPUC1  
CPU(T/C)1 Pwrdwn drive mode  
0 = Driven in power-down, 1 = three-state  
CPUT0, CPUC0  
CPU(T/C)0 Pwrdwn drive mode  
0 = Driven in power-down, 1 = three-state  
2
1
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Byte 3: Control Register 3  
Bit  
@Pup  
Name  
Description  
7
1
SW PCI_STP Function  
0= PCI_STP assert, 1= PCI_STP deassert  
When this bit is set to 0, all STOPPABLE PCI and PCIF outputs will be  
stopped in a synchronous manner with no short pulses.  
When this bit is set to 1, all STOPPED PCI and PCIF outputs will resume  
in a synchronous manner with no short pulses.  
6
5
1
1
Reserved  
PCI5  
Reserved  
PCI5 Output Enable  
0 = Disabled, 1 = Enabled  
4
3
2
1
0
1
1
1
1
1
PCI4  
PCI3  
PCI2  
PCI1  
PCI0  
PCI4 Output Enable  
0 = Disabled, 1 = Enabled  
PCI3 Output Enable  
0 = Disabled, 1 = Enabled  
PCI2 Output Enable  
0 = Disabled, 1 = Enabled  
PCI1 Output Enable  
0 = Disabled, 1 = Enabled  
PCI0 Output Enable  
0 = Disabled, 1 = Enabled  
Byte 4: Control Register 4  
Bit  
@Pup  
Name  
Description  
7
0
USB_48  
(404: 24_48MHz)  
USB 48 (404: and 24MHz) Drive Strength Control  
0 = High Drive Strength, 1 = Low Drive Strength  
6
5
4
3
2
1
0
1
0
0
0
1
1
1
USB_48  
PCIF2  
PCIF1  
PCIF0  
PCIF2  
PCIF1  
PCIF0  
USB_48 Output Enable  
0 = Disabled, 1 = Enabled  
Allow control of PCIF2 with assertion of SW PCI_STP  
0 = Free Running, 1 = Stopped with SW PCI_STP  
Allow control of PCIF1 with assertion of SW PCI_STP  
0 = Free Running, 1 = Stopped with SW PCI_STP  
Allow control of PCIF0 with assertion of SW PCI_STP  
0 = Free Running, 1 = Stopped with SW PCI_STP  
PCIF2 Output Enable  
0 = Disabled, 1 = Enabled  
PCIF1 Output Enable  
0 = Disabled, 1 = Enabled  
PCIF0 Output Enable  
0 = Disabled, 1 = Enabled  
Rev 1.0,November 20, 2006  
Page 6 of 18  
CY28405  
Byte 5: Control Register 5  
Bit  
@Pup  
Name  
Description  
7
1
DOT_48  
DOT_48 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
1
Reserved  
Reserved  
HW  
3V66_3/VCH/SELVCH  
3V66_3/VCH/SELVCH Frequency Select  
0 = 3V66 mode, 1 = VCH (48MHz) mode  
May be written to override the power-up value.  
4
1
3V66_3/VCH/SELVCH  
3V66_3/VCH/SELVCH Output Enable  
0 = Disabled,1 = Enabled  
3
2
1
1
Reserved  
3V66_2  
Reserved  
3V66_2 Output Enable  
0 = Disabled, 1 = Enabled  
1
0
1
1
3V66_1  
3V66_0  
3V66_1 Output Enable  
0 = Disabled, 1 = Enabled  
3V66_0 Output Enable  
0 = Disabled, 1 = Enabled  
Byte 6: Control Register 6  
Bit  
@Pup  
Name  
Description  
7
0
REF  
PCIF  
Test Clock Mode  
0 = Disabled, 1 = Enabled  
PCI  
3V66  
When Test Clock Mode is enabled, the FS_A/REF_0 pin reverts to a  
dedicated FS_A input, allowing asynchronous selection between Hi-Z and  
REF/N mode.  
3V66_3/VCH/SELVCH  
USB_48  
DOT_48  
CPUT, CPUT_ITP  
CPUC,CPUC_ITP  
6
5
0
0
Reserved  
Reserved  
Reserved, Set = 0  
Reserved, Set = 0  
FS_A & FS_B Operation  
0 = Normal, 1 = Test mode  
4
3
2
0
0
0
Reserved  
Reserved  
Reserved, Set = 0  
Reserved, Set = 0  
PCIF  
PCI  
Spread Spectrum Enable  
0 = Spread Off, 1 = Spread On  
3V66  
CPUT,CPUT_ITP  
CPUC,CPUC_ITP  
1
0
1
1
REF_1  
REF_1 Output Enable  
0 = Disabled, 1 = Enabled  
REF_0  
REF_0 Output Enable  
0 = Disabled, 1 = Enabled  
Byte 7: Vendor ID  
Bit @Pup  
Name  
Description  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
7
6
5
4
3
2
1
0
1
0
0
1
0
0
Vendor ID Bit 2  
Vendor ID Bit 1  
Rev 1.0,November 20, 2006  
Page 7 of 18  
CY28405  
Byte 7: Vendor ID  
Bit @Pup  
Name  
Name  
Description  
Description  
0
0
Vendor ID Bit 0  
Byte 8: Control Register 8  
Bit  
7
@Pup  
0
1
1
CPU  
PCIF  
PCI  
Spread Spectrum Selection  
‘000’ = ±0.20% triangular  
‘001’ = + 0.12, – 0.62%  
‘010’ = + 0.25, – 0.75%  
6
5
3V66  
‘011’ = –0.05, – 0.45% triangular  
‘100’ = ± 0.25%  
‘101’ = + 0.00, – 0.50%  
‘110’ = ± 0.5%  
‘111’ = ± 0.38%  
4
3
2
1
0
0
0
0
0
0
FSEL_4  
FSEL_3  
FSEL_2  
FSEL_1  
FSEL_0  
SW Frequency selection bits. See Table 1.  
Byte 9: Control Register 9  
Bit  
@Pup  
Name  
Description  
7
0
PCIF  
PCIF Clock Output Drive Strength Control  
0 = Low Drive strength, 1 = High Drive strength  
6
5
4
3
2
0
0
1
PCI  
PCI Clock Output Drive Strength  
0 = Low Drive strength, 1 = High Drive strength  
3V66  
3V66 Clock Output Drive Strength  
0 = Low Drive strength, 1 = High Drive strength  
REF  
REF Clock Output Drive Strength  
0 = Low Drive strength, 1 = High Drive strength  
1
Reserved  
Reserved  
(‘404: 1)  
1
Reserved  
(Reserved for CY28404:  
REF2  
Reserved  
(Reserved for CY28404:  
REF2 Output Enable  
0 = Disabled, 1 = Enabled)  
1
0
0
0
Reserved  
Reserved  
Vendor Test Mode (always program to 0) PLL Bypass Test  
Vendor Test Mode (always program to 0) PLL Leakage Test  
Byte 10: Control Register 10  
Bit  
7
@Pup  
Name  
PCI_Skew1  
Description  
0
0
PCI skew control  
00 = Normal  
01 = –500 ps  
10 = Reserved  
11 = +500 ps  
6
PCI_Skew0  
5
4
0
0
3V66_Skew1  
3V66_Skew0  
3V66 skew control  
00 = Normal  
01 = –150 ps  
10 = +150 ps  
11 = +300 ps  
3
2
1
1
Reserved  
Reserved  
Reserved, Set = 1  
Reserved, Set = 1  
Rev 1.0,November 20, 2006  
Page 8 of 18  
CY28405  
Byte 10: Control Register 10 (continued)  
Bit  
1
@Pup  
Name  
Description  
Description  
1
1
Reserved  
Reserved  
Reserved, Set = 1  
Reserved, Set = 1  
0
Byte 11: Control Register 11  
Bit  
7
@Pup  
Name  
0
0
Reserved  
Vendor Test Mode (always program to 0)  
6
Recovery_Frequency  
This bit allows selection of the frequency setting that the clock will be  
restored to once the system is rebooted  
0: Use Hardware settings  
1: Use Last SW table Programmed values  
5
4
0
0
Watchdog Time Stamp  
Reload  
Toenable this function the registerbit must first be set to “0” before toggling  
to “1”.  
0: Do not reload  
1: Reset timer but continue to count.  
WD_Alarm  
This bit is set to “1” when the Watchdog times out. It is reset to “0” when  
the system clears the WD_TIMER time stamp  
3
2
1
0
0
0
0
0
WD_TIMER3  
WD_TIMER2  
WD_TIMER1  
WD_TIMER0  
Watchdog timer time stamp selection:  
0000: Off  
0001: 2 second  
0010: 4 seconds  
0011: 6 seconds  
.
.
.
1110: 28seconds  
1111: 30seconds  
Byte 12: Control Register 12  
Bit  
7
@Pup  
Name  
CPU_FSEL_N8  
CPU_FSEL_N7  
CPU_FSEL_N6  
CPU_FSEL_N5  
CPU_FSEL_N4  
CPU_FSEL_N3  
CPU_FSEL_N2  
CPU_FSEL_N1  
Description  
0
0
0
0
0
0
0
0
If Prog_Freq_EN is set, the values programmed inCPU_FSEL_N[8:0] and  
CPU_FSEL_M[6:0] will be used to determine the CPU output frequency.  
The setting of FS_Override bit determines the frequency ratio for CPU and  
other output clocks. When it is cleared, the same frequency ratio stated in  
the Latched FS[E:A] register will be used. When it is set, the frequency  
ratio stated in the SEL[4:0] register will be used.  
6
5
4
3
2
1
0
Byte 13: Control Register 13  
Bit  
7
@Pup  
Name  
CPU_FSEL_N0  
CPU_FSEL_M6  
CPU_FSEL_M5  
CPU_FSEL_M4  
CPU_FSEL_M3  
CPU_FSEL_M2  
CPU_FSEL_M1  
CPU_FSEL_M0  
Description  
0
0
0
0
0
0
0
0
IfProg_Freq_ENisset, thevaluesprogrammedinCPU_FSEL_N[8:0]and  
CPU_FSEL_M[6:0] will be used to determine the CPU output frequency.  
The setting of FS_Override bit determines the frequency ratio for CPU and  
other output clocks. When it is cleared, the same frequency ratio stated in  
the Latched FS[E:A] register will be used. When it is set, the frequency  
ratio stated in the SEL[4:0] register will be used.  
6
5
4
3
2
1
0
Rev 1.0,November 20, 2006  
Page 9 of 18  
CY28405  
Byte 14: Control Register 14  
Bit  
@Pup  
Name  
Description  
7
0
FS_(E:A)  
FS_Override  
0 = Select operating frequency by FS(E:A) input pins  
1 = Select operating frequency by FSEL(4:0) settings  
6
5
4
3
2
1
0
1
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved, Set = 1  
Reserved, Set = 0  
Reserved, Set = 0  
Reserved, Set = 0  
Reserved, Set = 0  
Reserved, Set = 0  
Pro_Freq_EN  
Programmable output frequencies enabled  
0 = Disabled, 1 = Enabled  
Dial-a-Frequency Programming  
Crystal Recommendations  
When the programmable output frequency feature is enabled  
(Pro_Freq_EN bit is set), the CPU output frequency is deter-  
mined by the following equation:  
The CY28405 requires a Parallel Resonance Crystal.  
Substituting a series resonance crystal will cause the  
CY28405 to operate at the wrong frequency and violate the  
ppm specification. For most applications there is a 300-ppm  
frequency shift between series and parallel crystals due to  
incorrect loading.  
Fcpu = G * N/M  
“N” and “M” are the values programmed in Programmable  
Frequency Select N-Value Register and M-Value Register,  
respectively.  
Crystal Loading  
“G” stands for the PLL Gear Constant, which is determined by  
the programmed value of FS[E:A] or SEL[4:0]. The value is  
listed in Table 1.  
Crystal loading plays a critical role in achieving low ppm perfor-  
mance. To realize low ppm performance, the total capacitance  
the crystal will see must be considered to calculate the appro-  
priate capacitive loading (CL).  
The ratio of N and M need to be greater than “1” [N/M> 1].  
The following table lists set of N and M values for different  
frequency output ranges. This example use a fixed value for  
the M-Value Register and select the CPU output frequency by  
changing the value of the N-Value Register.  
Figure 1 shows a typical crystal configuration using the two  
trim capacitors. An important clarification for the following  
discussion is that the trim capacitors are in series with the  
crystal not parallel. It’s a common misconception that load  
capacitors are in parallel with the crystal and should be  
approximately equal to the load capacitance of the crystal.  
This is not true.  
Table 5. Examples of N and M Value for Different CPU  
Frequency Range  
Range of N-Value  
Fixed Value  
for M-Value  
Register  
Register for  
Different CPU  
Frequency  
Frequency  
Ranges  
Gear  
Constants  
100 –125 24004009.32  
126 – 166 32005345.76  
167 – 200 48008018.65  
48  
48  
48  
200 – 250  
189 – 249  
167 – 200  
Table 6. Crystal Recommendations  
Frequency  
Drive  
Shunt Cap Motional  
Tolerance  
(max.)  
Stability  
(max.)  
Aging  
(max.)  
Cut  
Loading Load Cap  
Parallel 20 pF  
(Fund)  
(max.)  
(max.)  
(max.)  
14.31818 MHz  
AT  
0.1 mW  
5 pF  
0.016 pF  
50 ppm  
50 ppm  
5 ppm  
Rev 1.0,November 20, 2006  
Page 10 of 18  
CY28405  
As mentioned previously, the capacitance on each side of the  
crystal is in series with the crystal. This mean the total capac-  
itance on each side of the crystal must be twice the specified  
load capacitance (CL). While the capacitance on each side of  
the crystal is in series with the crystal, trim capacitors  
(Ce1,Ce2) should be calculated to provide equal capacitative  
loading on both sides.  
Use the following formulas to calculate the trim capacitor  
values for Ce1 and Ce2.  
Load Capacitance (each side)  
Figure 1. Crystal Capacitive Clarification  
Ce = 2 * CL - (Cs + Ci)  
Calculating Load Capacitors  
Total Capacitance (as seen by the crystal)  
1
In addition to the standard external trim capacitors, trace  
capacitance and pin capacitance must also be considered to  
correctly calculate crystal loading. As mentioned previously,  
the capacitance on each side of the crystal is in series with the  
crystal. This means the total capacitance on each side of the  
crystal must be twice the specified crystal load capacitance  
(CL). While the capacitance on each side of the crystal is in  
series with the crystal, trim capacitors (Ce1,Ce2) should be  
calculated to provide equal capacitive loading on both sides.  
CLe  
=
1
1
(
)
+
Ce2 + Cs2 + Ci2  
Ce1 + Cs1 + Ci1  
CL....................................................Crystal load capacitance  
CLe......................................... Actual loading seen by crystal  
..................................... using standard value trim capacitors  
Ce..................................................... External trim capacitors  
Cs............................................. Stray capacitance (trace,etc)  
Ci ............. Internal capacitance (lead frame, bond wires etc)  
Clock Chip  
PD# (Power-down) Clarification  
Ci2  
Ci1  
The PD# pin is used to shut off all clocks and PLLs without  
having to remove power from the device. All clocks are shut  
down in a synchronous manner so has not to cause glitches  
while transitioning to the power down state.  
Pin  
3 to 6p  
PD# – Assertion  
X2  
X1  
Cs2  
Cs1  
When PD# is sampled LOW by two consecutive rising edges  
of the CPUC clock then all clock outputs (except CPUT) clocks  
must be held LOW on their next HIGH to LOW transition. CPU  
clocks must be held with CPUT clock pin driven HIGH with a  
value of 2x Iref and CPUC undriven as the default condition.  
There exists an I2C bit that allows for the CPUT/C outputs to  
be three-stated during power-down. Due to the state of internal  
logic, stopping and holding the REF clock outputs in the LOW  
state may require more than one clock cycle to complete  
Trace  
2.8pF  
XTAL  
Ce1  
Ce2  
Trim  
33pF  
Figure 2. Crystal Loading Example  
PWRDWN#  
CPUT, 133MHz  
CPUC, 133MHz  
3V66, 66MHz  
USB, 48MHz  
PCI, 33MHz  
REF, 14.31818  
Figure 3. Power-down Assertion Timing Waveforms  
Rev 1.0,November 20, 2006  
Page 11 of 18  
CY28405  
PD# Deassertion  
The power-up latency between PD# rising to a valid logic ‘1’  
level and the starting of all clocks is less than 1.8 ms. The  
CPUT/C outputs must be driven to greater than 200 mV is less  
than 300 μs.  
Tstable  
<1.8ms  
PWRDWN#  
CPUT, 133MHz  
CPUC, 133MHz  
3V66, 66MHz  
USB, 48MHz  
PCI, 33MHz  
REF, 14.31818  
Tdrive_PWRDN#  
<300μs, >200mV  
Figure 4. Power-down Deassertion Timing Waveforms  
FS_A, FS_B  
VTT_PWRGD#  
PWRGD_VRM  
0.2-0.3mS  
Delay  
Wait for  
VTT_PWRGD#  
Device is not affected,  
VTT_PWRGD# is ignored  
Sample Sels  
State 2  
VDD Clock Gen  
Clock State  
State 0  
Off  
State 1  
State 3  
On  
Clock Outputs  
Clock VCO  
On  
Off  
Figure 5. VTT_PWRGD Timing Diagram  
Rev 1.0,November 20, 2006  
Page 12 of 18  
CY28405  
S2  
S1  
VTT_PWRGD# = Low  
Delay  
Sample  
>0.25mS  
Inputs straps  
VDDA = 2.0V  
Wait for 1.146ms  
S0  
S3  
VDDA = off  
Normal  
Operation  
Enable Outputs  
Power Off  
VTT_PWRGD# = toggle  
Figure 6. Clock Generator Power-up/Run State Diagram  
Rev 1.0,November 20, 2006  
Page 13 of 18  
CY28405  
Absolute Maximum Conditions  
Parameter  
VDD  
Description  
Core Supply Voltage  
Condition  
Min.  
–0.5  
–0.5  
–0.5  
–65  
0
Max.  
Unit  
V
4.6  
4.6  
VDDA  
VIN  
Analog Supply Voltage  
Input Voltage  
V
Relative to V SS  
VDD + 0.5  
+150  
70  
VDC  
°C  
TS  
Temperature, Storage  
Temperature, Operating Ambient  
Temperature, Junction  
Non-functional  
Functional  
TA  
°C  
TJ  
Functional  
150  
°C  
ESDHBM  
ØJC  
ESD Protection (Human Body Model) MIL-STD-883, Method 3015  
2000  
V
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
Flammability Rating  
Mil-Spec 883E Method 1012.1  
JEDEC (JESD 51)  
At 1/8 in.  
15  
45  
°C/W  
°C/W  
ØJA  
UL–94  
MSL  
V – 0  
1
Moisture Sensitivity Level  
Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing  
is NOT required.  
DC Electrical Specifications  
Parameter  
Description  
Conditions  
3.3V ± 5%  
Min.  
3.135  
Max.  
Unit  
V
VDD, VDDA 3.3 Operating Voltage  
3.465  
VILI2C  
VIHI2C  
VIL  
Input Low Voltage  
Input High Voltage  
Input Low Voltage  
Input High Voltage  
Input Leakage Current  
SDATA, SCLK  
SDATA, SCLK  
1.0  
2.2  
0.8  
VSS – 0.5  
2.0  
V
VIH  
VDD + 0.5  
5
V
IIL  
Except Pull-ups or Pull-downs  
0 < VIN < VDD  
–5  
µA  
VOL  
VOH  
IOZ  
Output Low Voltage  
Output High Voltage  
High-impedance Output Current  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
IOL = 1 mA  
0.4  
V
V
IOH = –1 mA  
2.4  
10  
–10  
µA  
pF  
pF  
nH  
V
CIN  
2
5
COUT  
LIN  
3
6
7
VXIH  
VXIL  
IDD  
Xin High Voltage  
0.7VDD  
VDD  
0.3VDD  
280  
Xin Low Voltage  
0
V
Dynamic Supply Current  
At 200 MHz and all outputs  
mA  
loaded per Table 9 and Figure 7  
IPD  
Power-down Supply Current  
PD# Asserted  
1
mA  
Rev 1.0,November 20, 2006  
Page 14 of 18  
CY28405  
AC Electrical Specifications  
Parameter  
Crystal  
Description  
Conditions  
Min.  
Max.  
Unit  
TDC  
XIN Duty Cycle  
The device will operate  
reliably with input duty cycles  
up to 30/70 but the REF clock  
duty cycle will not be within  
specification  
47.5  
52.5  
%
TPERIOD  
TR / TF  
TCCJ  
XIN period  
When Xin is driven from an  
external clock source  
69.841  
71.0  
10.0  
ns  
ns  
XIN Rise and Fall Times  
XIN Cycle to Cycle Jitter  
Long-term Accuracy  
Measured between 0.3VDD  
and 0.7VDD  
As an average over 1 μs  
duration  
500  
300  
ps  
LACC  
Over 150ms  
ppm  
CPU at 0.7V  
TDC  
CPUT and CPUC Duty Cycle  
100-MHz CPUT and CPUC Period  
133-MHz CPUT and CPUC Period  
200-MHz CPUT and CPUC Period  
Any CPU to CPU Clock Skew  
CPU Cycle to Cycle Jitter  
MeasuredatcrossingpointVOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
MeasuredatcrossingpointVOX  
Measured at crossing point VOX  
45  
9.9970  
7.4978  
4.9985  
55  
%
ns  
ns  
ns  
ps  
ps  
TPERIOD  
TPERIOD  
TPERIOD  
TSKEW  
TCCJ  
10.003  
7.5023  
5.0015  
100  
125  
TR / TF  
CPUT and CPUC Rise and Fall Times Measured from VOL = 0.175  
to VOH = 0.525V  
175  
700  
20  
ps  
%
TRFM  
Rise/Fall Matching  
Determined as a fraction of  
2*(TR – TF)/ (TR + TF)  
ΔTR  
Rise Time Variation  
125  
ps  
ps  
mv  
mv  
mv  
V
ΔTF  
Fall Time Variation  
125  
VHIGH  
VLOW  
VOX  
Voltage High  
Math average, see Figure 7  
Math average,see Figure 7  
660  
–150  
250  
850  
Voltage Low  
550  
Crossing Point Voltage at 0.7V Swing  
Maximum Overshoot Voltage  
Minimum Undershoot Voltage  
Ring Back Voltage  
VOVS  
VUDS  
VRB  
VHIGH+0.3  
–0.3  
V
See Figure 7. Measure SE  
0.2  
V
3V66  
TDC  
3V66 Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2.4V  
Measurement at 0.4V  
45  
55  
15.0045  
15.0799  
%
ns  
ns  
ns  
ns  
TPERIOD  
TPERIOD  
THIGH  
Spread Disabled 3V66 Period  
Spread Enabled 3V66 Period  
3V66 High Time  
14.9955  
14.9955  
4.9500  
4.5500  
TLOW  
3V66 Low Time  
TR / TF  
3V66 Rise and Fall Times  
Measured between 0.4V and  
2.4V  
0.5  
2.0  
ns  
TSKEW  
TCCJ  
Any 3V66 to Any 3V66 Clock Skew  
3V66 Cycle to Cycle Jitter  
Measurement at 1.5V  
Measurement at 1.5V  
250  
250  
ps  
ps  
PCI/PCIF  
TDC  
PCIF and PCI Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2.4V  
45  
55  
30.0009  
30.1598  
%
ns  
ns  
ns  
TPERIOD  
TPERIOD  
THIGH  
Spread Disabled PCIF/PCI Period  
Spread Enabled PCIF/PCI Period  
PCIF and PCI High Time  
29.9910  
29.9910  
12.0  
Rev 1.0,November 20, 2006  
Page 15 of 18  
CY28405  
AC Electrical Specifications (continued)  
Parameter  
TLOW  
Description  
PCIF and PCI Low Time  
Conditions  
Min.  
Max.  
Unit  
Measurement at 0.4V  
12.0  
ns  
TR / TF  
PCIF and PCI Rise and Fall Times  
Measured between 0.4V and  
2.4V  
0.5  
2.0  
ns  
TSKEW  
TCCJ  
Any PCI Clock to Any PCI Clock Skew Measurement at 1.5V  
500  
250  
ps  
ps  
PCIF and PCI Cycle to Cycle Jitter  
Measurement at 1.5V  
DOT  
TDC  
Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2.4V  
Measurement at 0.4V  
45  
55  
%
ns  
ns  
ns  
TPERIOD  
THIGH  
Period  
20.8257  
8.994  
8.794  
20.8340  
10.486  
10.386  
DOT High Time  
DOT Low Time  
Rise and Fall Times  
TLOW  
TR / TF  
Measured between 0.4V and  
2.4V  
0.5  
1.0  
ns  
ps  
TCCJ  
Cycle to Cycle Jitter  
10-μs period  
350  
USB  
TDC  
Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2.4V  
Measurement at 0.4V  
45  
55  
%
ns  
ns  
ns  
TPERIOD  
THIGH  
Period  
20.8257  
8.094  
7.694  
20.8340  
10.036  
9.836  
USB High Time  
USB Low Time  
Rise and Fall Times  
TLOW  
TR / TF  
Measured between 0.4V and  
2.4V  
1.0  
2.0  
ns  
ps  
TCCJ  
Cycle to Cycle Jitter  
125-μs period  
350  
REF  
TDC  
REF Duty Cycle  
REF Period  
Measurement at 1.5V  
Measurement at 1.5V  
45  
55  
%
TPERIOD  
TR / TF  
69.827  
69.855  
ns  
REF Rise and Fall Times  
Measured between 0.4V and  
2.4V  
1.0  
4.0  
V/ns  
ps  
TCCJ  
REF Cycle to Cycle Jitter  
Measurement at 1.5V  
1000  
ENABLE/DISABLE and SET-UP  
TSTABLE All Clock Stabilization from Power-up  
TSS  
10.0  
0
1.5  
ms  
ns  
ns  
Stopclock Set-up Time  
Stopclock Hold Time  
TSH  
Table 7. Group Timing Relationship and Tolerances  
Offset  
Group  
Conditions  
3V66 Leads PCI  
Min.  
1.5 ns  
Max.  
3V66 to PCI  
3.5 ns  
Table 8. USB to DOT Phase Offset  
Parameter  
DOT Skew  
USB Skew  
VCH SKew  
Typical  
0°  
Value  
0.0 ns  
0.0 ns  
0.0 ns  
Tolerance  
1000 ps  
1000 ps  
1000 ps  
180°  
0°  
Rev 1.0,November 20, 2006  
Page 16 of 18  
CY28405  
Table 9. Maximum Lumped Capacitive Output Loads  
Test and Measurement Set-up  
Clock  
Max Load  
Units  
pF  
For Differential CPU and SRC Output Signals  
PCI Clocks  
3V66 Clocks  
USB Clock  
DOT Clock  
REF Clock  
30  
30  
20  
10  
30  
The following diagram shows lumped test load configurations  
for the differential Host Clock Outputs.  
pF  
pF  
pF  
pF  
M easurem ent  
Point  
2pF  
TPCB  
33Ω  
CPUT  
49.9Ω  
M easurem ent  
Point  
2pF  
TPCB  
33Ω  
CPUC  
IREF  
49.9Ω  
475Ω  
Figure 7. 0.7V Load Configuration  
O u tp u t u nd e r T e st  
P ro b e  
L o a d C a p  
3 .3 V s ig n a ls  
tD C  
-
-
3 .3 V  
2 .4 V  
1 .5 V  
0 .4 V  
0 V  
T r  
T f  
Figure 8. Lumped Load For Single-Ended Output Signals (for AC Parameter Measurement)  
Table 10.CPU Clock Current Select Function  
Board Target Trace/Term Z  
Reference R, IREF – VDD (3*RREF  
)
Output Current  
VOH @ Z  
50 Ohms  
RREF = 475 1%, IREF = 2.32 mA  
IOH = 6*IREF  
0.7V @ 50  
Rev 1.0,November 20, 2006  
Page 17 of 18  
CY28405  
Ordering Information  
Part Number  
CY28405OC  
Package Type  
Product Flow  
48-pin Shrunk Small Outline package (SSOP)  
48-pin Shrunk Small Outline package (SSOP) – Tape and Reel  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
CY28405OCT  
Lead Free  
CY28405OXC  
CY28405OXCT  
48-pin Shrunk Small Outline package (SSOP)  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
48-pin Shrunk Small Outline package (SSOP) – Tape and Reel  
Package Drawing and Dimensions  
48-Lead Shrunk Small Outline Package O48  
While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any cir-  
cuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in  
normal commercial applications and is not warranted nor is it intended for use in life support, critical medical instruments, or any other applica-  
tion requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional  
processing by Spectra Linear Inc., and expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any  
circuitry or specification without notice.  
Rev 1.0, November 20, 2006  
Page 18 of 18  

相关型号:

CY28408

Clock Synthesizer with Differential CPU Outputs
CYPRESS

CY28408

Clock Synthesizer with Differential CPU Outputs
SPECTRALINEAR

CY28408ZC

Clock Synthesizer with Differential CPU Outputs
CYPRESS

CY28408ZC

Clock Synthesizer with Differential CPU Outputs
SPECTRALINEAR

CY28408ZCT

Clock Synthesizer with Differential CPU Outputs
CYPRESS

CY28408ZCT

Clock Synthesizer with Differential CPU Outputs
SPECTRALINEAR

CY28409

Clock Synthesizer with Differential SRC and CPU Outputs
CYPRESS

CY28409

Clock Synthesizer with Differential SRC and CPU Outputs
SPECTRALINEAR

CY28409OC

Clock Synthesizer with Differential SRC and CPU Outputs
CYPRESS

CY28409OC

Clock Synthesizer with Differential SRC and CPU Outputs
SPECTRALINEAR

CY28409OCT

Clock Synthesizer with Differential SRC and CPU Outputs
CYPRESS

CY28409OCT

Clock Synthesizer with Differential SRC and CPU Outputs
SPECTRALINEAR