SGM721 [SGMICRO]

970レA, 10MHz, Rail-to-Rail I/O CMOS Operational Amplifier; 970レA, 10MHz的轨至轨输入/输出CMOS运算放大器
SGM721
型号: SGM721
厂家: Shengbang Microelectronics Co, Ltd    Shengbang Microelectronics Co, Ltd
描述:

970レA, 10MHz, Rail-to-Rail I/O CMOS Operational Amplifier
970レA, 10MHz的轨至轨输入/输出CMOS运算放大器

运算放大器
文件: 总18页 (文件大小:642K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SGM721  
SGM722  
SGM723  
SGM724  
970µA,10MHz, Rail-to-Rail I/O  
CMOS Operational Amplifier  
FEATURES  
PRODUCT DESCRIPTION  
Low Cost  
The SGM721 (single), SGM722 (dual), SGM723 (single with  
shutdown) and SGM724 (quad) are low noise, low voltage,  
and low power operational amplifiers, that can be designed  
into a wide range of applications. The SGM721/2/3/4 have a  
high Gain- Bandwidth Product of 10MHz, a slew rate of  
8.5V/μs, and a quiescent current of 0.97mA/amplifier at 5V.  
The SGM723 has a power-down disable feature that  
reduces the supply current to 160nA.  
Rail-to-Rail Input and Output  
1mV Typical VOS  
High Gain-Bandwidth Product: 10MHz  
High Slew Rate: 8.5V/µs  
Settling Time to 0.1% with 2V Step: 0.36 µs  
Overload Recovery Time: 0.4µs  
Low Noise : 8 nV/  
Hz  
Operates on 2.5 V to 5.5V Supplies  
Input Voltage Range = - 0.1 V to +5.6 V with VS = 5.5 V  
Low Power  
0.97 mA/Amplifier Typical Supply Current  
SGM723 160nA when Disabled  
Small Packaging  
The SGM721/2/3/4 are designed to provide optimal  
performance in low voltage and low noise systems. They  
provide rail-to-rail output swing into heavy loads. The  
input common-mode voltage range includes ground, and  
the maximum input offset voltage is 4mV for SGM721/2/3/4.  
They are specified over the extended industrial  
temperature range (40°C to +125°C). The operating range  
is from 2.5V to 5.5V.  
SGM721 Available in SC70-5, SOT23-5 and SO-8  
SGM722 Available in MSOP-8 and SO-8  
SGM723 Available in SOT23-6 and SO-8  
SGM724 Available in TSSOP-16 and SO-16  
The single version, SGM721 is available in SC70-5, SOT23-5  
and SO-8 packages. SGM723 is available in SOT23-6 and  
SO-8 packages. The dual version SGM722 is available in  
SO-8 and MSOP-8 packages. The quad version SGM724 is  
available in SO-16 and TSSOP-16 packages.  
PIN CONFIGURATIONS (Top View)  
SGM721  
SGM721/723  
DISABLE  
OUT  
-VS  
+VS  
-IN  
8
7
6
5
1
2
5
4
NC  
-IN  
+IN  
-VS  
1
2
3
4
(SGM723 ONLY)  
+VS  
OUT  
NC  
3
+IN  
APPLICATIONS  
Sensors  
NC = NO CONNECT  
SO-8  
SC70-5 / SOT23-5  
SGM723  
Audio  
Active Filters  
A/D Converters  
Communications  
Test Equipment  
OUT  
-VS  
6
5
4
+VS  
1
2
3
SGM724  
DISABLE  
-IN  
16  
1
OUT D  
-IND  
OUT A  
-IN A  
+IN  
15  
14  
2
3
4
5
6
+IN A  
+VS  
+IND  
SOT23-6  
Cellular and Cordless Phones  
Laptops and PDAs  
Photodiode Amplification  
Battery-Powered Instrumentation  
SGM722  
13 -VS  
12 +INC  
+INB  
8
7
6
5
+VS  
OUTA  
1
2
3
4
11  
-INC  
-INB  
OUT B  
NC  
OUT B  
-IN B  
+IN B  
-IN A  
+IN A  
-VS  
OUT C  
NC  
7
8
10  
9
NC = NO CONNECT  
TSSOP-16 / SO-16  
SO-8 / MSOP-8  
REV. B  
Shengbang Microelectronics Co, Ltd  
Tel: 86/451/84348461  
www.sg-micro.com  
ELECTRICAL CHARACTERISTICS :VS = +5V  
(At TA = +25,VCM = Vs/2, RL = 600Ω, unless otherwise noted)  
SGM721/2/3/4  
PARAMETER  
CONDITION  
TYP  
MIN/MAX OVER TEMPERATURE  
0to  
70℃  
-40℃  
-40to  
MIN/  
+25℃  
+25℃  
to 85125℃  
UNITS MAX  
INPUT CHARACTERISTICS  
Input Offset Voltage (VOS  
Input Bias Current (IB)  
)
1
1
1
4
4.5  
4.75  
5
mV  
pA  
pA  
V
dB  
dB  
dB  
dB  
µV/  
MAX  
TYP  
TYP  
TYP  
MIN  
MIN  
MIN  
MIN  
TYP  
Input Offset Current (IOS  
)
Common-Mode Voltage Range (VCM  
Common-Mode Rejection Ratio(CMRR) VS = 5.5V, VCM = - 0.1V to 4 V  
VS = 5.5V, VCM = - 0.1V to 5.6 V  
)
VS = 5.5V  
-0.1 to +5.6  
91  
86  
90  
100  
2.1  
75  
64  
84  
95  
74  
64  
81  
90  
73  
63  
80  
88  
72.5  
62  
72  
Open-Loop Voltage Gain( AOL  
)
RL = 600,Vo = 0.15V to 4.85V  
RL =10K,Vo = 0.05V to 4.95V  
77  
Input Offset Voltage Drift (VOS/T)  
OUTPUT CHARACTERISTICS  
Output Voltage Swing from Rail  
RL = 600Ω  
RL = 10KΩ  
0.1  
0.015  
57  
V
V
mA  
TYP  
TYP  
MIN  
TYP  
Output Current (IOUT  
)
53  
52  
50  
45  
Closed-Loop Output Impedance  
F = 1MHz, G = +1  
5.7  
POWER-DOWN DISABLE  
Turn-On Time  
Turn-Off Time  
2.2  
0.8  
µs  
µs  
V
TYP  
TYP  
MAX  
MIN  
DISABLE  
Voltage-Off  
0.8  
2
DISABLE  
Voltage-On  
V
POWER SUPPLY  
Operating Voltage Range  
2.5  
5.5  
2.5  
5.5  
2.5  
5.5  
2.5  
5.5  
V
V
MIN  
MAX  
Power Supply Rejection Ratio (PSRR)  
Vs = +2.5 V to + 5.5 V  
VCM = (-VS) + 0.5V  
IOUT = 0  
100  
80  
79  
78  
77  
dB  
MIN  
Quiescent Current/ Amplifier (IQ)  
Supply Current when Disabled  
(SGM723 only)  
0.97  
1.13  
1.25  
1.28  
1.38  
mA  
MAX  
0.16  
1
µA  
MAX  
DYNAMIC PERFORMANCE  
Gain-Bandwidth Product (GBP)  
Phase Margin(φO)  
Full Power Bandwidth(BWP)  
Slew Rate (SR)  
RL = 600Ω  
10  
63.5  
400  
8.5  
0.36  
0.4  
MHz  
degrees TYP  
KHz  
V/µs  
µs  
TYP  
1% distortion  
TYP  
TYP  
TYP  
TYP  
G = +1, 2 V Output Step  
G = +1, 2 V Output Step  
VIN ·Gain = Vs  
Settling Time to 0.1%( tS)  
Overload Recovery Time  
µs  
NOISE PERFORMANCE  
Voltage Noise Density (en)  
f = 1kHz  
f = 10kHz  
f = 1kHz  
8
6.4  
10  
nV/  
nV/  
fA/  
TYP  
TYP  
TYP  
Hz  
Hz  
Hz  
Current Noise Density( in)  
Specifications subject to change without notice.  
SGM721/2/3/4  
PACKAGE/ORDERING INFORMATION  
PACKAGE  
DESCRIPTION  
PACKAGE  
OPTION  
MARKING  
INFORMATION  
MODEL  
ORDER NUMBER  
SGM721XC5/TR  
SGM721XN5/TR  
SGM721XS/TR  
SGM722XMS/TR  
SGM722XS/TR  
SGM723XN6/TR  
SGM723XS/TR  
SGM724XS/TR  
SGM724XTS  
SC70-5  
SOT23-5  
SO-8  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 2500  
Tape and Reel, 3000  
Tape and Reel, 2500  
Tape and Reel, 3000  
Tape and Reel, 2500  
Tape and Reel, 2500  
Tape and Reel, 3000  
721  
721  
SGM721  
SGM721XS  
SGM722XMS  
SGM722XS  
723  
MSOP-8  
SO-8  
SGM722  
SGM723  
SGM724  
SOT23-6  
SO-8  
SGM723XS  
SGM724XS  
SGM724XTS  
SO-16  
TSSOP-16  
CAUTION  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V+ to V- ............................................ 7.5 V  
Common-Mode Input Voltage  
This integrated circuit can be damaged by ESD.  
Shengbang Micro-electronics recommends that all  
integrated circuits be handled with appropriate  
precautions. Failure to observe proper handling and  
installation procedures can cause damage.  
.................................... (–V  
S
) – 0.5 V to (+V ) +0.5V  
S
Storage Temperature Range..................... –65℃ to +150℃  
Junction Temperature.................................................160℃  
Operating Temperature Range.................–55to +150℃  
ESD damage can range from subtle performance  
degradation to complete device failure. Precision  
integrated circuits may be more susceptible to  
damage because very small parametric changes could  
cause the device not to meet its published  
specifications.  
Package Thermal Resistance @ T = 25  
A
SC70-5, θJA................................................................ 333/W  
SOT23-5, θJA.............................................................. 190/W  
SOT23-6, θJA.............................................................. 190/W  
SO-8, θJA......................................................................125/W  
MSOP-8, θJA.............................................................. 216/W  
SO-16, θJA..................................................................... 82/W  
TSSOP-16, θJA............................................................ 105/W  
Lead Temperature Range (Soldering 10 sec)  
.....................................................260℃  
ESD Susceptibility  
HBM................................................................................1500V  
MM....................................................................................400V  
NOTES  
1. Stresses above those listed under Absolute Maximum  
Ratings may cause permanent damage to the device. This is  
a stress rating only; functional operation of the device at  
these or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
SGM721/2/3/4  
TYPICAL PERFORMANCE CHARACTERISTICS  
At TA = +25,VCM = Vs/2, RL = 600, unless otherwise noted.  
Closed-Loop Output Voltage Swing  
Output Impedance vs.Frequency  
6
5
4
3
2
1
0
100  
80  
60  
40  
20  
0
Vs=5V  
Vs=5V  
IN =4.9VP-P  
V
TA =25℃  
RL =2KΩ  
G= +1  
G =100  
G =10  
G =1  
1000  
1
10  
100  
Frequency(kHz)  
10000  
10  
100  
1000  
Frequency(kHz)  
10000  
Positive Overload Recovery  
+2.5V  
Negative Overload Recovery  
Vs=±2  
.
5V  
RL =10KΩ  
VIN =50mV  
G=100  
+2.5V  
Vs=±2.5V  
0V  
0V  
0V  
0V  
RL =10KΩ  
VIN =50mV  
G=100  
-50mV  
-50mV  
Time(500ns/div)  
Time(500ns/div)  
Large-Signal Step Response  
Small-Signal Step Response  
Vs = 5V  
G = +1  
CL = 200pF  
RL = 10K  
Vs = 5V  
G = +1  
CL = 100pF  
RL = 10KΩ  
Time(500ns/div)  
Time(200ns/div)  
SGM721/2/3/4  
TYPICAL PERFORMANCE CHARACTERISTICS  
At TA = +25,VCM = Vs/2, RL = 600, unless otherwise noted.  
CMRR vs.Frequency  
PSRR vs.Frequency  
120  
110  
100  
90  
120  
100  
80  
Vs=5V  
Vs=5V  
80  
60  
70  
60  
40  
50  
20  
40  
1
10  
100  
Frequency(kHz)  
1000  
10000  
1
10  
100  
Frequency(kHz)  
1000  
10000  
Input Voltage Noise Spectral Density  
vs.Frequency  
Small-Signal Overshoot vs.Load Capacitance  
70  
60  
50  
40  
30  
20  
10  
0
100  
10  
1
Vs=5V  
RL =10kΩ  
TA =25℃  
Vs=5V  
RL =620Ω  
G=1  
+OS  
-OS  
10  
100  
1000  
10000  
1
10 100  
Load Capacitance(pF)  
1000  
Frequency(Hz)  
Channel Separation vs.Frequency  
Open-Loop Gain vs.Temperature  
130  
120  
110  
100  
90  
120  
110  
100  
90  
RL=10KΩ  
Vs=5V  
RL =620Ω  
TA =25℃  
G=1  
RL=600Ω  
80  
80  
70  
70  
-50 -30 -10 10 30 50 70 90 110 130  
Temperature(℃)  
0.1  
1
10  
100  
1000 10000 100000  
Frequency(kHz)  
SGM721/2/3/4  
TYPICAL PERFORMANCE CHARACTERISTICS  
At TA = +25,VCM = Vs/2, RL = 600, unless otherwise noted.  
CMRR vs.Temperature  
VCM = - 0.1V to 4 V  
PSRR vs.Temperature  
120  
110  
100  
90  
130  
120  
110  
100  
90  
VS = 5.5V  
VS = 2.5V to 5.5V  
80  
VCM = - 0.1V to 5.6V  
70  
80  
60  
70  
-50 -30 -10 10 30 50 70 90 110 130  
Temperature(℃)  
-50 -30 -10 10 30 50 70 90 110 130  
Temperature(℃)  
Shutdown Current vs.Temperature  
Supply Current vs.Temperature  
300  
260  
220  
180  
140  
100  
60  
1.4  
1.3  
1.2  
1.1  
1
VS = 5V  
VS = 2.5V  
0.9  
0.8  
0.7  
0.6  
VS = 3V  
VS = 3V  
VS = 5V  
VS = 2.5V  
20  
-50 -30 -10 10 30 50 70 90 110 130  
Temperature(℃)  
-50 -30 -10 10 30 50 70 90 110 130  
Temperature(℃)  
Output Voltage Swing vs.Output Current  
Output Voltage Swing vs.Output Current  
5
3
2
1
0
Sourcing Current  
Sourcing Current  
VS = 5V  
4
3
2
1
0
VS = 3V  
-50℃  
135℃  
25℃  
135℃  
25℃  
-50℃  
Sinking Current  
Sinking Current  
0
10 20 30 40 50 60 70 80 90  
Output Current(mA)  
0
10  
20  
30  
40  
50  
60  
Output Current(mA)  
SGM721/2/3/4  
TYPICAL PERFORMANCE CHARACTERISTICS  
At TA = +25,VCM = Vs/2, RL = 600, unless otherwise noted.  
Small-Signal Overshoot vs.Load Capacitance  
Output Impedance vs.Frequency  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
Vs=2.7V  
RL =10kΩ  
TA =25℃  
Vs=2.7V  
G=1  
+OS  
-OS  
G =100  
G =10  
G =1  
1
10  
100  
Frequency(kHz)  
1000  
10000  
1
10 100  
Load Capacitance(pF)  
1000  
Large-Signal Step Response  
Small-Signal Step Response  
Vs = 2.7V  
Vs = 2.7V  
G = +1  
CL = 100pF  
RL = 10KΩ  
G = +1  
CL = 200pF  
RL = 10KΩ  
Time(500ns/div)  
Time(200ns/div)  
Channel Separation vs.Frequency  
Closed-Loop Output Voltage Swing  
3
130  
2.5  
2
120  
110  
100  
90  
1.5  
1
Vs=2.7V  
IN =2.6VP-P  
Vs=2.7V  
RL =620Ω  
TA =25℃  
G=1  
V
TA =25℃  
RL =2KΩ  
G=1  
0.5  
0
80  
70  
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000 10000 100000  
Frequency(kHz)  
Frequency(kHz)  
SGM721/2/3/4  
TYPICAL PERFORMANCE CHARACTERISTICS  
At TA = +25,VCM = Vs/2, RL = 600, unless otherwise noted.  
Offset Voltage Production Distribution  
33  
30  
Typical production  
distribution of  
packaged units.  
27  
24  
21  
18  
15  
12  
9
6
3
0
-4  
-3  
-2  
-1  
0
1
2
3
4
Offset Voltage(mV)  
SGM721/2/3/4  
Power-Supply Bypassing and Layout  
APPLICATION NOTES  
Driving Capacitive Loads  
The SGM72x family operates from either a single +2.5V to  
+5.5V supply or dual ±1.25V to ±2.75V supplies. For  
single-supply operation, bypass the power supply VDD with a  
0.1µF ceramic capacitor which should be placed close to the  
VDD pin. For dual-supply operation, both the VDD and the VSS  
supplies should be bypassed to ground with separate 0.1µF  
The SGM72x can directly drive 4700pF in unity-gain without  
oscillation. The unity-gain follower (buffer) is the most sensitive  
configuration to capacitive loading. Direct capacitive loading  
reduces the phase margin of amplifiers and this results in  
ringing or even oscillation. Applications that require greater  
capacitive drive capability should use an isolation resistor  
between the output and the capacitive load like the circuit in  
Figure 1. The isolation resistor RISO and the load capacitor CL  
form a zero to increase stability. The bigger the RISO resistor  
value, the more stable VOUT will be. Note that this method  
results in a loss of gain accuracy because RISO forms a voltage  
ceramic capacitors. 2.2µF tantalum capacitor can be added for  
better performance.  
Good PC board layout techniques optimize performance by  
decreasing the amount of stray capacitance at the op amp’s  
inputs and output. To decrease stray capacitance, minimize  
trace lengths and widths by placing external components as  
close to the device as possible. Use surface-mount  
components whenever possible.  
divider with the RLOAD  
.
For the operational amplifier, soldering the part to the board  
directly is strongly recommended. Try to keep the high  
frequency big current loop area small to minimize the EMI  
(electromagnetic interfacing).  
RISO  
SGM721  
VOUT  
VIN  
CL  
VDD  
10µF  
VDD  
10µF  
0.1µF  
Figure 1. Indirectly Driving Heavy Capacitive Load  
0.1µF  
An improvement circuit is shown in Figure 2. It provides DC  
accuracy as well as AC stability. RF provides the DC accuracy  
by connecting the inverting signal with the output. CF and RIso  
serve to counteract the loss of phase margin by feeding the  
high frequency component of the output signal back to the  
amplifier’s inverting input, thereby preserving phase margin in  
the overall feedback loop.  
Vn  
Vp  
VOUT  
Vn  
Vp  
SGM721  
VOUT  
SGM721  
10µF  
CF  
0.1µF  
VSS(GND)  
RF  
RISO  
SGM721  
VOUT  
VSS  
VIN  
CL  
RL  
Figure 3. Amplifier with Bypass Capacitors  
Figure 2. Indirectly Driving Heavy Capacitive Load with DC  
Accuracy  
Grounding  
A ground plane layer is important for SGM72x circuit design.  
The length of the current path speed currents in an inductive  
ground return will create an unwanted voltage noise. Broad  
ground plane areas will reduce the parasitic inductance.  
For no-buffer configuration, there are two others ways to  
increase the phase margin: (a) by increasing the amplifier’s  
gain or (b) by placing a capacitor in parallel with the feedback  
resistor to counteract the parasitic capacitance associated with  
inverting node.  
Input-to-Output Coupling  
To minimize capacitive coupling, the input and output signal  
traces should not be parallel. This helps reduce unwanted  
positive feedback.  
SGM721/2/3/4  
Typical Application Circuits  
C
Differential Amplifier  
R2  
The circuit shown in Figure 4 performs the difference function.  
If the resistors ratios are equal ( R4 / R3 = R2 / R1 ), then  
R1  
VIN  
V
OUT = ( Vp – Vn ) × R2 / R1 + Vref.  
R2  
VOUT  
SGM721  
R1  
Vn  
VOUT  
SGM721  
R3=R1//R2  
Vp  
R3  
Figure 6. Low Pass Active Filter  
R4  
Vref  
Figure 4. Differential Amplifier  
Instrumentation Amplifier  
The circuit in Figure 5 performs the same function as that in  
Figure 4 but with the high input impedance.  
R2  
R1  
SGM721  
Vn  
SGM721  
VOUT  
Vp  
R3  
R4  
SGM721  
Vref  
Figure 5. Instrumentation Amplifier  
Low Pass Active Filter  
The low pass filter shown in Figure 6 has a DC gain of (-R2/R1)  
and the –3dB corner frequency is 1/2πR2C. Make sure the filter  
is within the bandwidth of the amplifier. The Large values of  
feedback resistors can couple with parasitic capacitance and  
cause undesired effects such as ringing or oscillation in  
high-speed amplifiers. Keep resistors value as low as possible  
and consistent with output loading consideration.  
10  
SGM721/2/3/4  
PACKAGE OUTLINE DIMENSIONS  
SC70-5  
D
e1  
θ
Dimensions  
Dimensions  
In Inches  
Symbol  
In Millimeters  
e
Min  
0.900  
0.000  
0.900  
0.150  
0.080  
Max  
1.100  
0.100  
1.000  
0.350  
0.150  
Min  
0.035  
0.000  
0.035  
0.006  
0.003  
Max  
0.043  
0.004  
0.039  
0.014  
0.006  
A
A1  
A2  
b
c
D
E
E1  
e
2.000  
1.150  
2.150  
2.200  
1.350  
2.450  
0.079  
0.045  
0.085  
0.087  
0.053  
0.096  
b
0.20  
C
0.650TYP  
0.026TYP  
e1  
L
1.200  
1.400  
0.047  
0.055  
0.525REF  
0.021REF  
L1  
θ
0.260  
0°  
0.460  
8°  
0.010  
0°  
0.018  
8°  
11  
SGM721/2/3/4  
PACKAGE OUTLINE DIMENSIONS  
SOT23-5  
D
θ
Dimensions  
Dimensions  
In Inches  
0.20  
0
Symbol  
In Millimeters  
b
Min  
Max  
Min  
Max  
A
A1  
A2  
b
c
D
E
E1  
e
1.050  
1.250  
0.041  
0.049  
0.000  
1.050  
0.300  
0.100  
2.820  
1.500  
2.650  
0.100  
1.150  
0.400  
0.200  
3.020  
1.700  
2.950  
0.000  
0.041  
0.012  
0.004  
0.111  
0.059  
0.104  
0.004  
0.045  
0.016  
0.008  
0.119  
0.067  
0.116  
e
C
e1  
0.950TYP  
0.037TYP  
e1  
L
1.800  
2.000  
0.071  
0.028REF  
0.079  
0.700REF  
L1  
θ
0.300  
0°  
0.600  
8°  
0.012  
0°  
0.024  
8°  
12  
SGM721/2/3/4  
PACKAGE OUTLINE DIMENSIONS  
SOT23-6  
Dimensions  
Dimensions  
In Inches  
D
e1  
Symbol  
In Millimeters  
θ
Min  
1.050  
0.000  
1.050  
0.300  
0.100  
2.820  
1.500  
Max  
1.250  
0.100  
1.150  
0.400  
0.200  
3.020  
1.700  
Min  
0.041  
0.000  
0.041  
0.012  
0.004  
0.111  
0.059  
Max  
0.049  
0.004  
0.045  
0.016  
0.008  
0.119  
0.067  
0.20  
e
0
A
A1  
A2  
b
c
D
E
E1  
e
2.650  
2.950  
0.104  
0.037TYP  
0.116  
b
C
0.950TYP  
e1  
L
1.800  
2.000  
0.071  
0.028REF  
0.079  
0.700REF  
L1  
θ
0.300  
0°  
0.600  
8°  
0.012  
0°  
0.024  
8°  
13  
SGM721/2/3/4  
PACKAGE OUTLINE DIMENSIONS  
SO-8  
D
Dimensions  
Dimensions  
In Inches  
C
Symbol  
In Millimeters  
Min  
1.350  
0.100  
1.350  
0.330  
0.190  
4.780  
3.800  
5.800  
Max  
1.750  
0.250  
1.550  
0.510  
0.250  
5.000  
4.000  
6.300  
Min  
0.053  
0.004  
0.053  
0.013  
0.007  
0.188  
0.150  
0.228  
Max  
0.069  
0.010  
0.061  
0.020  
0.010  
0.197  
0.157  
0.248  
A
A1  
A2  
B
C
D
E
E1  
e
θ
e
1.270TYP  
0.050TYP  
B
L
θ
0.400  
0°  
1.270  
8°  
0.016  
0°  
0.050  
8°  
14  
SGM721/2/3/4  
PACKAGE OUTLINE DIMENSIONS  
MSOP-8  
C
b
Dimensions  
Dimensions  
In Inches  
Symbol In Millimeters  
Min  
0.800  
0.000  
0.760  
Max  
1.200  
0.200  
0.970  
Min  
0.031  
0.000  
0.030  
Max  
0.047  
0.008  
0.038  
A
A1  
A2  
b
0.30 TYP  
0.15 TYP  
2.900 3.100  
0.65 TYP  
0.012 TYP  
0.006 TYP  
0.114 0.122  
0.026 TYP  
c
θ
D
e
e
E
2.900  
3.100  
5.100  
0.650  
6°  
0.114  
0.122  
0.201  
0.026  
6°  
A2  
A
E1  
L
4.700  
0.410  
0°  
0.185  
0.016  
0°  
θ
D
15  
SGM721/2/3/4  
PACKAGE OUTLINE DIMENSIONS  
SO-16  
D
C
Dimensions  
Dimensions  
In Inches  
Symbol  
In Millimeters  
Min  
1.350  
0.100  
1.350  
0.330  
0.170  
9.800  
3.800  
5.800  
Max  
1.750  
0.250  
1.550  
0.510  
0.250  
10.20  
4.000  
6.200  
Min  
0.053  
0.004  
0.053  
0.013  
0.007  
0.386  
0.150  
0.228  
Max  
0.069  
0.010  
0.061  
0.020  
0.010  
0.402  
0.157  
0.244  
A
A1  
A2  
b
c
θ
D
E
e
E1  
e
1.270 (BSC)  
0.050 (BSC)  
L
θ
0.400  
0°  
1.270  
8°  
0.016  
0°  
0.050  
8°  
b
16  
SGM721/2/3/4  
PACKAGE OUTLINE DIMENSIONS  
TSSOP-16  
A
b
Dimensions  
Dimensions  
In Inches  
Symbol In Millimeters  
Min  
4.900  
4.300  
0.190  
0.090  
6.250  
Max  
5.100  
4.500  
0.300  
0.200  
6.550  
1.100  
1.000  
0.150  
Min  
0.193  
0.169  
0.007  
0.004  
0.246  
Max  
0.201  
0.177  
0.012  
0.008  
0.258  
0.043  
0.039  
0.006  
D
E
b
PIN #1 IDENT.  
c
A2  
A
E1  
A
e
A2  
A1  
e
0.800  
0.020  
0.031  
0.001  
C
θ
0.65 (BSC)  
0.026 (BSC)  
L
H
θ
0.500  
0.700  
0.020  
0.028  
7°  
A
0.25(TYP)  
0.01(TYP)  
D
1°  
7°  
1°  
H
A1  
17  
SGM721/2/3/4  
REVISION HISTORY  
Location  
Page  
11/06— Data Sheet changed from REV. A to REV. B  
Changes to ABSOLUTE MAXIMUM ATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Shengbang Microelectronics Co, Ltd  
Unit 3, ChuangYe Plaza  
No.5, TaiHu Northern Street, YingBin Road Centralized Industrial Park  
Harbin Development Zone  
Harbin, HeiLongJiang 150078  
P.R. China  
Tel.: 86-451-84348461  
Fax: 86-451-84308461  
www.sg-micro.com  
18  
SGM721/2/3/4  

相关型号:

SGM72106

SP6T LTE Switch with MIPI RFFE Interface
SGMICRO

SGM72108

SP8T LTE Switch with MIPI RFFE Interface
SGMICRO

SGM72110

SP10T LTE Switch with MIPI RFFE Interface
SGMICRO

SGM72112A

SP12T LTE Switch with MIPI RFFE Interface
SGMICRO

SGM72112B

DP12T Diversity Switch with MIPI RFFE for Carrier Aggregation
SGMICRO

SGM721XC5/TR

970レA, 10MHz, Rail-to-Rail I/O CMOS Operational Amplifier
SGMICRO

SGM721XN5/TR

970レA, 10MHz, Rail-to-Rail I/O CMOS Operational Amplifier
SGMICRO

SGM721XS

970レA, 10MHz, Rail-to-Rail I/O CMOS Operational Amplifier
SGMICRO

SGM721XS/TR

970レA, 10MHz, Rail-to-Rail I/O CMOS Operational Amplifier
SGMICRO

SGM721_15

CMOS Operational Amplifiers
SGMICRO

SGM721_16

CMOS Operational Amplifiers
SGMICRO

SGM722

970レA, 10MHz, Rail-to-Rail I/O CMOS Operational Amplifier
SGMICRO