SC198AEVB [SEMTECH]

Dual DC-DC Buck Converter with High Current Capability; 双路DC-DC降压转换器,高电流能力
SC198AEVB
型号: SC198AEVB
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Dual DC-DC Buck Converter with High Current Capability
双路DC-DC降压转换器,高电流能力

转换器
文件: 总15页 (文件大小:353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC198A  
Dual DC-DC Buck Converter  
with High Current Capability  
POWER MANAGEMENT  
Features  
Description  
„
„
„
„
„
„
„
„
„
„
„
Input voltage range — 2.7V to 5.5V  
Dual buck converters with independent control  
High efficiency — over 90% peak  
Up to 800mA Load  
Programmable output voltages per channel — 8  
Fixed-frequency operation — 1MHz  
Optional SYNC clock input  
Optional power-save under light-load conditions  
Shutdown current <1μA  
Soft-start to limit in-rush current  
4mm x 4mm MLPQ package  
The SC198A is a dual high-efficiency synchronous buck  
converter designed for use in low power applications.  
Each converter is capable of supplying up to 800mA of  
average current at one of eight programmable output  
voltages used as microprocessor supply voltages.  
The SC198A uses a single control logic block for the two  
converters, but their controls can be set independently.  
The device uses a flexible clocking method allowing the  
user to set the fixed internal 1MHz oscillator or synchro-  
nize the clock to an external source. The device also has an  
optional power-save mode that optimizes efficiency for  
light loads.  
Applications  
„
„
„
„
„
„
„
„
Mobile phones  
Cordless phones  
MP3 players  
Digital cameras  
The SC198A provides output voltage flexibility while con-  
serving board space by using control pins to select the  
output voltage. This eliminates at least four parts from the  
traditional dual buck converter bill of materials.  
PDAs  
Single Li-Ion cell or (3) NiMH/NiCd cell devices  
Digital multimedia broadcast (DMB) devices  
Portable gaming systems  
Typical Application Circuit  
SC198A  
4.7μH  
VOUTA  
VOUTB  
VINA  
LXA  
VOUTA  
GNDA  
VBATT  
VINR  
VINB  
COUTA  
ENA  
CIN  
CTLA0  
CTLA1  
CTLA2  
ENB  
4.7μH  
LXB  
VOUTB  
GNDB  
COUTB  
CTLB0  
CTLB1  
CTLB2  
GNDR  
MODE/SYNC  
September 26, 2007  
1
SC198A  
Pin Configuration  
Ordering Information  
Device  
Package  
SC198AMLTRT(1) (2)  
SC198AEVB  
MLPQ-20  
Evaluation Board  
20  
19  
18  
17  
16  
Notes:  
(1) Available in tape and reel only. A reel contains 3,000 devices.  
(2) Lead-free package only. Device is WEEE and RoHS compliant.  
VINA  
LXA  
VINB  
1
2
3
4
5
15  
14  
13  
12  
11  
TOP VIEW  
LXB  
GNDA  
VOUTA  
CTLA0  
GNDB  
VOUTB  
CTLB0  
T
10  
9
6
7
8
MLPQ: 4mm x 4mm 20 Lead  
JA = 31°C/W  
θ
Marking Information  
198A  
yyww  
xxxxx  
xxxxx  
yyww = Date Code  
xxxx = Semtech Lot No.  
xxxx = Semtech Lot No.  
2
SC198A  
Absolute Maximum Ratings  
Recommended Operating Conditions  
VIN (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +7  
VOUT (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to VIN +0.3  
VLXA and VLXB (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-1 to VIN +1  
Pin Voltage - All Other Pins (V) . . . . . . . . . -0.3 to (VIN + 0.3)  
Output Short Circuit to GND Duration . . . . . Continuous  
LXA and LXB Currents (A). . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2  
ESD Protection Level(1) (kV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ambient Temperature Range (°C) . . . . . . . . . . . . . -40 to +85  
VIN (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 to 5.5  
Thermal Information  
Thermal Resistance, Junction to Ambient(2) (°C/W) . . . . 31  
Maximum Junction Temperature (°C) . . . . . . . . . . . . . . +150  
Storage Temperature Range (°C). . . . . . . . . . . . -65 to +150  
Peak IR Reflow Temperature (10s to 30s) (°C) . . . . . . . +260  
Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters  
specified in the Electrical Characteristics section is not recommended.  
NOTES:  
(1) Tested according to JEDEC standard JESD22-A114-B.  
(2) Calculated from package in still air, mounted to 3 x 4.5 (in), 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.  
Electrical Characteristics  
Unless otherwise noted: VIN = 3.6V, VMODE/SYNC = VIN, L = 4.7μH, C = 10μF, TA = -40°C to +85°C. Typical values are at TA = 25°C for both outputs.  
Parameter  
Symbol  
VIN  
Conditions  
Min  
2.7  
4.0  
-3  
Typ  
Max  
5.5  
5.5  
3
Units  
V
VOUT = 1.8V  
Input Voltage Range  
VOUT Accuracy(1)  
Line Regulation  
V
OUT = 3.3V  
ΔVOUT  
ΔVLINE  
IOUT = 10mA to 800mA , VIN 0.7V + VOUT  
%
VIN = 2.7 to 5.5V, VOUT = 1.8V, IOUT = 300mA  
0.2  
%/V  
V
IN = 4.0 to 5.5V, VOUT = 3.3V, IOUT = 300mA  
IOUT = 10mA to 800mA, VOUT = 1.8V  
Load Regulation  
ΔVLOAD  
0.0008  
18  
%/mA  
IOUT = 10mA to 800mA, VOUT = 3.3V, VIN = 5.0V  
Minimum Duty Cycle  
LXA, LXB Current Limit  
Quiescent Current  
DCMIN  
ILIM  
IQ  
%
A
1.2  
IOUT = 0mA, SYNC = 0, ENA, ENB = VIN  
VENA, VENB = 0, LXA, LXB = Open  
VIN = 5.5V, VLX = 0V, PMOS  
VIN = 5.5V, VLX = VIN, NMOS  
ILXA, ILXB = 100mA  
50  
1
μA  
μA  
μA  
μA  
Ω
Shutdown Current  
ISD  
0.1  
0.1  
1
LXA and LXB  
Leakage Current  
I
LXA, ILXB  
-2  
0.1  
P-Channel On Resistance  
RDSP  
0.35  
3
SC198A  
Electrical Characteristics (continued)  
Parameter  
Symbol  
RDSN  
Conditions  
Min  
Typ  
Max  
Units  
Ω
N-Channel On Resistance  
Start-Up Time  
ILXA, ILXB = 100mA  
0.25  
tSTART  
fOSC  
5
ms  
Oscillator Frequency  
SYNC Frequency (upper)  
SYNC Frequency (lower)  
Thermal Shutdown  
0.95  
1.25  
1.1  
1.25  
MHz  
MHz  
MHz  
°C  
fSYNCU  
fSYNCL  
THI  
0.75  
145  
10  
Thermal Shutdown  
Hysteresis  
THYSR  
°C  
UVLO Threshold  
UVLO Hysteresis  
Logic Input High(2)  
VUVL  
VUVLHYS  
VIH  
Decreasing VIN  
2.4  
1.6  
2.5  
50  
2.6  
0.6  
V
mV  
V
Logic Input Low(2)  
VIL  
V
Notes:  
(1) See Output Voltage Options table in the Application Information section.  
(2) For ENA, ENB, SYNC, CTLA0, CTLA1, CTLA2, CTLB0, CTLB1, CTLB2.  
4
SC198A  
Pin Descriptions  
Pin #  
1
Pin Name  
Pin Function  
VINA  
LXA  
Input power supply voltage for converter A  
2
Connection point for the inductor on converter A  
Ground reference to converter A  
3
GNDA  
VOUTA  
CTLA0  
CTLA1  
CTLA2  
GNDR  
CTLB2  
CTLB1  
CTLB0  
VOUTB  
GNDB  
LXB  
4
Feedback control input for converter A  
5
Voltage select control pin 0 for output A (see Table 1 — Output Voltage Options).  
Voltage select control pin 1 for output A (see Table 1 — Output Voltage Options).  
Voltage select control pin 2 for output A (see Table 1 — Output Voltage Options).  
Ground for reference supply  
6
7
8
9
Voltage select control pin 2 for output B (see Table 1 — Output Voltage Options).  
Voltage select control pin 1 for output B (see Table 1 — Output Voltage Options).  
Voltage select control pin 0 for output B (see Table 1 — Output Voltage Options).  
Feedback control input for converter B  
10  
11  
12  
13  
14  
15  
16  
Ground reference for converter B  
Connection point for the inductor on converter B  
Input power supply voltage for converter B  
VINB  
ENB  
Enable pin for output B  
Oscillator synchronization input — connect to VIN for forced PWM mode, ground for power-save  
mode or connect to an external clock for frequency synchronization.  
17  
MODE/SYNC  
18  
19  
20  
VINR  
NC  
Reference supply input  
Not connected — Leave open  
Enable pin for output A  
ENA  
Thermal pad for heatsinking purposes — connect to ground plane using multiple vias — not con-  
nected internally  
T
THERMAL PAD  
5
SC198A  
Block Diagram  
17  
1
SYNC  
VINA  
Oscillator and  
Slope Generator  
15  
VINB  
Error  
Amp  
A
Error  
Amp  
B
VREF1  
VREF1  
Current  
Amp  
Current  
Amp  
P Limit  
Amp  
P Limit  
Amp  
PWM  
Comp  
PWM  
Comp  
N Limit Amp  
N Limit Amp  
2
14 LXB  
LXA  
Switching Control Logic  
VREF2  
VREF2  
13  
3
GNDA  
ENA  
GNDB  
16  
20  
ENB  
4
5
6
7
12  
11  
10  
VOUTB  
CTLB0  
CTLB1  
CTLB2  
VOUTA  
CTLA0  
CTLA1  
Error  
Amp  
A
Error  
Amp  
B
Voltage  
Select  
Voltage  
Select  
VREF3  
VREF3  
9
CTLA2  
VINR  
VREF1  
VREF2  
VREF3  
Voltage  
References  
18  
8
GNDR  
6
SC198A  
Typical Characteristics  
Efficiency vs. Load at VIN = 2.7V, Side A  
Efficiency vs. Load at VIN = 3.6V, Side A  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 1.8V PSAVE  
VOUT = 1.8V PSAVE  
VOUT = 1.0V PSAVE  
VOUT = 1.0V PSAVE  
VOUT = 1.8V PWM  
VOUT = 1.0 PWM  
VOUT = 1.8V PWM  
VOUT = 1.0 PWM  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Load (A)  
Load (A)  
Efficiency vs. Load at VIN = 5.5V, Side A  
Efficiency vs. Load at VIN = 5.5V, Side B  
VOUT = 1.8V PSAVE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 1.8V PSAVE  
VOUT = 1.0V PSAVE  
VOUT = 1.0V PSAVE  
VOUT = 1.8V PWM  
VOUT = 1.8V PWM  
VOUT = 1.0 PWM  
VOUT = 1.0 PWM  
0.001  
0.01  
0.1  
1
0.001  
1
0.01  
0.1  
Load (A)  
Load (A)  
Line Regulation at 300mA  
Load Regulation VOUT=1.8V, VIN=3.6V  
0.2  
3
2
VOUT = 1.8V PWM  
0.15  
0.1  
0.05  
0
VOUT = 1.0 PWM  
1
VOUT = 1.8V PWM  
VOUT = 1.0 PWM  
0
-0.05  
-0.1  
-0.15  
-0.2  
-1  
-2  
-3  
0.001  
0.01  
0.1  
1
2.7  
3.26  
3.82  
4.38  
4.94  
5.5  
Load (A)  
Input (V)  
7
SC198A  
Typical Characteristics (continued)  
VOUT vs. VIN 3.3V Programmed Output  
VOUT vs. VIN 1.8V Programmed Output  
1.854  
1.836  
1.818  
1.8  
4
IOUT = 300mA  
3.5  
IOUT = 300mA  
IOUT = 800mA  
3
IOUT = 800mA  
2.5  
2
1.5  
1
1.782  
1.764  
1.746  
0.5  
0
4.38  
3.82  
5.5  
3.26  
4.94  
2.7  
2.7  
3.26  
3.82  
4.38  
4.94  
5.5  
Input (V)  
Input (V)  
Crosstalk in PSAVE  
Crosstalk — Side A (PSAVE) Side B (PWM)  
VIN=5.0V, 25°C, VOUTA = 1.0V, IOUTA = 80mA, VOUTB = 3.3V, IOUTB = 800mA  
VIN=5.0V, 25°C, VOUTA = 1.0V, IOUTA = 80mA, VOUTB = 3.3V, IOUTB = 0mA  
(50mV/div)  
(50mV/div)  
(100mV/div)  
(100mV/div)  
10μs  
10μs  
Transient in PSAVE  
Transient in PWM  
VOUT=1.0V, VIN=3.6V, 25°C, IOUT = 0 to 800mA  
VOUT=1.8V, VIN=3.6V, 25°C, IOUT = 0 to 800mA  
(5.0mV/div)  
(5.0mV/div)  
(200mV/div)  
(200mV/div)  
(200mV/div)  
(200mV/div)  
(1.0A/div)  
(1.0A/div)  
Time (200μs/div)  
Time (200μs/div)  
8
SC198A  
Typical Characteristics (continued)  
Switching Waveforms — VOUT=1.0V  
Switching Waveforms — VOUT=1.8V  
VIN=3.6V, 25°C, IOUT = 800mA  
VIN=3.6V, 25°C, IOUT = 800mA  
(2V/div)  
(2V/div)  
(10mV/div)  
(10mV/div)  
Time (400ns/div)  
Time (400ns/div)  
Switching Waveforms in PSAVE  
Switching Waveforms in PSAVE  
VOUT=1.8V, VIN=3.6V, 25°C, IOUT = 80mA  
VOUT=1.0V, VIN=3.6V, 25°C, IOUT = 0mA  
(2V/div)  
(2V/div)  
(10mV/div)  
(50mV/div)  
Time (4μs/div)  
Time (20ms/div)  
9
SC198A  
Application Information  
Programmable Output Voltage  
Detailed Description  
The SC198A has three control pins per output to allow  
selection of a voltage level from eight predetermined  
output voltage levels (see Table 1). CAUTION — All CTL  
pins much be pulled high or low for proper operation  
(they must not be allowed to float). The output voltage  
can be selected while the device is enabled and loaded.  
The SC198A is a dual step-down, pulse-width modulated  
DC-DC converter with programmable output voltage and  
power-save mode. This device has a 1MHz internal oscil-  
lator that can be used during forced PWM mode or  
power-save mode (PSAVE).  
Operation  
Table 1 — Output Voltage Options  
During normal operation, the PMOS switch is activated on  
each rising edge of the internal oscillator. Current feed-  
back for the switching regulator is through the PMOS  
current path, and it is amplified and summed with the  
internal slope compensation network. The voltage feed-  
back loop uses an internal feedback divider. The on-time  
is determined by comparing the summed current feed-  
back and the output of the error amplifier. The period is  
set by the onboard oscillator or by an external clock  
attached to the MODE/SYNC pin. When synchronizing to  
an external frequency, the SC198A operates in PWM mode  
only. The device has an internal synchronous NMOS recti-  
fier and does not require a Schottky diode on the LX pin.  
The device is designed to operate as a buck converter in  
PWM mode with a fixed frequency of 1MHz. At light loads,  
the part can enter PSAVE mode to maximize efficiency.  
Programmable Output Voltage  
Nominal Output  
Voltage (V)  
CTLA2/B2 CTLA1/B1 CTLA0/B0  
A
B
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.8  
1.8  
2.2  
2.5  
2.7  
2.8  
2.9  
3.0  
3.3  
Continuous Conduction and Oscillator  
Synchronization  
Output Filter  
The SC198A converter also has internal loop compensa-  
tion. The internal compensation is designed to work with  
a specific output filter corner frequency defined by the  
equation  
The SC198A is designed to operate in continuous con-  
duction mode, where it maintains a fixed frequency.  
When the MODE/SYNC pin is tied high, the part runs  
under control of the internal oscillator in PWM mode. The  
part can be synchronized to an external clock by con-  
necting a clock signal to the MODE/SYNC pin. The part  
synchronizes to the rising edge of the clock.  
1
fC   
2S Lu COUT  
When selecting output filter components, the LC product  
should not vary over a wide range. The practical lower  
limit for the inductor value is 4.7ꢀH to ensure system sta-  
bility. Selection of smaller inductor and capacitor values  
will shift the corner frequency higher, which may impact  
stability. The internal compensation is designed to  
operate with a single-pole output filter where L = 4.7ꢀH  
and COUT = 10ꢀF.  
Power-Save Mode Operation  
The SC198A has a power-save mode (PSAVE) which may  
be selected by tying the MODE/SYNC pin to GND.  
Selecting PSAVE mode enables automatic activation of  
PSAVE mode at light loads, thus maximizing efficiency  
across the full load range. The device will automatically  
detect the load current at which it should enter PSAVE  
mode. The device is optimized to track maximum  
efficiency.  
10  
SC198A  
Application Information (continued)  
In PSAVE mode (see Figure 1), VOUT regulation is con-  
trolled by bursts in switching. While the output voltage is  
between the low and high voltage thresholds, switching  
is stopped to reduce loss. When the voltage drops to the  
lower threshold, the switch bursts at a fixed on time until  
the upper threshold is reached. At this point the output  
voltage is allowed to ramp down to the lower threshold  
without switching to conserve power. In the PSAVE mode,  
less switching is used. This results in less power loss which  
can be seen in the difference of efficiency between PWM  
mode and PSAVE mode at light loads.  
Protection Features  
The SC198A provides the following protection features:  
Thermal Shutdown  
Current Limit  
Over-Voltage Protection  
Soft-Start  
Thermal Shutdown  
The SC198A has a thermal shutdown feature to protect  
against damage if the junction temperature exceeds  
145°C. In thermal shutdown, the on-chip power devices  
are disabled, tri-stating the LX output. Switching resumes  
when the temperature drops by 10°C. During this time, if  
the output voltage decreases by more than 60% of its  
programmed value, a soft-start will be invoked.  
Higher Load  
Applied  
PSAVE Mode at  
Moderate Load  
PSAVE Mode at  
High Load  
PWM Mode at  
High Load  
BURST  
OFF  
BURST OFF  
BURST  
PWM Mode  
Upper  
Thershold  
Limit  
Lower  
Thershold  
Limit  
VOUT  
Current Limit  
The internal power devices are protected by current limit  
functions. In the event of a short to ground on the output,  
the part enters frequency foldback mode. This causes the  
switching frequency to decrease by a factor determined  
by the output voltage. This prevents the inductor current  
from staircasing.  
PSAVE  
Exit  
Threshold  
Inductor  
Current  
Over-Voltage Protection  
0A  
In the event of an over-voltage on the output in switcher  
mode, the PWM drive is disabled, effectively tri-stating  
the LX output. The part will not resume switching until  
the output voltage has fallen below 2% of the regulation  
voltage.  
Time  
Figure 1 — PSAVE Operation  
The PSAVE switching burst frequency is controlled such  
that the inductor current ripple during the burst is similar  
to that in PWM mode.  
Soft-Start  
The soft-start mode operates by limiting the current  
through the inductor and controlling the switching fre-  
quency. The current limit is increased over several  
milliseconds in discrete steps. This has the desired effect  
of limiting in-rush current from the input supply. The soft-  
start mode is cancelled once the output reaches  
regulation. Soft-start is only re-enabled by power cycling,  
toggling enable, a UVLO event, or shutdown.  
The SC198A automatically detects when to exit PSAVE  
mode. The device sets a maximum peak current in PSAVE  
mode, and then detects when VOUT falls due to the load  
increasing above the level that the peak current will  
support.  
For the SC198A to exit PSAVE mode, the load must be  
increased, which causes VOUT to decrease until the PSAVE  
exit threshold is reached. PSAVE levels are set high to  
minimize the undershoot when the SC198A exits PSAVE.  
Figure 1 shows PSAVE mode operation and exiting into  
PWM mode at increased load.  
11  
SC198A  
Applications Information (continued)  
Output Capacitor  
Inductor Selection  
Output voltage ripple is dominated by the filter capaci-  
tance ESR as shown in the equation  
The SC198A was designed for optimum performance  
when using a 4.7ꢀH inductor. The magnitude of the  
inductor current ripple is dependent on the inductor value  
and is determined by the equation  
VOUT(P-P) = DIL × ESRCOUT  
Capacitors with X7R or X5R ceramic dielectric are strongly  
recommended for their low ESR and superior temperature  
and voltage characteristics. Y5V capacitors should not be  
used as their temperature coefficients make them unsuit-  
able for this application.  
VOUT  
VOUT  
§
¨
·
¸
ǻIL   
1  
Lu fosc  
VIN  
©
¹
This equation demonstrates the relationship between  
input voltage, output voltage, and inductor ripple current.  
The inductor should also have a low DCR to minimize the  
conduction losses and maximize efficiency. The minimum  
DC current rating of the inductor should be equal to the  
maximum load current plus half of the inductor current  
ripple as shown by the equation  
When selecting capacitors for the application, first con-  
sider the DC voltage characteristic of the capacitor. The  
capacitance value at the DC operating voltage may be  
considerably lower than the rated value. Table 3 lists rec-  
ommended capacitor values which have been chosen to  
minimize the impact of this limitation. A 10ꢀF ceramic  
capacitor is the minimum recommended value for the  
output filter capacitor. It is important to ensure the capaci-  
tor value does not drop below 9ꢀF for the operating range  
of the application.  
ǻIL  
IL(Peak)   IOUT(MAX)  
2
Final inductor selection will depend on various design  
considerations such as efficiency, EMI, size, and cost. Table  
2 lists some manufacturers of practical inductor options.  
Table 3 — Recommended Capacitors  
Rated  
Voltage  
(VDC)  
Manufacturer/  
Part No.  
Value  
(ꢀF)  
Case  
Size  
Table 2 — Recommended Inductors  
Type  
Rate Tolerance  
Current  
(A)  
Dimensions  
LxWxH  
Manufacturer/  
Part No.  
Value DCR  
(+%)  
Murata  
GRM21BR60J226ME39  
(ꢀH)  
(Ω)  
(mm)  
22  
10  
10  
6.3  
6.3  
6.3  
X5R  
X5R  
X5R  
0805  
0603  
0805  
Coilcraft  
LPO6610-472ML  
Murata  
GRM188R60J106ME47  
4.7  
0.20  
1.1  
2.10  
1.5  
20  
20  
20  
6.60 × 5.50 × 1.10  
5.87 × 4.89 × 3.81  
6.60 × 4.50 × 13.0  
Coilcraft  
1812PS-472KLB  
Murata  
GRM21BR60J106KE01B  
4.7  
4.7  
0.11  
0.09  
Coilcraft  
D01608C-472ML  
Capacitor Selection  
Input Capacitor  
The source input current to a buck converter is non-con-  
tinuous. To prevent large input voltage ripple a low ESR  
ceramic capacitor is required. A minimum value of 4.7ꢀF  
should be used for sufficient input voltage filtering and a  
22ꢀF MLCC may be used for optimum input voltage  
filtering.  
12  
SC198A  
Applications Information (continued)  
PCB Layout Considerations  
Poor layout can degrade the performance of the DC-DC  
converter and can be a contributory factor in EMI prob-  
lems, ground bounce, thermal issues, and resistive voltage  
losses. Poor regulation and instability can result.  
The following design rules are recommended:  
1. Place the inductor and filter capacitors as close to the  
device as possible and use short wide traces between  
the power components.  
2. Route the output voltage feedback path away from  
inductor and LX node to minimize noise and magnetic  
interference.  
3. Use a ground plane to further reduce noise interference  
on sensitive circuit nodes.  
VIN  
GND  
GND  
CinB  
CinA  
LXA  
LXB  
VOUTA  
GND  
GND  
VOUTB  
13  
SC198A  
Outline Drawing – MLPQ-20 4x4  
A
D
B
E
DIMENSIONS  
INCHES MILLIMETERS  
MIN NOM MAX MIN NOM MAX  
DIM  
A
. 031  
. 040  
0.90 1.00  
. 035  
. 001  
0.80  
. 002 0.00 0.02 0.05  
A 1 . 000  
-
-
-
-
(.008)  
A2  
b
D
(0.20)  
0.25 0.30  
PIN 1  
INDICATOR  
. 007  
. 010 . 012 0.18  
. 153 . 157 . 161 3.90 4. 00 4.10  
(LASER MARK)  
D1  
E
2.70  
2.80  
. 100 . 106 . 110 2.55  
. 153 . 157 . 161 3.90 4. 00 4.10  
E1 . 100  
2.70 2.80  
. 106 . 110 2.55  
. 020 BSC  
0. 50 BSC  
e
L
N
. 011 . 016 . 020 0.30 0.40 0.50  
20  
20  
0.10  
0.10  
aaa  
. 004  
. 004  
A2  
bbb  
A
SEATING  
PLANE  
aaa  
C
A1  
C
D1  
LxN  
E/2  
E1  
2
1
N
bxN  
bbb  
C A B  
e
D/2  
NOTES :  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS  
14  
SC198A  
Land Pattern – MLPQ-20 4x4  
K
DIMENSIONS  
INCHES MILLIMETERS  
DIM  
(.155)  
.122  
.106  
.106  
.021  
.010  
.033  
.189  
(3.95)  
3.10  
2.70  
2.70  
0.50  
0.25  
0.85  
4.80  
C
G
H
K
P
X
Y
Z
Z
G
Y
(C)  
H
X
P
NOTES:  
1. THIS LAND PATTERN IS FOR REFERENCE PURPOSES O.NLY  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY’S MANUFACTURING GUIDELINES ARE MET  
Contact Information  
Semtech Corporation  
Power Mangement Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805) 498-2111 Fax: (805) 498-3804  
www.semtech.com  
15  

相关型号:

SC198AMLTRT

Dual DC-DC Buck Converter with High Current Capability
SEMTECH

SC198EVB

Dual DC-DC Buck Converter with High Current Capability
SEMTECH

SC198MLTRT

Dual DC-DC Buck Converter with High Current Capability
SEMTECH

SC198_07

Dual DC-DC Buck Converter with High Current Capability
SEMTECH

SC1A

formerscontrol products
ETC

SC1A100KC

CHIP TYPE, LOW LEAKAGE CURRENT
DBLECTRO

SC1A100KR

CHIP TYPE, LOW LEAKAGE CURRENT
DBLECTRO

SC1A100KT

CHIP TYPE, LOW LEAKAGE CURRENT
DBLECTRO

SC1A100LC

CHIP TYPE, LOW LEAKAGE CURRENT
DBLECTRO

SC1A100LR

CHIP TYPE, LOW LEAKAGE CURRENT
DBLECTRO

SC1A100LT

CHIP TYPE, LOW LEAKAGE CURRENT
DBLECTRO

SC1A100MC

CHIP TYPE, LOW LEAKAGE CURRENT
DBLECTRO