SX1255IWLTRT [SEMTECH]

Low Power Digital I and Q RF Multi-PHY Mode Transceiver;
SX1255IWLTRT
型号: SX1255IWLTRT
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Low Power Digital I and Q RF Multi-PHY Mode Transceiver

电信 电信集成电路
文件: 总43页 (文件大小:1169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SX1255  
WIRELESS & SENSING PRODUCTS  
SX1255 RF Front-End Transceiver  
DATASHEET  
Low Power Digital I and Q RF Multi-PHY Mode Transceiver  
VBAT1  
VBAT2 VR_ANA1 VR_ANA2 VR_DIG  
0 to −30dB with 2dB steps  
0 to −48dB with 6dB steps  
CT ΣΔ  
Rx pre−filter  
Power Distribution System  
1b  
RFIN  
Rx pre−filter  
CT ΣΔ  
I_RX  
1b  
RX  
PLL  
I_OUT  
Q_OUT  
I_IN  
DIV 4  
DIV 4  
2
2
N
32  
32  
2
Fractional frequency  
synthesizer  
Q_RX  
Digital Bridge  
ΣΔ  
I2S  
N
32  
32  
TX  
Q_IN  
PLL  
2
ATT  
Fractional frequency  
synthesizer  
Gain DAC  
DIO(2)  
DIO(3)  
DIO(1)  
DIO(0)  
5b  
1b  
RFOUT_P  
RFOUT_M  
Tx Filter  
FIR−DAC  
I_TX  
Driver  
1b  
Tx Filter  
FIR−DAC  
Q_TX  
balun  
Registers and interface  
XOSC  
CLK select  
XTA XTB  
CLK IN CLK OUT  
NSS MOSI MISO SCK RESET  
GENERAL DESCRIPTION  
KEY PRODUCT FEATURES  
The SX1255 is a highly integrated RF front-end to digital I  
and Q modulator/demodulator Multi-PHY mode transceiver  
capable of supporting multiple constant and non-constant  
envelope modulation schemes. It is designed to operate  
over the 400 - 510 MHz worldwide licensed and unlicensed  
frequency bands. Its highly integrated architecture allows  
for a minimum of external components whilst maintaining  
maximum design flexibility. All major RF communication  
parameters are programmable and most of them can be  
dynamically set. The SX1255 offers support for both  
narrow-band and wide-band communication modes without  
the need to modify external components. The SX1255 is  
Fully flexible I and Q modulator and demodulator  
Half or full-duplex operation  
Bullet proof RX LNA  
Analog TX and RX pre-filtering  
2
Decimated I&Q signal under I S industry format  
Programmable tap TX FIR-DAC filter  
Linear TX amplifier for both constant and non-constant  
envelope modulation schemes  
optimized for low power consumption while offering the ORDERING INFORMATION  
provision for high RF output power and channelized  
operation. TrueRF™ technology enables  
external component count whilst still satisfying ETSI, FCC  
and ARIB and other regulations.  
a low-cost  
Part Number  
SX1255IWLTRT  
SX1255WS  
Temperature Range  
-40; +85 C  
Qty. per Reel  
3000  
Package  
MLPQW-32  
-
-40; +85 C  
1 Wafer  
APPLICATIONS  
Pb-free, Halogen Free  
RoHS / WEEE compliant product  
IEEE 802.15.4g SUN Multi-PHY Mode Smartgrid  
Cognitive / Software Defined Radio (SDR)  
SX1255 - Rev. 3.0  
Page 1  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
TABLE OF CONTENT  
DATASHEET  
1.  
General Description ................................................................................................................................................ 6  
1.1.  
Simplified Block Diagram ............................................................................................................................... 6  
Pin and Marking Diagram................................................................................................................................ 7  
Pin Description................................................................................................................................................ 8  
1.2.  
1.3.  
2.  
Electrical Characteristics......................................................................................................................................... 9  
2.1.  
ESD Notice...................................................................................................................................................... 9  
Absolute Maximum Ratings ............................................................................................................................ 9  
Operating Range............................................................................................................................................. 9  
Electrical Specifications ................................................................................................................................ 10  
2.2.  
2.3.  
2.4.  
2.4.1. Power Consumption............................................................................................................................... 10  
2.4.2. Frequency Synthesis.............................................................................................................................. 10  
2.4.3. Transmitter Front-End............................................................................................................................ 11  
2.4.4. Receiver Front-End................................................................................................................................ 11  
2.4.5. SPI Bus Digital Specification.................................................................................................................. 12  
Chip Description.................................................................................................................................................... 13  
3.  
3.1.  
Power Supply Strategy.................................................................................................................................. 13  
Low Battery Detector..................................................................................................................................... 13  
Frequency Synthesizer ................................................................................................................................. 13  
3.2.  
3.3.  
3.3.1. Reference Oscillator............................................................................................................................... 13  
3.3.2. CLK_OUT Output................................................................................................................................... 14  
3.3.3. PLL Architecture..................................................................................................................................... 14  
3.3.3.1. VCO................................................................................................................................................... 14  
3.3.3.2. PLL Bandwidth .................................................................................................................................. 14  
3.3.3.3. Carrier Frequency and Resolution .................................................................................................... 14  
3.3.3.4. PLL Lock Time .................................................................................................................................. 15  
3.3.3.5. Lock Detect Indicator......................................................................................................................... 15  
3.4.  
Transmitter Analog Front-End Description.................................................................................................... 15  
3.4.1. Architectural Description ........................................................................................................................ 15  
3.4.2. TX I / Q Channel Filters.......................................................................................................................... 15  
3.4.3. TX I / Q Up-Conversion Mixers .............................................................................................................. 16  
3.4.4. RF Amplifier ........................................................................................................................................... 16  
3.5.  
Transmitter Digital Baseband Description..................................................................................................... 17  
3.5.1. Digital-to-Analog Converters.................................................................................................................. 17  
3.6. Receiver Analog Front-End Description ............................................................................................................19  
3.6.1. Architectural Description ........................................................................................................................ 19  
3.6.2. LNA and Single to Differential Buffer ..................................................................................................... 19  
3.6.3. I /Q Downconversion Quadrature Mixer................................................................................................. 19  
3.6.4. Baseband Analog Filters and Amplifiers ................................................................................................ 19  
3.7.  
Receiver Digital Baseband............................................................................................................................ 20  
3.7.1. Architectural Block Diagram................................................................................................................... 20  
3.7.2. Analog-to-Digital Converters.................................................................................................................. 20  
SX1255 - Rev. 3.0  
Page 2  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
3.7.3. Temperature Sensor .............................................................................................................................. 20  
3.8.  
Loop-Back.................................................................................................................................................... 21  
3.8.1. Digital Loop-Back................................................................................................................................... 21  
3.8.2. RF Loop Back ............................................................................................................................................22  
Digital Interface..................................................................................................................................................... 23  
4.  
4.1.  
General overview .......................................................................................................................................... 23  
Definition and operation of the SPI interface................................................................................................. 23  
Digital IO Pin Mapping .................................................................................................................................. 24  
I and Q interface............................................................................................................................................ 24  
4.2.  
4.3.  
4.4.  
4.4.1. General description................................................................................................................................ 24  
4.4.2. Mode A................................................................................................................................................... 25  
4.4.3. Mode B................................................................................................................................................... 26  
4.4.3.1. Introduction........................................................................................................................................ 26  
4.4.3.2. Parameters........................................................................................................................................ 29  
Configuration and Status Registers ...................................................................................................................... 33  
5.  
6.  
5.1.  
General Description ...................................................................................................................................... 33  
Application Information ......................................................................................................................................... 37  
6.1.  
6.2.  
Crystal Resonator Specification.................................................................................................................... 37  
Reset of the Chip .......................................................................................................................................... 37  
6.2.1. POR ....................................................................................................................................................... 37  
6.2.2. Manual Reset......................................................................................................................................... 38  
6.3.  
6.4.  
TX Noise Shaper........................................................................................................................................... 38  
Reference Design ......................................................................................................................................... 39  
7.  
8.  
Packaging Information .......................................................................................................................................... 40  
7.1.  
Package Outline Drawing.............................................................................................................................. 40  
Recommended Land Pattern ........................................................................................................................ 40  
Thermal Impedance ...................................................................................................................................... 41  
Tape and Reel Specification ......................................................................................................................... 41  
7.2.  
7.3.  
7.4.  
Revision History.................................................................................................................................................... 42  
SX1255 - Rev. 3.0  
Page 3  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
FIGURES  
DATASHEET  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Block Diagram ..................................................................................................................................... 6  
Pin Diagram ......................................................................................................................................... 7  
Marking Diagram ................................................................................................................................. 7  
TCXO Connection .............................................................................................................................. 13  
SX1255 Transmitter Analog Front-End Block Diagram ..................................................................... 15  
FIR-DAC Normalized Magnitude Response with fS = 32 MHz and N = 32 ....................................... 17  
FIR-DAC Normalized Magnitude Response with fS = 32 MHz and N = 64 ....................................... 18  
SX1255 Receiver Analog Front-End Block Diagram ......................................................................... 19  
SX1255 Digital Receiver Baseband Block Diagram .......................................................................... 20  
Temperature Sensor Response ........................................................................................................ 21  
Digital and RF Loop-Back Paths ....................................................................................................... 22  
SPI Timing Diagram (single access) .................................................................................................. 23  
Tx timing diagram of I and Q interface in mode A (SX1255 master) ................................................. 25  
Tx timing diagram of I and Q interface in mode A (SX1255 slave) .................................................... 26  
The I2S interface block in its context (mux cells are included in PAD_CTL block) ........................... 27  
Timing diagram of I and Q interfaces in mode B1 ............................................................................. 28  
Timing diagram of I and Q interfaces in mode B2 ............................................................................. 29  
POR Timing Diagram ......................................................................................................................... 37  
Manual Reset Timing Diagram .......................................................................................................... 38  
Example Digital Modulator Implementation ....................................................................................... 38  
SX1255 Application Schematic .......................................................................................................... 39  
Package Outline Drawing .................................................................................................................. 40  
Recommended Land Pattern ............................................................................................................ 40  
Tape and Reel Specification .............................................................................................................. 41  
SX1255 - Rev. 3.0  
Page 4  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
TABLES  
DATASHEET  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
SX1255 Pinout ..................................................................................................................................... 8  
Absolute Maximum Ratings ................................................................................................................. 9  
Operating Ranges ............................................................................................................................... 9  
Power Consumption Specification ..................................................................................................... 10  
Frequency Synthesizer Specification ................................................................................................ 10  
TX Front-End Specifications .............................................................................................................. 11  
RX Front-End Specification ............................................................................................................... 11  
SPI Digital Specification .................................................................................................................... 12  
TX Analog Filter Single Sideband Bandwidth .................................................................................... 16  
TX DAC Single Sideband Bandwidth ................................................................................................ 17  
DIO Mapping ..................................................................................................................................... 24  
Mapping of IO pins related to the I and Q transfer ............................................................................. 25  
Sampling rates 1st set ....................................................................................................................... 30  
Sampling rates 2nd set ...................................................................................................................... 30  
Number of bits per sample for the 1st set and B1 mode ................................................................... 30  
Number of bits per sample for the 2nd set and B1 mode .................................................................. 31  
Number of bits per sample for the 2nd set and B2 mode .................................................................. 32  
Number of bits per sample for the 1st set and B2 mode ................................................................... 32  
Crystal Resonator Specification ........................................................................................................ 37  
Datasheet Revision History ............................................................................................................... 42  
SX1255 - Rev. 3.0  
Page 5  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
1. General Description  
DATASHEET  
The SX1255 is a single-chip Zero-IF RF-to-digital front-end transceiver integrated circuit ideally suited for today's high  
performance multi-PHY mode or SDR ISM band RF applications. The SX1255 has a maximum signal bandwidth of 500  
kHz in both transmission and reception and is intended as a high performance, low-cost RF-to-digital converter and  
provides a generic RF front-end that allows several constant and non-constant envelope modulation schemes to be  
handled, such as the MR-FSK, MR-OFDM and MR-O-QPSK applications in the 400 - 510 MHz licensed and unlicensed  
frequency bands.  
The SX1255's advanced features set greatly simplifies system design whilst the high level of integration reduces the  
external BOM to an optional RF power amplifier, and a handful of passive decoupling and matching components. A simple  
4-wire 1-bit digital serial or I2S like interface are provided for the baseband I and Q data streams to the baseband  
processor.  
The SX1255 can operate in both half and full-duplex mode and is compliant with ETSI, FCC and ARIB regulatory  
requirements. It is available in a MLPQ-W 5 x 5 mm 32 lead package.  
1.1. Simplified Block Diagram  
VBAT1  
VBAT2 VR_ANA1 VR_ANA2 VR_DIG  
Power Distribution System  
0 to −30dB with 2dB steps  
0 to −48dB with 6dB steps  
CT ΣΔ  
CT ΣΔ  
Rx pre−filter  
Rx pre−filter  
1b  
RFIN  
I_RX  
1b  
RX  
PLL  
I_OUT  
Q_OUT  
I_IN  
DIV 4  
DIV 4  
2
N
32  
32  
2
Fractional frequency  
synthesizer  
Q_RX  
Digital Bridge  
I2S  
ΣΔ  
N
32  
32  
2
TX  
Q_IN  
PLL  
2
ATT  
Fractional frequency  
synthesizer  
Gain DAC  
DIO(2)  
DIO(3)  
DIO(1)  
DIO(0)  
5b  
1b  
RFOUT_P  
RFOUT_M  
Tx Filter  
FIR−DAC  
I_TX  
Driver  
1b  
Tx Filter  
FIR−DAC  
Q_TX  
balun  
Registers and interface  
XOSC  
CLK select  
XTA XTB  
CLK IN CLK OUT  
NSS MOSI MISO SCK RESET  
Figure 1. Block Diagram  
SX1255 - Rev. 3.0  
October 2013 ©2013 Semtech Corporation  
Page 6  
www.semtech.com  
SX1255  
WIRELESS & SENSING PRODUCTS  
1.2. Pin and Marking Diagram  
DATASHEET  
The following diagrams illustrate the pin arrangement of the MLPQ-W package (top view) and the IC marking description.  
Figure 2. Pin Diagram  
Figure 3. Marking Diagram  
Note: yyww refers to the date code xxxxxx refers to the lot number  
SX1255 - Rev. 3.0  
Page 7  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
1.3. Pin Description  
DATASHEET  
Table 1  
SX1255 Pinout  
Number  
Name  
Ground  
VR_PA  
VBAT1  
VR_ANA1  
GND  
Type  
Description  
0
1
2
3
4
5
6
7
8
9
-
-
Exposed ground pad  
Regulated supply for TX amplifier  
VBAT Supply voltage  
Regulated supply for analog TX circuit  
Ground  
-
-
-
VR_DIG  
XTA  
-
Regulated supply for digital circuit  
Crystal pad  
I/O  
-
GND  
Ground  
XTB  
I/O  
I/O  
O
I
Crystal pad / input for external clock  
Reset  
Reset  
CLK_OUT  
CLK_IN  
Q_IN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
36 MHz digital clock output  
36 MHz digital clock input (SX1255 used in slave TX mode)  
Digital baseband data input for I (inphase) channel DAC  
Digital baseband data input for Q (quadrature) channel DAC  
Digital baseband data output from I (inphase) channel ADC  
Digital baseband data output from Q (quadrature) channel ADC  
VBAT supply voltage  
I
I_IN  
I
Q_OUT  
I_OUT  
VBAT2  
SCK  
O
O
-
I
SPI clock  
MISO  
O
I
Master In Slave Output SPI output  
Master Out Slave Input SPI input  
SPI chip select  
MOSI  
NSS  
I
DIO0  
O
O
O
O
-
Digital I/O, software configured  
Digital I/O, software configured  
Digital I/O, software configured  
Digital I/O, software configured  
Regulated supply for analog RX circuit  
Ground  
DIO1  
DIO2  
DIO3  
VR_ANA2  
GND  
-
RF_IN  
GND  
I
RX LNA input  
-
Ground  
RF_ON  
RF_OP  
GND  
O
O
-
Differential TX Output, negative node  
Differential TX Output, positive node  
Ground  
VBAT3  
-
VBAT supply for TX amplifier  
SX1255 - Rev. 3.0  
Page 8  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
2. Electrical Characteristics  
DATASHEET  
2.1. ESD Notice  
The SX1255 is a high performance radio frequency device.  
Class 2 of the JEDEC standard JESD22-A114-C (Human Body Model) on all pins  
Class III of the JEDEC standard JESD22-C101-C (Charged Device Model) on all pins  
2.2. Absolute Maximum Ratings  
Stresses above the values listed below may cause permanent device failure. Exposure to absolute maximum ratings for  
extended periods may affect device reliability.  
Table 2  
Absolute Maximum Ratings  
Symbol  
Description  
Maximum Supply Voltage  
Maximum Temperature  
Min  
-0.5  
-55  
-
Max  
3.9  
Units  
V
VDDmr  
Tmr  
Tj  
115  
125  
+6  
°C  
Maximum Junction Temperature  
Maximum RF Input Level  
°C  
Pmr  
-
dBm  
2.3. Operating Range  
Operating ranges define the limits for functional operation and parametric characteristics of the device as described in this  
section. Functionality outside these limits is not implied.  
Table 3  
Operating Ranges  
Symbol  
Description  
Min  
2.7  
-40  
-
Max  
3.6  
+85  
25  
Units  
V
VDDop  
Top  
Operational Supply Voltage  
Operational Temperature  
Load Capacitance on Digital Ports  
RF Input Level  
°C  
Clop  
ML  
pF  
-
0
dBm  
SX1255 - Rev. 3.0  
October 2013 ©2013 Semtech Corporation  
Page 9  
www.semtech.com  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
2.4. Electrical Specifications  
The table below gives the electrical specifications of the transceiver under the following conditions:  
supply Voltage = 3.3 V, temperature = 25 °C, f  
= 36 MHz, f = 434 MHz, Output power = -5 dBm (100 ohm differential  
RF  
XOSC  
transmission), TXBWANA = 250 kHz, RXBWANA = 250 kHz, mode A, external baseband RX filter = 150 kHz, unless  
otherwise specified.  
Note: RF performance depends on assembly. Electrical specifications listed below are obtained with the QFN package  
described in section 7 “Packaging Information”.  
2.4.1. Power Consumption  
Table 4  
Power Consumption Specification  
Symbol  
Description  
Conditions  
Min  
Typ  
0.2  
1.15  
18  
Max  
1
Units  
uA  
IDDSL  
Supply Current in Sleep Mode  
-
-
-
-
IDDST  
IDDRX  
IDDTX  
Supply Current in Standby Mode  
Supply Current in Receive Mode  
Supply Current in Transmit Mode  
Crystal oscillator enabled  
1.5  
25  
mA  
mA  
RFOutput Power = -5 dBm  
60  
90  
mA  
2.4.2. Frequency Synthesis  
Table 5  
Frequency Synthesizer Specification  
Symbol  
Description  
Conditions  
Min  
400  
32  
-
Typ  
-
Max  
510  
Units  
MHz  
MHz  
us  
FR  
Synthesizer Frequency Range  
Programmable  
FXOSC  
TS_OS  
TS_FS  
Crystal Oscillator Frequency  
See Section 5  
36  
36.864  
500  
Crystal Oscillator Wake-up Time  
From sleep mode  
Crystal Oscillator Enabled  
300  
50  
RX Frequency Synthesizer  
Wake-up Time  
-
150  
us  
FSTEP = FXOSC / 220  
FSTEP  
Frequency Synthesizer Step Size  
30.5  
34.3  
35.16  
Hz  
TS_HOP_RX  
RX Frequency Synthesizer Hop Time  
(to within 10 kHz of target frequency)  
200 kHz step  
-
-
-
-
20  
20  
30  
50  
-
-
-
-
us  
us  
us  
us  
400 kHz step  
1.2 MHz step  
25 MHz step  
RX Frequency Synthesizer Hop Time  
(to within 10 kHz of target frequency)  
TS_HOP_TX  
200 kHz step  
400 kHz step  
1.2 MHz step  
25 MHz step  
-
-
-
-
20  
20  
30  
50  
-
-
-
-
us  
us  
us  
us  
SX1255 - Rev. 3.0  
Page 10  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
2.4.3. Transmitter Front-End  
Table 6  
TX Front-End Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
FCLK_IN  
External Clock Frequency for TX  
Synthesizer or DAC input clock  
SX1255 slave mode  
32  
-
36.864  
MHz  
TS_TR  
TXPmax  
TXP1dB  
TXOIP3  
PHN  
Transmitter Wake-up Time  
TX Maximum Output Power  
TX 1 dB Compression Point  
TX Output IP3  
Frequency synthesizer enabled  
Saturated Power  
-
120  
+7  
-
-
-
-
us  
+4  
+2  
+13  
dBm  
dBm  
dBm  
Peak Value  
+5  
-5 dBm average output power  
+16  
Transmitter Phase Noise  
10 kHz offset from carrier  
100 kHz offset from carrier  
1 MHz offset from carrier  
-
-
-
-110  
-108  
-128  
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
PHNF  
Transmitter Output Noise Floor  
10 MHz offset from carrier  
-128  
-
-135  
0.2  
-
dBc/Hz  
°RMS  
PHNID  
Transmitter Integrated DSB Phase  
Noise  
Integrated bandwidth from  
500 Hz to 125 kHz  
1.5  
TXGM  
Transmitter IQ Gain Mismatch  
Transmitter IQ Phase Mismatch  
-
-
0.5  
1
3
dB  
°
TXPM  
1
-
TXBWANA  
Transmitter Analog Prefilter BW (DSB) Programmable in 31 steps  
420  
-30  
1700  
+30  
kHz  
%
TXBWANAPrc Transmitter Analog Prefilter BW  
precision  
-
TXBWDIFG  
TXLO  
Transmitter FIR-DAC Taps  
Programmable  
24  
-
-
64  
-
-
TX LO Leakage (Before DC offset  
Calibration)  
ADC rms input: -10 dBFS  
-8  
dBc  
TXEVM  
Transmitter Error Vector Magnitude  
tbd  
dB  
2.4.4. Receiver Front-End  
Table 7  
RX Front-End Specification  
Symbol  
FCLK_IN  
CLK_INJ  
RXNF  
Description  
Conditions  
Min  
32  
-
Typ  
Max  
36.864  
0.01  
Units  
MHz  
%
External Clock Frequency for RX ADC SX1255 slave mode  
-
-
External Clock Jitter Specification  
Receiver Noise Figure  
External clock. White noise  
Maximum LNA Gain  
Maximum LNA Gain -6dB  
Minimum LNA Gain  
-
-
-
4.5  
6.5  
38  
7
9
40  
dB  
RXGR  
IIP3  
RX Gain Range  
Adjustable in 2 dB steps  
-
70  
-
dB  
rd Order Input Intercept Point  
Maximum LNA Gain  
Maximum LNA Gain -6dB  
Minimum LNA Gain  
-28  
-21  
+10  
-23  
-16  
+20  
-
-
-
3
dBm  
Unwanted tones are 2 MHz and 3.8  
MHz above the LO  
SX1255 - Rev. 3.0  
Page 11  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
Table 7  
RX Front-End Specification  
Symbol  
RXGM  
Description  
Conditions  
Min  
Typ  
0.5  
0.5  
-
Max  
Units  
dB  
Receiver IQ Gain Mismatch  
Receiver IQ Phase Mismatch  
Receiver Analog Prefilter BW (SSB)  
Receiver Wake-up Time  
-
1
RXPM  
-
500  
-
3
1500  
-
°
RXBWANA  
TS_RE  
Programmable  
kHz  
ms  
Frequency synthesizer enabled  
tbd  
2.4.5. SPI Bus Digital Specification  
Table 8  
SPI Digital Specification  
Symbol  
VIH  
Description  
Conditions  
Min  
0.8  
-
Typ  
Max  
Units  
VDD  
VDD  
VDD  
VDD  
MHz  
ns  
Digital Input High Level  
Digital Input Low Level  
Digital Output High Level  
Digital Output Low Level  
SCK Frequency  
-
-
-
VIL  
0.2  
VOH  
VOL  
FSCK  
tch  
Imax = 1 mA  
Imax = -1 mA  
0.9  
-
-
-
0.1  
10  
-
-
-
-
SCK High Time  
50  
50  
-
-
tcl  
SCK Low Time  
-
-
ns  
trise  
SCK Rise Time  
5
5
-
-
ns  
tfall  
SCK Fall Time  
-
-
ns  
tsetup  
MOSI Set-up Time  
From MOSI change to SCK  
rising edge  
30  
-
ns  
thold  
MOSI Hold Time  
NSS Set-up Time  
NSS Hold Time  
From SCK rising edge to MOSI  
change  
60  
30  
-
-
-
-
-
-
ns  
ns  
ns  
tnsetup  
From NSS falling edge to SCK  
rising edge  
tnhold  
From SCK falling edge to NSS  
rising edge  
100  
tnhigh  
tdata  
NSS High Time Between SPI Access  
Data Hold and Set-up Time  
20  
-
-
-
-
ns  
ns  
250  
SX1255 - Rev. 3.0  
Page 12  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
3. Chip Description  
This section describes the architecture of the SX1255 Multi-PHY mode transceiver.  
3.1. Power Supply Strategy  
The SX1255 employs an advanced power distribution scheme (PDS), which provides stable operating characteristics over  
the full temperature and voltage range of operation.  
The SX1255 can be powered from any low-noise voltage source via pins VBAT1, VBAT2 and VBAT3. Decoupling  
capacitors should be connected, as suggested in the reference design, on VR_PA, VR_DIG, VR_ANA1 and VR_ANA2 pins  
to ensure a correct operation of the built-in voltage regulators.  
3.2. Low Battery Detector  
A low battery detector is also included allowing the generation of an interrupt signal in response to passing a  
programmable threshold adjustable through the register RegLowBat. The interrupt signal can be mapped to the DIO0 pin,  
through the programmation of RegDioMapping.  
3.3. Frequency Synthesizer  
The SX1255 incorporates two separate state of the art fractional-N PLLs for the TX and RX circuit blocks  
3.3.1. Reference Oscillator  
The crystal oscillator is the main timing reference of the SX1255. It provides the reference source for the transmit and  
receive frequency synthesizers and as a clock for digital processing.  
The XO startup time, TS_OSC, depends on the actual XTAL being connected on pins XTA and XTB. When using the built-  
in sequencer, the SX1255 optimizes the startup time and automatically triggers the PLL when the XO signal is stable. To  
manually control the startup time, the user should monitor the signal CLK_OUT which will only be made available on the  
output buffer when a stable XO oscillation is achieved.  
An external crystal controlled source, such as a clipped-sinewave TCXO, clock can be used to replace the crystal  
oscillator, This external source should be provided on XTB (pin 8) and XTA (pin 6) should be left open, as illustrated in  
Figure 4, below.  
XTA  
GND  
XTB  
VCC  
OP  
VCC  
GND  
CD  
Figure 4. TCXO Connection  
SX1255 - Rev. 3.0  
October 2013 ©2013 Semtech Corporation  
Page 13  
www.semtech.com  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
The peak-peak amplitude of the input signal must never exceed 1.8 V. Please consult your TCXO supplier for an  
appropriate value of decoupling capacitor, CD. Due to the low jitter requirements required by the receiver digital block it is  
recommended that only a crystal controlled external frequency source is used.  
3.3.2. CLK_OUT Output  
For master mode operation the SX1255 provides a system clock output made available at pin CLK_OUT.  
3.3.3. PLL Architecture  
The SX1255 incorporates two fourth-order type fractional-N sigma-delta PLLs. The PLLs include integrated VCO and  
programmable bandwidth loop filter, removing the need for any external components. The PLLs are autocalibrating and are  
capable of fast switching and settling times.  
3.3.3.1. VCO  
Both TX and RX VCOs operate at twice the RF frequency, with the oscillators centered at 1.9 GHz. This reduces any LO  
leakage in receive mode, to improve the quadrature precision of the receiver, and to reduce the pulling effects on the VCO  
during transmission.  
The VCO calibration is fully automated, calibration times are fully transparent to the end-user as the processing time is  
included in the TS_TR and TS_RE specifications.  
3.3.3.2. PLL Bandwidth  
The bandwidth of the PLL loop filters are independently configurable via the configuration registers TxPllBw and RxPllBw  
for the modulation schemes supported, as well as fast channel switching and lock times to support FHSS and frequency  
agile applications, such as AFA.  
3.3.3.3. Carrier Frequency and Resolution  
Both the TX and RX embed a 20-bit sigma-delta modulator and the frequency resolution, constant over the entire  
frequency range, is calculated using the following formula:  
FXOSC  
----------------  
220  
FSTEP  
=
The RX and RX carrier frequencies are programmed through registers RegFrfRx and RegFrfTx, split across register  
addresses 0x01 to 0x03 and 0x04 to 0x06, respectively, and are calculated by:  
FRF = FSTEP × Frfxx(23, 0)  
where: Frfxx is the integer value of the RegFrfRx or RegFrfTx as defined above.  
Note: As stated above, the Frfxx settings are split across 3 bytes for both the transmitter and receiver frequency  
synthesizers. A change in the center frequency will only be taken into account when the least significant byte FrfxxLsb in  
RegFrfxxLsb is written and when exiting SLEEP mode  
SX1255 - Rev. 3.0  
Page 14  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
3.3.3.4. PLL Lock Time  
RX and TX PLL lock times are a function of a number of technical factors, such as synthesized frequency, frequency step,  
etc. The SX1255 includes an auto-sequencer that manages the start-up sequence of the PLL.  
3.3.3.5. Lock Detect Indicator  
A lock indication signal for both RX and TX PLLs can be accessed via DIO pins, and is toggled high when the PLL reaches  
its locking range. Please refer to Figure 11 to map this interrupt to the desired DIO pins.  
3.4. Transmitter Analog Front-End Description  
The analog front-end of the SX1255 transmitter stage comprises the TX frequency synthesizer, I and Q channel filters, the  
I / Q mixer and RF amplifier blocks.  
3.4.1. Architectural Description  
The block diagram of the transmitter front-end block is illustrated below.  
TX Fractional-N  
Frequency Synthesizer  
RF Loop-Back  
(To RX)  
Div by 4  
Differential  
I-Channel Filter  
I-Channel  
DAC  
RF_OP  
Differential  
Driver  
I / Q  
Mixer  
RF_ON  
Q-Channel  
DAC  
Differential  
Q-Channel Filter  
Figure 5. SX1255 Transmitter Analog Front-End Block Diagram  
3.4.2. TX I / Q Channel Filters  
Differential analog I and Q signals input to the TX Front-End from the TX FIR DAC are filtered by I and Q channel filters.  
These filters smooth the reconstructed analog waveforms and remove quantization noise generated by the I and Q  
channel TX FIR DACs. The filters are unity gain third-order low pass Butterworth types with programmable bandwidth  
configured via TxAnaBw.  
The 3 dB BW of the analog TX filter BW can be calculated from:  
17.15  
------------------------------------------------------------------  
=
BW3dB  
(41 – RegTxBwAna(4, 0))  
SX1255 - Rev. 3.0  
Page 15  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
The analog filter bandwidth should be set to greater than the signal bandwidth so as to reduce any group delay variations.  
The range of programmable TX analog filter bandwidths is tabulated below in Table 9.  
Table 9 TX Analog Filter Single Sideband Bandwidth  
TxAnaBw  
(Dec)  
TxAnaBw  
(Bin)  
SSB Filter  
BW  
TxAnaBw  
(Dec)  
TxAnaBw  
(Bin)  
SSB Filter  
BW  
(kHz)  
(kHz)  
0
1
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
209  
214  
220  
226  
232  
238  
245  
252  
260  
268  
277  
286  
296  
306  
318  
330  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
343  
357  
373  
390  
408  
429  
451  
476  
504  
536  
572  
613  
660  
715  
780  
858  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
3.4.3. TX I / Q Up-Conversion Mixers  
The TX I / Q mixer block mixes the baseband analog I and Q signals with that from the PLL frequency synthesizer and up  
converts to the RF carrier frequency. The mixer block includes a highly linear I/ Q mixer stage with programmable gain  
configurable via configuration register RegTxGain. The modulated RF signal is input to the TX RF amplifier stage.  
3.4.4. RF Amplifier  
The TX amplifier receives the input signal from the TX mixer and provides two differential outputs. The first output provides  
the RF_OP and RF_ON signals in TX mode. The second output is used to provide an internal differential signal to the  
receiver during RX gain calibration. The amplifier provides good linear performance required to meet the peak to average  
power level variation of OFDM.  
The peak output power is +5 dBm, which allows for an average output power of greater than -5 dBm with 10 dB back-off.  
The Output signal is intended to be amplified through a suitable external RF power amplifier to the maximum permissible  
SX1255 - Rev. 3.0  
Page 16  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
level allowed by relevant regulatory standards. The optimum load impedance presented RF amplifier is 100 ohms  
differential.  
3.5. Transmitter Digital Baseband Description  
The transmitter digital baseband section contains separate I and Q channel digital-to-analog convertors.  
3.5.1. Digital-to-Analog Converters  
The TX DAC is the first block of the SX1255 transmitter. It accepts the 1-bit I and Q noise shaped 32 to 36 Msample/  
second or I2S datastream from the baseand processor and converts into two analog differential signals. Each TX DAC  
provides 8-bits of resolution in a 500 kHz bandwidth which corresponds to maximum RF transmitted double sideband  
bandwidth of 1 MHz.  
A programmable Finite Impulse Response (FIR) filter allows the removal of the digital modulator noise from the external  
baseband processor. The number of taps implemented by the FIR-DAC and subsequent single-side DAC bandwidth is  
controlled by the parameter TxDacBw.  
Table 10 TX DAC Single Sideband Bandwidth  
TxDacBw (Dec) TxDacBw (Bin)  
No. DAC-FIR Taps  
SSB Filter BW (kHz)  
0
1
2
3
4
5
000  
001  
010  
011  
100  
101  
24  
32  
40  
48  
56  
64  
450  
290  
Examples of the FIR DAC normalized magnitude response are illustrated below.  
Figure 6. FIR-DAC Normalized Magnitude Response with fS = 32 MHz and N = 32  
SX1255 - Rev. 3.0  
October 2013 ©2013 Semtech Corporation  
Page 17  
www.semtech.com  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
Figure 7. FIR-DAC Normalized Magnitude Response with fS = 32 MHz and N = 64  
The DAC 3dB bandwidth is proportional to the sampling frequency fs and inversely proportional to the number of taps N. In  
the case where f = 32MHz with N = 32 the 3 dB bandwidth is typically 450 kHz. Reducing the bandwidth may be useful to  
S
reduce the quantisation noise contribution when the signal bandwidth request is lower, as is illustrated in the case where N  
= 64, resulting in a 3 dB bandwidth of approximately 290 kHz.  
SX1255 - Rev. 3.0  
Page 18  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
3.6. Receiver Analog Front-End Description  
The SX1255 Receiver Front-End is based upon a Zero-IF architecture, ideally suited to handle multiple complex  
modulation schemes. The RX chain incorporates a programmable gain LNA and single to differential buffer, I / Q mixer,  
separate I and Q channel analog low-pass filters and programmable baseband amplifiers. The amplified differential analog  
I and Q outputs are input to two 5th order continuous-time Sigma-Delta Analog to Digital Converters (ADC) for further  
signal processing in the digital domain.  
3.6.1. Architectural Description  
The block diagram of the receiver front-end block is illustrated below.  
I-Channel  
Baseband  
Amplifier  
I-Channel  
Pre-Filter  
Singleto  
Differential  
Balun  
LNA  
I-Channel  
CT ΣΔ  
ADC  
RF_IN  
Differential  
I / Q  
Mixer  
Q-Channel  
CT ΣΔ  
ADC  
Q-Channel  
Pre-Filter  
Q-Channel  
Baseband  
Amplifier  
RFLoop-  
Back  
(From TX)  
Divby4  
TXFractional-N  
FrequencySynthesizer  
Figure 8. SX1255 Receiver Analog Front-End Block Diagram  
3.6.2. LNA and Single to Differential Buffer  
The LNA uses a common-gate topology, which allows for a flat characteristic over the whole frequency range. It is  
designed to have an input impedance of 50 Ohms or 200 Ohms (as selected with bit LnaZin in RegRxAnaGain). A single to  
differential buffer is implemented to improve the second order linearity of the receiver.  
The LNA gain, including the single-to-differential buffer, is programmable over a 48 dB dynamic range, and gain control can  
be enabled via an external AGC function.  
3.6.3. I /Q Downconversion Quadrature Mixer  
The mixer is inserted between output of the RF buffer stage and the input of the I and Q channel analog low-pass filter  
stages.This block is designed to downconvert the spectrum of the input RF signal to base-band and offers both high IIP2  
and IIP3 responses.  
3.6.4. Baseband Analog Filters and Amplifiers  
The differential I and Q baseband mixer signals are pre-filtered by a programmable 1st order low-pass pre-filter and input  
to programmable linear baseband amplifiers. The single sideband 3 dB bandwidth of the pre-filters can be programmed  
between 500 kHz and 1500 kHz. This additional pre-filtering improves the selectivity of the receiver for complex modulation  
schemes, such as OFDM.  
SX1255 - Rev. 3.0  
Page 19  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
The amplifier stage gain offers 32 dB of programmable gain, in 2 dB steps, from -24 dB to +6 dB via configuration register  
RegRxAnaGain while the analog filter bandwidth is programmed via the two least significant bits of configuration register  
RegRxBw.  
3.7. Receiver Digital Baseband  
The receiver digital baseband section contains separate I and Q channel continuous time Sigma-Delta analog-to-digital  
converters to digitize and filter the analog bit stream.  
3.7.1. Architectural Block Diagram  
The block diagram of the receiver digital baseband is illustrated below.  
I-Channel  
Baseband  
Amplifier  
I(t) 1-bit  
serial stream  
I-Channel  
CT ΣΔ  
ADC  
Q(t) 1-bit  
serial stream  
Q-Channel  
CT ΣΔ  
ADC  
SX1255  
LOGIC  
DSP  
Q-Channel  
Baseband  
Amplifier  
CLK_IN  
or  
CLK_OUT  
DSP  
INTERFACE  
Figure 9. SX1255 Digital Receiver Baseband Block Diagram  
3.7.2. Analog-to-Digital Converters  
The receiver digital baseband consists of separate I and Q channel 5th order continuous-time sigma-delta modulator  
analog -to-digital converters which sample and digitize the analog baseband I and Q signals output at the analog baseband  
amplifiers.  
The ADC output allows for 13-bits of resolution after decimation and filtering by the external baseband processor within a  
500 kHz maximum bandwidth, corresponding to a maximum RF received double sideband bandwidth of 1 MHz.  
The ADC output is one bit per channel quadrature bit stream at 32 to 36 MSamples/s or I2S data-stream.  
3.7.3. Temperature Sensor  
The receiver ADC can be used to perform a temperature measurement by digitizing the sensor response. The response of  
the sensor is -1C / Lsb. Since a CMOS temperature sensor is not accurate by nature, the sensor should be calibrated at  
ambient temperature for a precise reading.  
It takes less than 100 us for the SX1255 to evaluate the temperature (from setting RxAdcTemp = “1”). The AdcTemp value  
can be read at Q_OUT. Since there is no on-chip decimation or averaging it is recommended that data on Q_OUT is  
externally processed, for example using a simple FFT.  
The temperature measurement should be performed with the SX1255 in StandbyEnable Mode (RegMode = 0x01).  
SX1255 - Rev. 3.0  
Page 20  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
RxAdcTemp  
-1°C/Lsb  
RxAdcTemp(t)  
RxAdcTemp(t-1)  
Returns 150d (typ.)  
Needs calibration  
t t+1  
Ambient  
-40°C  
+85°C  
Figure 10. Temperature Sensor Response  
3.8. Loop-Back  
The SX1255 provides mechanisms to both monitor and externally calibrate both the RF transmission path and the I and Q  
bit streams generated by the external baseband processor.  
3.8.1. Digital Loop-Back  
The digital loop-back enables the connection of the input and output I and Q baseband bit streams prior to processing by  
the SX1255.  
This loop back path enables the validation of the transmitter and receiver baseband processing paths.  
SX1255 - Rev. 3.0  
Page 21  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
3.8.2. RF Loop Back  
The RF loop-back path connects the balanced RF output signal of the transmitter driver stage to the output of the  
differential mixer of the receiver. This path provides a mechanism for the external baseband processor to implement a  
calibration for the following:  
- Receiver I, Q gain mismatch  
- Receiver I and Q phase imbalance  
- Transmitter I, Q gain mismatch  
- Transmitter I and Q phase imbalance  
- Transmitter DC offset  
Figure 11. Digital and RF Loop-Back Paths  
SX1255 - Rev. 3.0  
Page 22  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
4. Digital Interface  
4.1. General overview  
The SX1255 has several operating modes, configuration parameters and internal status indicators. All these operating  
modes, configuration parameters and status information are stored in internal registers that may be accessed by the  
external micro-controller via the serial SPI interface.  
4.2. Definition and operation of the SPI interface  
The SPI interface gives access to the configuration register via a synchronous full-duplex protocol corresponding to CPOL  
= 0 and CPHA = 0 in Motorola/Freescale nomenclature. Only the slave side is implemented.  
Three access modes to the registers are provided:  
SINGLE access: an address byte followed by a data byte is sent for a write access whereas an address byte is sent and  
a read byte is received for the read access. The NSS pin goes low at the begin of the frame and goes high after the data  
byte.  
BURST access: the address byte is followed by several data bytes. The address is automatically incremented internally  
between each data byte. This mode is available for both read and write accesses. The NSS pin goes low at the  
beginning of the frame and stay low between each byte. It goes high only after the last byte transfer.  
Figure 12 below shows a typical SPI single access to a register.  
Figure 12. SPI Timing Diagram (single access)  
MOSI is generated by the master on the falling edge of SCK and is sampled by the slave (i.e. this SPI interface) on the  
rising edge of SCK. MISO is generated by the slave on the falling edge of SCK.  
A transfer always starts by the NSS pin going low. MISO is high impedance when NSS is high.  
The first byte is the address byte. It is made of:  
wnr bit, which is 1 for write access and 0 for read access  
7 bits of address, MSB first  
The second byte is a data byte, either sent on MOSI by the master in case of a write access, or received by the master on  
MISO in case of read access. The data byte is transmitted MSB first.  
Succeeding bytes may be sent on MOSI (for write access) or received on MISO (for read access) without rising NSS and  
re-sending the address. The address is then automatically incremented at each new byte received (BURST mode).  
SX1255 - Rev. 3.0  
Page 23  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
The frame ends when NSS goes high. The next frame must start with an address byte. The SINGLE access mode is  
actually a special case of BURST mode with only 1 data byte transferred.  
During the write accesses, the byte transferred from the slave to the master on the MISO line is the value of the written  
register before the write operation.  
4.3. Digital IO Pin Mapping  
Four general purpose IO pins are available on the SX1255 and their configuration is controlled through the  
RegDioMapping configuration register.  
Mode  
Diox  
DIO3  
DIO2  
DIO1  
DIO0  
Mapping  
Sleep  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Standby  
-
xosc_ready  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RX  
pll_lock_rx  
-
pll_lock_rx  
-
-
pll_lock_rx  
-
-
pll_lock_rx  
-
-
Low Bat  
TX  
pll_lock_tx  
pll_lock_tx  
-
-
-
-
-
-
-
-
-
-
Table 11 DIO Mapping  
4.4. I and Q interface  
4.4.1. General description  
There are two main ways of transferring the I and Q signals between the SX1255 and the external digital circuit.  
In mode A, the I and Q signals are directly the outputs of the sigma-delta modulator in Rx, and the inputs of the FIR-DAC in  
Tx. This mode is the one which is implemented in the SX1255 circuit.  
SX1255 - Rev. 3.0  
Page 24  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
In mode B, the I and Q signals are pre- and post-processed by the internal digital bridge. In Rx the I and Q signals are  
decimated inside the chip and in Tx the I and Q signals are interpolated and ΣΔ modulated internally. In this mode the  
signals are transferred via an I2S-like protocol working in two possible configurations.  
The table below gives the mapping of the pins as a function of the selected mode.  
Pins  
10) CLK_OUT  
11) CLK_IN  
12) Q_IN  
Mode A  
CLK_OUT  
Mode B1  
CLK_OUT  
Mode B2  
CLK_OUT  
CLK_IN  
Q_IN  
Not used  
Q_IN  
Not used  
Not used  
IQ_IN  
13) I_IN  
I_IN  
I_IN  
14) Q_OUT  
15) I_OUT  
23) DIO2  
Q_OUT  
I_OUT  
Not used  
Q_OUT  
I_OUT  
WS  
Not used  
IQ_OUT  
WS  
Table 12 . Mapping of IO pins related to the I and Q transfer  
4.4.2. Mode A  
The convention of the I and Q interface for the Rx link in mode A is that the data is delivered on a rising edge of the internal  
clock, available on CLK_OUT.  
For the Tx link, the Tx DACs can be used either with the internal clock, available on CLK_OUT for data synchronization  
(SX1255 master) or with an input clock CLK_IN (SX1255 slave).  
The figure below provides the timing diagram for the Tx link in mode A, in the case SX1255 is master:  
CLK_OUT  
tsetup  
thold  
data stable  
I/Q  
data stable  
Figure 13. Tx timing diagram of I and Q interface in mode A (SX1255 master)  
To relax the constraints on the setup and hold time, when SX1255 is used as master, it is recommended to use the falling  
edge of the clock (CLK_OUT) to provide the I&Q bitstreems to the chip. The circuit will sample the data on the next falling  
edge of the clock.  
tsetup_min = 14 ns  
thold_min = 0 ns  
SX1255 - Rev. 3.0  
Page 25  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
The figure below provides the timing diagram for the Tx link in mode A, in the case SX1255 is slave:  
thold  
CLK_IN  
tsetup  
I/Q  
data stable  
data stable  
Figure 14. Tx timing diagram of I and Q interface in mode A (SX1255 slave)  
In the case SX1255 is slave, CLK_IN is provided externally. The I/Q bitstreems should be provided on the rising edge of  
the CLK_IN clock and the circuit will sample the data on the falling edge of the clock.  
tsetup_min = 0 ns  
thold_min = 6 ns  
4.4.3. Mode B  
4.4.3.1. Introduction  
In mode B, the I and Q signals are pre- and post-processed by the internal digital bridge. An I2S based interface provides  
an easy way to transfer parallel I/Q data between the SX1255 and an external baseband chip.  
In Rx mode, the serial I/Q data coming from the RF front-end (I_RX/Q_RX) is decimated in the digital bridge to generate  
parallel I/Q signals at a sampling rate depending on the programmed decimator factor. The I2S interface block is able then  
to convert this parallel I/Q data (buses i_in_bridge[31:0] / q_in_bridge[31:0]) into one or two I2S serial bitstream(s) and  
send it to an external baseband signal along with the other I2S signals as defined by the standard.  
Similarly, in Tx mode the FIR-DACs are fed by two serial I/Q bitstreems coming from the digital bridge (I_TX/Q_TX). The  
I2S interface is able to convert the I2S serial data coming from an external baseband chip into parallel I/Q signals (buses  
SX1255 - Rev. 3.0  
Page 26  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
i_out_bridge[31:0]/q_out_bridge[31:0]). Then these parallels signals are interpolated and ΣΔ modulated before being fed to  
the FIR_DACs. The figure below shows the I2S interface in its context in mode B:  
I_OUT  
I_RX  
i_in_bridge[31:0]  
q_in_bridge[31:0]  
iism_sd_i_out  
iism_sd_q_out  
ADC  
ADC  
N
Q_OUT  
DIO2  
Q_RX  
N
EXTERNAL  
BASEBAND  
CHIP  
RX BRIDGE  
in_rdy  
iism_ws  
I2S INTERFACE  
iism_sd_i_in  
CLK_XTAL  
I_TX  
out_rdy  
TX BRIDGE  
I_IN  
DAC  
i_out_bridge[31:0]  
ΣΔ  
ΣΔ  
N
N
Q_TX  
Q_IN  
q_out_bridge[31:0]  
iism_sd_q_in  
iism_sck_out  
DAC  
CLK_XTAL  
CLK_OUT  
CLK_IN  
XTAL  
Figure 15. The I2S interface block in its context (mux cells are included in PAD_CTL block)  
In B mode, the I2S interface is master of the I2S bus. The block generates the usual I2S signal, the clock CLK_OUT, the  
word select WS (available on DIO2 pin) and one or two serial data. It also samples the serial data coming from the external  
chip.  
Mode B1 is an extension of the I2S format, where the I and Q serial data are not multiplexed on the same line but put or  
accepted on 2 pins I_OUT/Q_OUT or I_IN/Q_IN respectively in I2S transmitter mode or in I2S receiver mode. In mode B1,  
the WS frequency corresponds to half of the sampling rate of the parallel I/Q signals.  
SX1255 - Rev. 3.0  
Page 27  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
The figure below shows the timing diagram in B1 mode for samples of 8 bits wide, as an example, actually the number of  
bits is variable, as explained later on in this document.  
CLK_OUT  
WS  
I_OUT or  
I_IN  
In[7]  
In-1[1]  
In[1]  
In[6]  
In[0]  
In+1[7]  
In+1[6]  
In-1[0]  
Nth sample of I  
Q_OUT or  
Q_IN  
Qn[7]  
Qn-1[1]  
Qn[1]  
Qn[6]  
Qn[0]  
Qn+1[7]  
Qn+1[6]  
Qn-1[0]  
Nth sample of Q  
Figure 16. Timing diagram of I and Q interfaces in mode B1  
Mode B2 is purely I2S compatible and the I/Q serial data is multiplexed on the I_OUT pin (Tx mode) or pin I_IN (Rx mode).  
Serial data with WS polarity set to “0” corresponds to I signal while WS polarity set to “1” corresponds to Q signal.  
SX1255 - Rev. 3.0  
Page 28  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
The figure below shows an example of timing diagram in B2 mode:  
CLK_OUT  
WS  
IQ_OUT or  
IQ_IN  
In[7]  
Qn-1[1]  
In[1]  
In[6]  
In[0]  
Qn[7]  
Qn[6]  
Qn-1[0]  
Nth sample of I  
Figure 17. Timing diagram of I and Q interfaces in mode B2  
In B mode the WS is one CLK_OUT clock period ahead of time.  
The digital bridge and the I2S interface are automatically started in Tx and Rx mode as soon as the corresponding modes  
are activated. Disabled control bits are available in test mode.  
The full duplex run is possible, but the user must be aware that in this case input and output I2S frames have the same  
format, hence the decimator and interpolation factors must be identical.  
4.4.3.2. Parameters  
Two main parameters are programmable:  
- the decimation/interpolation factor  
- the frequency of the output clock CLK_OUT.  
The decimation/interpolation factor is programmable on 2 sets of 14 values.The ratios are defined as follows:  
R = MANT 3m 2n  
where MANT is 8 for the 1st set and 9 for the 2nd set, m can be 0 or 1, and n is an integer between 0 and 6.  
SX1255 - Rev. 3.0  
Page 29  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
The ratios available and the corresponding sampling rates are given in the tables below for 32MHz, 36.864MHz and  
Sampling Rates vs  
Decimation /  
8
16  
24  
32  
48  
64  
96  
128  
192  
256  
384  
512  
768  
1536  
Interpolation factor  
[MS/s]  
4
2
1.333  
1.536  
1
0.667  
0.768  
0.5  
0.333  
0.384  
0.25  
0.167  
0.192  
0.125  
0.144  
0.083  
0.096  
0.063  
0.072  
0.042  
0.048  
0.021  
0.024  
32MHz xtal  
4.608  
2.304  
1.152  
0.576  
0.288  
36.864MHz xtal  
Table 13 Sampling rates 1st set  
36MHz crystals.  
Sampling Rates  
vs Decimation /  
Interpolation factor  
[MS/s]  
9
18  
27  
36  
54  
72  
108  
144  
216  
288  
432  
576  
864  
1728  
4
2
1.333  
1
0.667  
0.5  
0.333  
0.25  
0.167  
0.125  
0.083  
0.063  
0.042  
0.021  
36MHz xtal  
Table 14 Sampling rates 2nd set  
Other frequencies between 32 and 36.9 MHz can be used with any decimation factor.  
The frequency of the output clock CLK_OUT is equal to the crystal frequency divided by a ratio programmable on several  
values which are 1, 2, 4, 8, 12, 16, 24, 32 and 48. In IISM test mode, any integer between 1 and 64 can be selected.  
The number of bits per sample depends on the decimation/interpolation factor (2 sets of 14 values) as well as the  
frequency of the CLK_OUT clock (9 possibilities) and the type of B mode. The allowed number of bits is between 8 and 32.  
In IISM test mode, any number of bits between 4 and 32 can be selected. Less than 4 bits is not possible for  
implementation reason  
In B2 mode, there is a new I/Q sample every period of WS. In B1 mode, there are two I/Q samples every WS period, and  
the WS frequency is reduced by a factor of 2. This mode allows to allocate twice more bits per I/Q sample.  
Only a limited number of parameters combination generate valid I2S frames. Therefore the valid combination are clearly  
documented and the other ones aborts the I2S interface. The tables below illustrate this statement. Depending on the  
XTAL/CLK_OUT divider and the decimation/interpolation factor, the number of bits per samples are computed for the 2  
predefined sets. Combination with a number of bits higher than 32 and lower than 8 are disabled in functional mode (“NA”)  
and an error bit is set.  
CLK_OUT/XTAL  
1
2
4
8
12  
16  
24  
32  
48  
Decimation/  
interpolation factor  
8
8
NA  
8
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
16  
16  
Table 15 Number of bits per sample for the 1st set and B1 mode  
SX1255 - Rev. 3.0  
October 2013 ©2013 Semtech Corporation  
Page 30  
www.semtech.com  
SX1255  
DATASHEET  
48  
WIRELESS & SENSING PRODUCTS  
CLK_OUT/XTAL  
1
2
4
8
12  
16  
24  
32  
Decimation/  
interpolation factor  
24  
32  
24  
32  
12  
16  
NA  
8
NA  
NA  
NA  
8
NA  
NA  
NA  
NA  
8
NA  
NA  
NA  
NA  
NA  
8
NA  
NA  
NA  
NA  
NA  
NA  
8
NA  
NA  
NA  
NA  
NA  
NA  
NA  
8
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
8
48  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
24  
12  
64  
32  
16  
96  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
24  
12  
128  
192  
256  
384  
512  
768  
1536  
32  
16  
NA  
16  
NA  
NA  
NA  
NA  
NA  
NA  
24  
12  
32  
NA  
32  
16  
NA  
16  
NA  
NA  
NA  
NA  
24  
12  
NA  
NA  
NA  
32  
NA  
32  
16  
NA  
16  
NA  
NA  
24  
NA  
NA  
32  
Table 15 Number of bits per sample for the 1st set and B1 mode  
CLK_OUT/XTAL  
1
2
4
8
12  
16  
24  
32  
48  
Decimation/  
interpolation factor  
9
18  
9
NA  
9
NA  
NA  
NA  
9
NA  
NA  
NA  
NA  
NA  
9
NA  
NA  
NA  
NA  
NA  
NA  
9
NA  
NA  
NA  
NA  
NA  
NA  
NA  
9
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
9
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
9
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
9
18  
27  
27  
NA  
18  
36  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
54  
27  
NA  
18  
72  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
108  
144  
216  
288  
432  
576  
864  
1728  
27  
NA  
18  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
12  
27  
18  
NA  
18  
NA  
NA  
NA  
NA  
NA  
24  
12  
NA  
NA  
NA  
NA  
27  
18  
NA  
18  
NA  
NA  
NA  
24  
12  
NA  
NA  
27  
18  
NA  
NA  
Table 16 Number of bits per sample for the 2nd set and B1 mode  
SX1255 - Rev. 3.0  
October 2013 ©2013 Semtech Corporation  
Page 31  
www.semtech.com  
SX1255  
DATASHEET  
48  
WIRELESS & SENSING PRODUCTS  
CLK_OUT/XTAL  
1
2
4
8
12  
16  
24  
32  
Decimation/  
interpolation factor  
8
16  
NA  
8
NA  
NA  
NA  
8
NA  
NA  
NA  
NA  
NA  
8
NA  
NA  
NA  
NA  
NA  
NA  
NA  
8
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
8
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
8
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
8
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
8
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
8
24  
12  
32  
16  
48  
24  
12  
64  
32  
16  
96  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
24  
12  
128  
192  
256  
384  
512  
768  
1536  
32  
16  
NA  
NA  
NA  
NA  
NA  
NA  
24  
12  
32  
16  
NA  
16  
NA  
NA  
NA  
NA  
24  
12  
32  
NA  
32  
16  
NA  
16  
NA  
NA  
24  
12  
NA  
NA  
32  
24  
16  
Table 17 Number of bits per sample for the 1st set and B2 mode  
CLK_OUT/XTAL  
1
2
4
8
12  
16  
24  
32  
48  
Decimation/  
interpolation factor  
9
18  
NA  
9
NA  
NA  
NA  
9
NA  
NA  
NA  
NA  
NA  
9
NA  
NA  
NA  
NA  
NA  
NA  
NA  
9
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
9
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
9
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
9
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
9
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
9
27  
NA  
18  
36  
54  
27  
NA  
18  
72  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
108  
144  
216  
288  
432  
576  
864  
1728  
27  
NA  
18  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
27  
NA  
18  
NA  
NA  
NA  
NA  
NA  
12  
27  
18  
NA  
18  
NA  
NA  
NA  
24  
12  
NA  
NA  
27  
18  
NA  
27  
NA  
NA  
18  
Table 18 Number of bits per sample for the 2nd set and B2 mode  
The parallel I/Q data bus is expected to be 32-bits wide. Hence, if the number of bits per frame is lower, the I/Q data is  
truncated, either MSBs or the LSBs are taken, according to a configuration bit, iism_trunc_mode.  
SX1255 - Rev. 3.0  
Page 32  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
5. Configuration and Status Registers  
5.1. General Description  
Notes - Reset values are automatically refreshed at Power on Reset  
- DEFAULT values are the Semtech recommended register values, optimizing the device operation  
- Registers for which the DEFAULT value differs from the RESET values are denoted by a * in the tables of this  
section  
Address  
Bits  
Name  
Mode Reset  
Description  
General registers  
MODE  
(0x00)  
7-4  
3
-
r
0x00 unused  
driver_enable  
tx enable  
rw  
rw  
rw  
rw  
rw  
0x00 enables the PA driver  
2
0x00 enables the complete TX part of the frontend (except the PA)  
0x00 enables the complete RX part of the frontend  
0x01 enables the PDS & XOSC  
1
rx_enable  
0
ref_enable  
freq_rf_rx(23:16)  
FRFH_RX  
(0x01)  
7-0  
0xC0 MSB of RF RX carrier frequency  
FRFM_RX  
(0x02)  
7-0  
7-0  
freq_rf_rx(15:8)  
freq_rf_rx(7:0)  
rw  
rw  
0xE3 MSB of RF RX carrier frequency  
FRFL_RX  
(0x03)  
0x8E LSB of RF RX carrier frequency  
F(XOSC) freq_rf_rx  
-----------------------------------------------------  
220  
fRF_RX  
=
Resolution is 34.3323 Hz if F(XOSC) = 36 MHz. Default value  
is 0xC0E38E = 434 MHz. The RX RF frequency is taken into  
account internally only when:  
- FRFL_RX is written  
- leaving SLEEP mode (ref_enable 0 1 transition)  
FRFH_TX  
(0x04)  
7-0  
7-0  
7-0  
freq_rf_tx(23:16)  
freq_rf_tx(15:8)  
freq_rf_tx(7:0)  
rw  
rw  
rw  
0xC0 MSB of RF TX carrier frequency  
FRFM_TX  
(0x05)  
0xE3 MSB of RF TX carrier frequency  
FRFL_TX  
(0x06)  
0x8E LSB of RF TX carrier frequency  
F(XOSC) freq_rf_tx  
-----------------------------------------------------  
220  
fRF_TX  
=
Resolution is 34.3323 Hz if F(XOSC) = 36 MHz. Default value  
is 0xC0E38E = 434 MHz. The TX RF frequency is taken into  
account internally only when:  
- FRFL_TX is written  
- leaving SLEEP mode (ref_enable 0 1 transition)  
VERSION  
(0x07)  
7-0  
chip_version(7:0)  
r
0x11 Version code of the chip. Bits 7-4 give the fill revision number,  
bits 3-0 give the metal mask revision number.  
Current value is V1A  
SX1255 - Rev. 3.0  
Page 33  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
Address  
Bits  
Name  
Mode Reset  
Description  
Transmitter registers  
TXFE1  
(0x08)  
7
unused  
r
0x00  
6-4  
tx_dac_gain(2:0)  
rw  
0x02 DAC gain, steps of 3 dB:  
000 => Max gain - 9 dB  
001 => Max gain - 6 dB  
010 => Max gain - 3 dB  
011 => Max gain, 0 dBFS -> rail-to-rail signal  
100 and higher: test modes not recommended:  
100 => Max gain - 9 dB with test Vref voltage  
101 => Max gain - 6 dB with test Vref voltage  
110 => Max gain - 3 dB with test Vref voltage  
111 => Max gain, 0 dBFS with test Vref voltage  
3-0  
tx_mixer_gain(3:0)  
rw  
0x0E Mixer gain, steps of about 2 dB:  
*
Actual gain -37.5 dB + 2.tx_mixer_gain(3:0)  
TXFE2  
(0x09)  
7-6  
5-3  
-
r
0x00 unused  
tx_mixer_tank_cap(2:0)  
rw  
0x04 Capacitance in parallel with the mixer tank:  
Cap = 128 * tx_mixer_tank_cap(2:0) [fF]  
2-0  
tx_mixer_tank_res(2:0)  
rw  
0x04 Resistance in parallel with the mixer tank:  
*
000 -> 0.95 kΩ  
001 -> 1.11 kΩ  
010 -> 1.32 kΩ  
011 -> 1.65 kΩ  
100 -> 2.18 kΩ  
101 -> 3.24 kΩ  
110 -> 6.00 kΩ  
111 -> none => about 64 kΩ  
TXFE3  
(0x0A)  
7
-
r
0x00 unused  
6-5  
tx_pll_bw  
rw  
0x03 Tx PLL bandwidth  
PLL BW = (rx_pll_bw + 1)*75 KHz  
4-0  
tx_filter_bw(4:0)  
rw  
0x00 Tx analog filter bandwidth DSB:  
BW3dB = 17.15 / (41 - tx_filter_bw(4:0)) MHz  
TXFE4  
(0x0B)  
7-3  
2-0  
-
rw  
rw  
0x00 unused  
tx_dac_bw(2:0)  
0x02 Number of taps of FIR-DAC:  
Actual number of taps = 24 + 8.tx_dac_bw(2:0) (max = 64)  
Receiver registers  
RXFE1  
(0x0C)  
7-5  
rx_lna_gain(2:0)  
rw  
0x01 LNA gain setting:  
000 not used  
001 G1 = highest gain low power – 0 dB  
010 G2 = highest gain low power – 6 dB  
011 G3 = highest gain low power – 12 dB  
100 G4 = highest gain low power – 24 dB  
101 G5 = highest gain low power – 36 dB  
110 G6 = highest gain low power – 48 dB  
111 not used  
4-1  
0
rx_pga_gain(3:0)  
rx_zin_200  
rw  
rw  
0x0F PGA gain setting:  
Gain=lowest gain + 2dB * rx_pga_gain  
0x01 change of input impedance  
0: 50 ohm  
1: 200 ohm  
SX1255 - Rev. 3.0  
Page 34  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
Address  
Bits  
7:5  
Name  
Mode Reset  
rw 0x07  
Description  
RXFE2  
(0x0D)  
rx_adc_bw(2:0)  
RX ΣΔ ADC bandwidth configuration  
For BW>400kHz SSB use 0x07  
For 200kHz< BW<400kHz SSB use 0x05  
For 100kHz<BW<400kHz SSB use 0x02  
use 0x01 instead  
4:2  
1-0  
rx_adc_trim(2:0)  
rx_pga_bw(1:0)  
rw 0x05*  
Rx ΣΔ ADC Trimming for 36MHz crystal  
rw  
0x01 Rx analog filter bandwidth DSB:  
00 Fc = 1500 kHz  
01 Fc =1000 kHz  
10 Fc = 750 kHz  
11 Fc = 500 kHz  
RXFE3  
(0x0E)  
7:3  
2:1  
unused  
r
0x00  
rx_pll_bw(1:0)  
Rx PLL bandwidth  
rw  
0x03  
PLL BW = (rx_pll_bw + 1)*75 KHz  
0
rx_adc_temp  
iomap0(1:0)  
rw  
0x00 Sets the Rx ADC into temperature measurement mode.  
IRQ and pin mapping registers  
IO_MAP  
(0x0F)  
7-6  
rw  
0x00 Mapping of DIO(0)  
00: pll_lock_rx  
01 :pll_lock_rx  
10: pll_lock_rx  
11: eol  
5-4  
3-2  
1-0  
iomap1(1:0)  
iomap2(1:0)  
iomap3(1:0)  
rw  
rw  
rw  
0x00 Mapping of DIO(1)  
00: pll_lock_tx  
0x00 Mapping of DIO(2)  
00: xosc_ready  
0x00 Mapping of DIO(3)  
00: pll_lock_rx in Rx mode &  
pll_lock_tx in all other modes  
Misc registers  
CK_SEL  
(0x10)  
7-4  
3
-
r
0x00 Unused  
dig_loopback_en  
rf_loopback_en  
ckout_enable  
rw  
rw  
rw  
0x00 Enables the digital loop back mode of the frontend  
0x00 Enables the RF loop back mode of the frontend  
2
1
0x01 0: output clock disabled on pad CLK_OUT  
1: output clock enabled on pad CLK_OUT  
0
ck_select_tx_dac  
rw  
0x00 0: internal clock (CLK_XTAL) used for Tx DAC  
1: external clock (CLK_IN) used for Tx DAC  
SX1255 - Rev. 3.0  
Page 35  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
Address  
Bits  
7-3  
3
Name  
Mode Reset  
Description  
STAT  
(0x11)  
-
r
r
0x00 Not used  
0x00 EOL output signal  
eol  
0 VBAT > EOL threshold  
1 VBAT < EOL threshold (battery low)  
0x00 Goes high when the XOSC is ready  
0x00 Asserted when the Rx PLL is locked  
0x00 Asserted when the Tx PLL is locked  
0x00 disable IISM Rx (during TX mode)  
0x00 disable IISM Tx (during RX mode)  
2
1
xosc_ready  
pll_lock_rx  
r
r
0
pll_lock_tx  
r
IISM  
(0x12)  
7
iism_rx_disable  
iism_tx_disable  
iism_mode[1:0]  
rw  
rw  
rw  
6
5-4  
0x00 00 -> mode A  
01 -> mode B1  
10 -> mode B2  
11 -> not used  
3-0  
iism_clk_div[3:0]  
rw  
0x00 XTAL/CLK_OUT division factor  
0000 -> 1  
0010 -> 4  
0100 -> 12  
0110 -> 24  
0001 -> 2  
0011 -> 8  
0101 -> 16  
0111 -> 32  
1000 -> 48 higher values not used  
DIG_BRIDGE  
(0x13)  
7
int_dec_mantisse  
rw  
0x00 interpolation/decimation factor = mant * 3^m * 2^n  
0 -> 1st set; mant=8  
1 -> 2nd set; mant=9  
6
5-3  
2
int_dec_m_parameter  
int_dec_n_parameter  
IISM_truncation  
rw  
rw  
rw  
0x00 interpolation/decimation factor = mant * 3^m * 2^n  
m value  
0x00 interpolation/decimation factor = mant * 3^m * 2^n  
n value (accepted values 0 to 6)  
0x00 IISM truncation mode in Rx and Tx  
0 -> MSB is truncated, alignement on LSB  
1 -> LSB is truncated, alignement on MSB  
1
0
IISM_status_flag  
unused  
r
r
0x00 IISM error status bit when selected factors force IISM off  
0 -> no error  
1 -> error, IISM off  
0x00  
SX1255 - Rev. 3.0  
Page 36  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
6. Application Information  
6.1. Crystal Resonator Specification  
The specification for the crystal resonator of the reference oscillator circuit block is tabulated below in Table 19.  
Table 19 Crystal Resonator Specification  
Symbol  
FXOSC  
RS  
Description  
Conditions  
Min  
Typ  
-
Max  
36.864  
140  
7
Units  
MHz  
Ω
XTAL Frequency  
32  
-
XTAL Series Resistance  
XTAL Shunt Capacitance  
External Foot Capacitance  
30  
2.8  
16  
C0  
-
pF  
CLOAD  
On each pin XTA and XTB  
8
22  
pF  
Notes - The initial frequency tolerance, temperature stability and aging performance should be chosen in accordance  
with the target operating temperature range and the receiver bandwidth selected  
- The loading capacitance should be applied externally, and adapted to the actual Cload specification of the XTAL  
6.2. Reset of the Chip  
A power-on reset of the SX1255 is automatically triggered at power up. Additionally, a manual reset can be issued by  
controlling the RESET pin (pin 9).  
6.2.1. POR  
If the application requires the disconnection of VDD from the SX1255, despite the extremely low Sleep Mode current, the  
user should wait for 10 ms from of the end of the POR cycle before commencing communications over the SPI bus. Pin 9  
(RESET) should be left floating during the POR sequence.  
VDD  
Pin 9  
Undefined  
(Output)  
SX1255is ready from  
Wait for 10 ms  
this point on  
Figure 18. POR Timing Diagram  
Please note that xosc_ready on DIO2 can be used to detect that the chip is ready.  
SX1255 - Rev. 3.0  
Page 37  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
6.2.2. Manual Reset  
A manual reset of the SX1255 is possible even for applications in which VDD cannot be physically disconnected. Pin 9  
should be pulled high for a hundred microseconds, and then released. The user should then wait for 5 ms before using the  
chip.  
VDD  
Pin 9  
(Input)  
High-Z  
“1”  
High-Z  
SX1255  
this point on  
Sis ready from  
> 100 us Wait for 5 ms  
Figure 19. Manual Reset Timing Diagram  
Please note that whilst pin 9 is driven high, an over current consumption of 10 mA may be observed on VDD  
6.3. TX Noise Shaper  
In order to generate a single TX bit-stream, th 8-bit I and Q signal should be processed by an external third order sigma-  
delta modulator (implemented within the baseband processor). The noise shaper should be stable for input signals lower  
than -3dBFS and compatible with SX1255 noise requirements. It is advised that the integrator outputs are saturated to  
avoid any wraparound of the 2’s-complement digital word.  
A representative block diagram of a single-bit feed-forward modulator is illustrated below.  
Figure 20. Example Digital Modulator Implementation  
SX1255 - Rev. 3.0  
Page 38  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
6.4. Reference Design  
DATASHEET  
Please contact your Semtech representative for evaluation tools, reference designs and design assistance. Note that all  
schematics shown in this section are full schematics, listing ALL required components, including those required for power  
supply decoupling.  
Figure 21. SX1255 Application Schematic  
SX1255 - Rev. 3.0  
Page 39  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
7. Packaging Information  
7.1. Package Outline Drawing  
DIMENSIONS  
INCHES MILLIMETERS  
MIN NOM MAX MIN NOM MAX  
A
D
B
E
DIM  
A
.028 .030 .031 0.70  
0.80  
0.05  
-
0.75  
-
.002 0.00  
-
A1 .000  
-
(.008)  
-
-
(0.20)  
A2  
b
.008 .010 .012 0.18 0.25 0.30  
PIN 1  
INDICATOR  
(LASER MARK)  
D
.193 .197 .201 4.90 5.00 5.10  
D1 .118 .122 .126 3.00 3.10 3.20  
E
.193 .197 .201 4.90 5.00 5.10  
3.10 3.20  
E1 .118 .122 .126  
3.00  
0.50 BSC  
e
L
N
aaa  
bbb  
.020 BSC  
.012 .016 .020 0.30 0.40 0.50  
32  
32  
A2  
.003  
.004  
0.08  
0.10  
A
SEATING  
PLANE  
aaa  
C
C
A1  
D1  
LxN  
E/2  
E1  
2
1
N
bxN  
e
bbb  
C A B  
D/2  
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.  
Figure 22. Package Outline Drawing  
7.2. Recommended Land Pattern  
H
DIMENSIONS  
DIM  
INCHES  
MILLIMETERS  
(.193)  
.161  
.130  
.130  
.020  
.012  
.031  
.224  
(4.90)  
4.10  
3.30  
3.30  
0.50  
0.30  
0.80  
5.70  
C
G
H
K
P
X
Y
Z
Z
(C)  
K
G
Y
X
P
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
3. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD  
SHALL BE CONNECTED TO A SYSTEM GROUND PLANE.  
FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR  
FUNCTIONAL PERFORMANCE OF THE DEVICE.  
4. SQUARE PACKAGE-DIMENSIONS APPLY IN BOTH X AND Y DIRECTIONS.  
Figure 23. Recommended Land Pattern  
SX1255 - Rev. 3.0  
October 2013 ©2013 Semtech Corporation  
Page 40  
www.semtech.com  
SX1255  
WIRELESS & SENSING PRODUCTS  
7.3. Thermal Impedance  
DATASHEET  
The thermal impedance of this package is: Theta ja = 23.8° C/W typ., calculated from a package in still air, on a 4-layer  
FR4 PCB, as per the Jedec standard.  
7.4. Tape and Reel Specification  
Figure 24. Tape and Reel Specification  
Carrier Tape (mm)  
Reel (mm)  
TapeWidth  
(W)  
Pocket  
Pitch  
(P)  
A / B  
K
O
Reel Size Reel Width Min.Trailer  
Min.  
QTY per  
Reel  
O
O
Length  
(mm)  
Leader  
Length  
(mm)  
12 +/- 0.30 8 +/- 0.20  
5.25  
1.10  
330.2  
12.4  
400  
400  
3000  
+/- 0.20  
+/- 0.10  
Note Single sprocket holes  
SX1255 - Rev. 3.0  
Page 41  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
8. Revision History  
Table 20 Datasheet Revision History  
Revision  
1.0  
Date  
Comment  
February 2013 First Datasheet revision  
2.0  
May 2013  
Updated specifications after part characterization  
Add wafer sale part number  
3.0  
October 2013  
SX1255 - Rev. 3.0  
Page 42  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  
SX1255  
WIRELESS & SENSING PRODUCTS  
DATASHEET  
© Semtech 2013  
All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The  
information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable  
and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication  
thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes  
no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper  
installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to  
parameters beyond the specified maximum ratings or operation outside the specified range.  
SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN  
LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF  
SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S  
OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall  
indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,  
costs damages and attorney fees which could arise.  
Contact information  
Semtech Corporation  
Wireless & Sensing Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805) 498-2111 Fax: (805) 498-3804  
E-mail: sales@semtech.com  
support_rf@semtech.com  
Internet: http://www.semtech.com  
SX1255 - Rev. 3.0  
Page 43  
www.semtech.com  
October 2013 ©2013 Semtech Corporation  

相关型号:

SX1255WS

Low Power Digital I and Q RF Multi-PHY Mode Transceiver
SEMTECH

SX1257

Low Power Digital I and Q RF Multi-PHY Mode Transceiver
SEMTECH

SX1257IWLTRT

Low Power Digital I and Q RF Multi-PHY Mode Transceiver
SEMTECH

SX1261

Long Range, Low Power, sub-GHz RF Transceiver
SEMTECH

SX1261IMLTRT

Telecom Circuit,
SEMTECH

SX1262

Long Range, Low Power, sub-GHz RF Transceiver
SEMTECH

SX1262IMLTRT

Telecom Circuit,
SEMTECH

SX126GW

JUST SHELVING SHELF H-DUTY
ETC

SX1272

860-1050 MHz Ultra Low Power Long Range Transceiver
SEMTECH

SX1272IMLTRT

Low Power Long Range Transceiver
SEMTECH

SX1273

860-1050 MHz Ultra Low Power Long Range Transceiver
SEMTECH

SX1273IMLTRT

Low Power Long Range Transceiver
SEMTECH