78M6618-IM/F [SILERGY]

Octal Power and Energy Measurement IC;
78M6618-IM/F
型号: 78M6618-IM/F
厂家: SILERGY    SILERGY
描述:

Octal Power and Energy Measurement IC

文件: 总32页 (文件大小:593K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev 2, 4/16  
78M6618  
Octal Power and  
Energy Measurement IC  
DATA SHEET  
APRIL 2016  
DESCRIPTION  
FEATURES  
The Teridian 78M6618 is a highly integrated IC for independent  
monitoring and measurement of up to eight single-phase AC  
outlets. With multiple host interface options, an integrated LCD  
driver, and configurable I/Os, the device is ideal for metered  
power distribution units (PDUs) and rack enclosures for the data  
center, as well as intelligent power strips and subpanels in the  
grid-friendly digital home.  
< 0.5% Wh Accuracy Over Wide 2000:1  
Current Range and Over Temperature  
Exceeds IEC 62053/ANSI C12.20 Standards  
Voltage Reference < 40ppm/°C  
10 Sensor InputsV3P3 Referenced  
21-Bit Delta-Sigma ADC with Independent  
32-Bit Compute Engine (CE)  
At the measurement interface, the device provides 10 analog  
inputs for interfacing to voltage and current sensors. Scaled  
voltages from the sensors are fed to our Single Converter  
Technology® that uses a 21-bit delta-sigma ADC, independent  
32-bit compute engine (CE), digital temperature compensation,  
and precision voltage references to provide better than 0.5%  
accuracy over a wide 2000:1 dynamic range.  
8-Bit MPU (80515), One Clock Cycle per  
Instruction with 4KB MPU XRAM  
128KB Flash with Security  
Integrated ICE for MPU Debug  
32kHz Time Base with Hardware Watchdog  
Timer  
The integrated MPU core and 128KB of flash memory provides  
a flexible means of configuration, post-processing, data  
formatting, interfacing to host processor through a UART or  
SPIinterface, displaying output data to an LCD, or using DIO  
pins for intelligent relay control. Complete firmware for common  
applications is available from Teridian and can be loaded into  
the IC during manufacturing test. Alternatively, a complete array  
of ICE, development tools, and programming libraries are  
available to allow customization MPU code for each application.  
UART and High-Speed Slave SPI Host Interface  
Options  
Up to 19 General-Purpose 5V Tolerant I/O Pins  
LCD Driver (Up to 70 Pixels)  
Packaged in a Lead(Pb)-Free/RoHS-Compliant  
(6/6) 68-Pin QFN  
Robust Sub-Metering Application Firmware:  
o
True RMS Calculations for Current,  
Voltage, Line Frequency, Real Power,  
Reactive Power, Apparent Power, and  
Power Factor  
LIVE  
CT-1  
CT-2  
CT-3  
CT-4  
CT-5  
CT-6  
CT-7  
CT-8  
OUTLET1  
OUTLET2  
OUTLET3  
OUTLET4  
OUTLET5  
OUTLET6  
OUTLET7  
OUTLET8  
o
o
Accumulated Watt-Hours, Kilowatt-Hours,  
and Cost  
AC to DC  
LIVE  
POWER SUPPLY  
Intelligent Switch Control at Zero  
Crossings  
-
+
NEUTRAL  
NEUTRAL  
CONVERTER  
IA  
V3.3A V3.3D GNDA GNDD  
o
o
o
o
Digital Temperature Compensation  
Phase Compensation (15)  
Quick Calibration Routines  
46-64Hz Line Frequency Range with  
Same Calibration  
REGULATOR  
IB  
IC  
ID  
IE  
IF  
BATTERY  
(optional)  
VBAT  
TERIDIAN  
78M6618  
V2.5  
UARTs  
TX  
Host uC,  
additional 6618s  
RX  
IG  
IH  
OPT_TX  
OPT_RX  
TEMP  
SENSOR  
I2C  
RAM  
EEPROM  
(optional)  
VA  
VB  
o
o
Programmable Alarm Thresholds  
COMPUTE  
ENGINE  
SPI  
TIMERS  
RTC  
Host uC,  
additional 6618s  
High-Level UART Communication  
Protocols  
VREF  
COMPARATOR  
FLASH  
DC  
V1  
POWER FAULT  
o
High-Level SPI Communication Protocols  
80515  
MPU  
RELAY DRIVERS,  
7-SEG LCD, etc.  
(optional)  
OSC/PLL  
DIO [1:19]  
SEG [1:35]  
XIN  
32 kHz  
XOUT  
ICE  
Single Converter Technology is a registered trademark of  
Silergy Corp  
SPI is a trademark of Motorola, Inc.  
Rev. 2  
© 2016 Silergy Corp  
1
78M6618 Data Sheet  
Table of Contents  
1
Hardware Functional Description .....................................................................................................5  
1.1 Hardware Overview .....................................................................................................................5  
1.2 Device Reset................................................................................................................................7  
1.3 Power Management.....................................................................................................................7  
1.3.1 Voltage Regulator ............................................................................................................7  
1.3.2 Power Fault Management................................................................................................7  
1.3.3 BROWNOUT....................................................................................................................7  
1.3.4 SLEEP mode ...................................................................................................................7  
1.4 Analog Front End (AFE)...............................................................................................................7  
1.4.1 Analog Current and Voltage Inputs .................................................................................8  
1.5 Digital Computation Engine (CE).................................................................................................8  
1.6 80515 MPU Core .........................................................................................................................8  
1.6.1 SFR..................................................................................................................................9  
1.7 XRAM...........................................................................................................................................9  
1.8 IORAM .........................................................................................................................................9  
1.9 FLASH..........................................................................................................................................9  
1.9.1 Program Security.............................................................................................................9  
1.10 Oscillator ......................................................................................................................................9  
1.11 PLL and Internal Clock Generation..............................................................................................9  
1.12 Real-Time Clock (RTC)..............................................................................................................10  
1.13 Hardware Watchdog Timer........................................................................................................10  
1.14 Temperature Sensor..................................................................................................................10  
1.15 General Purpose Digital I/O.......................................................................................................10  
1.16 LCD Drivers ...............................................................................................................................11  
1.17 EEPROM Interface ....................................................................................................................11  
1.18 SPI Slave Port............................................................................................................................11  
1.19 Test Port.....................................................................................................................................12  
1.20 UARTs........................................................................................................................................13  
1.20.1 UART1 (OPT_TX/OPT_RX) ..........................................................................................13  
1.21 In Circuit Emulator (ICE) Port ....................................................................................................13  
2
Electrical Specifications...................................................................................................................14  
2.1 Absolute Maximum Ratings .......................................................................................................14  
2.2 Recommended External Components.......................................................................................15  
2.3 Recommended Operating Conditions........................................................................................15  
2.4 Performance Specifications .......................................................................................................16  
2.4.1 Input Logic Levels..........................................................................................................16  
2.4.2 Output Logic Levels .......................................................................................................16  
2.4.3 Power-Fault Comparator ...............................................................................................16  
2.4.4 Battery Monitor...............................................................................................................17  
2.4.5 Supply Current...............................................................................................................17  
2.4.6 V3P3D Switch................................................................................................................17  
2.4.7 2.5 V Voltage Regulator.................................................................................................18  
2.4.8 Low-Power Voltage Regulator.......................................................................................18  
2.4.9 Crystal Oscillator............................................................................................................18  
2.4.10 LCD DAC .......................................................................................................................18  
2.4.11 LCD Drivers ...................................................................................................................19  
2.4.12 Optical Interface.............................................................................................................19  
2.4.13 Temperature Sensor......................................................................................................19  
2.4.14 VREF .............................................................................................................................20  
2.4.15 ADC Converter, V3P3A Referenced..............................................................................21  
2.5 Timing Specifications.................................................................................................................22  
2.5.1 Flash Memory................................................................................................................22  
2.5.2 EEPROM Interface ........................................................................................................22  
2.5.3 RESET...........................................................................................................................22  
2.5.4 RTC................................................................................................................................22  
2.5.5 SPI Slave Port (MISSION Mode)...................................................................................23  
2
Rev. 2  
78M6618 Data Sheet  
3
4
Packaging ..........................................................................................................................................24  
3.1 68-Pin QFN Package.................................................................................................................24  
3.1.1 Pinout.............................................................................................................................24  
3.1.2 68-Pin QFN Package Outline ........................................................................................25  
3.1.3 Recommended PCB Land Pattern for the QFN-68 Package........................................26  
Pin Descriptions................................................................................................................................27  
4.1 Power and Ground Pins.............................................................................................................27  
4.2 Analog Pins................................................................................................................................27  
4.3 Digital Pins .................................................................................................................................28  
5
6
7
8
9
I/O Equivalent Circuits......................................................................................................................29  
Ordering Information........................................................................................................................30  
Contact Information..........................................................................................................................30  
Appendix A: Acronyms ....................................................................................................................31  
Revision History................................................................................................................................32  
Rev. 2  
3
78M6618 Data Sheet  
Figures  
Figure 1: 78M6618 IC Functional Block Diagram .........................................................................................6  
Figure 2: AFE Block Diagram........................................................................................................................8  
Figure 3: SPI Slave Port: Typical Read and Write Operations ...................................................................12  
Figure 4: SPI Slave Port (MISSION Mode) Timing.....................................................................................23  
Figure 5: Pinout for QFN-68 Package.........................................................................................................24  
Figure 6: QFN-68 Package Outline (Top, Bottom, and Side View) ............................................................25  
Figure 7: PCB Land Pattern for QFN 68 Package......................................................................................26  
Figure 8: I/O Equivalent Circuits .................................................................................................................29  
Tables  
Table 1: SPI Command Description............................................................................................................12  
Table 2: Absolute Maximum Ratings ..........................................................................................................14  
Table 3: Recommended External Components..........................................................................................15  
Table 4: Recommended Operating Conditions...........................................................................................15  
Table 5: Input Logic Levels .........................................................................................................................16  
Table 6: Output Logic Levels ......................................................................................................................16  
Table 7: Power-Fault Comparator Performance Specifications..................................................................16  
Table 8: Battery Monitor Performance Specifications (BME= 1).................................................................17  
Table 9: Supply Current Performance Specifications .................................................................................17  
Table 10: V3P3D Switch Performance Specifications ................................................................................17  
Table 11: 2.5 V Voltage Regulator Performance Specifications.................................................................18  
Table 12: Low-Power Voltage Regulator Performance Specifications .......................................................18  
Table 13: Crystal Oscillator Performance Specifications............................................................................18  
Table 14: LCD DAC Performance Specifications .......................................................................................18  
Table 15: LCD Driver Performance Specifications .....................................................................................19  
Table 16: Optical Interface Performance Specifications.............................................................................19  
Table 17: Temperature Sensor Performance Specifications......................................................................19  
Table 18: VREF Performance Specifications..............................................................................................20  
Table 19: ADC Converter Performance Specifications...............................................................................21  
Table 20: Flash Memory Timing Specifications ..........................................................................................22  
Table 21: EEPROM Interface Timing..........................................................................................................22  
Table 22: RESET Timing ............................................................................................................................22  
Table 23: RTC Range .................................................................................................................................22  
Table 24: SPI Slave Port (MISSION Mode) Timing ....................................................................................23  
Table 25: Recommended PCB Land Pattern Dimensions..........................................................................26  
Table 26: Power and Ground Pins..............................................................................................................27  
Table 27: Analog Pins.................................................................................................................................27  
Table 28: Digital Pins ..................................................................................................................................28  
Table 29: Ordering Information ...................................................................................................................30  
4
Rev. 2  
78M6618 Data Sheet  
1 Hardware Functional Description  
1.1 Hardware Overview  
The Teridian 78M6618 single-chip measurement and monitoring IC integrates all the primary AC  
measurement and control blocks required to implement an 8-outlet single-phase PDU with per outlet  
metering and intelligent relay control The 78M6618 includes:  
A ten-input analog front end (AFE)  
An independent digital computation engine (CE)  
An 8051-compatible microprocessor (MPU) which executes one instruction per clock cycle (80515)  
A precision voltage reference  
A temperature sensor  
RAM and Flash memory  
A variety of I/O pins  
LCD drivers  
Various current sensor technologies are supported including Current Transformers (CT), Resistive Shunts  
and Rogowski coils.  
In a sub-metering application, the 32-bit compute engine (CE) of the 78M6618 sequentially process the  
samples from the analog inputs on pins IA, IB, IC, ID, IE, IF, IG, IH, VA, VB and performs calculations to  
measure active energy (Wh) and reactive energy (VARh), as well as A2h and V2h for four-quadrant  
measurement. These measurements are then accessed by the MPU, processed further, and output via  
the peripheral devices available to the MPU.  
In addition to the temperature-trimmed ultra-precision voltage reference, the on-chip digital temperature  
compensation mechanism includes a temperature sensor and associated controls for correction of  
undesirable temperature effects on measurement accuracy. Temperature-dependent external  
components such as a crystal oscillator and current sensors can be characterized and their correction  
factors can be programmed to produce measurements with exceptional accuracy over the industrial  
temperature range.  
A block diagram of the 78M6618 IC is shown in Figure 1. A detailed description of the various functional  
blocks follows.  
Rev. 2  
5
78M6618 Data Sheet  
VREF  
V3P3A GNDA  
V3P3SYS  
IA  
IB  
IC  
ID  
IE  
IF  
V3P3D  
VBAT  
VBIAS  
VBIAS  
FIR  
RTM  
VADC  
to TMUX  
VOLT  
REG  
RPULSE  
WPULSE  
XPULSE  
YPULSE  
CE  
MUXP  
VREF  
IG  
IH  
GNDD  
V2P5  
VA  
VB  
CE_PROG  
2.5V to logic  
32  
16  
CE_DATA  
MULTI-  
PURPOSE  
IO  
VBAT  
TEMP  
MCK  
PLL  
FLASH  
128KB  
XRAM  
4kB  
CK_CE  
DIO3  
80MHz  
CK_MPU  
XIN  
OSC  
(32.768kHz)  
DIO43 / SEG63  
XOUT  
CKTESTI  
CKTEST  
DIO19 / SEG39  
DIO18 / SEG38  
DIO17 / SEG37  
DIO16 / SEG36  
DIO15 / SEG35  
DIO14 / SEG34  
DIO13 / SEG33  
RTC  
LCD DISPLAY  
DRIVER  
DIO11 / SEG31  
DIO10 / SEG30  
TEST  
MODE  
TEST  
COM0, COM1  
SEG0...  
COM1, 0  
DIO9 / SEG29  
DIO8 / SEG28  
DIO7 / SEG27  
DIO6 / SEG26  
DIO5 / SEG25  
DIO4 / SEG24  
RX  
TX  
DIO_4...  
UART  
DIGITAL I/O  
SPI SLAVE  
EEPROM I/F  
XRAM BUS  
8
PCSZ  
PCLK  
PSDI  
SEG19  
SEG18  
SEG17  
SEG16  
SEG15  
SEG14  
PSDO  
OPT_RX /  
DIO1  
80515  
MPU  
SDATA  
SCLK  
OPTICAL  
SEG12  
OPT_TX /  
DIO2  
SEG11 / E_RST  
SEG10 / E_TCLK  
SEG9 / E_RXTX  
SEG8  
MOD  
SEG7  
SEG6 / PSDI  
SEG5 / PCSZ  
SEG4 / PSDO  
SEG3 / PCLK  
SEG2  
SFR  
E_RXTX  
E_TCLK  
E_RSTZ  
EMULATOR  
SEG1  
SEG0  
ICE_E  
FAULTZ  
POWER FAULT  
V1  
TEST  
MUX  
TMUXOUT  
RESET  
ICE_E  
Figure 1: 78M6618 IC Functional Block Diagram  
6
Rev. 2  
78M6618 Data Sheet  
1.2 Device Reset  
When the RESET pin is pulled high, all digital activity stops. Only the oscillator and RTC module continue  
to run. Additionally, all IORAM bits are set to their default states. As long as V1 (the input voltage at the  
power fault block) is greater than VBIAS, the internal 2.5 V regulator will continue to provide power to the  
digital section.  
Once initiated, the reset mode will persist until the reset timer times out. This will occur in 4096 cycles of  
the crystal clock after RESET goes low, at which time the MPU will begin executing its preboot and boot  
sequences from address 0x0000.  
1.3 Power Management  
1.3.1 Voltage Regulator  
The 78M6618 provides an on chip voltage regulator to create a 2.5V supply for the digital logic. This  
regulator can be run off of the V3P3SYS or VBAT inputs depending upon power availability.  
1.3.2 Power Fault Management  
The 78M6618 includes both hardware and software controlled power fault management. V1 is connected  
to a comparator to monitor system power fault conditions. When the output of the comparator falls  
(V1<VBIAS) the device will enter BROWNOUT mode if there is sufficient voltage on VBAT. If there is not  
sufficient voltage on VBAT then the part will enter RESET mode.  
1.3.3 BROWNOUT  
In BROWNOUT mode the AFE, CE and other analog circuits are disabled leaving only the non-metering  
digital circuits running. The MPU is reduced to the crystal clock rate (32kHz). From BROWNOUT the  
78M6618 SW may choose to voluntarily enter other power management modes. See the 78M6618  
Programmer’s Reference Manual for more information regarding the programmability of the 78M6618  
power management modes. If the overhead on VBAT is insufficient to maintain the BROWNOUT mode  
then the device will attempt to enter SLEEP mode. If power is restored the device will return to normal  
(mission mode) operation once the PLL has settled.  
1.3.4 SLEEP Mode  
SLEEP mode provides the savings in battery current as only the Oscillator, and RTC functions are active.  
As the CPU is disabled in SLEEP, the device can only wake up from SLEEP by the restoration of power  
or RTC autowake.  
1.4 Analog Front End (AFE)  
The AFE functions as a data acquisition system, controlled by the MPU. The main blocks in the AFE  
consist of an input multiplexer, a delta-sigma A/D converter, a FIR(Finite Impulse Response) filter and a  
voltage reference. The metrology input signals (IAIH, VA, VB, VBAT and TEMP) are multiplexed before  
being sampled by the ADC. The ADC output is decimated by the FIR filter and the results are stored in  
XRAM where they can be accessed by the CE and the MPU. The AFE is programmable for various  
system requirements including but not limited to:  
Programmable Input Multiplexer settings  
Voltage reference, Battery and Temperature monitors inputs  
Programmable ADC sampling rate  
Programmable FIR length/resolution  
Rev. 2  
7
78M6618 Data Sheet  
IA  
IB  
VREF  
IC  
ID  
IE  
 ADC  
CONVERTER  
IF  
MUX  
VBIAS  
V3P3A  
IG  
IH  
VA  
VB  
VBIAS  
VREF  
-
+
FIR  
VBAT  
TEMP  
VREF  
MUX  
CROSS  
CK32  
MUX  
CTRL  
4.9152 MHz  
FIR_DONE  
FIR_START  
Figure 2: AFE Block Diagram  
See the 78M6618 Programmer’s Reference Manual for more information regarding the programmability  
of the 78M6618 AFE.  
1.4.1 Analog Current and Voltage Inputs  
Pins IA, IB, IC, ID, IE, IF, IG, IH, VA, VB are analog inputs the AFE that provide support for measuring  
current and voltage in a variety of ways. Various current sensor technologies are supported including  
Current Transformers (CT), Resistive Shunts and Rogowski coils.  
1.5 Digital Computation Engine (CE)  
The CE, a dedicated 32-bit digital signal processor, performs the precision computations necessary to  
accurately measure energy. Typically CE calculations and processes include:  
Scaling of the processed samples based on calibration coefficients.  
Frequency-insensitive delay cancellation on all channels  
90phase shifter (for narrowband VAR calculations).  
Monitoring of the input signal frequency (for frequency and phase information).  
Monitoring of the input signal amplitude (for sag detection).  
Multiplication of each voltage and current sample to obtain the energy per sample.  
RTM(Real Time Monitor) for debug purposes  
Pulse Generators used to output CE status indicators (e.g. SAG) directly to designated DIO pins.  
Due to the custom nature and complexity of the CE, generally, pre-compiled CE code is provided by  
Teridian as a part of the available reference firmware and is not modified by the user. Please contact  
Teridian support for more information regarding CE code.  
See the 78M6618 Programmer’s Reference Manual for more information on interfacing to and  
configuration of the 78M6618 CE.  
1.6 80515 MPU Core  
The 78M6618 includes an 80515 MPU (8-bit, 8051-compatible) that processes most instructions in one clock  
cycle. The 80515 architecture eliminates redundant bus states and implements parallel execution of fetch and  
execution phases. Normally, a machine cycle is aligned with a memory fetch, therefore, most of the 1-byte  
instructions are performed in a single machine cycle (MPU clock cycle). This leads to an 8x average  
performance improvement (in terms of MIPS) over the Intel8051 device running at the same clock frequency.  
See the 78M6618 Programmer’s Reference Manual for more information regarding the programmability of  
MPU Memory Organization, Special Function Registers, Interrupts, Counters, and other CPU controls.  
8
Rev. 2  
78M6618 Data Sheet  
1.6.1 SFR  
Several custom Special Function Registers (SFR) registers are implemented in the 78M6618’s 80515  
MPU. See the 78M6618 Programmer’s Reference Manual for more information regarding the mapping of  
functionality to specific SFR and IORAM addresses.  
1.7 XRAM  
The CE and MPU share a single, general purpose 4 KB RAM (also referred to as XRAM) for data. The  
XRAM is natively accessible as 32bit words from the CE and on 8 bit boundaries from the CPU. The  
XRAM is accessed by the CPU through addresses 0x0000 to 0x0FFF.  
1.8 IORAM  
The MPU accesses most of its external input and output functionality as well as programmable  
functionality through memory mapped IO (IORAM). The IORAM is accessed by the CPU as data  
addresses 0x2000 to 0x20FF. See the 78M6618 Programmer’s Reference Manual for more information  
regarding the mapping of functionality to specific IORAM addresses.  
1.9 FLASH  
The 78M6618 includes 128 KB of on-chip Flash memory. For read/write access from the CPU, the flash  
is broken into four 32 KB banks that are managed by SFR settings. For erasing of the flash memory from  
the CPU the flash is segmented into individual 1024-byte pages and also controlled by SFR settings. See  
the 78M6618 Programmer’s Reference Manual for more information regarding the use of flash and the  
mapping of functionality to specific SFR settings.  
1.9.1 Program Security  
The 78M6618 has functionality to guarantee the security of the user’s MPU and CE program code. When  
enabled, the security feature limits the ICE to global Flash erase operations only. All other ICE  
operations are blocked. Security is enabled by MPU code that is executed in a pre-boot interval before  
the primary boot sequence begins. Once security is enabled, the only way to disable it is to perform a  
global erase of the Flash, followed by a chip reset.  
1.10 Oscillator  
The 78M6618 oscillator drives a standard 32.768 kHz watch crystal. These crystals are accurate and do  
not require a high-current oscillator circuit. The 78M6618 oscillator has been designed specifically to  
handle these crystals and is compatible with their high impedance and limited power handling capability.  
The oscillator is powered directly and only from the VBAT pin, which therefore must be connected to a  
DC voltage source not to exceed 4 V. The oscillator requires approximately 100 nA, which is negligible  
compared to the internal leakage of a battery  
Since the oscillator is self-biasing, an external resistor must not be connected across the crystal.  
1.11 PLL and Internal Clock Generation  
Timing for the device is derived from the 32.768 kHz crystal oscillator output. The PLL and on-chip timing  
functions provide several clocks which include:  
The MPU clock (CKMPU)  
The emulator clock (2 x CKMPU)  
The clock for the CE (CKCE)  
The delta-sigma ADC and FIR clock(CKADC, CKFIR)  
These internal clocks can be adjusted for various programmable rates which affect device functionality.  
See the 78M6618 Programmer’s Reference Manual for more information regarding the programmability  
of the 78M6618 PLL and internal clock generation modules.  
Rev. 2  
9
78M6618 Data Sheet  
1.12 Real-Time Clock (RTC)  
The RTC circuit is driven directly by the crystal oscillator. The RTC consists of a counter chain and output  
registers. The counter chain consists of registers for seconds, minutes, hours, day of week, day of  
month, month, and year (including leap years). See the 78M6618 Programmer’s Reference Manual for  
more information regarding the use of the 78M6618 RTC.  
1.13 Hardware Watchdog Timer  
In addition to the basic watchdog timer included in the 80515 MPU, an  
V1  
independent, robust, fixed-duration, watchdog timer (WDT) is included in  
V3P3  
V3P3 - 10mV  
WDT dis-  
abled  
the device. It uses the crystal oscillator as its time base and must be  
refreshed by the MPU firmware at least every 1.5 seconds. When not  
refreshed on time the WDT overflows, and the part is reset as if the RESET  
pin were pulled high, except that the IORAM bits will be maintained. 4096  
oscillator cycles (or 125 ms) after the WDT overflow, the MPU will be  
launched from program address 0x0000. Asserting ICE_E will deactivate  
the WDT.  
V3P3 -  
400mV  
Normal  
operation,  
WDT  
enabled  
VBIAS  
The WDT can also be disabled by tying the V1 pin to V3P3. This also  
deactivates V1 power fault detection. Since there is no method in firmware  
to disable the crystal oscillator or the WDT, it is guaranteed that whatever  
state the part might find itself in, upon watchdog overflow, the part will be  
reset to a known state.  
Battery  
modes  
0V  
Figure 3: Functions Defined by V1  
1.14 Temperature Sensor  
The device includes an on-chip temperature sensor for determining the temperature of the bandgap re-  
ference. The primary use of the temperature data is to determine the magnitude of compensation required  
to offset the thermal drift in the system. See the 78M6618 Programmer’s Reference Manual for more  
information regarding the use of the 78M6618 Temperature Sensor.  
1.15 General Purpose Digital I/O  
The 78M6618 includes up to 19 pins of general-purpose digital I/O. When configured as inputs, these  
pins are 5V compatible (no current-limiting resistors are needed). On reset or power-up, all DIO pins are  
inputs until they are configured for the desired direction under MPU control. The Digital I/O pins can be  
categorized as follows:  
DIO1/OPT_RX, DIO2/OPT_TX  
DIO3  
DIO4/SEG24 -- DIO11/SEG31 (8 pins) LCD/DIO pins  
DIO13/SEG33 -- DIO19/SEG39 (7 pins) LCD/DIO pins  
(2 pins) UART/DIO pin  
(1 pin ) Dedicated DIO pin  
DIO43/SEG63  
(1 pin ) LCD/DIO pin  
10  
Rev. 2  
78M6618 Data Sheet  
1.16 LCD Drivers  
The 78M6618 contains a total of 35 dedicated and multiplexed LCD drivers which are grouped as follows:  
11 dedicated LCD segment drivers.  
3 drivers multiplexed with the ICE interface (E_TCLK, E_RST, E_RXTX).  
1 driver multiplexed with auxiliary signal CKTEST (SEG19).  
4 drivers multiplexed with the SPI port (PCLK, PSDO, PCSZ, PSDI).  
16 drivers multiplexed with general purpose DIO pins.  
2 common drivers for multiplexing (50%, or 100% duty cycle) always available.  
With a minimum of 15 driver pins always available and a total of 35 driver pins in the maximum con-  
figuration, the device is capable of driving between 30 to 70 pixels of LCD display. At eight pixels per digit,  
this corresponds to 3 to 8 digits. The following dedicated and multi-use pins can be assigned as LCD  
segment pins for the 78M6618:  
11 dedicated LCD segment pins: SEG0 to SEG2, SEG7, SEG8, SEG12, SEG14 to SEG18.  
8 dual-function pins: SEG3/PCLK, SEG4/PSDO, SEG5/PCSZ, SEG6/PSDI, E_RXTX/SEG9,  
E_TCLK/SEG10, E_RST/SEG11, and SEG19/CKTEST.  
16 combined DIO and segment pins: SEG24/DIO4 to SEG31/DIO11, SEG33/DIO13 to  
SEG39/DIO19, and SEG63/DIO43. Of which, DIO7/SEG27 through DIO15/SEG35 can be used for  
controlling relays.  
See the 78M6618 Programmer’s Reference Manual for more information regarding the programmability  
of the 78M6618 LCD drivers. See the 78M6618 Hardware Design Guidelines for more information  
regarding connecting the 78M6618 LCD drivers to LCDs.  
1.17 EEPROM Interface  
The 78M6618 provides hardware support for an optional two-pin or a three-wire (-wire) EEPROM  
interface.  
Two-Pin EEPROM Interface  
The dedicated 2-pin serial interface communicates with external EEPROM devices. The interface is  
multiplexed onto the DIO4 (SCK) and DIO5 (SDA) pins.  
Three-Wire (-Wire) EEPROM Interface  
A 500 kHz three-wire interface, using SDATA, SCK and a DIO pin for CS is also available.  
See the 78M6618 Programmer’s Reference Manual for more information regarding the programmability  
of the 78M6618 EEPROM interfaces. See the 78M6618 Hardware Design Guidelines for more  
information regarding connecting the 78M6618 EEPROM interfaces to various EEPROM.  
1.18 SPI Slave Port  
The slave SPI port communicates directly with the MPU data bus and is able to directly read and write  
XRAM and IORAM locations. It is also able to send commands to the MPU. The interface to the slave  
port consists of the PCSZ, PCLK, PSDI and PSDO pins. These pins are multiplexed with the LCD  
segment driver pins SEG3 to SEG6.  
A typical SPI transaction is as follows. While PCSZ is high, the port is held in an initialized/reset state.  
During this state, PSDO is held in HiZ state and all transitions on PCLK and PSDI are ignored. When  
PCSZ falls, the port will begin the transaction on the first rising edge of PCLK. A transaction consists of  
an 8-bit command, a 16-bit address and then one or more bytes of data. The transaction ends when  
PCSZ is raised. Some transactions may consist of a command only. The last SPI command and address  
(if part of the command) are available in the IORAM.  
Rev. 2  
11  
78M6618 Data Sheet  
The SPI port supports data transfers at up to 1 Mb/s. The SPI commands are described in Table 1 and  
Figure 4 illustrates the SPI Interface read and write timing.  
Table 1: SPI Command Description  
Command  
Description  
11xx xxxx ADDR D0 ... DN  
Output data on PSDO is read from RAM starting with byte at ADDR.  
ADDR will auto-increment until PCSZ is raised.  
MPU SPI interrupt is generated  
1100 0000 ADDR D0 ... DN  
10xx xxxx ADDR D0 ... DN  
1000 0000 ADDR D0 ... DN  
Output data on PSDO is read from RAM starting with byte at ADDR.  
ADDR will auto-increment until PCSZ is raised.  
No MPU SPI interrupt is generated  
Input data on PSDI is written to RAM starting with byte at ADDR.  
ADDR will auto-increment until PCSZ is raised.  
MPU SPI interrupt is generated  
Input data on PSDI is written to RAM starting with byte at ADDR.  
ADDR will auto-increment until PCSZ is raised.  
No MPU SPI interrupt is generated  
CMD  
ADDR D0 ... DN  
CMD and ADDR are available to the CPU in IORAM  
D0 … DNare ignored.  
MPU SPI interrupt is generated  
SERIALREAD  
DATA[ADDR]  
8 bit CMD  
16bitAddress  
DATA[ADDR+1]  
Extended Read. ..  
PCSZ  
PSCK  
0
7
8
23  
24  
31  
32  
39  
(FromHost) PSDI  
(From6531) PSDO  
x
C7  
C6  
C5  
C0  
A15 A14  
A1  
A0  
x
HI Z  
D7  
D6  
D1  
D0  
D7  
D6  
D1  
D0  
SERIALWRITE  
DATA[ADDR]  
8 bit CMD  
16bitAddress  
DATA[ADDR+1]  
Extended Write .. .  
PCSZ  
PSCK  
0
7
8
23  
24  
31  
32  
39  
(FromHost) PSDI  
(From6531) PSDO  
x
x
C7  
C6  
C5  
C0  
A15 A14  
A1  
A0  
D7  
D6  
D1  
D0  
D7  
D6  
D1  
D0  
HI Z  
Figure 4: SPI Slave Port: Typical Read and Write Operations  
Since the addresses are in 16-bit format, any type of XRAM data can be accessed: CE, MPU or IORAM  
but not SFRs or the 80515-internal register bank. See the 78M6618 Programmer’s Reference Manual for  
more information regarding the mapping and use of SPI functions.  
1.19 Test Port  
One out of 16 digital or 8 analog signals can be selected to be output on the TMUXOUT pin. See the  
78M6618 Programmer’s Reference Manual for more information regarding the use of TMUXOUT.  
12  
Rev. 2  
 
78M6618 Data Sheet  
1.20 UARTs  
The 78M6618 includes two UARTs (UART0 and UART1) that can be programmed to communicate with a  
variety of external devices. The UARTs are dedicated 2-wire serial interfaces, which can communicate at  
rates up to 38,400 bits/s. All UART transfers are programmable for parity enable, parity, 2 stop bits/1  
stop bit and XON/XOFF options for variable communication baud rates from 300 to 38,400 bps. See the  
78M6618 Programmer’s Reference Manual for more information regarding the use of the UART  
resources.  
1.20.1UART1 (OPT_TX/OPT_RX)  
The device includes an interface to implement an IR/optical port on UART1. The pin OPT_TX is  
designed to directly drive an external LED for transmitting data on an optical link. The pin OPT_RX has  
the same threshold as the RX(UART0) pin, but can also be used to sense the input from an external  
photo detector used as the receiver for the optical link. Alternately, the UART1 may be interfaced with a  
standard level UART transceiver. Contact Teridian support for more information.  
1.21 In Circuit Emulator (ICE) Port  
The 78M6618 implements an In Circuit Emulator(ICE) port for debug and programming of the device. To  
enable the use of the port the ICE_E pin must be pulled high. In this mode the SEG11,SEG10 and SEG9  
pins are repurposed and the E_RST, E_TCLK and E_RXTX pins respectively. Please contact Teridian  
support for more information regarding the use of the ICE interface for device programming and debug.  
Rev. 2  
13  
78M6618 Data Sheet  
2 Electrical Specifications  
2.1 Absolute Maximum Ratings  
Table 2 shows the absolute maximum ranges for the device. Stresses beyond Absolute Maximum  
Ratings may cause permanent damage to the device. These are stress ratings only and functional  
operation at these or any other conditions beyond those indicated under recommended operating  
conditions (Section 4.3) is not implied. Exposure to absolute-maximum-rated conditions for extended  
periods may affect device reliability. All voltages are with respect to GNDA.  
Table 2: Absolute Maximum Ratings  
Voltage and Current  
Supplies and Ground Pins  
V3P3SYS, V3P3A  
VBAT  
-0.5 V to 4.6 V  
-0.5 V to 4.6 V  
-0.5 V to +0.5 V  
GNDD  
Analog Output Pins  
V3P3D  
-10 mA to 10 mA,  
-0.5 V to 4.6 V  
VREF  
V2P5  
-10 mA to +10 mA,  
-0.5 V to V3P3A+0.5 V  
-10 mA to +10 mA,  
-0.5 V to 3.0 V  
Analog Input Pins  
IA, IB, IC, ID, IE, IF, IG, IH, VA, VB, V1  
-10 mA to +10 mA  
-0.5 V to V3P3A+0.5 V  
XIN, XOUT  
-10 mA to +10 mA  
-0.5 V to 3.0 V  
All Other Pins  
Configured as SEG or COM drivers  
-1 mA to +1 mA,  
-0.5 to V3P3D+0.5  
Configured as Digital Inputs  
Configured as Digital Outputs  
All other pins  
-10 mA to +10 mA,  
-0.5 to 6 V  
-15 mA to +15 mA,  
-0.5 V to V3P3D+0.5 V  
-0.5 V to V3P3D+0.5 V  
Temperature and ESD Stress  
Operating Junction Temperature (peak, 100ms)  
Operating Junction Temperature (continuous)  
Storage Temperature Range  
+140°C  
+125°C  
-45°C to +165°C  
+300C  
Lead Temperature (soldering, 10s)  
Soldering Temperature (reflow)  
+260°C  
ESD Stress on All Pins  
±4kV  
14  
Rev. 2  
 
78M6618 Data Sheet  
2.2 Recommended External Components  
Table 3: Recommended External Components  
To  
Function  
Value  
Unit  
F  
Name  
C1  
From  
V3P3A  
V3P3D  
V3P3SYS  
V2P5  
AGND  
DGND  
DGND  
DGND  
XOUT  
Bypass capacitor for 3.3 V supply  
Bypass capacitor for 3.3 V output  
Bypass capacitor for V3P3SYS  
Bypass capacitor for V2P5  
0.1 20%  
0.1 20%  
1.0 30%  
0.1 20%  
32.768  
C2  
F  
CSYS  
C2P5  
XTAL  
F  
F  
XIN  
32.768 kHz crystal electrically similar to  
ECS .327-12.5-17X or Vishay XT26T,  
load capacitance 12.5 pF.  
kHz  
CXS  
CXL  
XIN  
AGND  
AGND  
Load capacitor for crystal (depends on  
crystal specs and board parasitics).  
pF  
pF  
33 10%  
15 10%  
XOUT  
Load capacitor for crystal (depends on  
crystal specs and board parasitics).  
Notes:  
1. AGND and DGND should be connected together.  
2. V3P3SYS and V3P3A should be connected together.  
2.3 Recommended Operating Conditions  
Table 4: Recommended Operating Conditions  
Parameter  
Condition  
Min  
3.0  
0
Typ  
3.3  
Max  
3.6  
Unit  
V
V3P3SYS, V3P3A: 3.3 V Supply Voltage Normal Operation  
V3P3A and V3P3SYS must be at the  
Battery Backup  
3.6  
V
same voltage  
VBAT  
No Battery  
Externally Connect to V3P3SYS  
Battery Backup:  
BRN and LCD modes  
SLEEP mode  
3.0  
2.0  
3.8  
3.8  
V
V
Operating Temperature  
-40  
+85  
ºC  
Rev. 2  
15  
78M6618 Data Sheet  
2.4 Performance Specifications  
2.4.1 Input Logic Levels  
Table 5: Input Logic Levels  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Digital high-level input voltagea, VIH  
Digital low-level input voltagea, VIL  
2
0.8  
V
Input pull-up current, IIL  
E_RXTX,  
VIN=0 V, ICE_E=1  
10  
10  
-1  
100  
100  
1
A  
A  
A  
E_RST, CKTEST  
Other digital inputs  
0
0
VIN = V3P3D  
Input pull down current, IIH  
ICE_E  
10  
10  
-1  
100  
100  
1
A  
A  
A  
RESET  
Other digital inputs  
a In battery powered modes, digital inputs should be below 0.3 V or above 2.5 V to minimize battery current.  
2.4.2 Output Logic Levels  
Table 6: Output Logic Levels  
Parameter  
Condition  
Min  
V3P3D0.4  
V3P3D-0.6  
0
Typ  
Max  
Unit  
V
Digital high-level output voltage VOH ILOAD = 1 mA  
ILOAD = 15 mA  
V
Digital low-level output voltage VOL  
ILOAD = 1 mA  
ILOAD = 15 mA  
ISOURCE=1 mA  
ISINK=20 mA  
0.4  
0.8  
0.4  
0.7  
V
V
V
OPT_TX VOH (V3P3D-OPT_TX)  
OPT_TX VOL  
V
2.4.3 Power-Fault Comparator  
Table 7: Power-Fault Comparator Performance Specifications  
Parameter  
Condition  
Min  
-20  
0.8  
Typ  
Max  
Unit  
mV  
A  
Offset Voltage: V1-VBIAS  
Hysteresis Current: V1  
Response Time: V1  
+15  
1.2  
Vin = VBIAS 100 mV  
+100 mV overdrive  
Voltage at V1 rising  
Voltage at V1 falling  
8
37  
100  
100  
s  
s  
10  
WDT Disable Threshold: V1-V3P3A  
-400  
-10  
mV  
16  
Rev. 2  
78M6618 Data Sheet  
2.4.4 Battery Monitor  
Table 8: Battery Monitor Performance Specifications (BME= 1)  
Parameter  
Condition  
Min  
27  
Typ  
Max  
63  
Unit  
Load Resistor  
45  
kΩ  
[M40MHZ, M26MHZ] FIR_LEN=0(L=138)  
(-10%)  
-48.7  
-5.35  
(+10%)  
V  
V  
= [00], [10], or [11]  
[M40MHZ, M26MHZ] FIR_LEN=0(L=186)  
= [01]  
FIR_LEN=1(L=288)  
LSB Value  
Offset Error  
(-10%)  
-200  
-19.8  
-2.26  
(+10%)  
+100  
V  
V  
mV  
FIR_LEN=1(L=384)  
0
2.4.5 Supply Current  
Parameter  
Table 9: Supply Current Performance Specifications  
Condition  
Min  
Typ  
4.2  
8.4  
3.3  
Max  
6.35  
9.6  
Unit  
mA  
mA  
mA  
nA  
V3P3SYS current (CE off) Normal Operation,  
V3P3A = V3P3SYS = 3.3 V  
CKMPU = 614 kHz  
No Flash Memory write  
RTM_E=0, ECK_DIS=1,  
ADC_E=1, ICE_E=0  
V3P3SYS current (CE on)  
V3P3A current  
3.8  
VBAT current  
-400  
+400  
V3P3SYS current,  
Write Flash  
Normal Operation as above, except  
write Flash at maximum rate, CE_E =  
0, ADC_ E = 0  
9.1  
12  
mA  
VBAT current  
VBAT=3.6 V  
A  
BROWNOUT mode  
LCD Mode, LCD DAC off  
<25°C  
over temperature  
LCD Mode, LCD DAC on  
<25°C  
over temperature  
SLEEP Mode, 25°C  
SLEEP Mode, over temperature  
52  
250  
11  
15  
20  
30  
A  
A  
A  
A  
A  
A  
16  
21  
0.5  
0.7  
25  
35  
1
1.5  
2.4.6 V3P3D Switch  
Table 10: V3P3D Switch Performance Specifications  
Parameter  
Condition  
| IV3P3D | 1 mA  
| IV3P3D | 1 mA  
Min  
Typ  
9
Max  
15  
Unit  
On resistance V3P3SYS to V3P3D  
On resistance VBAT to V3P3D  
Ω
Ω
32  
50  
Rev. 2  
17  
78M6618 Data Sheet  
2.4.7 2.5 V Voltage Regulator  
Table 11: 2.5 V Voltage Regulator Performance Specifications  
Parameter  
Condition  
Min  
Typ  
Max  
2.7  
Unit  
V
V2P5  
Iload = 0  
2.3  
2.5  
V2P5 load regulation  
Voltage overhead V3P3-V2P5  
Iload = 0 mA to 5 mA  
40  
mV  
mV  
Iload = 5 mA, reduce V3P3  
until V2P5 drops 200 mV  
470  
RESET=0, iload=0  
-2  
+2  
mV/V  
PSSR V2P5/V3P3  
2.4.8 Low-Power Voltage Regulator  
Unless otherwise specified, V3P3SYS = V3P3A = 0.  
Table 12: Low-Power Voltage Regulator Performance Specifications  
Parameter  
Condition  
Min  
Typ  
Max  
2.7  
30  
Unit  
V
V2P5  
ILOAD = 0  
2.3  
2.5  
V2P5 load regulation  
ILOAD = 0 mA to 1 mA  
mV  
V
ILOAD = 1 mA, reduce VBAT  
until REG_LP_OK = 0  
3.0  
VBAT voltage requirement  
PSRR ΔV2P5/ΔVBAT  
ILOAD = 0  
-50  
50  
mV/V  
2.4.9 Crystal Oscillator  
Table 13: Crystal Oscillator Performance Specifications  
Parameter  
Condition Min Typ  
Max  
1
Unit  
W  
pF  
Maximum Output Power to Crystal 4 Crystal connected  
XIN to XOUT Capacitance 1  
3
Capacitance to DGND 1  
RTCA_ADJ = 0  
XIN  
XOUT  
5
5
pF  
pF  
2.4.10LCD DAC  
Table 14: LCD DAC Performance Specifications  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VLCD Voltage  
-10  
+10  
%
1 LCD_DAC 7  
VLCD V3P3(10.059LCD_DAC)0.019V  
18  
Rev. 2  
78M6618 Data Sheet  
2.4.11LCD Drivers  
The information in Table 15 applies to all COM and SEG pins with LCD_DAC[2:0] = 000.  
Table 15: LCD Driver Performance Specifications  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VLC2 Voltage  
With respect to VLCD1  
-0.1  
+0.1  
V
VLC0 Voltage,  
½ bias  
With respect to VLC2/2  
-4  
+1  
15  
15  
%
VLC0 Impedance  
9
9
ILOAD = 100 A (Isink)  
kΩ  
ILOAD = -100 A (Isource)  
1VLCD is V3P3SYS in MISSION mode and VBAT in BROWNOUT and LCD modes.  
2.4.12Optical Interface  
Table 16: Optical Interface Performance Specifications  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
OPT_TX VOH (V3P3D-OPT_TX)  
OPT_TX VOL  
ISOURCE = 1 mA  
ISINK = 20 mA  
0.4  
0.7  
V
V
2.4.13Temperature Sensor  
Table 17 shows the performance for the temperature sensor. The LSB values do not include the 8-bit left  
shift at CE input.  
Table 17: Temperature Sensor Performance Specifications  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Nominal relationship: N(T) = Sn*(T-Tn) + Nn, Tn = 25ºC  
FIR_LEN=0 (L=138)  
FIR_LEN=1 (L=288)  
Nominal  
Sensitivity (Sn)  
[M26MHZ, M40MH] =  
[00], [01], or [11]  
-104  
-947  
LSB/ºC  
3
L
FIR_LEN=0 (L=186)  
-255  
[M26MHZ, M40MHZ] =  
[10]  
S  0.00107  
n
3
[M26MHZ, M40MH] =  
[00], [01], or [11]  
FIR_LEN=0 (L=138)  
FIR_LEN=1 (L=288)  
Nominal Offset  
(Nn) 4  
49641  
451200  
LSB  
ºC  
3
FIR_LEN=0 (L=186)  
121500  
L
[M26MHZ, M40MHZ] =  
[10]  
N 0.510  
n
3
Temperature Error 2  
Tn = 25°C,  
-101  
101  
T = -40ºC to +85ºC  
n   
(N(T) Nn )  
ERR T   
T  
Sn  
1 Guaranteed by design; not production tested.  
2 Nn is measured at Tn during measurement calibration and is stored in MPU or CE for use in temperature  
calculations.  
Rev. 2  
19  
 
 
78M6618 Data Sheet  
2.4.14VREF  
Table 18 shows the performance specifications for VREF. Unless otherwise specified, VREF_DIS = 0.  
Table 18: VREF Performance Specifications  
Parameter  
Condition  
Ta = 22ºC  
Min  
Typ  
Max  
1.197  
40  
Unit  
V
VREF output voltage, VREF(22)  
VREF chop step  
1.193  
1.195  
mV  
VREF power supply sensitivity  
V3P3A = 3.0 to 3.6 V  
-1.5  
100  
1.5  
mV/V  
ΔVREF / ΔV3P3A  
VREF_DIS = 1,  
VREF input impedance  
kΩ  
VREF = 1.3 to 1.7 V  
CAL =1,  
VREF output impedance  
VNOM definition2  
2.5  
kΩ  
ILOAD = 10 A, -10 A  
VNOM(T) VREF (22)(T 22)TC1(T 22)2 TC2  
V
VNOM temperature coefficients:  
TC1  
TC2  
3.18·(52.46-TRIMT)  
V/ºC  
V/°C2  
-0.444  
VREF(T) deviation from VNOM(T)  
-401  
+401  
PPM/ºC  
VREF (T) VNOM(T)  
VNOM(T)  
106  
max( T 22 ,40)  
PPM/  
year  
VREF aging  
25  
1 Guaranteed by design; not production tested.  
2 This relationship describes the nominal behavior of VREF at different temperatures.  
20  
Rev. 2  
 
78M6618 Data Sheet  
2.4.15ADC Converter, V3P3A Referenced  
Table 19 shows the performance specifications for the ADC converter, V3P3A referenced. For this data,  
FIR_LEN=0, VREF_DIS=0 and LSB values do not include the 9-bit left shift at the CE input.  
Table 19: ADC Converter Performance Specifications  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
mV  
peak  
Recommended Input Range  
(Vin-V3P3A)  
-250  
250  
Voltage to Current Crosstalk  
Vin = 200 mV peak,  
65 Hz, on VA.  
Vcrosstalk = largest  
measurement on IA or IB  
-101  
101  
V/V  
106 *Vcrosstalk  
cos(Vin Vcrosstalk)  
Vin  
THD (First 10 harmonics) 1:  
250 mV-pk  
Vin=65 Hz,  
64 kpts FFT, Blackman-  
Harris window  
-75  
-90  
dB  
dB  
20 mV-pk  
CKCE = 5 MHz  
Input Impedance  
Vin = 65 Hz  
Vin = 65 Hz  
40  
90  
kΩ  
Temperature coefficient of Input  
Impedance  
1.7  
Ω/°C  
[M40MHZ,  
M26MHZ] =  
[00], [10], or [11]  
[M40MHZ,  
M26MHZ] =  
[01]  
FIR_LEN=0  
FIR_LEN=1  
LSB size  
3231  
355  
nV/  
LSB  
3
1.25  
4.75  
3
VLSB VREF  
L
L = FIR length  
nV/  
LSB  
FIR_LEN=0  
1319  
[M40MHZ,  
M26MHZ] =  
[00], [10], or [11]  
FIR_LEN=0  
FIR_LEN=1  
Digital Full Scale  
±97336  
±884736  
LSB  
3
L
3
L = FIR length  
[M40MHZ,  
M26MHZ] =  
[01]  
FIR_LEN=0  
±238328  
LSB  
ADC Gain Error versus  
%Power Supply Variation  
106 NoutPK 357nV /VIN  
Vin=200 mV pk, 65 Hz  
V3P3A=3.0 V, 3.6 V  
50  
10  
ppm/%  
100V3P3A/3.3  
Input Offset (Vin-V3P3A)  
-10  
mV  
1 Guaranteed by design; not production tested.  
Rev. 2  
21  
 
78M6618 Data Sheet  
2.5 Timing Specifications  
2.5.1 Flash Memory  
Table 20: Flash Memory Timing Specifications  
Parameter  
Condition  
-40°C to +85°C  
25°C  
Min  
20,000  
100  
Typ  
Max  
Unit  
Flash write cycles  
Flash data retention  
Flash data retention  
Cycles  
Years  
Years  
Cycles  
85°C  
10  
Flash byte write operations between  
page or mass erase operations  
2
Write Time per Byte  
Page Erase (1024 bytes)  
Mass Erase  
42  
20  
s  
ms  
ms  
200  
2.5.2 EEPROM Interface  
Table 21: EEPROM Interface Timing  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Write Clock frequency (I2C)  
CKMPU = 4.9152 MHz,  
Using interrupts  
78  
kHz  
CKMPU = 4.9152 MHz,  
bit-banging DIO4/5  
150  
500  
kHz  
kHz  
Write Clock frequency (3-wire)  
CKMPU = 4.9152 MHz  
2.5.3 RESET  
Table 22: RESET Timing  
Condition  
Parameter  
Min  
Typ  
Max  
Unit  
s  
Reset pulse width  
Reset pulse fall time  
5
11  
s  
1 Guaranteed by design; not production tested.  
2.5.4 RTC  
Table 23: RTC Range  
Condition  
Parameter  
Min  
2000  
Typ  
Max  
Unit  
Range for date  
2255  
year  
22  
Rev. 2  
78M6618 Data Sheet  
2.5.5 SPI Slave Port (MISSION Mode)  
Table 24: SPI Slave Port (MISSION Mode) Timing  
Parameter  
Condition  
Min  
1
Typ  
Max  
Unit  
s  
tSPIcycPCLK cycle time  
tSPILeadEnable lead time  
tSPILagEnable lag time  
15  
0
ns  
ns  
tSPIWPCLK pulse width:  
High  
Low  
40  
40  
ns  
ns  
tSPISCKPCSZ to first PCLK fall  
Ignore if PCLK is low  
when PCSZ falls.  
2
ns  
tSPIDISDisable time  
0
ns  
ns  
ns  
ns  
tSPIEVPCLK to Data Out  
tSPISUData input setup time  
tSPIHData input hold time  
15  
10  
5
PCSZ  
tSPILead  
PCLK  
tSPIcyc  
tSPILag  
tSPIW  
tSPIEV  
tSPIW  
tSPIDIS  
tSPISCK  
PSDO  
PSDI  
MSB OUT  
LSB OUT  
tSPIH  
MSB IN  
LSB IN  
Figure 5: SPI Slave Port (MISSION Mode) Timing  
Rev. 2  
23  
78M6618 Data Sheet  
3 Packaging  
3.1 68-Pin QFN Package  
3.1.1 Pinout  
1
2
3
4
5
6
7
8
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
E_RST/SEG11  
E_TCLK/SEG10  
GNDD  
SEG9/E_RXTX  
OPT_TX/DIO2  
TMUXOUT  
TX  
SEG3/PCLK  
V3P3D  
SEG19/CKTEST  
V3P3SYS  
V3P3A  
GNDA  
RESET  
V2P5  
VBAT  
RX  
SEG31/DIO11  
SEG30/DIO10  
SEG29/DIO9/YPULSE  
SEG28/DIO8/XPULSE  
SEG39/DIO19  
SEG27/DIO7/RPULSE  
SEG26/DIO6/WPULSE  
SEG25/DIO5/SDATA  
SEG24/DIO4/SDCK  
ICE_E  
Teridian  
78M6618-IM  
9
10  
11  
12  
13  
14  
15  
16  
17  
SEG4/PSDO  
SEG5/PCSZ  
SEG37/DIO17  
SEG38/DIO18  
DIO3  
COM0  
SEG18  
Figure 6: Pinout for QFN-68 Package  
24  
Rev. 2  
78M6618 Data Sheet  
3.1.2 68-Pin QFN Package Outline  
0.850  
Figure 7: QFN-68 Package Outline (Top, Bottom, and Side View)  
NOTE:  
Controlling dimensions are in mm  
Pin length is nominally 0.4mm (min. 0.3 mm, max 0.4 mm).  
Rev. 2  
25  
78M6618 Data Sheet  
3.1.3 Recommended PCB Land Pattern for the QFN-68 Package  
Figure 8: PCB Land Pattern for QFN 68 Package  
Table 25: Recommended PCB Land Pattern Dimensions  
Symbol  
Description  
Lead pitch  
Typical Dimension  
0.4 mm  
e
x
Pad width  
0.23 mm  
y
Pad length. Nee Note 3.  
See Note 1  
0.8 mm  
d
A
G
6.3 mm  
6.63 mm  
7.2 mm  
Notes:  
1. Do not place unmasked vias in the region denoted by dimension d.  
2. Soldering of bottom internal pad is not required for proper operation.  
3. The y dimension has been elongated to allow for hand soldering and reworking. Production  
assembly may allow this dimension to be reduced as long as the G dimension is maintained.  
26  
Rev. 2  
78M6618 Data Sheet  
4 Pin Descriptions  
4.1 Power and Ground Pins  
Table 26: Power and Ground Pins  
Name  
Type Circuit  
Description  
GNDA  
P
Analog ground: This pin should be connected directly to the ground  
plane.  
GNDD  
V3P3A  
P
P
Digital ground: This pin should be connected directly to the ground plane.  
Analog power supply: A 3.3 V power supply should be connected to this  
pin, must be the same voltage as V3P3SYS.  
V3P3SYS  
V3P3D  
P
System 3.3 V supply. This pin should be connected to a 3.3 V power  
supply.  
O
13  
Auxiliary voltage output of the chip, controlled by the internal 3.3 V  
selection switch. In mission mode, this pin is internally connected to  
V3P3SYS. In BROWNOUT mode, it is internally connected to VBAT.  
This pin is left unconnected in LCD and sleep mode. A bypass capacitor  
to ground should not exceed 0.1 F.  
VBAT  
V2P5  
P
12  
10  
Battery backup and oscillator power supply. A battery or super-capacitor  
is to be connected between VBAT and GNDD. If no battery is used,  
connect VBAT to V3P3SYS.  
O
Output of the internal 2.5 V regulator. Leave this pin open.  
4.2 Analog Pins  
Table 27: Analog Pins  
Description  
Name  
Type Circuit  
IA, IB,  
IC, ID,  
IE, IF,  
IG, IH  
I
6
Line Current Sense Inputs: These pins are voltage inputs to the internal A/D  
converter. Typically, they are connected to the outputs of current sensors.  
Unused pins must be tied to V3P3A.  
VA, VB  
V1  
I
I
6
7
Line Voltage Sense Inputs: These pins are voltage inputs to the internal A/D  
converter. Typically, they are connected to the outputs of resistor dividers.  
Unused pins must be tied to V3P3A.  
Comparator Input: This pin is a voltage input to the internal comparator.  
The voltage applied to the pin is compared to the internal BIAS voltage  
(1.6 V). If the input voltage is above VBIAS, the comparator output will be  
high (1). If the comparator output is low, a voltage fault will occur. A series  
5 kresistor should be connected from V1 to the resistor divider.  
VREF  
O
I
9
8
Voltage Reference for the ADC. Normally disabled and left unconnected. If  
enabled, a 0.1 F capacitor to V3P3A should be connected to this pin.  
XIN  
XOUT  
Crystal Inputs: A 32 kHz crystal should be connected across these pins.  
Typically, a 33 pF capacitor is also connected from XIN to GNDA and a  
15 pF capacitor is connected from XOUT to GNDA. It is important to mi-  
nimize the capacitance between these pins. See the crystal manufacturer  
datasheet for details. If an external clock is used, a 150 mV (p-p) clock  
signal should be applied to XIN, and XOUT should be left unconnected.  
1) Pin types: P = Power, O = Output, I = Input, I/O = Input/Output  
The circuit number denotes the equivalent circuit, as specified under Section 5, I/O Equivalent Circuits.  
Rev. 2  
27  
78M6618 Data Sheet  
4.3 Digital Pins  
Table 28: Digital Pins  
Name  
Type Circuit  
Description  
COM1,COM0  
O
5
LCD Common Outputs: These 2 pins provide the select signals for an  
LCD display.  
DIO3  
I/O  
O
3,4  
5
Dedicated DIO pin.  
Dedicated LCD Segment Output pins.  
SEG0…SEG2,  
SEG7, SEG8  
SEG12,  
SEG14…SEG18  
Multi-use pins, configurable as either LCD SEG driver or DIO.  
(DIO4 = SCK, DIO5 = SDA when configured as EEPROM interface;  
WPULSE = DIO6, VARPULSE = DIO7 when configured as pulse  
outputs). If unused, these pins must be configured as DIOs and  
set to outputs by the firmware.  
SEG24/DIO4…  
SEG31/DIO11,  
SEG33/DIO13…  
SEG39/DIO19,  
SEG63/DIO43  
I/O  
I/O  
3, 4, 5  
3, 4, 5  
Multi-use pins, configurable as either LCD SEG driver or SPI PORT.  
SEG3/PCLK  
SEG4/PSDO  
SEG5/PCSZ  
SEG6/PSDI  
Multi-use pins, configurable as either emulator port pins (when ICE_E  
pulled high) or LCD SEG drivers (when ICE_E tied to GND).  
E_RXTX/SEG9  
E_RST/SEG11  
E_TCLK/SEG10  
ICE_E  
I/O  
I/O  
O
1, 4, 5  
1, 4, 5  
4, 5  
ICE enable. When zero, E_RST, E_TCLK and E_RXTX become  
SEG32, SEG33 and SEG38 respectively. For production units, this  
pin should be pulled to GND to disable the emulator port.  
I
2
CKTEST/SEG19,  
MUXSYNC/SEG7  
O
4, 5  
Multi-use pins, configurable as either multiplexer/clock output or LCD  
segment driver using the I/O RAM registers CKOUT_E or  
MUX_SYNC_E.  
Digital output test multiplexer. Controlled by TMUX[3:0].  
TMUXOUT  
O
4
Multi-use pin, configurable as Optical Receive Input or general DIO.  
When configured as OPT_RX, this pin receives a signal from an external  
photo-detector used in an IR serial interface. If unused, this pin must  
be terminated to V3P3D or GNDD, or configured as a DIO and set  
to an output by the firmware.  
OPT_RX/DIO1  
I/O  
3, 4, 7  
Multi-use pin, configurable as either optical LED transmit output,  
WPULSE, RPULSE, or general DIO. When configured as OPT_TX,  
this pin is capable of directly driving an LED for transmitting data in  
an IR serial interface. If unused, this pin must be left open, or  
configured as a DIO and set to an output by the firmware.  
OPT_TX/DIO2  
I/O  
3, 4  
Chip reset: This input pin is used to reset the chip into a known state.  
For normal operation, this pin is pulled low. To reset the chip, this pin  
should be pulled high. This pin has an internal 30 A (nominal)  
current source pull-down. No external reset circuitry is necessary.  
RESET  
RX  
I
I
2
3
UART input. If this pin is unused, it must be terminated to V3P3D  
or GNDD.  
UART output.  
TX  
O
I
4
7
TEST  
Enables Production Test. This pin must be grounded in normal  
operation.  
Pin types: P = Power, O = Output, I = Input, I/O = Input/Output.  
The circuit number denotes the equivalent circuit, as specified in Section 5 I/O Equivalent Circuits.  
28  
Rev. 2  
78M6618 Data Sheet  
5 I/O Equivalent Circuits  
V3P3D  
V3P3A  
V3P3D  
110K  
from  
internal  
reference  
LCD SEG  
Output  
Pin  
VREF  
Pin  
LCD  
Driver  
Digital  
CMOS  
Input  
Input  
Pin  
GNDD  
GNDA  
GNDD  
LCD Output Equivalent Circuit  
Type 5:  
LCD SEG or  
pin configured as LCD SEG  
VREF Equivalent Circuit  
Type 9:  
VREF  
Digital Input Equivalent Circuit  
Type 1:  
Standard Digital Input or  
pin configured as DIO Input  
with Internal Pull-Up  
V3P3A  
V3P3D  
V3P3D  
Analog  
Input  
Pin  
from  
internal  
reference  
V2P5  
Pin  
To  
MUX  
Digital  
CMOS  
Input  
Input  
Pin  
GNDA  
GNDD  
110K  
GNDD  
GNDD  
Analog Input Equivalent Circuit  
Type 6  
V2P5 Equivalent Circuit  
Type 10:  
:
ADC Input  
V2P5  
Digital Input  
Type 2:  
Pin configured as DIO Input  
with Internal Pull-Down  
V3P3A  
Comparator  
Input  
V3P3D  
To  
VLCD  
Pin  
LCD  
Drivers  
Comparator  
Pin  
GNDA  
GNDD  
Digital  
Input  
Pin  
CMOS  
Input  
Comparator Input Equivalent  
Circuit Type 7:  
VLCD Equivalent Circuit  
Type 11:  
Comparator Input  
VLCD Power  
GNDD  
Oscillator  
Pin  
To  
Oscillator  
Power  
Down  
Circuits  
VBAT  
Pin  
Digital Input Type 3:  
Standard Digital Input or  
pin configured as DIO Input  
GNDD  
GNDD  
V3P3D  
V3P3D  
Oscillator Equivalent Circuit  
Type 8:  
VBAT Equivalent Circuit  
Type 12:  
Oscillator I/O  
VBAT Power  
10  
40  
from  
V3P3SYS  
Digital  
Output  
Pin  
CMOS  
Output  
V3P3D  
Pin  
GNDD  
GNDD  
from  
VBAT  
Digital Output Equivalent Circuit  
Type 4:  
V3P3D Equivalent Circuit  
Type 13:  
Standard Digital Output or  
pin configured as DIO Output  
V3P3D  
Figure 9: I/O Equivalent Circuits  
Rev. 2  
29  
78M6618 Data Sheet  
6 Ordering Information  
Table 29: Ordering Information  
Part Description  
Flash  
Package  
Marking  
Part  
Packaging  
Size  
Order Number  
(Package)  
78M6618  
128 KB  
128 KB  
Bulk  
78M6618-IM/F  
78M6618-IM  
78M6618-IM  
Bulk,  
*Programmed  
78M6618-IM/F/Pxx  
78M6618  
68-pin QFN  
(Lead(Pb)- Free)  
78M6618  
78M6618  
128 KB Tape and Reel 78M6618-IMR/F  
78M6618-IM  
128 KB Tape and Reel, 78M6618-IMR/F/Pxx 78M6618-IM  
*Programmed  
* Contact Silergy for more information on programmed part options.  
7 Contact Information  
For more information about Silergy products or to check the availability of the 78M6618, contact  
support.em@silergy.com  
30  
Rev. 2  
78M6618 Data Sheet  
8 Appendix A: Acronyms  
ANSI  
CE  
American National Standards Institute  
Compute Engine  
DIO  
Digital I /O  
ICE  
In-Circuit Emulator  
IEC  
MPU  
PLL  
International Electrotechnical Commission  
Microprocessor Unit (CPU)  
Phase-Locked Loop  
RMS  
SFR  
SOC  
UART  
Root Mean Square  
Special Function Register  
System on Chip  
Universal Asynchronous Receiver/Transmitter  
Rev. 2  
31  
78M6618 Data Sheet  
9 Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
First publication.  
1.0  
1.4  
2
5/6/2009  
In Section 1.13, added text changes and Figure 3.  
10  
In Section 2, Electrical Specifications, added Guaranteed  
By Design information.  
3/11  
1923  
In Section 7, added the new contact information.  
Rebranding only  
30  
4/16  
Copyright © 2016 Silergy Corp Proprietary information. For Silergy customer use only. Unauthorized  
distribution or duplication prohibited. Silergy cannot assume responsibility for use of any circuitry other  
than circuitry entirely embodied in a Silergy product. No circuit patent licenses are implied. Silergy  
reserves the right to change the circuitry and specifications without notice at any time. Typical parametric  
values provided in this data sheet are for guidance only and are not guaranteed.  

相关型号:

78M6618-IM/F/Pxx

Octal Power and Energy Measurement IC
SILERGY

78M6618-IMR

Octal Power and Energy Measurement IC
TERIDIAN

78M6618-IMR/F

Analog Circuit, 1 Func, CMOS, 8 X 8 MM, TQFN-68
MAXIM

78M6618-IMR/F

Analog Circuit, ROHS COMPLIANT, QFN-68
TERIDIAN

78M6618-IMR/F

Octal Power and Energy Measurement IC
SILERGY

78M6618-IMR/F/Pxx

Octal Power and Energy Measurement IC
SILERGY

78M6631

3-Phase Power-Measurement IC
MAXIM

78M6631-IM/F

3-Phase Power-Measurement IC
MAXIM

78M6631-IMR/F

3-Phase Power-Measurement IC
MAXIM

78M6631_1204

3-Phase Power-Measurement IC
MAXIM

78MXX

LINEAR INTEGRATED CIRCUIT
UTC

78MXX-T60-D-K

LINEAR INTEGRATED CIRCUIT
UTC