SGM8264-2 [SGMICRO]

High-Performance, Bipolar-Input, Ultra Low Noise HiFi Audio Headset Driver;
SGM8264-2
型号: SGM8264-2
厂家: Shengbang Microelectronics Co, Ltd    Shengbang Microelectronics Co, Ltd
描述:

High-Performance, Bipolar-Input, Ultra Low Noise HiFi Audio Headset Driver

文件: 总16页 (文件大小:916K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SGM8264-2  
High-Performance, Bipolar-Input,  
Ultra Low Noise HiFi Audio Headset Driver  
GENERAL DESCRIPTION  
FEATURES  
The SGM8264-2 bipolar-input headset driver achieves  
very low 1.6nV/ noise density with an ultra low  
Superior Sound Quality  
Low Offset Voltage: ±350μV (MAX)  
Hz  
Hz  
distortion of 0.00002% at 1kHz. The SGM8264-2 offers  
rail-to-rail output swing to within 150mV of supply rails  
with a 2kΩ load, which increases headroom and  
maximizes dynamic range. The device also has a high  
output drive capability of ±110mA.  
Ultra Low Noise: 1.6nV/  
at 1kHz  
Ultra Low Distortion: 0.00002% at 1kHz  
High Slew Rate: 16V/μs  
Gain-Bandwidth Product: 16MHz (G = +1)  
High Open-Loop Gain: 140dB  
Unity-Gain Stable  
The device operates over a wide supply range of 3.6V  
to 36V or ±1.8V to ±18V, on only 4.1mA of supply  
current per amplifier. The SGM8264-2 is unity-gain  
stable and provides excellent dynamic behavior over a  
wide range of load conditions.  
Low Quiescent Current: 4.1mA/Amplifier  
Rail-to-Rail Output  
Support Single or Dual Power Supplies:  
3.6V to 36V or ±1.8V to ±18V  
-40to +85Operating Temperature Range  
Available in a Green SOIC-8 Package  
The SGM8264-2 is available in a Green SOIC-8  
package. It operates over an ambient temperature  
range of -40to +85.  
APPLICATIONS  
Professional Audio Equipment  
Analog and Digital Mixing Consoles  
High-End A/V Receivers  
SG Micro Corp  
DECEMBER 2017 - REV. A  
www.sg-micro.com  
High-Performance, Bipolar-Input,  
SGM8264-2  
Ultra Low Noise HiFi Audio Headset Driver  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESCRIPTION  
ORDERING  
NUMBER  
PACKAGE  
MARKING  
PACKING  
OPTION  
MODEL  
SGM  
SGM8264-2  
SOIC-8  
SGM8264-2YS8G/TR  
82642YS8  
XXXXX  
Tape and Reel, 2500  
-40to +85℃  
MARKING INFORMATION  
NOTE: XXXXX = Date Code and Vendor Code.  
X X X X X  
Vendor Code  
Date Code - Week  
Date Code - Year  
Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If  
you have additional comments or questions, please contact your SGMICRO representative directly.  
ABSOLUTE MAXIMUM RATINGS  
Failureto observe proper handlingand installation procedures  
can cause damage. ESD damage can range from subtle  
performance degradation tocomplete device failure. Precision  
integrated circuits may be more susceptible to damage  
because even small parametric changes could cause the  
device not to meet the published specifications.  
Supply Voltage, +VS to -VS.............................................. 40V  
Input Voltage Range ...................(-VS) - 0.3V to (+VS) + 0.3V  
Input Current (All pins except power supply pins)...... ±10mA  
Output Short-Circuit Current.................................... ±180mA  
Junction Temperature .................................................+150℃  
Storage Temperature Range.........................-65to +150℃  
Lead Temperature (Soldering, 10s) ............................+260℃  
ESD Susceptibility  
DISCLAIMER  
SG Micro Corp reserves the right to make any change in  
HBM.............................................................................8000V  
MM.................................................................................400V  
CDM ............................................................................1000V  
circuit design, or specifications without prior notice.  
PIN CONFIGURATION  
RECOMMENDED OPERATING CONDITIONS  
(TOP VIEW)  
Operating Temperature Range .......................-40to +85℃  
OUTA  
-INA  
+INA  
-VS  
1
2
3
4
8
7
6
5
+VS  
OVERSTRESS CAUTION  
Stresses beyond those listed in Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods  
may affect reliability. Functional operation of the device at any  
conditions beyond those indicated in the Recommended  
Operating Conditions section is not implied.  
OUTB  
-INB  
+INB  
+
+
ESD SENSITIVITY CAUTION  
SOIC-8  
This integrated circuit can be damaged if ESD protections are  
not considered carefully. SGMICRO recommends that all  
integrated circuits be handled with appropriate precautions.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2017  
2
High-Performance, Bipolar-Input,  
SGM8264-2  
Ultra Low Noise HiFi Audio Headset Driver  
ELECTRICAL CHARACTERISTICS  
(At TA = +25, VS = 4.5V to 36V or VS = ±2.25V to ±18V, RL = 2kΩ, VCM = VOUT = VS/2, unless otherwise noted.)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Characteristics  
VS = ±15V  
±100  
±350  
±450  
Input Offset Voltage (VOS  
)
μV  
μV/  
nA  
-40≤ TA ≤ +85℃  
VS = ±15V  
Input Offset Voltage Drift (ΔVOS/ΔT)  
1
VCM = VOUT = VS/2  
-40≤ TA ≤ +85℃  
VCM = VOUT = VS/2  
±40  
±300  
±550  
Input Bias Current (IB)  
Input Offset Current (IOS  
)
±25  
120  
135  
±175  
nA  
V
Input Common Mode Voltage Range (VCM  
)
(-VS) + 1.8  
102  
(+VS) - 1.8  
VS = 4.5V, (-VS) + 1.8V ≤ VCM ≤ (+VS) - 1.8V  
-40≤ TA ≤ +85℃  
99  
Common Mode Rejection Ratio (CMRR)  
dB  
dB  
VS = 36V, (-VS) + 1.8V ≤ VCM ≤ (+VS) - 1.8V  
122  
108  
-40≤ TA ≤ +85℃  
VS = 4.5V to 36V,  
(-VS) + 0.2V ≤ VOUT ≤ (+VS) - 0.2V, RL = 10kΩ  
110  
107  
112  
109  
140  
140  
-40TA ≤ +85℃  
VS = 4.5V to 36V,  
(-VS) + 0.6V ≤ VOUT ≤ (+VS) - 0.6V, RL = 2kΩ  
Open-Loop Voltage Gain (AOL  
)
-40≤ TA ≤ +85℃  
Input Impedance  
Differential  
32k || 10  
109 || 4  
Ω || pF  
Ω || pF  
Common Mode  
Output Characteristics  
VS = 4.5V to 36V, RL = 10kΩ  
VS = 4.5V to 36V, RL = 2kΩ  
VS = 10V to 36V  
±35  
±150  
±110  
±65  
Output Voltage Swing from Rail  
mV  
mA  
±260  
Output Short-Circuit Current (ISC  
)
Audio Performance  
0.00002  
-134  
%
dB  
%
Total Harmonic Distortion + Noise (THD+N) G = +1, VOUT = 3VRMS, f = 1kHz  
0.000015  
-136  
G = +1, VOUT = 3VRMS, SMPTE/DIN,  
Two-Tone, 4:1 (60Hz and 7kHz)  
dB  
%
0.000032  
-130  
G = +1, VOUT = 3VRMS, DIM 30,  
Intermodulation Distortion (IMD)  
(3kHz square wave and 15kHz sine wave)  
dB  
%
0.00013  
-118  
G = +1, VOUT = 3VRMS, CCIF Twin-Tone,  
(19kHz and 20kHz)  
dB  
Frequency Response  
G = +100  
Gain-Bandwidth Product (GBP)  
G = +1  
45  
16  
MHz  
Slew Rate (SR)  
G = -1  
16  
V/μs  
MHz  
ns  
Full Power Bandwidth (1)  
Overload Recovery Time  
Channel Separation (Dual)  
VOUT = 1VP-P  
G = -10  
2
500  
-140  
f = 1kHz  
dB  
NOTE: 1. Full Power Bandwidth = SR/(2π × VP), where SR = Slew Rate.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2017  
3
High-Performance, Bipolar-Input,  
SGM8264-2  
Ultra Low Noise HiFi Audio Headset Driver  
ELECTRICAL CHARACTERISTICS (continued)  
(At TA = +25, VS = 4.5V to 36V or VS = ±2.25V to ±18V, RL = 2kΩ, VCM = VOUT = VS/2, unless otherwise noted.)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Noise Performance  
Input Voltage Noise  
f = 20Hz to 20kHz  
1.7  
5
μVP-P  
f = 10Hz  
f = 100Hz  
f = 1kHz  
f = 1kHz  
nV/  
Input Voltage Noise Density (en)  
2
Hz  
1.6  
6
pA/  
Input Current Noise Density (in)  
Power Supply  
Hz  
Supply Voltage (VS)  
±1.8  
±18  
±18  
5.5  
5.8  
0.5  
1
V
V
Specified Voltage (VS)  
±2.25  
VS = 3.6V to 36V, IOUT = 0  
-40≤ TA ≤ +85℃  
VS = ±1.8V to ±18V  
-40≤ TA ≤ +85℃  
4.1  
0.1  
Quiescent Current/Amplifier (IQ)  
mA  
Power Supply Rejection Ratio (PSRR)  
μV/V  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2017  
4
High-Performance, Bipolar-Input,  
SGM8264-2  
Ultra Low Noise HiFi Audio Headset Driver  
TYPICAL PERFORMANCE CHARACTERISTICS  
At TA = +25, VS = ±15V and RL = 2kΩ, unless otherwise noted.  
Small-Signal Step Response (100mV)  
Small-Signal Step Response (100mV)  
G = +1  
G = -1  
CL = 50pF  
CL = 50pF  
Time (100ns/div)  
Time (100ns/div)  
Large-Signal Step Response  
Large-Signal Step Response  
G = +1  
G = -1  
CL = 50pF  
RL = 2kΩ  
CL = 50pF  
RL = 2kΩ  
RF = 75Ω  
RF = 0Ω  
Time (500ns/div)  
Time (500ns/div)  
Small-Signal Overshoot vs.  
Small-Signal Overshoot vs.  
Capacitive Load (100mV Output Step)  
Capacitive Load (100mV Output Step)  
70  
60  
50  
40  
30  
20  
10  
70  
60  
50  
40  
30  
20  
10  
G = -1  
G = +1  
RS = 0Ω  
RS = 0Ω  
RS = 25Ω  
RS = 25Ω  
RS = 50Ω  
RS = 50Ω  
0
100  
200  
300  
400  
500  
600  
0
200  
400  
600  
800  
1000  
Load Capacitance (pF)  
Load Capacitance (pF)  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2017  
5
High-Performance, Bipolar-Input,  
SGM8264-2  
Ultra Low Noise HiFi Audio Headset Driver  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TA = +25, VS = ±15V and RL = 2kΩ, unless otherwise noted.  
IB and IOS vs. Temperature  
IB and IOS vs. Input Common Mode Voltage  
80  
60  
40  
20  
0
50  
10  
-IB  
IOS  
-30  
+IB  
-70  
+IB  
-20  
-40  
-60  
-110  
-150  
IOS  
-IB  
-40  
-15  
10  
35  
60  
85  
-18  
-12  
-6  
0
6
12  
18  
Input Common Mode Voltage (V)  
Temperature ()  
Quiescent Current vs. Temperature  
Quiescent Current vs. Supply Voltage  
9
8.5  
8
9.5  
9
8.5  
8
7.5  
7
7.5  
-40  
-15  
10  
35  
60  
85  
0
6
12  
18  
24  
30  
36  
Temperature ()  
Supply Voltage (V)  
Output Short-Circuit Current vs. Temperature  
Output Voltage vs. Output Current  
300  
240  
180  
120  
60  
15  
10  
5
VS = ±5V  
-ISC  
0
+85℃  
+25-40℃  
-5  
+ISC  
-10  
-15  
0
0
50  
100  
150  
200  
250  
300  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Output Current (mA)  
Temperature ()  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2017  
6
High-Performance, Bipolar-Input,  
SGM8264-2  
Ultra Low Noise HiFi Audio Headset Driver  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TA = +25, VS = ±15V and RL = 2kΩ, unless otherwise noted.  
Open-Loop Gain vs. Temperature  
Closed-Loop Gain vs. Frequency  
0.025  
0.02  
0.015  
0.01  
0.005  
0
25  
15  
5
RL = 2kΩ  
G = +10  
G = +1  
-5  
G = -1  
-15  
-25  
RL = 10kΩ  
100  
1000  
10000  
100000  
-40  
-15  
10  
35  
60  
85  
Frequency (kHz)  
Temperature ()  
0.1Hz to 10Hz Noise  
Gain and Phase vs. Frequency  
100  
80  
60  
40  
20  
0
0
-30  
Gain  
-60  
-90  
-120  
-150  
-180  
Phase  
-20  
10  
100  
1000  
10000  
100000  
Time (1s/div)  
Frequency (kHz)  
Input Voltage Noise Density (en) and  
Input Current Noise Density (in) vs. Frequency  
Input Voltage Noise Density vs. Source Resistance  
10000  
1000  
100  
10  
100  
Total Output  
Voltage Noise  
in  
10  
en  
Resistor Noise  
1
1
100  
1000  
10000  
100000  
1000000  
10  
100  
1000  
10000  
100000  
Source Resistance (Ω)  
Frequency (Hz)  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2017  
7
High-Performance, Bipolar-Input,  
SGM8264-2  
Ultra Low Noise HiFi Audio Headset Driver  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TA = +25, VS = ±15V and RL = 2kΩ, unless otherwise noted.  
THD+N Ratio vs. Frequency  
THD+N Ratio vs. Frequency  
-115  
-120  
-125  
-130  
-135  
-140  
-115  
-120  
-125  
-130  
-135  
-140  
BW = 80kHz  
OUT = 3VRMS  
BW = 80kHz  
OUT = 3VRMS  
V
V
G = +1, RL = 600Ω  
G = +1, RL = 2kΩ  
— G = -1, RL = 600Ω  
— G = -1, RL = 2kΩ  
G = +10, RL = 600Ω  
G = +10, RL = 2kΩ  
Rsource = 600Ω  
Rsource = 300Ω  
Rsource = 150Ω  
Rsource = 0Ω  
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
10  
100  
1000  
10000  
100000  
Frequency (Hz)  
THD+N Ratio vs. Frequency  
THD+N Ratio vs. Frequency  
-95  
-105  
-115  
-125  
-135  
-100  
-110  
-120  
-130  
-140  
BW > 500kHz  
OUT = 3VRMS  
BW > 500kHz  
OUT = 3VRMS  
V
V
G = +1, RL = 600Ω  
G = +1, RL = 2kΩ  
— G = -1, RL = 600Ω  
— G = -1, RL = 2kΩ  
G = +11, RL = 600Ω  
G = +11, RL = 2kΩ  
Rsource = 600Ω  
Rsource = 300Ω  
Rsource = 150Ω  
Rsource = 0Ω  
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
10  
100  
1000  
10000  
100000  
Frequency (Hz)  
THD+N Ratio vs. Output Amplitude  
Intermodulation Distortion vs. Output Amplitude  
-80  
-100  
-120  
-140  
-160  
-80  
-100  
-120  
-140  
-160  
DIM 30  
G = +1, RL = 600Ω  
G = +1, RL = 2kΩ  
— G = -1, RL = 600Ω  
— G = -1, RL = 2kΩ  
G = +10, RL = 600Ω  
G = +10, RL = 2kΩ  
CCIF Twin-Tone  
SMPTE/DIN  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Amplitude (VRMS  
)
Output Amplitude (VRMS  
)
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2017  
8
High-Performance, Bipolar-Input,  
SGM8264-2  
Ultra Low Noise HiFi Audio Headset Driver  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TA = +25, VS = ±15V and RL = 2kΩ, unless otherwise noted.  
PSRR vs. Frequency (Referred to Input)  
CMRR vs. Frequency (Referred to Input)  
100  
80  
60  
40  
20  
0
160  
120  
80  
40  
0
+PSRR  
-PSRR  
0.01  
0.1  
1
10  
100  
1000 10000  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
Maximum Output Voltage vs. Frequency  
Channel Separation vs. Frequency  
30  
25  
20  
15  
10  
5
-80  
-100  
-120  
-140  
-160  
-180  
VS = ±15V  
VOUT = 3VRMS  
G = +1  
VS = ±15V  
RL = 600Ω  
VS = ±5V  
RL = 5kΩ  
RL = 2kΩ  
VS = ±2.25V  
0
10  
100  
1000  
10000  
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
Frequency (kHz)  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2017  
9
High-Performance, Bipolar-Input,  
SGM8264-2  
Ultra Low Noise HiFi Audio Headset Driver  
APPLICATION INFORMATION  
The SGM8264-2 is a unity-gain stable, precision driver  
with very low noise; the device is also free from output  
phase reversal. Applications with noisy or high-impedance  
power supplies require decoupling capacitors close to  
the device power supply pins. In most cases, 0.1μF  
capacitors are adequate.  
Noise Performance  
Equation 1 shows the total circuit noise for varying  
source impedances with the operational amplifier in a  
unity-gain configuration (Figure 2, no feedback resistor  
network, and therefore no additional noise contributions).  
The SGM8264-2 (GBP = 16MHz, G = +1) is shown with  
total circuit noise calculated. The operational amplifier  
itself contributes both a voltage noise component and a  
current noise component. The voltage noise is commonly  
modeled as a time-varying component of the offset  
voltage. The current noise is modeled as the time-  
varying component of the input bias current and reacts  
with the source resistance to create a voltage component  
of noise. Therefore, the lowest noise operational  
amplifier for a given application depends on the source  
impedance. For low source impedance, current noise is  
negligible, and voltage noise generally dominates. The  
low voltage noise of the SGM8264-2 driver makes it a  
good choice for use in applications where the source  
impedance is less than 1kΩ.  
Operating Voltage  
The SGM8264-2 driver operates from 3.6V to 36V or  
±2.25V to ±18V supplies while maintaining excellent  
performance. However, some applications do not  
require equal positive and negative output voltage  
swing. With the SGM8264-2, power supply voltages do  
not need to be equal. For example, the positive supply  
could be set to +25V with the negative supply at -5V. In  
all cases, the input common mode voltage must be  
maintained within the specified range. In addition, key  
parameters are assured over the specified temperature  
range of TA = -40to +85.  
Input Protection  
The following equation shows the calculation of the  
total circuit noise:  
The input terminals of the SGM8264-2 are protected  
from excessive differential voltage with back-to-back  
diodes, as Figure 1 illustrates. In most circuit applications,  
the input protection circuitry has no consequence.  
However, in low-gain or G = +1 circuits, fast ramping  
input signals can forward bias these diodes because  
the output of the amplifier cannot respond rapidly  
enough to the input ramp. If the input signal is fast  
enough to create this forward bias condition, the input  
signal current must be limited to 10mA or less. If the  
input signal current is not inherently limited, an input  
series resistor (RI) and/or a feedback resistor (RF) can  
be used to limit the signal input current. This input  
series resistor degrades the low-noise performance of  
the SGM8264-2 and is examined in the following Noise  
Performance section. Figure 1 shows an example  
configuration when both current-limit input and feedback  
EO2 = en2 + (inRS )2 + 4kTRS  
(1)  
Where en = voltage noise, in = current noise, RS  
source impedance, k = Boltzmann’s constant = 1.38 ×  
10-23J/K, T = temperature in degrees Kelvin (K).  
=
-
EO  
+
RS  
Figure 2. Unity-Gain Buffer Configuration  
resistors are used.  
RF  
-
1
2
Output  
SGM8264-2  
RI  
+
Input  
Figure 1. Input Current Limit  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2017  
10  
 
 
High-Performance, Bipolar-Input,  
SGM8264-2  
Ultra Low Noise HiFi Audio Headset Driver  
APPLICATION INFORMATION (continued)  
feedback resistors to minimize the respective  
contributions to the total noise.  
Basic Noise Calculations  
Design of low-noise operational amplifier circuits  
requires careful consideration of a variety of possible  
noise contributors: noise from the signal source, noise  
generated in the operational amplifier and noise from  
the feedback network resistors. The total noise of the  
circuit is the root-sum-square combination of all noise  
components.  
Figure 3 illustrates both inverting and non-inverting  
operational amplifier circuit configurations with gain. In  
circuit configurations with gain, the feedback network  
resistors also contribute noise.  
The current noise of the operational amplifier reacts  
with the feedback resistors to create additional noise  
components. The feedback resistor values can generally  
be chosen to make these noise sources negligible. The  
equations for total noise are shown for both  
configurations.  
The resistive portion of the source impedance produces  
thermal noise proportional to the square root of the  
resistance. The source impedance is usually fixed;  
consequently, select the operational amplifier and the  
Noise in Non-Inverting Gain Configuration  
R2  
Noise at the output:  
2  
2   
+ eS + i R 1 +  
n S  
2  
R
R
2
2
2
2
2
2   
n
2
2   
EO  
=
1 +  
en + e12 + e2  
+
i R  
(
)
(
)
R1  
R1  
R1  
-
R
2   
Where eS  
=
4kTRS × 1 +  
= thermal noise of RS  
EO  
R1  
R2  
+
e1  
e2  
=
=
4kTR1 ×  
= thermal noise of R1  
R
1   
RS  
4kTR 2 = thermal noise of R2  
VS  
Noise in Inverting Gain Configuration  
R2  
Noise at the output:  
2  
R2  
2
2
2
2
2
EO  
=
1 +  
en + e12 + e2  
+
i R  
2
+ eS  
(
)
n
R1+RS  
R1  
-
R2  
Where  
eS  
=
4kTRS ×  
= thermal noise of RS  
= thermal noise of R1  
R1 + RS  
EO  
RS  
R2  
+
e1  
=
4kTR1  
4kTR 2  
×
R1 + RS  
VS  
e2  
=
= thermal noise of R2  
NOTE: For the SGM8264-2 driver at 1kHz, en = 1.6nV/  
and in = 6pA/  
.
Hz  
Hz  
Figure 3. Noise Calculation in Gain Configurations  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2017  
11  
 
High-Performance, Bipolar-Input,  
SGM8264-2  
Ultra Low Noise HiFi Audio Headset Driver  
APPLICATION INFORMATION (continued)  
Validity of this technique can be verified by duplicating  
Total Harmonic Distortion Measurements  
The SGM8264-2 driver has excellent distortion  
characteristics. THD + noise is below 0.00015% (G =  
+1, VOUT = 3VRMS, BW = 80kHz) throughout the audio  
frequency range, 20Hz to 20kHz, with a 2kΩ load.  
measurements at high gain and/or high frequency  
where the distortion is within the measurement  
capability of the test equipment. Measurements for this  
datasheet were made with an Audio Precision System  
Two distortion/noise analyzer, which greatly simplifies  
such repetitive measurements. The measurement  
technique can, however, be performed with manual  
distortion measurement instruments.  
The distortion produced by SGM8264-2 driver is below  
the measurement limit of many commercially available  
distortion analyzers. However, a special test circuit  
(such as Figure 4 shows) can be used to extend the  
measurement capabilities.  
Capacitive Loads  
Operational amplifier distortion can be considered an  
internal error source that can be referred to the input.  
Figure 4 shows a circuit that causes the operational  
amplifier distortion to be 101 times (or approximately  
40dB) greater than that normally produced by the  
operational amplifier. The addition of R3 to the otherwise  
standard non-inverting amplifier configuration alters the  
feedback factor or noise gain of the circuit. The  
closed-loop gain is unchanged, but the feedback  
available for error correction is reduced by a factor of  
101, thus extending the resolution by 101. Note that the  
input signal and load applied to the operational  
amplifier are the same as with conventional feedback  
without R3. The value of R3 should be kept small to  
minimize its effect on the distortion measurements.  
The dynamic characteristics of the SGM8264-2 have  
been optimized for commonly encountered gains, loads,  
and operating conditions. The combination of low  
closed-loop gain and high capacitive loads decreases  
the phase margin of the amplifier and can lead to gain  
peaking or oscillations. As a result, heavier capacitive  
loads must be isolated from the output. The simplest  
way to achieve this isolation is to add a small resistor  
(RS equal to 50Ω, for example) in series with the output.  
Power Dissipation  
SGM8264-2 driver is capable of driving 2kΩ loads with  
a power supply voltage up to ±18V. Internal power  
dissipation increases when operating at high supply  
voltages. Copper leadframe construction used in the  
SGM8264-2 driver improves heat dissipation compared  
to conventional materials. Circuit board layout can also  
help minimize junction temperature rise. Wide copper  
traces help dissipate the heat by acting as an additional  
heat sink. Temperature rise can be further minimized by  
soldering the device to the circuit board rather than  
using a socket.  
R1  
R2  
-
1
2
R3  
VOUT = 3VRMS  
SGM8264-2  
+
Signal Gain = 1 + R2/R1  
Distortion Gain = 1 + R2/(R1||R3)  
Generator  
Output  
Analyzer  
Input  
Electrical Overstress  
Designers often ask questions about the capability of  
an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but  
may involve the supply voltage pins or even the output  
pin. Each of these different pin functions has electrical  
stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication  
process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD)  
protection is built into these circuits to protect them  
from accidental ESD events both before and during  
product assembly.  
Audio Precision  
System Two with  
PC Controller  
Load  
SIG.  
Gain  
DIST.  
Gain  
R1  
R2  
R3  
1
-1  
101  
101  
110  
1kΩ  
10Ω  
4.99kΩ  
549Ω  
4.99kΩ  
4.99kΩ  
49.9Ω  
49.9Ω  
+10  
Figure 4. Distortion Test Circuit  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2017  
12  
 
High-Performance, Bipolar-Input,  
SGM8264-2  
Ultra Low Noise HiFi Audio Headset Driver  
APPLICATION CIRCUIT  
Figure 5 shows how to use the SGM8264-2 as an  
amplifier for professional audio headphones. The circuit  
shows the left side stereo channel. An identical circuit is  
used to drive the right side stereo channel.  
820Ω  
2200pF  
+VA  
0.1μF  
(+15V)  
330Ω  
-
IOUTL+  
1
2
SGM8264-2  
2700pF  
+
-VA  
(-15V)  
680Ω  
620Ω  
+VA  
(+15V)  
0.1μF  
0.1μF  
Audio DAC  
with Differential  
Current  
-
1
2
100Ω  
L Ch  
Output  
Outputs  
820Ω  
2200pF  
SGM8264-2  
8200pF  
+
-VA  
(-15V)  
0.1μF  
+VA  
0.1μF  
(+15V)  
680Ω  
620Ω  
330Ω  
IOUTL-  
-
1
2
SGM8264-2  
2700pF  
+
-VA  
(-15V)  
0.1μF  
Figure 5. Audio DAC Post Filter (I/V Converter and Low-Pass Filter)  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (DECEMBER 2017) to REV.A  
Page  
Changed from product preview to production data.............................................................................................................................................All  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2017  
13  
 
PACKAGE INFORMATION  
PACKAGE OUTLINE DIMENSIONS  
SOIC-8  
0.6  
D
e
2.2  
E1  
E
5.2  
b
1.27  
RECOMMENDED LAND PATTERN (Unit: mm)  
L
A
A1  
c
θ
A2  
Dimensions  
In Millimeters  
Dimensions  
In Inches  
Symbol  
MIN  
MAX  
1.750  
0.250  
1.550  
0.510  
0.250  
5.100  
4.000  
6.200  
MIN  
MAX  
0.069  
0.010  
0.061  
0.020  
0.010  
0.200  
0.157  
0.244  
A
A1  
A2  
b
1.350  
0.100  
1.350  
0.330  
0.170  
4.700  
3.800  
5.800  
0.053  
0.004  
0.053  
0.013  
0.006  
0.185  
0.150  
0.228  
c
D
E
E1  
e
1.27 BSC  
0.050 BSC  
L
0.400  
0°  
1.270  
8°  
0.016  
0°  
0.050  
8°  
θ
SG Micro Corp  
www.sg-micro.com  
TX00010.000  
PACKAGE INFORMATION  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
P2  
P0  
W
Q2  
Q4  
Q2  
Q4  
Q2  
Q4  
Q1  
Q3  
Q1  
Q3  
Q1  
Q3  
B0  
Reel Diameter  
P1  
A0  
K0  
Reel Width (W1)  
DIRECTION OF FEED  
NOTE: The picture is only for reference. Please make the object as the standard.  
KEY PARAMETER LIST OF TAPE AND REEL  
Reel Width  
Reel  
Diameter  
A0  
B0  
K0  
P0  
P1  
P2  
W
Pin1  
Package Type  
W1  
(mm)  
(mm) (mm) (mm) (mm) (mm) (mm) (mm) Quadrant  
SOIC-8  
13″  
12.4  
6.40  
5.40  
2.10  
4.0  
8.0  
2.0  
12.0  
Q1  
SG Micro Corp  
TX10000.000  
www.sg-micro.com  
PACKAGE INFORMATION  
CARTON BOX DIMENSIONS  
NOTE: The picture is only for reference. Please make the object as the standard.  
KEY PARAMETER LIST OF CARTON BOX  
Length  
(mm)  
Width  
(mm)  
Height  
(mm)  
Reel Type  
Pizza/Carton  
13″  
386  
280  
370  
5
SG Micro Corp  
www.sg-micro.com  
TX20000.000  

相关型号:

SGM826B

Small Package, High Precision Voltage Detector with Internal Delay Time Circuit
SGMICRO

SGM8270-2

Low Noise, Precision, High Voltage, Rail-to-Rail I/O Operational Amplifier
SGMICRO

SGM8270-4

Low Noise, Precision, High Voltage, Rail-to-Rail I/O Operational Amplifier
SGMICRO

SGM8270N-4

Low Noise, Precision, High Voltage, Rail-to-Rail I/O Operational Amplifier
SGMICRO

SGM8271

Output Operational Amplifiers
SGMICRO

SGM8272

Output Operational Amplifiers
SGMICRO

SGM8273-1

Low Noise, High Precision, High Voltage, Rail-to-Rail I/O Operational Amplifier
SGMICRO

SGM8273-2

Low Noise, High Precision, High Voltage, Rail-to-Rail I/O Operational Amplifier
SGMICRO

SGM8273-4

Low Noise, High Precision, High Voltage, Rail-to-Rail I/O Operational Amplifier
SGMICRO

SGM8274

Output Operational Amplifiers
SGMICRO

SGM8275-1

600kHz, Low Noise, High Voltage, Precision Operational Amplifier
SGMICRO

SGM8275-2

600kHz, Low Noise, High Voltage, Precision Operational Amplifier
SGMICRO