598AAA000118DGR [SILICON]

LVPECL Output Clock Oscillator,;
598AAA000118DGR
型号: 598AAA000118DGR
厂家: SILICON    SILICON
描述:

LVPECL Output Clock Oscillator,

振荡器
文件: 总27页 (文件大小:532K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si598/Si599  
10–810 MHZ I2C PROGRAMMABLE XO/VCXO  
Features  
Programmable with 28 parts per  
trillion frequency resolution  
Integrated crystal provides stability  
and low phase noise  
Frequency changes up to  
±3500 ppm are glitchless  
I2C programmable output  
frequencies from 10 to 810 MHz  
0.5 ps RMS phase jitter  
Superior power supply rejection:  
0.3–0.4 ps additive jitter  
Available LVPECL, CMOS, LVDS,  
and CML outputs  
1.8, 2.5, or 3.3 V supply  
Pin- and register-compatible with  
Si570/571  
–40 to 85 °C operation  
Industry-standard 5x7 mm package  
Applications  
Ordering Information:  
See page 21.  
SONET / SDH / xDSL  
Ethernet / Fibre Channel  
3G SDI / HD SDI  
Multi-rate PLLs  
Multi-rate reference clocks  
Frequency margining  
Digital PLLs  
CPU / FPGA FIFO control  
Adaptive synchronization  
Agile RF local oscillators  
Pin Assignments:  
See page 20.  
Description  
(Top View)  
The Si598 XO/Si599 VCXO utilizes Silicon Laboratories' advanced DSPLL®  
circuitry to provide a low-jitter clock at any frequency. They are user-  
programmable to any output frequency from 10 to 810 MHz with 28 parts per  
SDA  
7
NC  
VDD  
1
2
3
6
5
4
2
trillion (PPT) resolution. The device is programmed via a 2-pin I C compatible  
serial interface. The wide frequency range and ultra-fine programming resolution  
make these devices ideal for applications that require in-circuit dynamic frequency  
adjustments or multi-rate operation with non-integer related rates. Using an  
integrated crystal, these devices provide stable low jitter frequency synthesis and  
replace multiple XOs, clock generators, and DAC controlled VCXOs.  
OE  
CLK–  
CLK+  
GND  
8
Functional Block Diagram  
SCL  
Si598  
VDD  
Power Supply Filtering  
OE  
SDA  
7
Fixed  
Frequency  
Oscillator  
Any Frequency  
DSPLL®  
10 to 810 MHz  
Clock Synthesis  
CLK+  
CLK–  
VC  
VDD  
1
2
3
6
5
4
OE  
CLK–  
CLK+  
Vc  
ADC  
I2C Interface  
(Si599)  
GND  
8
SCL  
SDA  
SCL  
GND  
Si599  
Rev. 1.1 6/18  
Copyright © 2018 by Silicon Laboratories  
Si598/Si599  
Si598/Si599  
TABLE OF CONTENTS  
Section  
Page  
1. Detailed Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
2. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.1. Programming a New Output Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
2
3.2. I C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4. Serial Port Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
5. Si598 (XO) Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
6. Si599 (VCXO) Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
7. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
8. Si59x Mark Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
9. Outline Diagram and Suggested Pad Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
10. 8-Pin PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Rev. 1.1  
2
Si598/Si599  
1. Detailed Block Diagrams  
VDD  
GND  
fXTAL  
M
CLKOUT+  
CLKOUT–  
DCO  
÷HS_DIV  
÷N1  
fosc  
RFREQ  
OE  
Control  
Interface  
SDA  
SCL  
NVM  
RAM  
Figure 1. Si598 Detailed Block Diagram  
VDD  
GND  
fXTAL  
M
CLKOUT+  
CLKOUT–  
ADC  
VC  
DCO  
÷HS_DIV  
÷N1  
+
fosc  
VCADC  
RFREQ  
OE  
SDA  
SCL  
Control  
Interface  
NVM  
RAM  
Figure 2. Si599 Detailed Block Diagram  
Rev. 1.1  
3
Si598/Si599  
2. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
3.3 V option  
2.5 V option  
1.8 V option  
Min  
2.97  
2.25  
1.71  
Typ  
3.3  
2.5  
1.8  
Max  
3.63  
2.75  
1.89  
Units  
V
V
V
Supply Voltage1  
VDD  
Output enabled  
LVPECL  
CML  
130  
120  
110  
100  
120  
108  
99  
mA  
mA  
mA  
mA  
Supply Current  
IDD  
LVDS  
CMOS  
90  
Tristate mode  
0.75 x VDD  
60  
75  
mA  
V
Output Enable (OE)2,  
Serial Data (SDA),  
Serial Clock (SCL)  
VIH  
VIL  
0.5  
V
Operating Temperature Range  
TA  
–40  
85  
ºC  
Notes:  
1. Selectable parameter specified by part number. See Section 7. Ordering Information on page 21 for further details.  
2. OE pin includes a 17 kpullup resistor to VDD for OE Active High Option. OE pin includes 17 kpull down for OE  
Active Low. See Section “7.Ordering Information”.  
Table 2. VC Control Voltage Input (Si599)  
(Typical values TA = 25 ºC, VDD = 3.3 V, min/max limits VDD = 1.8 ±5%, 2.5 or 3.3 V ±10%, TA = –40 to 85 ºC unless otherwise  
noted)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Control Voltage Tuning Slope1,2,3  
KV  
10 to 90% of VDD  
45  
95  
125  
185  
380  
ppm/V  
ppm/V  
ppm/V  
ppm/V  
ppm/V  
Control Voltage Linearity4  
LVC  
BSL  
–5  
–10  
9.3  
500  
±1  
±5  
+5  
+10  
10.7  
%
%
Incremental  
Modulation Bandwidth  
VC Input Impedance  
VC Input Capacitance  
Nominal Control Voltage  
BW  
ZVC  
10.0  
kHz  
k  
pF  
V
CVC  
50  
VCNOM  
VC  
@ fO  
VDD/2  
Control Voltage Tuning Range  
0
VDD  
V
Notes:  
1. Positive slope; selectable option by part number. See 7. Ordering Information on page 21.  
2. For best jitter and phase noise performance, always choose the smallest KV that meets the application’s minimum APR  
requirements. See “AN266: VCXO Tuning Slope (KV), Stability, and Absolute Pull Range (APR)” for more information.  
3. KV variation is ±10% of typical values.  
4. BSL determined from deviation from best straight line fit with VC ranging from 10 to 90% of VDD. Incremental slope  
determined with VC ranging from 10 to 90% of VDD  
.
4
Rev. 1.1  
Si598/Si599  
Table 3. CLK± Output Frequency Characteristics  
(Typical values TA = 25 ºC, VDD= 3.3 V, min/max limits VDD = 1.8 ±5%, 2.5 or 3.3 V ±10%, TA = –40 to 85 ºC unless otherwise  
noted)  
Parameter  
Symbol  
Test Condition  
LVPECL/LVDS/CML  
CMOS  
Min  
10  
10  
Typ  
Max  
810  
160  
±30  
Units  
MHz  
MHz  
ppm  
ppm  
ppm  
Programmable Frequency  
Range1,2,3  
fO  
Temp stability = ±20 ppm  
Temp stability = ±25 ppm  
Temp stability = ±50 ppm  
1,2,4,5  
Total Stability (Si598)  
±50  
±100  
–20  
–50  
+20  
+50  
Temperature Stability (Si599)1,5  
Absolute Pull Range1,5 (Si599)  
TA = –40 to +85 ºC  
ppm  
APR  
tOSC  
±10  
±370  
10  
ppm  
ms  
Powerup Time6  
Notes:  
1. See Section 7. Ordering Information on page 21 for further details.  
2. Specified at time of order by part number. Three frequency grades are available:  
Grade A covers 10 to 810 MHz.  
Grade B covers 10 to 280 MHz.  
Grade C covers 10 to 160 MHz.  
3. Nominal output frequency set by VCNOM = 1/2 x VDD  
.
4. Includes initial accuracy, temperature drift, shock, vibration, power supply and load drift. ±100 ppm and ±50 ppm  
options include 15 years aging at 70 °C. ±30 ppm option includes 10 years aging at 40 °C.  
5. Selectable parameter specified by part number. See 7. Ordering Information on page 21.  
6. Time from power up or tristate mode to fO.  
Rev. 1.1  
5
Si598/Si599  
Table 4. CLK± Output Levels and Symmetry  
(Typical values TA = 25 ºC, VDD = 3.3 V, min/max limits VDD = 1.8 ±5%, 2.5 or 3.3 V ±10%, TA = –40 to 85 ºC unless otherwise  
noted)  
Parameter  
Symbol  
VO  
Test Condition  
mid-level  
Min  
VDD – 1.42  
1.1  
Typ  
Max  
VDD – 1.25  
1.9  
Units  
V
LVPECL Output Option1  
VOD  
VSE  
swing (diff)  
VPP  
VPP  
swing (single-ended)  
mid-level  
0.55  
0.95  
VO  
1.125  
0.5  
1.20  
0.7  
1.275  
0.9  
V
LVDS Output Option2  
CML Output Option2  
swing (diff)  
VOD  
VO  
VPP  
2.5/3.3 V option mid-level  
1.8 V option mid-level  
2.5/3.3 V option swing (diff)  
1.8 V option swing (diff)  
IOH = 32 mA  
VDD – 1.30  
V
V
VDD – 0.36  
1.10  
0.35  
0.8 x VDD  
1.50  
0.425  
1.90  
0.50  
VDD  
0.4  
350  
VPP  
VPP  
V
VOD  
VOH  
VOL  
CMOS Output Option3  
IOL = 32 mA  
V
LVPECL/LVDS/CML  
CMOS with CL = 15 pF  
ps  
ns  
t
R, tF  
Rise/Fall Time (20/80 %)  
1
LVPECL:  
LVDS:  
CMOS:  
V
DD – 1.3 V (diff)  
1.25 V (diff)  
DD/2  
SYM  
48  
52  
%
Symmetry (duty cycle)  
V
Notes:  
1. 50 to VDD – 2.0 V.  
2. Rterm = 100 (differential).  
3. CL = 15 pF sinking or sourcing 12 mA for VDD = 3.3 V, 6 mA for VDD = 2.5 V, 3 mA for VDD = 1.8 V.  
6
Rev. 1.1  
Si598/Si599  
Table 5. CLK± Output Phase Jitter (Si598)  
(Typical values TA = 25 ºC, VDD = 3.3 V, min/max limits VDD = 1.8 ±5%, 2.5 or 3.3 V ±10%, TA = –40 to 85 ºC unless otherwise  
noted)  
Parameter  
Symbol  
Test Condition  
LVPECL/LVDS/CML1  
CMOS 3.3 V2  
Min  
Typ  
0.5  
0.6  
0.3  
0.5  
0.5  
0.6  
0.5  
0.5  
Max Units  
Phase Jitter (RMS Random)  
12 kHz to 20 MHz Integration Bandwidth  
1
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
φJ-RANDOM  
Phase Jitter (RMS Random)  
1.875 to 20 MHz Integration Bandwidth  
LVPECL/LVDS/CML1  
CMOS 3.3 V2  
Phase Jitter (RMS)  
12 kHz to 20 MHz Integration Bandwidth  
LVPECL/LVDS/CML1  
CMOS 3.3 V2  
1
φJ  
Phase Jitter (RMS)  
1.875 to 20 MHz Integration Bandwidth  
LVPECL/LVDS/CML1  
CMOS 3.3 V2  
Notes:  
1. 50 to 810 MHz, 3.3 V/2.5 V only.  
2. 50 to 160 MHz, single-ended CMOS output phase jitter measured using 33 series termination into 50 phase noise  
test equipment. 3.3 V supply voltage option only.  
Table 6. CLK± Output Phase Jitter (Si599)  
(Typical values TA = 25 ºC, VDD = 3.3 V, min/max limits VDD = 1.8 ±5%, 2.5 or 3.3 V ±10%, TA = –40 to 85 ºC unless otherwise  
noted)  
Parameter  
Symbol  
Test Condition  
Kv = 45 ppm/V  
Min  
Typ  
0.5  
0.5  
0.5  
0.5  
0.7  
Max  
Units  
Phase Jitter (RMS)1,2  
for FOUT of 50 MHz < FOUT  
810 MHz  
J  
ps  
12 kHz to 20 MHz  
Kv = 95 ppm/V  
ps  
ps  
ps  
ps  
12 kHz to 20 MHz  
Kv = 125 ppm/V  
12 kHz to 20 MHz  
Kv = 185 ppm/V  
12 kHz to 20 MHz  
Kv = 380 ppm/V  
12 kHz to 20 MHz  
Notes:  
1. Differential Modes: LVPECL/LVDS/CML.  
2. For best jitter and phase noise performance, always choose the smallest KV that meets the application’s minimum APR  
requirements. See “AN266: VCXO Tuning Slope (KV), Stability, and Absolute Pull Range (APR)” for more information.  
Rev. 1.1  
7
Si598/Si599  
Table 7. CLK± Output Period Jitter  
(Typical values TA = 25 ºC, VDD = 3.3 V unless otherwise noted)  
Parameter  
Period Jitter*  
Symbol  
Test Condition  
RMS  
Min  
Typ  
3
Max  
Units  
ps  
JPER  
Peak-to-Peak  
35  
ps  
*Note: Any output mode, including CMOS, LVPECL, LVDS, CML. N = 1000 cycles.  
Table 8. CLK± Output Phase Noise (Typical, Si599)  
(Typical values TA = 25 ºC, VDD = 3.3 V)  
Offset Frequency  
74.25 MHz  
185 ppm/V  
LVPECL  
148.5 MHz  
185 ppm/V  
LVPECL  
155.52 MHz  
95 ppm/V  
LVPECL  
Units  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
1 MHz  
–77  
–68  
–95  
–77  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
–101  
–121  
–134  
–149  
–151  
–150  
–101  
–119  
–127  
–144  
–147  
–148  
–116  
–128  
–144  
–147  
–148  
10 MHz  
20 MHz  
Table 9. Power Supply Noise Rejection  
(Typical values TA = 25 ºC, VDD = 3.3 V)  
Parameter  
Symbol Test Condition  
Min  
Typ  
0.32  
0.36  
0.36  
0.32  
Max Units  
RMS Additive Jitter due to Power Supply Noise*  
100 kHz  
ps  
ps  
ps  
ps  
300 kHz  
φPSRR  
700 kHz  
1 MHz  
*Note: Measured with 100 mVp-p sinusoid applied to power supply pin. VDD = 3.3 V, LVPECL.  
Table 10. Spurious Performance  
(Typical values TA = 25 ºC, VDD = 3.3 V)  
Parameter  
Symbol  
Test Condition  
LVPECL, LVDS, CML1  
LVPECL, LVDS, CML2  
CMOS1  
Min  
Typ  
Max Units  
75  
64  
77  
dB  
dB  
dB  
SFDR  
Spurious Free Dynamic Range  
Notes:  
1. 10 to 160 MHz.  
2. 10 to 810 MHz.  
8
Rev. 1.1  
Si598/Si599  
Table 11. Environmental Compliance  
The Si598/599 meets the following qualification test requirements.  
Parameter  
Mechanical Shock  
Conditions/Test Method  
MIL-STD-883, Method 2002  
MIL-STD-883, Method 2007  
MIL-STD-883, Method 2003  
MIL-STD-883, Method 1014  
MIL-STD-883, Method 2036  
J-STD-020, MSL1  
Mechanical Vibration  
Solderability  
Gross & Fine Leak  
Resistance to Solder Heat  
Moisture Sensitivity Level  
Contact Pads  
Gold over Nickel  
Table 12. Programming Constraints and Timing  
(Typical values TA = 25 ºC, VDD = 3.3 V, min/max limits VDD = 1.8 ±5%, 2.5 or 3.3 V ±10%, TA = –40 to 85 ºC unless  
otherwise noted)  
Parameter  
Symbol  
CKOF  
MRES  
Test Condition  
Min  
10  
Typ  
Max  
810  
Unit  
MHz  
ppt  
Output Frequency Range  
Frequency Reprogramming  
Resolution  
28  
Internal Oscillator Frequency  
fOSC  
4850  
5670  
MHz  
MHz  
Internal Crystal Frequency  
Accuracy  
fXTAL  
Maximum variation is  
±2000 ppm  
39.17  
Delta Frequency for  
Continuous Output  
From center frequency –3500  
+3500  
10  
ppm  
ms  
µs  
Unfreeze to NewFreq  
Timeout*  
Settling Time for Small  
Frequency Change  
<±3500 ppm from  
center frequency  
100  
10  
Settling Time for Large  
Frequency Change  
>±3500 ppm from  
center frequency after  
setting NewFreq bit  
ms  
*Note: Applies when using large frequency change procedure outlined in section “3.1.2.Reconfiguring the Output Clock for  
Large Changes in Output Frequency”.  
Rev. 1.1  
9
Si598/Si599  
Table 13. Thermal Characteristics  
(Typical values TA = 25 ºC, VDD = 3.3 V)  
Parameter  
Symbol  
Test Condition  
Still Air  
Min  
Typ  
84.6  
38.8  
Max  
Unit  
°C/W  
°C/W  
°C  
Thermal Resistance Junction to Ambient  
Thermal Resistance Junction to Case  
Ambient Temperature  
JA  
Still Air  
JC  
TA  
TJ  
–40  
85  
Junction Temperature  
125  
°C  
Table 14. Absolute Maximum Ratings  
Parameter  
Supply Voltage, 1.8 V Option  
Supply Voltage, 2.5/3.3 V Option  
Input Voltage  
Symbol  
VDD  
VDD  
VI  
Rating  
Units  
–0.5 to +1.9  
–0.5 to +3.8  
–0.5 to VDD + 0.3  
–55 to +125  
2000  
V
V
V
ºC  
Storage Temperature  
TS  
ESD Sensitivity (HBM, per JESD22-A114)  
Soldering Temperature (lead-free profile)  
ESD  
TPEAK  
tP  
V
260  
ºC  
Soldering Temperature Time @ TPEAK (lead-free profile)  
20–40  
seconds  
Notes:  
1. Stresses beyond the absolute maximum ratings may cause permanent damage to the device. Functional operation or  
specification compliance is not implied at these conditions.  
2. The device is compliant with JEDEC J-STD-020C. Refer to Si5xx Packaging FAQ available for download at  
www.silabs.com/VCXO for further information, including soldering profiles.  
10  
Rev. 1.1  
Si598/Si599  
The 38-bit resolution of RFREQ allows the DCO  
frequency to have a programmable frequency resolution  
3. Functional Description  
The Si598 XO and the Si599 VCXO are low-jitter of 28 ppt.  
oscillators ideally suited for applications requiring  
As shown in Figure 3, the device allows reprogramming  
programmable frequencies. The Si59x can be  
programmed to generate any output clock in the range  
of 10 to 810 MHz with frequency resolution of 30 parts  
per trillion. Output jitter performance exceeds the strict  
requirements of high-speed communication systems  
including OC-48/STM-16, 3G SDI, and Gigabit  
Ethernet.  
of the DCO frequency up to ±3500 ppm from the center  
frequency configuration without interruption to the  
output clock. Changes greater than the ±3500 ppm  
window will cause the device to recalibrate its internal  
tuning circuitry, forcing the output clock to momentarily  
stop and start at any arbitrary point during a clock cycle.  
This re-calibration process establishes a new center  
The Si59x consists of a digitally-controlled oscillator frequency and can take up to 10 ms. Circuitry receiving  
(DCO) based on Silicon Laboratories' third-generation a clock from the Si59x device that is sensitive to glitches  
DSPLL technology, which is driven by an internal fixed- or runt pulses may have to be reset once the  
frequency crystal reference.  
recalibration process is complete.  
The device's default output frequency is set at the 3.1.1. Reconfiguring the Output Clock for a Small  
factory and can be reprogrammed through the two-wire  
I2C serial port. Once the device is powered down, it will  
return to its factory-set default output frequency.  
Change in Frequency  
For output changes less than ±3500 ppm from the  
center frequency configuration, the DCO frequency is  
The Si599 has a pullable output frequency using the the only value that needs reprogramming. Since  
voltage control input pin. This makes the Si599 an ideal fDCO = fXTAL x RFREQ, and that fXTAL is fixed, changing  
choice for high-performance, low-jitter, phase-locked the DCO frequency is as simple as reconfiguring the  
loops. The Si598 is digitally pullable using the I2C RFREQ value as outlined below:  
interface and is ideal for digital PLL applications.  
1. Using the serial port, read the current RFREQ value  
(registers 0x08–0x12).  
3.1. Programming a New Output Frequency  
2. Calculate the new value of RFREQ given the change  
The output frequency (fout  
)
is determined by  
in frequency.  
programming the DCO frequency (fDCO) and the  
device's output dividers (HS_DIV, N1). The output  
frequency is calculated using the following equation:  
fout_new  
------------------------  
fout_current  
RFREQnew = RFREQcurrent  
fDCO  
fXTAL RFREQ  
------------------------------------------  
HSDIV N1  
3. Using the serial port, write the new RFREQ value  
(registers 0x08—0x12). Multi-byte changes to  
RFREQ can freeze the DCO to avoid unintended  
RFREQ values.  
----------------------------------------  
Output Dividers  
fout  
=
=
The DCO frequency is adjustable in the range of 4.85 to  
5.67 GHz by setting the high-resolution 38-bit fractional  
multiplier (RFREQ). The DCO frequency is the product  
of the internal fixed-frequency crystal (fXTAL) and  
RFREQ.  
Example:  
An Si598 generating a 148.35 MHz clock must be  
reconfigured "on-the-fly" to generate a 148.5 MHz clock.  
This represents a change of +1011.122 ppm, which is  
well within the ±3500 ppm window.  
Center  
Frequency  
Configuration  
small frequency changes can be made  
without interruption to the output clock  
-3500 ppm  
+3500 ppm  
5.67 GHz  
4.85 GHz  
Figure 3. DCO Frequency Range  
11  
Rev. 1.1  
Si598/Si599  
A typical frequency configuration for this example:  
RFREQcurrent = 0x8858199E9  
RFREQ, HSDIV, and N1 are calculated to generate a  
new output frequency (fout_new). New values can be  
calculated manually or with the Si59x-EVB software,  
which provides a user-friendly application to help find  
the optimum values.  
F
F
out_current = 148.35 MHz  
out_new = 148.50 MHz  
Calculate RFREQnew to change the output frequency  
from 148.35 to 148.5 MHz:  
The first step in manually calculating the frequency  
configuration is to determine new frequency divider  
values (HSDIV, N1). Given the desired output frequency  
(fout_new), find the frequency divider values that will  
keep the DCO oscillation frequency in the range of 4.85  
to 5.67 GHz.  
148.50 MHz  
-------------------------------  
RFREQnew = 0x8858199E9   
= 0x887B6473C  
148.35 MHz  
Note that performing calculations with RFREQ requires  
a minimum of 38-bit arithmetic precision.  
fDCO_new = fout_new HSDIVnew N1new  
Valid values of HSDIV are 9 or 11. N1 can be selected  
as 1 or any even number up to 128 (i.e., 1, 2, 4, 6, 8, 10  
Relatively small changes in output frequency may  
require writing more than one RFREQ register. Such  
multi-register RFREQ writes can impact the output clock  
128). To help minimize the device's power  
consumption, the divider values should be selected to  
keep the DCO's oscillation frequency as low as  
possible. The lowest value of N1 with the highest value  
of HS_DIV also results in the best power savings.  
frequency on  
updating.  
a
register-by-register basis during  
Interim changes to the output clock during RFREQ  
writes can be prevented by using the following  
procedure:  
Once HS_DIV and N1 have been determined, the next  
step is to calculate the reference frequency multiplier  
(RFREQ).  
1. Freeze the "M" value (Set Register 135 bit 5 = 1)  
2. Write the new frequency configuration (RFREQ)  
3. Unfreeze the "M" value (Set Register 135 bit 5 = 0)  
fDCO_new  
----------------------  
=
RFREQnew  
fXTAL  
3.1.2. Reconfiguring the Output Clock for Large  
Changes in Output Frequency  
RFREQ is programmable as a 38-bit binary fractional  
frequency multiplier with the first 10 most significant bits  
(MSBs) representing the integer portion of the multiplier  
and the 28 least significant bits (LSBs) representing the  
fractional portion.  
For output frequency changes outside of ±3500 ppm  
from the center frequency, it is likely that both the DCO  
frequency and the output dividers need to be  
reprogrammed. Note that changing the DCO frequency  
outside of the ±3500 ppm window will cause the output  
to momentarily stop and restart at any arbitrary point in  
a clock cycle. Devices sensitive to glitches or runt  
pulses may have to be reset once reconfiguration is  
complete.  
Before entering a fractional number into the RFREQ  
register, it must be converted to a 38-bit integer using a  
bitwise left shift operation by 28 bits, which effectively  
multiplies RFREQ by 228.  
The process for reconfiguring the output frequency  
outside of a ±3500 ppm window is shown below:  
Example:  
RFREQ = 136.3441409d  
1. Using the serial port, read the current values for  
RFREQ, HSDIV, and N1.  
Multiply RFREQ by 228 = 36599601635.42d  
Discard the fractional portion = 36599601635d  
Convert to hexadecimal = 0x8858199E9  
2. Calculate fXTAL for the device. Note that because of  
slight variations of the internal crystal frequency from  
one device to another, each device may have a  
different RFREQ value or possibly even different  
HSDIV or N1 values to maintain the same output  
frequency. It is necessary to calculate fXTAL for each  
device.  
Once the new values for RFREQ, HSDIV, and N1 are  
determined, they can be written directly into the device  
from the serial port using the following procedure:  
1. Freeze the DCO (bit 4 of Register 137)  
Fout HSDIV N1  
2. Write the new frequency configuration (RFREQ,  
HS_DIV, N1)  
--------------------------------------------------  
=
fXTAL  
RFREQ  
Once fXTAL has been determined, new values for  
Rev. 1.1  
12  
Si598/Si599  
3. Unfreeze the DCO and assert the NewFreq bit (bit 6 5.67 GHz. In this case, keeping the same output  
of Register 135) within the maximum Unfreeze to  
NewFreq Timeout in Table 12, “Programming  
Constraints and Timing,” on page 9.  
dividers will still keep fDCO within its range limits:  
fDCO_new = fout_new HSDVnew N1new  
The process of freezing and unfreezing the DCO will  
cause the output clock to momentarily stop and start at  
any arbitrary point during a clock cycle. This process  
can take up to 10 ms. Circuitry that is sensitive to  
glitches or runt pulses may have to be reset after the  
new frequency configuration is written.  
= 161.1328125 MHz 4 8 = 5.156250000 GHz  
Calculate the new value of RFREQ given the new DCO  
frequency:  
fDCO_new  
----------------------  
= 131.637733d= 0x83A342779  
RFREQnew  
=
fXTAL  
Example:  
An Si598 generating 156.25 MHz must be re-configured  
to generate a 161.1328125 MHz clock (156.25 MHz x  
66/64). This frequency change is greater than  
±3500 ppm.  
2
3.2. I C Interface  
The control interface to the Si598 is an I2C-compatible  
2-wire bus for bidirectional communication. The bus  
consists of a bidirectional serial data line (SDA) and a  
serial clock input (SCL). Both lines must be connected  
to the positive supply via an external pullup.Fast mode  
operation is supported for transfer rates up to 400 kbps  
as specified in the I2C-Bus Specification standard.  
fout = 156.25 MHz  
Read the current values for RFREQ, HS_DIV, N1:  
RFREQcurrent = 0x7FA611E85 = 34265439877d,  
34265439877d / 228 = 127.64871074631810d  
HS_DIV = 4  
Figure 4 shows the command format for both read and  
write access. Data is always sent MSB. Data length is 1  
byte. Read and write commands support 1 or more data  
bytes as illustrated. The master must send a Not  
Acknowledge and a Stop after the last read data byte to  
terminate the read command. The timing specifications  
and timing diagram for the I2C bus can be found in the  
I2C-Bus Specification standard (fast mode operation).  
The device I2C address is specified in the part number.  
N1 = 8  
Calculate fXTAL, fDCO_current  
fDCO_current = fout HSDV N1 = 5.000000000 GHz  
fDCO_current  
--------------------------------------  
= 39.17 MHz  
fXTAL  
=
RFREQcurrent  
Given fout_new = 161.1328125 MHz, choose output  
dividers that will keep fDCO within the range of 4.85 to  
S Slave Address  
0
A Byte Address  
A
Data  
A
A
Data  
P
Write Command  
(Optional 2nd data byte and acknowledge illustrated)  
A Byte Address  
Data  
S Slave Address  
0
A
Data  
Slave Address  
N
A
S
1
A
P
Read Command  
(Optional data byte and acknowledge before the last data byte and not acknowledge illustrated)  
From master to slave  
From slave to master  
A – Acknowledge (SDA LOW)  
N – Not Acknowledge (SDA HIGH).  
Required after the last data byte to signal the end of the read comand to the slave.  
S – START condition  
P – STOP condition  
Figure 4. I2C Command Format  
13  
Rev. 1.1  
Si598/Si599  
4. Serial Port Registers  
Note: Registers not documented are reserved. Values within reserved registers and reserved bits must not be changed.  
Register  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
7
High Speed/  
N1 Dividers  
HS_DIV[2:0]  
N1[6:2]  
8
9
Reference  
Frequency  
N1[1:0]  
RFREQ[37:32]  
Reference  
Frequency  
RFREQ[31:24]  
RFREQ[23:16]  
RFREQ[15:8]  
RFREQ[7:0]  
10  
11  
12  
135  
Reference  
Frequency  
Reference  
Frequency  
Reference  
Frequency  
NewFreq/  
Freeze/  
Memory  
Control  
Reserved NewFreq Freeze M Freeze  
VCADC  
Reserved  
RECALL  
137  
Freeze DCO  
Reserved  
Freeze  
DCO  
Reserved  
14  
Rev. 1.1  
Si598/Si599  
Register 7. High Speed/N1 Dividers  
Bit  
D7  
D6  
HS_DIV[2:0]  
R/W  
D5  
D4  
D3  
D2  
N1[6:2]  
R/W  
D1  
D0  
Name  
Type  
Bit  
Name  
Function  
7:5  
HS_DIV[2:0] DCO High Speed Divider.  
Sets value for high speed divider that takes the DCO output fOSC as its clock input.  
000 = 4  
001 = 5  
010 = 6  
011 = 7  
100 = Not used.  
101 = 9  
110 = Not used.  
111 = 11  
4:0  
N1[6:2]  
CLKOUT Output Divider.  
Sets value for CLKOUT output divider. Allowed values are [1] and [2, 4, 6, ..., 27]. Illegal  
odd divider values will be rounded up to the nearest even value. The value for the N1  
register can be calculated by taking the divider ratio minus one. For example, to divide by  
10, write 0001001 (9 decimal) to the N1 registers.  
0000000 = 1  
1111111 = 27  
Register 8. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N1[1:0]  
R/W  
RFREQ[37:32]  
R/W  
Bit  
Name  
Function  
7:6  
N1[1:0]  
CLKOUT Output Divider.  
Sets value for CLKOUT output divider. Allowed values are [1] and [2, 4, 6, ..., 27]. Ille-  
gal odd divider values will be rounded up to the nearest even value. The value for the  
N1 register can be calculated by taking the divider ratio minus one. For example, to  
divide by 10, write 0001001 (9 decimal) to the N1 registers.  
0000000 = 1  
1111111 = 27  
5:0  
RFREQ[37:32] Reference Frequency.  
Frequency control input to DCO.  
Rev. 1.1  
15  
Si598/Si599  
Register 9. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D2  
D2  
D1  
D1  
D1  
D0  
D0  
D0  
Name  
Type  
RFREQ[31:24]  
R/W  
Bit  
Name  
Function  
7:0  
RFREQ[31:24]  
Reference Frequency.  
Frequency control input to DCO.  
Register 10. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
D3  
Name  
Type  
RFREQ[23:16]  
R/W  
Bit  
Name  
Function  
7:0  
RFREQ[23:16] Reference Frequency.  
Frequency control input to DCO.  
Register 11. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
RFREQ[15:8]  
R/W  
D3  
Name  
Type  
Bit  
Name  
Function  
7:0  
RFREQ[15:8] Reference Frequency.  
Frequency control input to DCO.  
16  
Rev. 1.1  
Si598/Si599  
Register 12. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
RFREQ[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Bit  
Name  
Function  
7:0  
RFREQ[7:0]  
Reference Frequency.  
Frequency control input to DCO.  
Register 135. NewFreq/Freeze/Memory Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
NewFreq  
Freeze M  
Freeze  
RECALL  
VCADC  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset settings = 00xxxx00  
Bit  
7
Name  
Function  
Reserved  
NewFreq  
This bit should read 0 in normal operation.  
6
New Frequency Applied.  
Alerts the DSPLL that a new frequency configuration has been applied. This bit will  
clear itself when the new frequency is applied. Write 0x40 to this register to assert  
NewFreq.  
5
4
Freeze M  
Freezes the M Control Word.  
Prevents interim frequency changes when writing RFREQ registers.  
Freeze  
Freezes the VCDADC Output Word.  
VCADC  
May be used to hold the nominal output frequency of the Si599. Do not use with Si598.  
3:1  
0
Reserved  
RECALL  
Always zero.  
Recall NVM into RAM.  
0 = No operation.  
1 = Write NVM bits into RAM. Bit is internally reset following completion of operation.  
Rev. 1.1  
17  
Si598/Si599  
Register 137. Freeze DCO  
Bit  
D7  
D6  
D5  
D4  
Freeze DCO  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
R/W  
R/W  
R/W  
R
R
R
R
Reset settings = Si598: 0000xxxx, Si599: 1000xxxx  
Bit  
Name  
Function  
7
Reserved  
0: Si598  
1: Si599  
6:5  
4
Reserved  
This bits should read 0 in normal operation.  
Freeze DCO Freeze DCO.  
Freezes the DSPLL so the frequency configuration can be modified.  
Si598: Write 0x10 to this register to Freeze DCO.  
Si599: Write 0x90 to this register to Freeze DCO.  
3:0  
Reserved  
Read only.  
18  
Rev. 1.1  
Si598/Si599  
5. Si598 (XO) Pin Descriptions  
(Top View)  
SDA  
7
NC  
VDD  
1
2
3
6
5
4
OE  
CLK–  
CLK+  
GND  
8
SCL  
Table 15. Si598 Pin Descriptions  
Type  
Pin  
Name  
Function  
No Connect.  
1
NC  
N/A  
Make no external connection to this pin.  
Output Enable.*  
2
OE  
Input  
See 7. Ordering Information on page 21.  
3
4
GND  
Ground  
Output  
Electrical and Case Ground.  
Oscillator Output.  
CLK+  
CLK–  
(NC for CMOS)  
Output  
(N/A for CMOS)  
Complementary Output.  
5
(NC for CMOS, do not make external connection).  
6
7
VDD  
Power  
Power Supply Voltage.  
2
SDA  
Bidirectional  
Open Drain  
I C Serial Data.  
2
8
SCL  
Input  
I C Serial Clock.  
*Note: OE pin includes a 17 kresistor to VDD for OE active high option or 17 kto GND for OE active low option.  
Rev. 1.1  
19  
Si598/Si599  
6. Si599 (VCXO) Pin Descriptions  
(Top View)  
SDA  
7
VC  
VDD  
1
6
5
4
OE  
2
3
CLK–  
CLK+  
GND  
8
SCL  
Table 16. Si599 Pin Descriptions  
Type  
Pin  
Name  
Function  
1
VC  
Analog Input  
Input  
Control Voltage.  
Output Enable.*  
2
OE  
See 7. Ordering Information on page 21.  
Electrical and Case Ground.  
Oscillator Output.  
3
4
GND  
Ground  
Output  
CLK+  
CLK–  
(NC for CMOS)  
Output  
(N/A for CMOS)  
Complementary Output.  
5
(NC for CMOS, do not make external connection).  
6
7
VDD  
Power  
Power Supply Voltage.  
2
SDA  
Bidirectional  
Open Drain  
I C Serial Data.  
2
8
SCL  
Input  
I C Serial Clock.  
*Note: OE pin includes a 17 kresistor to VDD for OE active high option or 17 kto GND for OE active low option.  
20  
Rev. 1.1  
Si598/Si599  
7. Ordering Information  
The Si598/Si599 supports a wide variety of options including frequency range, start-up frequency, temperature  
stability, tuning slope, output format, and VDD. Specific device configurations are programmed into the Si598/Si599  
at time of shipment. Configurations are specified using the Part Number Configuration chart shown below. Silicon  
Labs provides a web browser-based part number configuration utility to simplify this process. Refer to  
www.silabs.com/VCXOPartNumber to access this tool and for further ordering instructions. The Si598/Si599 XO/  
VCXO series is supplied in an industry-standard, RoHS compliant, 8-pad, 5x7 mm package. Tape and reel  
packaging is an ordering option.  
X
X
D
G
R
59x  
X
XXX XXX  
R = Tape and Reel  
Blank = Coil Tape  
Operating Temp Range C)  
–40 to +85 °C  
598 Programmable  
XO Product Family  
G
599 Programmable  
Device Revision Letter  
VCXO Product Family  
Six-Digit Start-up Frequency/I2C Address Designator  
The Si59x supports a user-defined start-up frequency between  
10810 MHz. The start-up frequency must be in the same frequency range  
as that specified by the Frequency Grade 3rd option code.  
1st Option Code  
The Si59x supports a user-defined I 2C 7-bit address. Each unique start-up  
frequency/I2C address combination is assigned a six-digit numerical code.  
VDD Output Format Output Enable Polarity  
A
B
C
D
E
F
G
H
J
K
M
N
P
Q
R
S
T
3.3 LVPECL  
3.3 LVDS  
3.3 CMOS  
3.3 CML  
2.5 LVPECL  
2.5 LVDS  
2.5 CMOS  
2.5 CML  
1.8 CMOS  
1.8 CML  
3.3 LVPECL  
3.3 LVDS  
3.3 CMOS  
3.3 CML  
2.5 LVPECL  
2.5 LVDS  
2.5 CMOS  
2.5 CML  
1.8 CMOS  
1.8 CML  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
This code can be requested during the part number request process  
. Refer  
to www.silabs.com/VCXOPartNumber to request an Si59x part number.  
3rd Option Code  
Frequency Grade  
Code  
Frequency Range Supported (MHz)  
10-810  
10-280  
A
B
C
10-160 (CMOS available to 160 MHz)  
2nd Option Code  
Code Temperature Stability (ppm, max , ±) Total Stablility (ppm, max, ±)  
A
B
C
50  
25  
20  
100  
50  
30  
Si598  
U
V
W
2nd Option Code  
Tuning Slope  
Note:  
Temperature  
Minimum APR  
CMOS available to 160 MHz.  
Stability  
± ppm (max)  
Kv  
ppm/V (typ)  
380  
(±ppm) for VDD @  
Code  
A
B
C
D
E
F
G
3.3 V  
370  
160  
130  
100  
65  
70  
35  
15  
2.5 V  
275  
110  
80  
75  
50  
45  
20  
N/A  
1.8 V  
200  
80  
50  
40  
25  
10  
N/A  
N/A  
20  
20  
50  
20  
20  
50  
50  
20  
185  
185  
125  
95  
125  
95  
45  
H
Notes:  
Si599  
1. For best jitter and phase noise performance , always choose the smallest Kv that meets  
the application’s minimum APR requirements . See AN266 for more information.  
2. APR is the ability of a VCXO to track a signal over the product lifetime. A VCXO with an  
APR of ±25 ppm is able to lock to a clock with a ±25 ppm stability over 15 years over all  
operating conditions.  
3. Nominal pull range (±) = 0.5 x VDD x tuning slope.  
4. Minimum APR values noted above include worst case values for all parameters .  
Figure 5. Part Number Convention  
Rev. 1.1  
21  
Si598/Si599  
Table 17. Standard Si598 Part Numbers  
2
Part Number  
VDD  
Output  
Format  
Total Stability Frequency  
Range  
Startup  
Frequency  
I C Address  
598CCC000107DG  
598BCA000107DG  
3.3V  
3.3V  
CMOS  
LVDS  
30 ppm  
30 ppm  
10–160 MHz  
10–810 MHz  
10 MHz  
10 MHz  
0x55  
0x55  
22  
Rev. 1.1  
Si598/Si599  
8. Si59x Mark Specification  
Figure 6 illustrates the mark specification for the Si59x. Table 18 lists the line information.  
Figure 6. Mark Specification  
Table 18. Si59x Top Mark Description  
Line  
Position  
Description  
1
1–10  
“SiLabs"+ Part Family Number, 59x (first 3 characters in part number where x = 8  
indicates a 598 device and x = 9 indicates a 599 device).  
2
3
1–10  
Option1 + Option2 + Option3 + ConfigNum(6) + Temp  
Trace Code  
Pin 1 orientation mark (dot)  
Position 1  
Position 2  
Product Revision (D)  
Tiny Trace Code (4 alphanumeric characters per assembly release instructions)  
Year (least significant year digit), to be assigned by assembly site (ex: 2010 = 0)  
Calendar Work Week number (1–53), to be assigned by assembly site  
“+” to indicate Pb-Free and RoHS-compliant  
Position 3–6  
Position 7  
Position 8–9  
Position 10  
Rev. 1.1  
23  
Si598/Si599  
9. Outline Diagram and Suggested Pad Layout  
Figure 7 illustrates the package details for the Si598/Si599. Table 19 lists the values for the dimensions shown in  
the illustration.  
Figure 7. Si598/Si599 Outline Diagram  
Table 19. Package Diagram Dimensions (mm)  
Dimension  
Min  
1.50  
1.30  
0.90  
0.50  
0.30  
Nom  
1.65  
1.40  
1.00  
0.60  
Max  
1.80  
1.50  
1.10  
0.70  
0.60  
A
b
b1  
c
c1  
D
D1  
e
E
E1  
H
L
L1  
p
5.00 BSC  
4.40  
2.54 BSC  
7.00 BSC  
6.20  
4.30  
4.50  
6.10  
0.55  
1.17  
1.07  
1.80  
6.30  
0.75  
1.37  
1.27  
2.60  
0.65  
1.27  
1.17  
R
0.70 REF  
aaa  
bbb  
ccc  
ddd  
eee  
0.15  
0.15  
0.10  
0.10  
0.05  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
24  
Rev. 1.1  
Si598/Si599  
10. 8-Pin PCB Land Pattern  
Figure 8 illustrates the 8-pin PCB land pattern for the Si598/Si599. Table 20 lists the values for the dimensions  
shown in the illustration.  
Figure 8. Si598/Si599 PCB Land Pattern  
Table 20. PCB Land Pattern Dimensions (mm)  
Dimension  
Min  
Max  
D2  
D3  
5.08 REF  
5.705 REF  
2.54 BSC  
4.20 REF  
e
E2  
GD  
GE  
VD  
VE  
0.84  
2.00  
8.20 REF  
7.30 REF  
1.70 TYP  
1.545 TYP  
2.15 REF  
1.3 REF  
X1  
X2  
Y1  
Y2  
ZD  
6.78  
6.30  
ZE  
Note:  
1. Dimensioning and tolerancing per the ANSI Y14.5M-1994  
specification.  
2. Land pattern design follows IPC-7351 guidelines.  
3. All dimensions shown are at maximum material condition  
(MMC).  
4. Controlling dimension is in millimeters (mm).  
Rev. 1.1  
25  
Si598/Si599  
REVISION HISTORY  
Revision 1.1  
June, 2018  
Changed “Trays” to “Coil Tape” in 7. Ordering Information on page 21.  
Revision 1.0  
Updated Register 135, “NewFreq/Freeze/Memory Control,” on page 17.  
Updated Register 137, “Freeze DCO,” on page 18.  
Revision 0.9  
Updated Si598/599 devices to support frequencies up to 810 MHz for LVPECL, LVDS, and CML outputs.  
Added Table 13, “Thermal Characteristics,” on page 10.  
Updated ESD HBM sensitivity rating in Table 14 on page 10.  
Updated Table 11 on page 9 to include "Moisture Sensitivity Level" and "Contact Pads" rows.  
Updated Figure 6 and Table 18 on page 23 to reflect specific marking information.  
Corrected pin 7 and pin 8 designation in package diagram in Figure 7 on page 24.  
26  
Rev. 1.1  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave, and others are trademarks or  
registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited.  
All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

598AAA000141DG

Oscillator, 10MHz Min, 810MHz Max, 810MHz Nom
SILICON

598AAA000141DGR

Oscillator, 10MHz Min, 810MHz Max, 810MHz Nom
SILICON

598AAA000716DGR

Oscillator, 10MHz Min, 810MHz Max, 810MHz Nom
SILICON

598AAA002089DG

LVPECL Output Clock Oscillator,
SILICON

598AAA002089DGR

LVPECL Output Clock Oscillator,
SILICON

598AAC000107DGR

Oscillator, 10MHz Min, 160MHz Max, 160MHz Nom
SILICON

598ACA000770DG

Oscillator, 10MHz Min, 810MHz Max, 810MHz Nom
SILICON

598ACA000962DGR

Oscillator, 10MHz Min, 810MHz Max, 810MHz Nom
SILICON

598ACC000107DGR

Oscillator, 10MHz Min, 160MHz Max, 160MHz Nom
SILICON

598AT

Analog IC
ETC

598BAC000107DGR

Oscillator, 10MHz Min, 160MHz Max, 160MHz Nom
SILICON

598BAC000121DG

Oscillator, 10MHz Min, 160MHz Max, 160MHz Nom
SILICON