S1F75520D0A0000 [SEIKO]

SWITCHED CAPACITOR REGULATOR, 28kHz SWITCHING FREQ-MAX, UUC72, 4.30 X 4.30 MM, ALUMINUM PAD, DIE-72;
S1F75520D0A0000
型号: S1F75520D0A0000
厂家: SEIKO EPSON CORPORATION    SEIKO EPSON CORPORATION
描述:

SWITCHED CAPACITOR REGULATOR, 28kHz SWITCHING FREQ-MAX, UUC72, 4.30 X 4.30 MM, ALUMINUM PAD, DIE-72

开关
文件: 总52页 (文件大小:489K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PF1267-02  
S1F75520 Series  
Charge-pump DC/DC Converter &  
Voltage Regulator with VCOM  
DESCRIPTION  
The S1F75520 is a TFT liquid crystal panel power supply IC. A single power input generates the bias voltage  
necessary for driving the liquid crystal. The voltage conversion circuit does not need any external transistors or  
diodes, and since all internal CMOS transistors are configured from a charging pump type DC/DC converter, it  
is most appropriate for lowering the power consumption of the LCD module.  
Combining the S1D19200 or other source drivers and the S1D17917 or other gate drivers may further lower the  
LCD module power consumption.  
FEATURES  
• Power supply voltage··········· 2.7 to 3.6V single power input  
• Self current consumption ····· Typ. 160 µA  
• Standby current ··················· 5 µA  
• Built-in charging pump type DC/DC converter voltage conversion circuit  
• Outputs positive power supply voltage VSCE for the source driver  
· Outputs from the primary booster circuit and the source driver voltage regulator.  
· VSCE output voltage can be set within 3.5V to 5.0V from external resistors.  
• Outputs positive power supply voltage VGON for the gate driver.  
· Outputs from the gate driver voltage regulator and the secondary booster circuit.  
· Output voltage can be set within 6.6V to 20V from an external resistor.  
• Outputs negative power supply voltage VGOFF for gate driver.  
· Outputs from the gate driver voltage regulator and the tertiary booster circuit.  
· Output voltage can be set within –15 to –6.6V from an external resistor.  
• Built-in counter-voltage VCOM output voltage  
· Outputs to the polarity input pin POL synchronously.  
· Central voltage of the output voltage can be set within 0.0 to 2.5V.  
· Central voltage of the output voltage can be controlled by the analog input signal (VCENT) or the digital input  
signal  
· Digital input signal controls are made through a 3-line system (BDATA, BCK, XBCS).  
· The output voltage amplitude can be set within 3.0 to 5.5V range.  
· The output amplitude is controlled through analog input signal (VSWIN).  
· Built-in output off function  
• Built-in logic power supply voltage regulator  
· The output voltage can be set within 1.5 to 1.8V range.  
• Built-in soft start circuit  
• Built-in discharge circuit  
• Built-in CR oscillator circuit  
• Shipping forms ················· TQFP12–48pin (S1F75520F0A0000)  
Rev. 1.1  
S1F75520 Series  
QFN748pin (S1F75520F5A0000)  
Chip Al pad (S1F75520D0A0000)  
Chip Au bump (S1F75520D5A0000)  
The product resist radiation or light. (Connected to an external component to configure a switching regulator.)  
Use the following semiconductor chip handling notes.  
[
]
IC handling notes against light :  
If semiconductor chips are exposed to strong light, their characteristics may change. Therefore, if the ICs are  
placed in the light, they may malfunction. To protect them, the following general requirements must be  
satisfied for IC mounting boards and products.  
(1) Do not expose ICs to the light before mounting during board design and IC mounting.  
(2) Also, do not expose the ICs to the light in the inspection phase.  
(3) Do not expose the top, bottom and sides of an IC chip to the light.  
2
Rev. 1.1  
S1F75520 Series  
BLOCK DIAGRAM  
(10)  
CZ1N  
CZ2P  
CZ2N  
V
EP2  
Tertiary booster circuit  
(9)  
V
GON  
V
GOFF  
CY2N  
CY2P  
CY1N  
CY1P  
Secondary booster  
circuit  
(11)  
SEVCOM  
BDATA  
BCK  
VRGP  
XBCS  
POL  
(8)  
(7)  
V
COM control circuit  
Gate driver  
voltage regulator  
RVP  
PSAVE1  
PSAVE0  
V
SWIN  
V
CENT  
XOFFCM  
VSCE  
RVS  
Source driver  
voltage regulator  
V
REF2  
(12)  
(13)  
VREF1  
Discharge circuit  
V
V
V
V
COM2  
(6)  
V
COM  
Soft start circuit  
COM output voltage  
generator circuit  
COMH  
COML  
V35  
(2)  
XSLPX  
XSLPY  
MODE  
CNT  
VP  
Timing signal  
formation circuit  
VN  
PCK  
(5)  
CX1P  
CX1N  
CX2P  
CX2N  
CX3P  
CX3N  
(1)  
Primary booster circuit  
OSC2  
OSC1  
CR oscillator circuit  
(3)  
XOFF18  
SEVTG2  
SEVTG1  
SEVTG0  
(4)  
Logic power  
Logic power supply  
voltage regulator  
supply control circuit  
V18  
VDD1 to 2  
VSS  
Fig. 1 Block Diagram  
Rev. 1.1  
3
S1F75520 Series  
BLOCK DESCRIPTION  
(1) CR oscillator circuit  
This is used as the primary to tertiary booster circuit clock for the IC. Pin setup (MODE) allows external input  
(PCK) of the charging pump clock. The oscillation frequency can be adjusted by an external resistor.  
(2) Timing signal formation circuit  
This generates the primary to tertiary booster circuit clock from the PCK pin or the oscillation signal from the CR  
oscillator circuit.  
(3) Logic power supply control circuit  
It controls the logic power supply voltage regulator.  
(4) Logic power supply voltage regulator  
This is the voltage regulator for the logic power supply, which outputs 1.5 to 1.8V as an external power supply  
to LCD controllers and other devices other than this IC.  
(5) Primary booster circuit  
This is the positive and negative output booster circuit configured from a charging pump type DC/DC converter.  
Boosting can be set to 1.5 or 2-times via the CNT pin.  
(6) VCOM output voltage generator circuit  
This generates a counter-voltage VCOM output voltage. It also outputs synchronous square waves to the POL  
polarity input pin . The VCOM amplitude and the VCOM central voltage can be controlled by the VCOM control  
circuit.  
(7) Source driver voltage regulator  
This generates a positive power supply voltage for the source driver. The output voltage is VSCE=3.5V(Typ.).  
By adding external resistors, the voltage can be set within 3.5 to 5V. The tone voltage VREF1 output voltage and  
VREF2 output voltage are also generated.  
(8) Gate driver voltage regulator  
The gate output positive and negative power supply voltages for the gate driver are generated by this regulator  
and the secondary and tertiary booster circuits.  
This regulator outputs VRGP=3.3V(Typ.). By adding external resistors, the voltage can be set within 3.3 to 5V.  
(9) Secondary booster circuit  
This is a positive output booster circuit configured from a charging pump type DC/DC converter. It boosts the  
gate driver voltage regulator VRGP voltage by 2, 3 or 4-times based on VSS=0V. Boosting can be set via  
external wiring.  
(10) Tertiary booster circuit  
This is a negative output booster circuit configured from a charging pump type DC/DC converter. It boosts the  
gate driver voltage regulator VRGP voltage by 2, 3 or 4-times based on VSS=0V. Boosting can be set via  
external wiring.  
4
Rev. 1.1  
S1F75520 Series  
(11) VCOM control circuit  
This controls the VCOM output voltage generator circuit. The VCOM amplitude is controlled by the analog input  
signal, and the VCOM central voltage is controlled by the analog or digital input signal.  
(12) Discharge circuit  
This discharges the residual voltages on the VSCE pin, the VGON pin and the VGOFF pin to VSS.  
(13) Soft start circuit  
This alleviates the current surge to the booster capacitor at the start of boosting.  
PAD LAYOUT AND PIN LAYOUT  
Pad Layout  
Alignment mark  
54  
34  
DIE no.  
Alignment mark  
55  
33  
SEVCOM  
SEVCOM  
CNT  
VREF2  
XOFF18  
V
SS  
V
REF1  
SS  
SCE  
VSCE  
V
V35  
V
V
V
V
SWIN  
RVS  
SS  
VSS  
COML  
RVP  
VRGP  
VDD2  
V
V
V
V
V
V
V
COMH  
CENT  
COM  
DD2  
DD1  
SS  
Ο
V
SS  
SS  
V
CX2N  
CX2P  
V
P
CX1P  
SS  
CX1N  
CX3P  
CX3N  
V18  
Alignment mark  
Alignment mark  
16  
72  
15  
1
4.30mm  
Chip size  
Pad pitch  
: 4.30 × 4.30mm  
: Min. 150µm  
Chip thickness : 300µm  
Circuit potential : VSS  
Rev. 1.1  
5
S1F75520 Series  
S1F75520D0A00 (AL pad)  
DIE number  
: F7552D0A  
: 100µm × 100µm  
PAD opening  
Alignment marks :  
Aluminium  
50µm  
40µm  
80µm  
Alignment coordinate=(1974.8, 1974.8)  
Alignment coordinate=(1974.8, 1974.8)  
S1F75520D5A00 (Au bump)  
DIE number : F7552D5A  
Au bump specifications : Au vertical bumps  
Bump size  
: 100µm × 100µm  
Bump height  
Alignment marks:  
: 22.5µm(Typ.) Details are given in the delivery specifications.  
Bump  
50µm  
40µm  
80µm  
Alignment coordinate=(1974.8, 1974.8)  
Alignment coordinate=(1974.8, 1974.8)  
6
Rev. 1.1  
S1F75520 Series  
Pad Center Coordinates  
Unit : µm  
PAD No.  
1
PAD Name  
VCOM  
VCOM  
VGON  
VEP2  
X
Y
PAD No.  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
PAD Name  
XSLPY  
XSLPX  
MODE  
SEVTG0  
SEVTG1  
SEVTG2  
PSAVE0  
PSAVE1  
VDD2  
X
Y
1468.8  
1318.8  
1048.4  
898.4  
746.8  
504.4  
262.8  
48.8  
1974.8  
505.2  
1974.8  
2
355.2  
3
205.2  
4
212.4  
362.4  
512.4  
662.4  
812.4  
962.4  
1112.4  
1262.4  
1412.4  
1562.4  
1712.4  
1974.8  
5
VSS  
6
VGOFF  
CZ2P  
CZ2N  
CZ1N  
CY2N  
CY2P  
CY1N  
CY1P  
VN  
7
8
9
106.4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
256.4  
POL  
406.4  
XBCS  
BCK  
556.4  
706.4  
BDATA  
BDATA  
SEVCOM  
SEVCOM  
CNT  
1108.0  
1258.0  
1974.8  
VN  
1712.8  
1562.8  
1412.8  
1262.8  
1112.8  
962.8  
812.8  
662.8  
512.8  
362.8  
144.8  
294.8  
444.8  
594.8  
744.8  
894.8  
1044.8  
1824.8  
CX3N  
CX3P  
CX1N  
CX1P  
VP  
1824.8  
1568.0  
1340.8  
1023.6  
818.8  
628.0  
420.0  
244.8  
94.8  
XOFF18  
VSS  
VSCE  
V35  
CX2P  
CX2N  
VSS  
VSWIN  
VSS  
VSS  
VCOML  
VCOMH  
VCENT  
VCOM  
VDD2  
VDD2  
VRGP  
RVP  
55.2  
205.2  
355.2  
VSS  
505.2  
RVS  
655.2  
VDD1  
VSCE  
VSS  
805.2  
VSS  
955.2  
VSS  
VREF1  
VREF2  
VCOM2  
TEST  
FCLK  
1105.2  
1824.8  
1974.8  
V18  
1555.2  
1405.2  
1255.2  
1105.2  
955.2  
OSC2  
OSC1  
PCK  
805.2  
XOFFCM  
655.2  
Rev. 1.1  
7
S1F75520 Series  
Pin Assignment  
36  
25  
36  
25  
24  
37  
24  
37  
48  
48  
13  
13  
1
12  
1
12  
Fig. 2 TQFP1248pin  
Fig. 3 QFN748pin  
Pin No.  
Pin Name  
VGON  
VEP2  
Pin No.  
13  
Pin Name  
CX3P  
CX1N  
CX1P  
VP  
Pin No.  
25  
Pin Name  
Pin No.  
37  
Pin Name  
CNT  
1
2
OSC2  
OSC1  
14  
26  
38  
XOFF18  
V35  
3
VGOFF  
CZ2P  
CZ2N  
CZ1N  
CY2N  
CY2P  
CY1N  
CY1P  
VN  
15  
27  
PCK  
39  
4
16  
28  
XOFFCM  
XSLPY  
XSLPX  
MODE  
SEVTG0  
SEVTG1  
PSAVE0  
PSAVE1  
POL  
40  
VSWIN  
VCOML  
VCOMH  
VCENT  
VCOM  
VDD2  
5
17  
CX2P  
CX2N  
VRGP  
RVP  
29  
41  
6
18  
30  
42  
7
19  
31  
43  
8
20  
32  
44  
9
21  
RVS  
33  
45  
10  
11  
12  
22  
VSCE  
34  
46  
VDD1  
23  
VREF1  
VREF2  
35  
47  
VSS  
CX3N  
24  
36  
48  
V18  
Pin names are common to both TQFP12-48pin and QFN7-48pin.  
8
Rev. 1.1  
S1F75520 Series  
Pin name - Pin Number Correspondence Table  
Pin Name  
CHIP  
TQFP12–48  
Pin Name  
CHIP  
TQFP12–48  
QFN7–48  
1
QFN7–48  
29  
30  
31  
32  
33  
VCOM  
VCOM  
VGON  
VEP2  
1
XSLPY  
XSLPX  
MODE  
SEVTG0  
SEVTG1  
SEVTG2  
PSAVE0  
PSAVE1  
VDD2  
POL  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
2
3
4
2
VSS  
5
3
VGOFF  
CZ2P  
CZ2N  
CZ1N  
CY2N  
CY2P  
CY1N  
CY1P  
VN  
6
7
4
34  
35  
8
5
9
6
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
7
36  
8
XBCS  
BCK  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
BDATA  
BDATA  
SEVCOM  
SEVCOM  
CNT  
VN  
CX3N  
CX3P  
CX1N  
CX1P  
VP  
37  
38  
XOFF18  
VSS  
VSCE  
V35  
CX2P  
CX2N  
VSS  
39  
40  
VSWIN  
VSS  
VSS  
VCOML  
VCOMH  
VCENT  
VCOM  
VDD2  
VDD1  
VSS  
41  
42  
43  
44  
45  
46  
VDD2  
VRGP  
RVP  
VSS  
RVS  
VSCE  
VSS  
VSS  
47  
48  
VREF1  
VREF2  
VCOM2  
TEST  
FCLK  
V18  
OSC2  
OSC1  
PCK  
XOFFCM  
Rev. 1.1  
9
S1F75520 Series  
PIN DESCRIPTION  
(1) CR oscillator circuit  
Pin Name  
OSC1  
I/O  
I
PAD No.  
Function  
38  
37  
CR oscillator circuit gate input pin. Oscillator resistor connection pin.  
CR oscillator circuit drain input pin.  
OSC2  
O
Connects oscillation resistor between this pin and OSC1.  
(2) Timing signal formation circuit  
Pin Name  
I/O  
PAD No.  
Function  
External clock input pin.  
PCK  
I
39  
Inputs the charging pump clock to this pin.  
Booster clock conversion pin (with pull-down).  
MODE  
I
43  
Sets the source oscillation for the booster clock.  
MODE Function  
VSS  
Booster clock generated by the external clock PCK pin. CR  
oscillator circuit stops.  
VDD  
Booster clock generated by the CR oscillator circuit.  
CNT  
I
57  
Primary booster circuit boosting setup pin. (with pull-up).  
Sets boosting for the primary booster circuit.  
CNT  
VSS  
Function  
1.5-times boosting mode. Outputs the following voltage  
based on VSS=0V. VP=(VDDVSS) × 1.5  
2-times boosting mode. Outputs the following voltage based  
on VSS=0V. VP=(VDDVSS) × 2  
VDD  
XSLPX  
XSLPY  
I
I
42  
41  
Source driver positive and negative power supply voltage sleep pin.  
Changing the pin to VSS level turns off the VSCE output voltage. The  
discharge circuit also operates and discharges the residual voltages in  
the VSCE pin to VSS pin.  
Gate driver positive and negative power supply voltage sleep pin.  
Changing the pin to VSS level turns off the VGON output voltage and the  
VGOFF output voltage. The discharge circuit also operates and dis-  
charges the residual voltages in the VGON pin and the VGOFF pin to VSS  
pin. Secondary and tertiary booster circuits stop.  
10  
Rev. 1.1  
S1F75520 Series  
(3) Logic power supply control circuit  
Pin Name  
I/O  
PAD No.  
Function  
XOFF18  
I
58  
Logic power supply voltage regulator sleep pin (with pull-up).  
Changing the pin to VSS level turns off the logic power supply voltage  
regulator. The residual voltages in the V18 pin are discharged to VSS.  
Drive power conversion pin (with pull-down).  
SEVTG2  
I
46  
Converts the maximum load current for the logic power supply series  
regulators.  
SEVTG2 Function  
VSS  
VDD  
Normal load current mode. Maximum of 10mA load current  
may be applied (during 1.8V output).  
Large load current mode. Maximum of 40mA load current  
may be applied (during 1.8V output).  
SEVTG1  
SEVTG0  
I
45,  
44  
Output voltage conversion pin (with pull-down).  
Sets the output voltage of the logic power supply voltage regulator.  
SEVTG1 SEVTG0 Function  
VSS  
VDD  
VDD  
VDD  
VSS  
VDD  
VSS  
VDD  
Outputs V18=1.8V.  
Outputs V18=1.7V.  
Outputs V18=1.6V.  
Outputs V18=1.5V.  
(4) Logic power supply voltage regulator  
Pin Name  
I/O  
PAD No.  
Function  
V18  
O
72  
Logic power supply voltage regulator output pin.  
Outputs 1.5 to 1.8V voltage as an external power supply to the LCD  
controllers and other devices other than this IC.  
Rev. 1.1  
11  
S1F75520 Series  
(5) Primary booster circuit  
Pin Name  
I/O  
PAD No.  
Function  
VP  
O
20  
Primary booster circuit positive output voltage pin.  
Outputs the following voltage based on VSS=0V.  
VP=(VDDVSS)×N1 (N1=1.5 or 2)  
Boosting (N1) is set by the CNT pin.  
VN  
O
14, 15  
Primary booster circuit negative output voltage pin.  
Outputs the following voltage based on VSS=0V.  
VN=VP  
Also outputs the following voltage based on VSS=0V by changing the  
external wiring.  
VN=(VDDVSS)  
CX1P  
CX1N  
CX2P  
CX2N  
CX3P  
CX3N  
(O)  
(O)  
(O)  
(O)  
(O)  
(O)  
19  
18  
21  
22  
17  
16  
Positive connection pin of the VP output voltage generator flying capacitor  
Negative connection pin of the VP output voltage generator flying capacitor  
Positive connection pin of the VP output voltage generator flying capacitor  
Negative connection pin of the VP output voltage generator flying capacitor  
Positive connection pin of the VN output voltage generator flying capacitor  
Negative connection pin of the VN output voltage generator flying capacitor  
(6) VCOM output voltage generator circuit  
Pin Name  
I/O  
PAD No.  
Function  
Counter-voltage VCOM output pin.  
VCOM  
O
1, 2, 67  
Outputs synchronous square waves as polarity reversal input pin  
(POL). VCOM amplitude and VCOM central voltage are controlled by the  
VCOM control circuit.  
VCOM2  
VCOMH  
VCOML  
V35  
O
O
O
O
34  
65  
64  
61  
VCOM2 output pin.  
Outputs voltage same as that of the VCOM pin.  
VCOMH output pin.  
Auxiliary output voltage pin for the VCOM output.  
VCOML output pin.  
Auxiliary output voltage pin for the VCOM output.  
3.5V regulator output pin.  
Regulator output pin. Outputs 3.5V (Typ.). Used for setting up the  
VCOM amplitude and the VCOM central voltage. Connect a ladder  
resistor between this pin and VSS (0V) and input the divided voltage to  
the VSWIN and VCENT pins.  
12  
Rev. 1.1  
S1F75520 Series  
(7) Source driver voltage regulator  
Pin Name  
I/O  
PAD No.  
Function  
VSCE  
O
30  
VSCE output pin.  
Generates the source driver power supply voltage. Output voltage is  
VSCE=3.5V(Typ.). By adding external resistors, the output voltage can  
be set within 3.5 to 5V.  
RVS  
I
29  
32  
Voltage adjustment input pin for the VSCE output voltage.  
Adjusts the VSCE voltage via an external resistor.  
Tone voltage VREF1.  
VREF1  
O
Outputs antiphase square waves as polarity reversal input pin (POL).  
The output voltage outputs the voltage between VSCE and VSS. It  
reaches VSS level when XSLPX=VSS level.  
VREF2  
O
33  
Tone voltage VREF2.  
Outputs synchronous square waves as polarity reversal input pin  
(POL). The output voltage outputs the voltage between VSCE and VSS.  
It reaches VSS level when XSLPX=VSS level.  
(8) Gate driver voltage regulator  
Pin Name  
I/O  
PAD No.  
Function  
VRGP  
O
26  
VRGP output pin.  
The gate output positive and negative power supply voltages to the  
gate driver are generated from this regulator and the secondary and  
tertiary booster circuit. The output of this regulator is VRGP=3.3V(Typ.).  
By adding an external resistor, the output voltage can be set within 3.3  
to 5V.  
RVP  
I
27  
Voltage adjustment input pin for the VRGP output voltage.  
Adjusts the VRGP voltage via an external resistor.  
(9) Secondary booster circuit  
Pin Name  
I/O  
PAD No.  
Function  
VGON  
O
3
Secondary booster circuit output voltage pin.  
Outputs the gate driver positive power supply voltage. Outputs the  
following voltage based on VSS=0V.  
VG=(VRGPVSS)×N2 (N2=2 or 3 or 4)  
Boosting (N2) can be set by changing the external wiring.  
Secondary booster circuit intermediate output voltage pin.  
Outputs the following voltage based on VSS=0V.  
VEP2  
O
4
CY1P  
CY1N  
CY2P  
CY2N  
(O)  
(O)  
(O)  
(O)  
13  
12  
11  
10  
Positive connection pin of the VEP2 output voltage generator flying capacitor.  
Negative connection pin of the VEP2 output voltage generator flying capacitor.  
Positive connection pin of the VGON output voltage generator flying capacitor.  
Negative connection pin of the VGON output voltage generator flying capacitor.  
Rev. 1.1  
13  
S1F75520 Series  
(10) Tertiary booster circuit  
Pin Name  
I/O  
PAD No.  
Function  
VGOFF  
O
6
Tertiary booster circuit output voltage pin.  
Outputs the gate driver negative power supply voltage. Outputs the  
following voltage based on VSS=0V.  
VG=(VRGPVSS)×N3 (N3=2 or 3 or 4)  
Boosting (N3) can be set by changing the external wiring.  
Negative connection pin of the VGOFF output voltage generator flying  
capacitor.  
CZ1N  
(O)  
9
Positive connection pins that correspond to this pin are the CY1N and  
CY2N pins.  
CZ2P  
CZ2N  
(O)  
(O)  
7
8
Positive connection pin of the VGOFF output voltage generator flying capacitor.  
Negative connection pin of the VGOFF output voltage generator flying capacitor.  
(11) VCOM control circuit  
Pin Name  
I/O  
PAD No.  
Function  
XOFFCM  
I
40  
VCOM output off pin (with pull-up).  
Changing this pin to VSS level turns off the VCOM circuit. Since the  
VCOM output voltage generator circuit operates between the positive  
and negative output voltages of the primary booster circuit, the VCOM  
potential has the following relationship with the XSLPX and XSLPY  
sleep pins when off.  
XOFFCM XSLPY XSLPX VCOM potential (VSS=0V reference)  
VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VCOM=VSS  
VCOM=(VSCEVSS)/2  
VCOM=VSS  
VCOM=(VSCEVSS)/2  
VCOM=VSS  
VDD  
VCOM output voltage generator circuit  
is operating.  
POL  
I
50  
Polarity reversal input pin.  
Synchronizes with the input signal to this pin and outputs synchronous  
square waves from the VCOM and VREF1 output pins. Also, the VREF2  
output pin outputs antiphase square waves as the input signal to this  
signal.  
14  
Rev. 1.1  
S1F75520 Series  
(11) VCOM control circuit , continued  
Pin Name  
I/O  
PAD No.  
Function  
SEVCOM  
I
55, 56  
VCOM central voltage adjustment selection pin (with pull-up).  
This pin is used to select the control method for the VCOM central  
voltage.  
SEVCOM Function  
VSS  
Digital control mode.  
Controls the VCOM central voltage via the digital input  
signal. The resolution is 6-bits (BDATA, BCK, XBCS).  
Analog control mode.  
VDD  
Controls the VCOM central voltage via the analog input  
signal (VCENT).  
BDATA  
I
53, 54  
VCOM central voltage serial data input pin (with pull-down).  
This pin is used when the control method for the VCOM central voltage  
is digital control mode. Input 6-bit serial data. The setup data is reset  
with XSLPX=XSLPY=XOFFCM=VSS, and the electronic control value  
becomes α=0.  
BCK  
XBCS  
VCENT  
I
I
I
52  
51  
66  
Data transfer clock input pin (with pull-down).  
This pin is used when the control method for the VCOM central voltage  
is digital control mode. It receives BDATA's signal during clock rise.  
Data writing permission input pin (with pull-up).  
This is used when the control method for the VCOM central voltage is digital  
control mode. It receives the first 6-bits of this signal as data during clock fall.  
VCOM central voltage analog input pin.  
This pin is used when the control method for the VCOM central voltage  
is in analog control mode (SEVCOM=VDD). Connect a ladder resistor  
between the V35 output pin and VSS (0V), and input the divided voltage  
to this pin. Input voltage range is VCENT=1.5 to 2.5V. The relationship  
between the input voltage and the VCOM central voltage are as follows:  
VCOM central voltage =VCENT × 2.5 3.75 [V]  
=0.0 to 2.5 [V] (Typ.)  
VSWIN  
I
62  
VCOM amplitude analog input pin.  
This pin is used to set the amplitude of the VCOM output voltage.  
Connect a ladder resistor between the V35 output pin and VSS (0V),  
and input the divided voltage to this pin. Input voltage range is  
VSWIN=1.5 to 2.75V. The relationship between the input voltage and  
the VSWIN amplitude voltage are as follows:  
VCOM amplitude voltage=VSWIN × 2  
=3.0 to 5.5 [V] (Typ.)  
Rev. 1.1  
15  
S1F75520 Series  
(11) VCOM control circuit , continued  
Pin Name  
PSAVE1  
PSAVE0  
I/O  
PAD No.  
48,  
Function  
VCOM generator circuit low consumption mode setup pin (with pull-  
down).  
I
47  
(12) Power supply input pin.  
Pin Name  
VDD1  
I/O  
PAD No.  
Function  
I
I
I
69  
68  
Analog circuit input power supply pin (positive). <Note 1>  
Digital circuit input power supply pin (positive). <Note 1>  
VDD2  
VSS  
5, 23, 24, Input power supply pin (negative). <Note 2>  
28, 31, 59,  
63, 70, 71  
<Note 1> Connect VDD1 and VDD2 externally and set them to the same potential.  
<Note 2> If the shipment form is a chip, always supply potential externally for No.70 pin and No.71 pin.  
(13) Test Pin  
Pin Name  
TEST  
I/O  
PAD No.  
Function  
Test pin. Always keep open (with pull-down).  
Test pin. Always keep open (with pull-down).  
I
I
35  
36  
FCLK  
16  
Rev. 1.1  
S1F75520 Series  
FUNCTIONAL DESCRIPTION  
Operation Description  
The S1F75520 is a TFT liquid crystal panel power supply IC. A single power input generates the bias voltage  
necessary for driving the liquid crystal. The voltage conversion circuit does not need any external transistors or  
diodes, and since all internal CMOS transistors are configured from a charging pump type DC/DC converter, it  
is most appropriate for lowering the power consumption of the LCD module.  
Combining the S1D19200 or other source drivers and the S1D17917 or other gate drivers may further lower the  
LCD module power consumption.  
The voltage levels generated are:  
Source driver positive power supply voltage VSCE  
Gate driver positive power supply voltage VGON  
Gate driver negative power supply voltage VGOFF  
Counter-voltage VCOM  
Each output voltage may be adjusted by changing the boosting setup for each booster circuit and by changing  
the value of the external resistor for the voltage regulator.  
For the counter-voltage VCOM output voltage, the VCOM central voltage and the VCOM amplitude voltage can be  
adjusted by external resistors. VCOM central voltage can be controlled digitally (BDADA, BCK, XBCS).  
This power supply IC has a built-in voltage regulator for the logic power supply which outputs 1.5 to 1.8V as an  
external power supply to LCD controllers and other devices other than this IC.  
The following is a typical configuration for power supply wiring.  
TFT panel  
LCD controller  
V18  
Source driver  
Source driver  
S1F75520  
V
SCE  
V
DD  
V
DD  
V
SS  
V
SS  
Fig. 4 System Configuration  
Rev. 1.1  
17  
S1F75520 Series  
The following is the potential relationship in the system shown in Fig. 5  
4
VGON=(VRGPVSS) × N2 , N2 = 4  
VON  
VGON  
3
2
VSCE  
VDDH  
VDD  
1
VDD  
VSS  
VDD  
VDD  
VSS  
V18  
0
VSS  
VSS=0V  
VCOM  
Counter  
electrode  
1  
2  
3  
4  
VGOFF=(VRGPVSS) × N3 , N3 = 4  
VOFF  
VGOFF  
Power supply IC  
(S1F75520)  
TFT panel  
Gate driver  
Source driver  
Fig. 5 Potential Relationship in the System  
18  
Rev. 1.1  
S1F75520 Series  
CR Oscillator Circuit  
The S1F75520 has a built-in CR oscillator circuit for the booster clock. It is used as the primary-to-tertiary  
booster circuit clock for the power supply IC. Connect an external resistor between the OSC1 and OSC2 pins.  
[Outside IC]  
[Inside IC]  
OSC1  
OSC2  
Fig. 6 CR Oscillator Circuit External Resistor  
1Mis the recommended resistance for the external resistor. The oscillation frequency can be adjusted by  
changing the resistance of the external resistor.  
The external input (PCK) of the charging pump clock can be made via the booster clock conversion pin  
(MODE).  
Table 1 MODE Pin Functions  
MODE  
VSS  
Function  
The booster clock is generated by the external clock PCK pin. The CR oscillator circuit stops.  
The booster clock is generated by the CR oscillator circuit.  
VDD  
When both the XSLPX and XSLPY sleep pins are at the VSS level, the booster and CR oscillator circuits stop  
regardless of the MODE pin setup. The following table shows their relationship.  
Table 2 XSLPX, XSLPY and MODE Pin Functions  
XSLPX  
XSLPY  
MODE  
CR oscillator  
circuit  
Booster clock  
Primary  
boosting  
Stop  
Secondary and  
tertiary boosting  
Stop  
VSS  
VSS  
VSS  
VDD  
*
Stop  
Stop  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
Stop  
PCK external input  
CR oscillation clock  
PCK external input  
CR oscillation clock  
PCK external input  
CR oscillation clock  
Boosting  
Boosting  
Boosting  
Boosting  
Boosting  
Boosting  
Boosting  
Boosting  
Stop  
Oscillation  
Stop  
VDD  
VDD  
VSS  
VDD  
Oscillation  
Stop  
Stop  
Boosting  
Boosting  
Oscillation  
If only the PCK external input is used as the booster clock, that is, when the CR oscillator circuit is not used,  
MODE=VSS and the OSC1 and OSC2 pins are kept open.  
Rev. 1.1  
19  
S1F75520 Series  
Primary Booster Circuit  
This is a positive and negative output booster circuit configured from the charging pump type DC/DC converter.  
The positive output VP output voltage for this booster circuit is used as the positive input power supply to the  
VCOM output voltage oscillator circuit, the source driver voltage regulator, and the gate driver voltage regulator  
inside the power supply IC. The negative output VN output voltage is used as the negative input power supply  
to the VCOM output oscillator circuit inside the power supply IC. Boosting for the primary booster circuit can be  
set according to the counter-voltage VCOM output voltage, the source driver positive power supply VSCE output  
voltage, the gate driver positive and negative power supply VGON output voltage and the VGOFF output voltage.  
VP output voltage boosting of the positive output can be converted by the CNT pin.  
Table 3 Setup for VP output voltage boosting  
CNT  
VSS  
VP output voltage (VSS=0V reference)  
1.5-times boosting mode  
VP=(VDDVSS)×1.5  
VDD  
2-times boosting mode  
VP=(VDDVSS)×2  
The potential relationship is as shown in the following diagrams.  
VP=(VDDVSS) × 2  
VP=(VDDVSS) × 1.5  
VDD  
VDD  
V
SS=0V  
VSS=0V  
Fig. 7 2-times Boosting mode (CNT=VDD)  
Fig. 8 1.5-times Boosting mode (CNT=VSS)  
VN output voltage boosting of the negative output can be setup via the CNT pin and external wiring.  
Table 4 Setup for VN Output Voltage Boosting  
Connection to the CP3X  
flying capacitor  
CNT  
*
VN output voltage (VSS=0V reference)  
Between CX1N and CX3N  
1-times boosting mode  
VN=(VDDVSS)×(1)  
Between CX3P and CX3N  
VSS  
VDD  
1.5-times boosting mode  
VN=VP=(VDDVSS)×(1.5)  
2-times boosting mode  
VN=VP=(VDDVSS)×(2)  
20  
Rev. 1.1  
S1F75520 Series  
The potential relationship is as shown in the following diagrams.  
V
DD  
VDD  
VDD  
V
SS=0V  
VSS=0V  
VSS=0V  
VN=(VDDVSS) × (1)  
VN=(VDDVSS) × (1.5)  
VN=(VDDVSS) × (2)  
Fig. 9 1-times Boosting Mode  
Fig. 10 1.5-times Boosting Mode  
Fig. 11 2-times Boosting Mode  
Source Driver Voltage Regulator  
This generates a positive power supply voltage for the source driver. The output voltage is VSCE=3.5V(Typ.).  
By adding an external resistor, the voltage can be set within 3.5 to 5V. The following is a typical connection  
when an external resistor is added.  
Inside S1F75520  
Outside S1F75520  
V
P
V
SCE  
RSB  
RVS  
V
REF35 = 3.5V(Typ.)  
(Note 1)  
RSA  
V
SS2  
(Note 1) Try to avoid noise for the high impedance RVS pin.  
Fig. 12 Source Driver Voltage Regulator  
VSCE output voltage can be determined using the following equation.  
RSB  
VSCE=  
+
× VREF35  
(Equation 1)  
1
(
)
RSA  
However, RSA, RSB : external resistor  
VREF35  
: reference voltage inside the IC  
VREF35 generates VREF35=3.5(Typ.) with a reference voltage inside the IC.  
Rev. 1.1  
21  
S1F75520 Series  
The voltage regulator uses the VP output voltage of the primary booster circuit as the input power supply  
voltage. Boosting for the primary booster circuit must be set so that the VP output voltage is 0.4V or more  
higher than the VSCE output voltage.  
As shown in (equation 1), the desired output voltage can be generated by adjusting the ratio of the RSA and  
RSB external resistors. If external resistors are used, set the value so that the current for the external resistors  
is 5µA or higher. Current value IRG that flows through the external resistors can be determined using the  
following equations.  
VSCE  
ISCE =  
(Equation 2)  
RSA+RSB  
<Setup example: Setting VSCE output voltage to 4.85V>  
From (equation 2)  
VSCE  
ISCE  
4.85V  
RSA+RSB =  
=
= 970kΩ  
········· 1  
········· 2  
5µA  
From (equation 1)  
RSB  
RSA  
VSCE  
VREF35  
4.85V  
3.5V  
=
1 =  
1 = 0.3857  
From 1 and 2  
RSA=700k, RSB=270kΩ  
Also, by adding an external thermistor and other devices, a temperature gradient can be added to the VSCE  
output voltage.  
Outside S1F75520  
Inside S1F75520  
V
P
V
SCE  
External  
thermistor  
RSB  
RVS  
V
REF35 = 3.5V(Typ.)  
(Note 1)  
RSA  
V
SS2  
(Note 1) Try to avoid noise for the high impedance RVS pin.  
Fig. 13 When Temperature Gradient Is Added to the Output Voltage  
22  
Rev. 1.1  
S1F75520 Series  
The tone voltages VREF1 and VREF2 output voltages are generated.  
The VREF1 output voltage outputs antiphase square waves as the polarity reversal input pin (POL). The VREF2  
output voltage outputs synchronous square waves as the polarity reversal input pin (POL). The output voltage  
outputs the voltages between VSCE and VSS. It reaches the VSS level when XSLPX=VSS.  
[Input pin]  
V
DD  
PCK  
XSLPY  
POL  
[Output pin]  
VSCE  
V
SCE  
V
V
REF1  
REF2  
V
SS=0V  
SCE  
V
V
SS=0V  
Fig. 14 Timing for VREF1 and VREF2 Pins  
Rev. 1.1  
23  
S1F75520 Series  
Gate Driver Voltage Regulator  
The gate output positive and negative power supply voltage to the gate driver is generated by this regulator and  
the secondary and tertiary booster circuits. It boosts to positive from the secondary booster circuit based on the  
output voltage of this regulator and generates VGON output voltage. It also boosts to negative from the tertiary  
booster circuit based on the output voltage of this regulator and generates VGOFF output voltage.  
The output voltage for this regulator is VRGP=3.3V(Typ.). By adding external resistors, the voltage can be set  
within 3.3V to 5V. The following is a typical connection when external resistors is added.  
Inside S1F75520  
Inside S1F75520  
V
P
V
RGP  
RPB  
RVP  
V
REF35 = 3.3V(Typ.)  
(Note 1)  
RPA  
V
SS2  
(Note 1) Try to avoid noise for the high impedance RVS pin.  
Fig. 15 Gate Driver Voltage Regulator  
The VRGP output voltage can be determined using the following equation.  
RPB  
VRGP=  
+
× VREF33  
(Equation 3)  
1
(
)
RPA  
However, RPA, RPB : external resistor  
VREF33  
: reference voltage inside the IC  
VREF33 generates VREF33=3.3V(Typ.) with a reference voltage inside the IC.  
The voltage regulator uses the VP output voltage of the primary booster circuit as the input power supply  
voltage. Boosting for the primary booster circuit must be set so that the VP output voltage is 0.4V or more  
higher than the VRGP output voltage.  
As shown in (equation 3), the desired output voltage can be generated by adjusting the ratio of the RPA and  
RPB external resistors. If external resistors are used, set the value so that the current for the external resistors  
is 5µA or higher.  
A specific resistance value setup can be made using the same method of calculation as for the source driver  
voltage regulator. Also, by adding an external thermistor and other devices, a temperature gradient can be  
added to the VRGP output voltage.  
24  
Rev. 1.1  
S1F75520 Series  
Secondary and Tertiary Booster Circuits  
These are the positive and negative output booster circuits configured from the charging pump type DC/DC  
converters.  
The secondary booster circuit boosts the gate driver voltage regulator VRGP output voltage 2-, 3-, or 4-times to  
positive.  
The tertiary booster circuit boosts the VRGP output voltage 2-, 3-, or 4-times. The boosting relationship  
between the secondary and tertiary booster circuits is as shown in the following diagram.  
V
GON  
Secondary booster  
circuit  
VEP2  
V
RGP  
V
SS=0V  
Tertiary booster circuit  
V
GOFF  
Fig. 16 Boosting Relationship Between the Secondary and Tertiary Booster Circuits  
The theoretical equations for each potential are as follows:  
Table 5 Theoretical Equations of Each Potential  
Signal name Theoretical equation (VSS=0V reference)  
VGON  
VEP2  
(VRGPVSS)×N2, however, N2=2 or 3 or 4  
(VRGPVSS)×2  
VGOFF  
(VRGPVSS)×N3, however, N3=2 or 3 or 4  
Boosting for the secondary and tertiary booster circuits can be set up independently. Setup for both the sec-  
ondary and tertiary booster circuits is made via external wiring.  
When setting the voltage for the VRGP output voltage and boosting for the tertiary booster circuit, set the voltage  
of the VOFF output voltage so that the potential becomes 15V or higher based on VSS=0V, that is, set up so  
that the following equation is satisfied.  
VGOFF VSS = VGOFF 15  
(Equation 4)  
Rev. 1.1  
25  
S1F75520 Series  
The method of setting up for the secondary booster circuit boosting is as shown in Fig. 17 to 19, and that for  
tertiary booster circuit boosting is as shown in Fig. 20 to 22.  
V
RGP  
CY1P  
CY1N  
CY2P  
CY2N  
CY1N  
CY2N  
CZ1N  
CZ2N  
VZ2P  
CPY1  
CPY2  
V
GON=(VRGPVSS) × 4  
V
SS=0V  
CPZ1  
CPZ2  
VSS2  
VEP2  
VGON  
CBY1  
CBON  
CBOFF  
VRGP  
V
V
GOFF  
SS2  
VSS=0V  
V
GOFF=(VRGPVSS) × (4)  
V
SS  
VSS  
Fig. 17 4-times Boosting Mode (N2=4)  
Fig. 20 4-times Boosting Mode (N2=4)  
V
RGP  
CY1P  
CY1N  
CY2P  
CY2N  
CY1N  
CY2N  
CZ1N  
CZ2N  
VZ2P  
CPY1  
CPY2  
V
SS=0V  
CPZ1  
CPZ2  
V
GON=(VRGPVSS) × 3  
VSS2  
VEP2  
VGON  
CBY1  
CBON  
CBOFF  
V
RGP  
V
V
GOFF  
SS2  
V
GOFF=(VRGPVSS) × (3)  
V
SS=0V  
V
SS  
VSS  
Fig. 18 3-times Boosting Mode (N2=3)  
Fig. 21 3-times Boosting Mode (N2=3)  
V
RGP  
CY1P  
CY1N  
CY2P  
CY2N  
CY1N  
CY2N  
CZ1N  
CZ2N  
VZ2P  
CPY1  
V
SS=0V  
CPZ1  
V
RGP=(VRGPVSS) × 2  
V
GOFF=(VRGPVSS) × (2)  
V
V
V
SS2  
EP2  
GON  
CBY1  
CBOFF  
V
RGP  
V
V
GOFF  
SS2  
V
SS=0V  
V
SS  
V
SS  
Fig. 19 2-times Boosting Mode (N2=2)  
Fig. 22 2-times Boosting Mode (N2=2)  
Rev. 1.1  
26  
S1F75520 Series  
VCOM Output Voltage Generator Circuit  
This generates a counter-voltage VCOM output voltage, and outputs synchronous square waves to the POL  
polarity input signal. The VCOM amplitude voltage Vswing can be set within 3.0 to 5.5V. The central voltage  
Vcenter can be set within 0.0 to 2.5V based on VSS=0V. Both voltages can be adjusted by the analog input  
signal. Also, the VCOM central voltage can be controlled by the digital input signal.  
VDD  
POL input signal  
VSS=0V  
VCOMH  
Vswing  
Vcenter  
VCOM output voltage  
VCOML  
Fig. 23 VCOM Output Voltage  
Digital control mode or analog control mode can be selected for the VCOM central voltage by using the VCOM  
central voltage adjustment selection pin.  
Table 6 SEVCOM Pin Functions  
SEVCOM  
Function  
VSS  
Digital control mode.  
Controls the VCOM central voltage via the digital input signal.  
The resolution is 6 bits (BDATA, BCK, XBCS).  
Analog control mode.  
VDD  
Controls the VCOM central voltage via the analog input signal  
(VCENT).  
When in digital control mode (SEVCOM=VSS), a 3-lined serial input (BDATA, BCK, XBCS) controls the VCOM  
central voltage.  
BDATA  
BCK  
S4  
S1  
S0  
S5  
S3  
S2  
1
2
3
4
5
6
XBCS  
BCK input signal validity period  
Fig. 24 BDATA BCK XBCS Timing  
Rev. 1.1  
27  
S1F75520 Series  
Serial data BDATA is input from the most significant bit. The BDATA serial data from the falling edge of the  
XBCS signal to the first 6 BCK input signals are received and read at the rising edge of the BCK input signal.  
The VCOM central voltage is set at the 6th rising edge timing of the BCK input signal. When the XBCS signal  
becomes HIGH before the 6th BCK input signal is entered, the setup data up to the 5th BDATA becomes  
invalid.  
The relationship between the BDATA serial data and the VCOM central voltage Vcenter(Typ. value) is as shown  
in the following equation based on VSS=0V.  
Vcenter = 0.0397 × α [V]  
(Equation 5)  
However, α represents the electronic volume which is a variable con-  
verted from a binary digit data S5 to S0 to a decimal digit data. It is one  
of the α=0 to 63 and has the following relational expression.  
α = 32 × S5 + 16 × S4 + 8 × S3 +4 × S2 + 2 × S1 + S0  
(Equation 6)  
The VCOM register is reset when XSLPX=XSLPY=XOFFCM=VSS, and the electronic volume becomes α=0.  
In the analog control mode (SEVCOM=VDD), it is controlled from the VCENT analog input pin. By setting the  
voltage to the VCENT input pin within 1.5 to 2.5V(VSS=0V reference), the VCOM central voltage can be set within  
Vcenter= 0.0 to 2.5V(VSS=0V reference).  
V
COM  
V
CENT  
Vcenter  
1.5 to 2.5V  
0.0 to 2.5V  
V
SS=0V  
Fig. 25 The Relationship Between VCENT and Vcenter  
The relationship between the VCENT input voltage and the VCOM central voltage Vcenter (Typ. value) is as  
shown in the following equation.  
Vcenter = VCENT × 2.5 3.75 [V]  
(Equation 7)  
The analog input voltage to the VCENT pin can be set by connecting ladder resister to the 3.5V regulator output  
pins V35 and VSS and dividing the voltages.  
28  
Rev. 1.1  
S1F75520 Series  
V35  
RCEB  
VCENT  
RCEA  
V
VSS2  
SS=0V  
Fig. 26 VCENT Setup  
The VCOM amplitude voltage is controlled by the VSWIN analog input pin. By setting the voltage to the VSWIN  
input pin within 1.5 to 2.75V (VSS=0V reference), the VCOM amplitude voltage can be set within Vswing=3.0 to  
5.5V.  
VCOM  
VCOMH  
VSWIN  
Vswing  
=3.0 to 5.5V  
1.5 to 2.75V  
VSS=0V  
VCOML  
Fig. 27 The Relationship between VSWIN and Vswing  
The relationship between the VSWIN input voltage and the VCOM amplitude voltage Vswing (Typ. value) is as  
shown in the following equation.  
Vswing = VSWIN × 2 [V]  
(Equation 8)  
The analog input voltage to the VSWIN pin can be set by connecting a ladder resister to the 3.5V regulator output  
pins V35 and VSS and dividing the voltages.  
V35  
RSWB  
VSWIN  
RSWA  
VSS2  
V
SS=0V  
Fig. 28 VSWIN setup  
Rev. 1.1  
29  
S1F75520 Series  
Changing the VCOM output off pin XOFFCM to the VSS level turns off the VCOM output generator circuit. Since  
the VCOM output voltage generator circuit operates between the positive and negative output voltage of the  
primary booster circuit, the VCOM potential has the following relationship with the XSLPX and XSLPY sleep pins  
when off.  
Table 7 XOFFCM Pin Functions  
XOFFCM  
XSLPY  
XSLPX  
VSS  
VCOM potential (VSS=0V reference)  
VCOM = VSS  
VSS  
VSS  
VDD  
VSS  
VCOM = (VSCEVSS)/2  
VCOM = VSS  
VDD  
VSS  
VDD  
VDD  
VSS  
VCOM = (VSCEVSS)/2  
VCOM = VSS  
VDD  
VDD  
VSS  
VCOM output voltage generator  
circuit is operating.  
VDD  
In order to generate VCOM output voltage, the S1F75520 series IC generates VCOMH and VCOML output volt-  
ages as auxiliary power. The VCOMH and the VCOML output voltages can be expressed as follows:  
Vcenter + Vswing  
VCOMH =  
(Equation 9)  
2
= VCENT × 2.5 3.75 + VSWIN  
Vcenter Vswing  
VCOML =  
(Equation 10)  
2
= VCENT × 2.5 3.75 VSWIN  
30  
Rev. 1.1  
S1F75520 Series  
The amplitude relationship is as shown in the following diagram.  
6
5.25V  
2.75V  
4.0V  
4
V
COMH  
Vcenter=2.5V  
2
1.5V  
1.0V  
V
SS=0  
Vcenter=0.0V  
0.25V  
2.75V  
1.5V  
2  
4  
V
COML  
0
3
4
5
6
Vswing[V]  
Fig. 28 The Relationship between VCOMH, VCOML and Vcenter, Vswing  
The VP and VN output voltages of the primary booster circuit are used as the input power supply voltage of the  
VCOM output generator circuit. Set boosting for the primary booster circuit so that the following equations hold  
true.  
VCOMH + 0.4 < VP  
(Equation 11)  
(Equation 12)  
VCOML 0.4 > VN  
Rev. 1.1  
31  
S1F75520 Series  
Logic Power Supply Voltage Regulator  
This is the voltage regulator for the logic power supply, which outputs 1.5 to 1.8V as an external power supply  
to LCD controllers and other devices other than this IC.  
Outside S1F75520  
Inside S1F75520  
VDD1  
V18  
VREF18  
=1.5 to 1.8V  
VSS1  
Fig. 29 Logic Power Supply Voltage Regulator  
The SEVTG1 and SEVTG0 output voltage conversion pins set the output voltage.  
Table 8 SEVTG1 and SEVTG0 Pin Functions  
SEVTG1  
SEVTG0  
VSS  
V18 output voltage (VSS=0V reference)  
Outputs V18=1.8V.  
VSS  
VDD  
Outputs V18=1.7V.  
VDD  
VSS  
Outputs V18=1.6V.  
VDD  
Outputs V18=1.5V.  
The SEVTG2 drive power conversion pin converts the maximum load current and can be set to an appropriate  
circuit configuration according to the load current.  
Table 9 SEVTG2 Pin Functions  
SEVTG2  
VSS  
Normal load current mode. A maximum load current of 10mA  
may be applied (during 1.8V output).  
VDD  
Large load current mode. A maximum load current of 40mA  
may be applied (during 1.8V output).  
When the XOFFCM logic power supply voltage regulator sleep pin is changed to VSS level, the logic power  
supply voltage regulator is turned off, and the residual charge in the V18 pin is discharged to VSS.  
32  
Rev. 1.1  
S1F75520 Series  
Power On Sequence  
An example of sequence during power on is as shown in the following diagram. Control is necessary depend-  
ing on the specifications of the TFT panel and the driver being used.  
[Input pin]  
VDD  
VSS=0V  
PCK  
XSLPY  
XSLPX  
XOFFCM  
POL  
[Output pin]  
V18  
VSS=0V  
VGON  
V
SS=0V  
SS=0V  
V
V
GOFF  
SCE  
V
V
SS=0V  
SS=0V  
V
COM  
REF1  
V
V
V
SS=0V  
SS=0V  
VREF2  
V
1
2
3
4
5
6
7
1 Power is supplied from the system power supply IC to the S1F75520 power supply IC.  
2 The logic power supply voltage regulator is turned on.  
3 The booster clock PCK is entered.  
4 The gate driver positive and negative power supply voltages VGON and VGOF rise.  
5 The source driver positive power supply VSCE rises.  
6 The VCOM output voltage outputs the voltage corresponding to the voltage level of the POL polarity rever-  
sal signal .  
7 The VCOM, VREF1 and VREF2 outputs are reversed, to synchronize them with the POL polarity reversal signal.  
Rev. 1.1  
33  
S1F75520 Series  
Power Off Sequence  
An example of sequence during power off is as shown in the following diagram. Control is necessary depend-  
ing on the specifications of the TFT panel and the driver used.  
[Input pin]  
VDD  
VSS=0V  
PCK  
XSLPY  
XSLPX  
XOFFCM  
POL  
[Output pin]  
V18  
VSS=0V  
VGON  
V
SS=0V  
SS=0V  
V
VGOFF  
VSCE  
V
SS=0V  
SS=0V  
VCOM  
V
V
REF1  
REF2  
V
SS=0V  
SS=0V  
V
V
1
2
3
4
5
6
7
1 The VCOM, VREF1 and VREF2 outputs are reversed, to synchronize them with the POL polarity reversal signal.  
2 The VCOM output voltage is turned off, and the output voltage outputs a voltage of VSCE/2.  
3 The source driver positive power supply VSCE output voltage is turned off and a VSS level voltage is output.  
4 The gate driver positive and negative power supplies VGON and VGOFF are turned off and a VSS level  
voltage is output.  
5 The booster clock PCK stops.  
6 Power supplied from the system power supply IC to the S1F75520 power supply IC is turned off.  
7 The logic power supply voltage regulator is turned off.  
34  
Rev. 1.1  
S1F75520 Series  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Item  
Symbol  
Min.  
0.3  
0.3  
0.3  
Max.  
4.0  
Unit  
V
Applicable Pin  
Condition  
Input power supply  
voltage  
VDD  
VDD1, VDD2  
VDD1, VDD2  
<Note 3>  
VDD1, VDD2  
VGON  
<Note 1>  
5.0  
V
<Note 2>  
Input pin voltage  
Input current  
VIN  
IDD  
VDD+0.3  
70  
V
mA  
V
Output voltage 1  
Output voltage 2  
Output voltage 3  
Output voltage 4  
Output current 1  
Output current 2  
Output current 3  
Output current 4  
Output current 5  
Output current 6  
Output current 7  
Allowable loss 1  
VGON  
VGOFF  
VSCE  
VRGP  
IVGON  
IVGOFF  
IVSCE  
IV18  
0.3  
16.8  
0.3  
0.3  
22.4  
0.3  
7.0  
7.0  
0.5  
0.5  
10  
V
VGOFF  
V
VSCE  
V
VRGP  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
VGON  
VGOFF  
VSCE  
50  
V18  
IVCOM  
IV35  
1
VCOM  
1
V35  
IVREF  
Pd1  
1.5  
180  
VREF1, VREF2  
Ta55˚C  
TQFP1248  
Ta55˚C  
QFN48  
Allowable loss 2  
Pd2  
180  
mW  
Operating temperature  
Storage temperature  
Soldering temperature and time  
Topr  
Tstg  
Tsol  
30  
55  
85  
˚C  
˚C  
150  
260 · 10 ˚C · s  
at lead  
<Note 1> Primary booster circuit Boosting of the VP output voltage is 2-times.  
<Note 2> Primary booster circuit Boosting of the VP output voltage is 1.5-times.  
<Note 3> The applicable pins are PCK, MODE, CNT, XSLPX, XSLPY, XOFF18, SEVTG2 to 0, XOFFCM, POL,  
SEVCOM, BDATA, BCK, XBCS, VCENT, VSWIN, and PSAVE1 to 0.  
<Note 4> Do not apply external voltage to the output pins and the capacitor connection pins.  
<Note 5> Usage outside the absolute maximum rating conditions may cause malfunction or permanent  
damage. Moreover, even though the IC operates normally temporarily, reliability may be significantly  
decreased.  
Rev. 1.1  
35  
S1F75520 Series  
ELECTRICAL CHARACTERISTICS  
DC Characteristics  
Unless otherwise specified: Ta=30 to +85˚C <Note 1>  
VSS=0V  
Characteristics  
Item  
Symbol  
VDD  
VIH  
Conditions  
Min.  
2.7  
Typ.  
3.0  
Max. Unit Notes  
Input power supply voltage  
High level input voltage  
Low level input voltage  
Input leak current  
Applicable pins:VDD1, VDD2  
3.6  
VDD  
0.2VDD  
0.5  
V
2
0.8VDD  
0
V
VIL  
V
2
IILN1  
IIH  
VSSVIVDD, VDD=1.7 to 3.6V  
VI=VDD, VDD=3.6V  
VI=VSS, VDD=3.6V  
0.5  
µA  
µA  
µA  
µA  
µA  
3
High level input leak current  
Low level input leak current  
Self current consumption  
Static current  
10  
4
IIL  
10  
5
IOP  
160  
300  
5
6
IQ  
XSLPX=XSLPY=XOFF18  
=XOFFCM=VSS  
R=1MΩ  
Oscillator frequency  
fosc  
16  
22  
28  
3
kHz  
OSC2 output impedance  
Rosc2  
kΩ  
<Note 1> The operation mode and pin setups are as follows when not specified.  
Connection conditions: Refer to "EXTERNAL CONNECTION (EXAMPLES)" for standard connections.  
Booster clock: PCK input. MODE pin is open (pull-down).  
PCK frequency: 20kHz  
Primary booster circuit, positive (VP output voltage): 2-times boosting mode. CNT pin is open (pull-up).  
Primary booster circuit, negative (VN output voltage): 1-times boosting mode.  
VSCE output voltage: External resistor RSA=700k, RSB=270k(4.85V output).  
VRGP output voltage: RVP=VRGP connection (3.3V output)  
Secondary booster circuit: 4-times boosting mode.  
Tertiary booster circuit: 4-times boosting mode.  
VCOM central voltage control method: analog control mode. SEVCOM pin is open (pull-up).  
VCOM central voltage: RCEA=300k, RCEB=400k(Vcenter=0.0V).  
VCOM amplitude voltage: RSWA=RSWB=330k(Vswing=3.5V).  
VCOM output voltage generator circuit operation mode: Low consumption is prioritized. PSAVE1 and  
PSAVE0 pins are open (pull-down).  
Logic power supply voltage regulator: outputs 1.8V. XOFF18 pin is open (pull-up).  
SEVTG2-SEVTG0 pins are open (pull-down).  
Polarity determination input pin: POL=VSS.  
"VDD" in this manual implies the potential of "VDD1=VDD2".  
<Note 2> The applicable pins are SEVCOM, BDATA, BCK, XBCS, POL, PSAVE1, PSAVE0, XOFFCM,  
XSLPX, XSLPY, MODE, CNT, PCK, XOFF18 and SEVTG2 to 0.  
<Note 3> The applicable pins are POL, XSLPX, XSLPY, PCK, VSWIN and VCENT.  
<Note 4> The applicable pins are BDATA, BCK, PSAVE1, PSAVE0, MODE and SEVTG2 to 0  
(with pull-down digital input pins).  
<Note 5> The applicable pins are SEVCOM, XBCS, XOFFCM, CNT and XOFF18  
(with pull-up digital input pins).  
<Note 6> The load condition is "no load".  
36  
Rev. 1.1  
S1F75520 Series  
Primary Booster Circuit Characteristics  
Unless otherwise specified: Ta=30 to +85˚C, VSS=0V  
Characteristics  
Item  
Symbol  
Conditions  
Applicable pin: VP, IO=5mA,  
VDD=2.7V  
Min.  
Typ.  
Max. Unit Notes  
VP output impedance  
(1.5-times boosting)  
VP output impedance  
(2-times boosting)  
VN output impedance  
(1-times boosting)  
VN output impedance  
(1.5-times boosting)  
VN output impedance  
(2-times boosting)  
RVP1  
165  
170  
285  
410  
470  
1
1
2
3
2
RVP2  
RVN1  
RVN2  
RVN3  
Applicable pin: VP, IO=5mA,  
VDD=2.7V  
Applicable pin: VN, IO=1mA,  
VDD=2.7V  
Applicable pin: VN, IO=1mA,  
VDD=2.7V  
Applicable pin: VN, IO=1mA,  
VDD=2.7V  
<Note 1> The conditions are as follows:  
Primary booster circuit, negative (VN output voltage): 1-times boosting mode  
Pin setup: XOFFCM=VSS, XSLPX=VDD, XSLPY=VSS  
<Note 2> The conditions are as follows:  
Primary booster circuit, positive (VP output voltage): 2-times boosting mode  
Pin setup: XOFFCM=VSS, XSLPX=VDD, XSLPY=VSS  
Conditions not specified conforms to <Note 1> of "DC Characteristics".  
Secondary and Tertiary Booster Circuit Characteristics  
Unless otherwise specified: Ta=30 to +85˚C, VSS=0V  
Characteristics  
Item  
Symbol  
Conditions  
Min.  
Typ.  
Max. Unit Notes  
VGON output impedance  
(2-times boosting)  
RGON2 Applicable pin: VGON, IO=50µA,  
VDD=2.7V  
6.5  
14  
35  
14  
18  
38  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
1
1
1
2
2
2
VGON output impedance  
(3-times boosting)  
RGON3 Applicable pin: VGON, IO=50µA,  
VDD=2.7V  
VGON output impedance  
(4-times boosting)  
RGON4 Applicable pin: VGON, IO=50µA,  
VDD=2.7V  
VGOFF output impedance RGOFF2 Applicable pin: VGOFF, IO=50µA,  
(2-times boosting) VDD=2.7V  
VGOFF output impedance RGOFF3 Applicable pin: VGOFF, IO=50µA,  
(3-times boosting) VDD=2.7V  
VGOFF output impedance RGOFF4 Applicable pin: VGOFF, IO=50µA,  
(4-times boosting) VDD=2.7V  
<Note 1> The conditions are as follows:  
Tertiary booster circuit (VGOFF output voltage): 2-times boosting mode  
Pin setup: XOFFCM=VSS, XSLPX=VSS, XSLPY=VDD  
<Note 2> The conditions are as follows:  
Secondary booster circuit (VGON output voltage): 2-times boosting mode  
Pin setup: XOFFCM=VSS, XSLPX=VSS, XSLPY=VDD  
Rev. 1.1  
37  
S1F75520 Series  
DC Source Driver Voltage Regulator Characteristics  
Unless otherwise specified: Ta= 25˚C <Note 1>  
VSS=0V  
Characteristics  
Min. Typ.  
Item  
Symbol  
Conditions  
Max. Unit Notes  
VSCE output voltage  
VSCE(E) Applicable pins: VSCE, VP=5.4V, VSCE(S) VSCE(S) VSCE(S)  
V
2
VSCE(S)=3.5V, IO=1mA  
VSCE(S)=3.5V  
×0.98  
2.5  
5
×1.02  
VSCE output current 1  
VSCE output current 2  
VSCE input and output  
voltage difference 1  
VSCE input and output  
voltage difference 2  
VSCE input stability 1  
ISCE1  
ISCE2  
mA 2,3  
mA 2,3  
VSCE(S)=4.85V  
VPSCE1 VSCE(S)=3.5V, IO=2.5mA  
0.3  
0.4  
V
2,4  
2,4  
2
VPSCE2 VSCE(S)=4.85V, IO=5mA  
0.3  
4
0.4  
10  
10  
10  
10  
10  
10  
350  
50  
50  
V
VSCE1 4.0VVP7.2V, IO=1µA,  
VSCE(S)=3.5V  
mV  
mV  
mV  
mV  
mV  
mV  
VSCE input stability 2  
VSCE input stability 3  
VSCE input stability 4  
VSCE load stability 1  
VSCE load stability 2  
VSCE2 4.0VVP7.2V, IO=2.5mA,  
VSCE(S)=3.5V  
4
2
VSCE3 5.4VVP7.2V, IO=1µA,  
VSCE(S)=4.85V  
4
2
VSCE4 5.4VVP7.2V, IO=5mA,  
VSCE(S)=4.85V  
4
2
VSCE5 VP=5.4V, IO=1µA to 2.5mA,  
VSCE(S)=3.5V  
5
2
VSCE6 VP=5.4V, IO=1µA to 5mA,  
VSCE(S)=4.85V  
5
2
VSCE Output voltage  
TFSCE VP=5.4V, IO=1mA,  
30˚C to +85˚C, VSCE(S)=3.5V  
RVREF1 VP=4.0V, IO=1µA to 1mA,  
VSCE(S)=3.5V  
50  
ppm 2,5  
temperature coefficient  
VREF1 output impedance  
/˚C  
2
2
VREF2 output impedance  
RVREF2 VP=4.0V, IO=1µA to 1mA,  
VSCE(S)=3.5V  
<Note 1> The operation conditions are as follows:  
Pin setup: XOFFCM=VSS, XSLPX=VDD, XSLPY=VSS, PCK=VSS.  
Apply external power supply to VP pin.  
Conditions not specified conforms to <Note 1> of "DC Characteristics".  
<Note 2> VSCE (E): actual output voltage.  
VSCE(S)=3.5V:RVS=VSCE connection.  
VSCE(S)=4.85V:RSA=700k, RSB=270k.  
<Note 3> The output current when it is gradually increased and when the output voltage drops below 95% of  
the VSCE(E).  
<Note 4> VPSCE=VPVSCE(E) × 0.98. The input current when it is gradually decreased and when the output  
voltage drops to 98% of the VSCE(E).  
<Note 5> The temperature difference [mV/˚C] of the output voltage is calculated using the following equation:  
VSCE  
VSCE(S) [V] × TFSCE [ppm/˚C]  
[mV/˚C]  
=
Ta  
1000  
(The temperature change of (The set output voltage) (The output voltage temperature  
the output voltage)  
coefficient shown above)  
38  
Rev. 1.1  
S1F75520 Series  
Gate Driver Voltage Regulator Characteristics  
Unless otherwise specified: Ta= 25˚C <Note 1>  
VSS=0V  
Characteristics  
Item  
Symbol  
Conditions  
Min.  
Typ.  
Max. Unit Notes  
VRGP output voltage  
VRGP(E) Applicable pins: VRGP, VP=5.4V, VRGP(S) VRGP(S) VRGP(S)  
V
2
VRGP(S)=3.3V, IO=0.1mA  
VRGP(S)=3.3V  
×0.98  
0.5  
1
×1.02  
VRGP output current 1  
VRGP output current 2  
VRGP input and output  
voltage difference 1  
VRGP input and output  
voltage difference 2  
VRGP input stability 1  
ISCE1  
ISCE2  
mA 2,3  
mA 2,3  
VRGP(S)=4.43V  
VPRGP1 VRGP(S)=3.3V, IO=0.5mA  
0.2  
0.4  
V
2,4  
2,4  
2
VPRGP2 VRGP(S)=3.3V, IO=0.5mA  
0.2  
4
0.4  
10  
V
VRGP1 4.0VVP7.2V, IO=1µA,  
VRGP(S)=3.3V  
mV  
mV  
mV  
mV  
mV  
mV  
VRGP input stability 2  
VRGP input stability 3  
VRGP input stability 4  
VRGP load stability 1  
VRGP load stability 2  
VRGP2 4.0VVP7.2V, IO=0.5mA,  
VRGP(S)=3.3V  
4
10  
2
VRGP3 5.4VVP7.2V, IO=1µA,  
VRGP(S)=4.43V  
4
10  
2
VRGP4 5.4VVP7.2V, IO=0.5mA,  
VRGP(S)=4.43V  
4
10  
2
VRGP5 VP=5.4V, IO=1µA to 0.5mA,  
VRGP(S)=3.3V  
4
10  
2
VRGP6 VP=5.4V, IO=1µA to 1mA,  
VRGP(S)=4.43V  
4
10  
2
VRGP Output voltage  
temperature coefficient  
TFRGP VP=5.4V, IO=0.1mA,  
30˚C to +85˚C, VRGP(S)=3.3V  
50  
350  
ppm 2,5  
/˚C  
<Note 1> The operation conditions are as follows:  
Pin setup: XOFFCM=VSS, XSLPX=VSS, XSLPY=VDD, PCK=VSS.  
Apply external power supply to VP pin.  
Conditions not specified conforms to <Note 1> of "DC Characteristics".  
<Note 2> VRGP (E): actual output voltage.  
VRGP(S)=3.3V:RVP=VRGP connection.  
VRGP(S)=4.43V:RPA=700k, RPB=240k.  
<Note 3> The output current when it is gradually increased and when the output voltage drops below 95% of  
the VRGP(E).  
<Note 4> VPRGP=VPVRGP(E) × 0.98. The input current when it is gradually decreased and when the output  
voltage drops to 98% of the VRGP(E).  
<Note 5> The temperature difference [mV/˚C] of the output voltage is calculated using the following equation:  
VRGP  
Ta  
VRGP(S) [V] × TFRGP [ppm/˚C]  
[mV/˚C]  
=
1000  
(The temperature change of (The set output voltage) (The output voltage temperature  
the output voltage) coefficient shown above)  
Rev. 1.1  
39  
S1F75520 Series  
VCOM Output Voltage Generator Circuit Characteristics  
Unless otherwise specified: Ta= 25˚C <Note 1>  
VSS=0V  
Characteristics  
Item  
Symbol  
VCOM1 Applicable pins: VCOM, POL=VDD  
IO=10µA (outlet)  
Conditions  
Min.  
Typ.  
Max. Unit Notes  
VCOM output voltage 1  
,
2.55  
2.95  
2.55  
2.75  
2.95  
2.55  
2.95  
V
V
V
V
2
2
3
3
VCOM output voltage 2  
VCOM output voltage 3  
VCOM output voltage 4  
VCOM2 Applicable pins: VCOM, PLL=VSS  
,
2.75  
2.75  
2.75  
IO=10µA (intake)  
VCOM3 Applicable pins: VCOM, POL=VDD  
,
IO=10µA (outlet)  
VCOM4 Applicable pins: VCOM, PLL=VSS  
,
2.95  
50  
2.55  
100  
IO=10µA (intake)  
VCOM Output voltage  
TFCOM1 Applicable pins: VCOM, POL=VDD  
,
ppm 3,4  
temperature coefficient 1  
IO=10µA (outlet)  
/˚C  
Ta=30 to +85˚C  
VCOM Output voltage  
TFCOM1 Applicable pins: VCOM, PLL=VSS  
,
200  
50  
50  
ppm 3,4  
temperature coefficient 2  
IO=10µA (intake)  
Ta=30 to +85˚C  
/˚C  
VCOM output impedance 1 RCOM1 Applicable pins: VCOM, POL=VDD  
,
2
2
IO=1mA (outlet)  
Ta=30 to +85˚C  
VCOM output impedance 2 RCOM2 Applicable pins: VCOM, POL=VSS  
,
IO=1mA (intake)  
Ta=30 to +85˚C  
Electronic volume  
EFS  
ELI  
Applicable pins: VCOM, POL=VDD  
,
3  
1  
3
1
5
5
5
Full scale tolerance  
Electronic volume  
IO=10µA (outlet)  
Applicable pins: VCOM, POL=VDD  
,
Linear tolerance  
IO=10µA (outlet)  
Electronic volume  
EdLI  
Applicable pins: VCOM, POL=VDD  
,
0.5  
0.5  
Differential linear tolerance  
V35 output voltage  
V35 output voltage  
temperature coefficient  
IO=10µA (outlet)  
V35(E) Applicable pins: V35, IO=10µA, 3.43  
3.50  
3.57  
350  
V
TFV35 Applicable pins: V35, IO=10µA,  
Ta=30 to +85˚C  
50  
ppm  
/˚C  
6
<Note 1> The operation conditions are as follows:  
Pin setup: XOFFCM=VDD, XSLPX=VDD, XSLPY=VDD, PCK=VSS.  
Apply external power supply to the VP pin and the VN pin. VP=6.0V, VN=4.5V.  
Conditions not specified conforms to <Note 1> of "DC Characteristics".  
<Note 2> The operation conditions are as follows:  
SEVCOM=VDD, VCENT=1.5V, VSWIN=2.75V  
(Vcenter= 0.0V, Vswing=5.5V)  
<Note 3> The operation conditions are as follows:  
SEVCOM=VSS, Electronic volume α=0V, VSWIN=2.75V.  
40  
Rev. 1.1  
S1F75520 Series  
<Note 4> The temperature difference [mV/˚C] of the output voltage is calculated using the following equation:  
VCOM  
Ta  
VCOM(S) [V] × TFCOM [ppm/˚C]  
[mV/˚C]  
=
1000  
(The temperature change of (The set output voltage) (The output voltage temperature  
the output voltage)  
coefficient shown above)  
<Note 5> The operation conditions are as follows:  
SEVCOM=VSS, VSWIN=2.75V (Vswing=5.5V)  
The definitions of the tolerance are as follows.  
VCOM(α=63)  
Full scale tolerance: EFS=a  
a
Ideal curve  
Deviance from the ideal value of the full scale point  
Linear tolerance: ELI=b  
The difference between the endpoint line and the ac-  
tual conversion curve  
b
Actual conversion curve  
Endpoint line  
63  
Differential linear tolerance:  
(VIVS)  
VCOM(α=0)  
EdLI=  
VS  
0
Electronic volume α  
VS : Ideal width (1 LSB equivalent), VS=0.0397V  
VI : Actual width, VI =VRG(α=I +1) VRG(α=I)  
I = 0 to 63  
Fig. 30 Definition of the Electronic Volume Tolerance  
<Note 6> The temperature difference [mV/˚C] of the output voltage is calculated using the following equation:  
V35  
Ta  
V35(S) [V] × TFV35 [ppm/˚C]  
[mV/˚C]  
=
1000  
(The temperature change of (The set output voltage) (The output voltage temperature  
the output voltage)  
coefficient shown above)  
Rev. 1.1  
41  
S1F75520 Series  
Logic Power Supply Voltage Regulator Characteristics  
Unless otherwise specified: Ta= 25˚C <Note 1>  
VDD1=VDD2=2.7V, VSS=0V  
Characteristics  
Min. Typ. Max. Unit Notes  
V18(E) Applicable pins:V18, IO=1mA, V18(S) V18(S) V18(S)  
Item  
Symbol  
Conditions  
V18 output voltage  
V
2
×0.97  
10  
×1.03  
V18 output current 1  
V18 output current 2  
V18 input stability 1  
IV181 SEVTG2=VSS  
IV182 SEVTG2=VDD  
V181 2.7VDD3.6V, IO=1µA,  
SEVTG2=VSS  
10  
mA 2,3  
mA 2,3  
40  
20  
mV  
mV  
mV  
mV  
V18 input stability 2  
V18 input stability 3  
V18 input stability 4  
V182 2.7VDD3.6V, IO=1µA,  
SEVTG2=VDD  
10  
10  
10  
20  
20  
20  
V183 2.7VDD3.6V, IO=1mA,  
SEVTG2=VSS  
V184 2.7VDD3.6V, IO=1mA,  
SEVTG2=VDD  
V18 load stability 1  
V18 load stability 2  
V18 Output voltage  
temperature coefficient  
V185  
V186  
I
O
=1µA to 10mA, SEVTG2=VSS  
=1µA to 40mA, SEVTG2=VDD  
12  
40  
15  
50  
mV  
mV  
ppm  
/˚C  
4
IO  
TFV18 IO=1mA, 30˚C to +85˚C  
50  
350  
<Note 1> The operation conditions are as follows:  
Pin setup: XOFF18=VDD, XOFFCM=VSS, XSLPX=VSS, XSLPY=VSS.  
Setup SEVTG1 and SEVTG0 as desired.  
Conditions not specified conforms to <Note 1> of "DC Characteristics".  
<Note 2> V18(E): actual output voltage. V18(S): set output voltage value  
<Note 3> The output current when it is gradually increased and when the output voltage drops below 95% of  
the V18(E).  
<Note 4> The temperature difference [mV/˚C] of the output voltage is calculated using the following equation:  
V18  
Ta  
V18(S) [V] × TFV18 [ppm/˚C]  
[mV/˚C]  
=
1000  
(The temperature change of (The set output voltage) (The output voltage temperature  
the output voltage)  
coefficient shown above)  
42  
Rev. 1.1  
S1F75520 Series  
AC Characteristics  
Measurement conditions of AC characteristics  
Input signal level  
VIH=0.8VDD V  
VIL=0.2VDD V  
Input signal rise time  
Input signal fall time  
Tr=Max. 10ns  
Tf=Max. 10ns  
VDD1=VDD2=2.7 to 3.6V  
Ta = 30 to +85˚C  
(1) PCK input timing  
t
WHPCK  
VIH  
VIH  
VIH  
PCK  
VIL  
VIL  
t
WLPCK  
t
CPCK  
Item  
Symbol  
Characteristics  
Unit Applicable Condition  
Pin  
Min.  
25  
Typ.  
73  
Max.  
250  
PCK cycle  
tCPCK  
tWHPCK  
tWHPCK  
µs  
ns  
ns  
PCK  
PCK HIGH pulse width  
PCK LOW pulse width  
100  
100  
(2) Electronic volume set input timing  
V
IL  
XSLPX  
XSLPY  
V
IL  
t
WSLPX  
V
IL  
VIL  
t
WSLPY  
XOFFCM  
V
IL  
VIL  
t
WOFFCM  
Item  
Symbol  
Characteristics  
Unit Applicable Condition  
Pin  
Min.  
100  
100  
100  
Typ.  
Max.  
XSLPX pulse width  
XSLPY pulse width  
XOFFCM pulse width  
tWSLPX  
tWSLPY  
tWOFFCM  
ns  
ns  
ns  
XSLPX  
XSLPY  
XOFFCM  
Rev. 1.1  
43  
S1F75520 Series  
(3) BCK input timing  
V
IH  
VIH  
BDATA  
VALID  
V
IL  
VIL  
t
DH  
t
DS  
t
WHBCK  
V
IH  
V
IH  
VIH  
BCK  
V
IL  
V
IL  
V
IL  
t
WLBCK  
t
BCSH  
t
BCSS  
t
CBCK  
V
IH  
XBCS  
V
IL  
VIL  
Item  
BCK cycle  
Symbol  
Characteristics  
Unit Applicable Condition  
Pin  
Min.  
1
Typ.  
Max.  
tCBCK  
tWHBCK  
tWHBCK  
tDS  
tDH  
tBCSS  
tBCSH  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
BCK  
BCK HIGH pulse width  
BCK LOW pulse width  
BDATA setup time  
BDATA hold time  
XBCS setup time  
100  
100  
100  
100  
100  
100  
BDATA,  
BCK  
BCK,  
XBCS hold time  
XBCS  
(4) VREF1 and VREF2 output timing  
POL  
VIH  
V
IL  
VSS=0V  
t
REF1R  
t
t
REF1F  
V
SCE=3.5V  
V
SCE × 0.8  
V
REF1  
REF2  
V
SCE  
×
0.2  
V
V
SS=0V  
REF2R  
t
REF2F  
SCE=3.5V  
V
SCE × 0.8  
V
V
SCE × 0.2  
V
SS=0V  
Item  
Symbol  
Characteristics  
Unit Applicable Condition  
Pin  
Min.  
Typ.  
Max.  
2.0  
VRREF1 rise delay time  
VRREF1 fall delay time  
tREF1R  
tREF1F  
tREF2R  
tREF2F  
µs  
µs  
µs  
µs  
VREF1  
<Note 1>  
VREF2  
VSCE=3.5V  
2.5  
VRREF2 rise delay time  
VRREF2 fall delay time  
2.0  
VSCE=3.5V  
2.5  
<Note 1>  
<Note 1> The load condition is CL=20nF between the applied pin and VSS.  
44  
Rev. 1.1  
S1F75520 Series  
(5) VCOM output timing  
tCPOL  
tWHPOL  
HIH  
HIH  
VIL  
tWLPOL  
tCOMF  
HIH  
POL  
VIL  
VSS=0V  
tCOMR  
VCOMH=1.25V  
VIH  
Vcenter=0.5V  
VCOML=2.25  
VCOM  
Vswing=3.5V  
VIL  
Item  
Symbol  
Characteristics  
Unit Applicable Condition  
Pin  
Min.  
50  
20  
Typ.  
146  
Max.  
POL cycle  
tCPOL  
tWHPOL  
tWHPOL  
tCOMR  
tCOMF  
µs  
µs  
µs  
µs  
µs  
POL  
POL HIGH pulse width  
POL LOW pulse width  
VCOM rise delay time  
VCOM fall delay time  
20  
2.0  
2.5  
VCOM  
<Note 1>  
<Note 1> The load condition is CL=20nF between VCOM and VSS.  
VSWIN=1.75V VCENT=1.5V. (Vcenter=0.0V, Vswing=3.5V)  
Rev. 1.1  
45  
S1F75520 Series  
EXTERNAL CONNECTION (EXAMPLES)  
Standard Connection 1 (CHIP)  
To source driver (S1D19200)  
54  
34  
33  
55  
SEVCOM  
SEVCOM  
CNT  
V
REF2  
XOFF18  
V
V
SS2  
SCE  
V
REF1  
V
SS2  
CBVS  
CB35  
V35  
V
SCE  
V
V
V
SWIN  
RSB  
RSA  
RVS  
SS2  
CBML  
V
SS2  
COML  
RVP  
CBGP  
V
RGP  
DD2  
CBMH  
V
DD  
SS  
V
V
V
V
V
V
V
V
COMH  
CENT  
COM  
DD2  
V
V
SS2  
SS2  
V
CX2N  
CX2P  
V
DD  
DD1  
CBDD  
CPX2  
CPX1  
V
P
V
SS  
SS2  
CBX1  
SS1  
CXIP  
CB18  
CXIN  
CX3P  
CX3N  
V18  
VCOREVDD  
72  
15  
1
CPX3  
16  
V
EE  
OFF  
V
V
ON  
V
DDH  
V
COM  
[Set]  
Primary booster circuit, positive (VP output voltage): 2-times boosting  
Primary booster circuit, negative (VN output voltage): 1-times boosting  
Secondary booster circuit:  
Tertiary booster circuit:  
VGON output voltage:  
VGOFF output voltage:  
VSCE output voltage:  
4-times boosting  
4-times boosting  
VGON=13.2V (Typ.)  
VGON=13.2V (Typ.)  
set by external resistors.  
46  
Rev. 1.1  
S1F75520 Series  
Standard Connection 2 (TQFP12–48pin, QFN7–48pin)  
To source driver  
36  
25  
CB35  
24  
VREF2  
VREF1  
VSCE  
RVS  
37  
CNT  
XOFF18  
V35  
CBVS  
VSWIN  
VCOML  
VCOMH  
CBML  
CBMH  
RVP  
VRGP  
VCENT  
VCOM  
VDD2  
VDD1  
VSS1  
V18  
CBGP  
CX2N  
VDD  
VSS  
CX2P  
VP  
CPX2  
CPX1  
CBDD  
CBX1  
CX1P  
CX1N  
CX3P  
CB18  
VCOREVDD  
48  
13  
1
12  
VEE  
VOFF  
VON  
VDDH  
[Set]  
Primary booster circuit, positive (VP output voltage): 1.5-times boosting  
Primary booster circuit, negative (VN output voltage): 1-times boosting  
Secondary booster circuit:  
Tertiary booster circuit:  
VGON output voltage:  
VGOFF output voltage:  
VSCE output voltage:  
4-times boosting  
4-times boosting  
VGON=13.2V (Typ.)  
VGON=13.2V (Typ.)  
set by external resistors.  
Rev. 1.1  
47  
S1F75520 Series  
Recommended Capacity of the Capacitor and the Theoretical Voltages  
The recommended capacity of the capacitors and the theoretical voltages biased to both sides are as follows.  
Circuit name  
Capacitor type  
Capacitor Capacity Theoretical voltages biased to both  
name  
CPX1  
CPX2  
CBX1  
CPX3  
CBX2  
CPY1  
CPY2  
CBY1  
CBON  
CPZ1  
CPZ2  
[µF]  
2.2  
ends of the capacitor <Note 1>  
(VDDVSS) × (Np11)  
(VDDVSS) × (Np11)  
(VDDVSS) × Np1  
(VDDVSS) × |Nn1|  
(VDDVSS) × |Nn1|  
VRGPVSS  
Primary booster circuit  
Flying capacitor  
Flying capacitor  
2.2  
Accumulation capacitor  
Flying capacitor  
2.2  
2.2  
Accumulation capacitor  
Flying capacitor  
2.2  
Secondary booster circuit  
Tertiary booster circuit  
0.47  
0.47  
0.47  
0.47  
0.47  
0.47  
0.47  
1.0  
Flying capacitor  
(VRGPVSS) × 2  
(VRGPVSS) × 2  
(VRGPVSS) × N2  
(VRGPVSS) × (|N3|2)  
(VRGPVSS) × |N3|  
(VRGPVSS) × |N3|  
VCOMHVSS  
Accumulation capacitor  
Accumulation capacitor  
Flying capacitor  
Flying capacitor  
Accumulation capacitor CBOFF  
VCOM output voltage  
generator circuit  
Smoothing capacitor  
Smoothing capacitor  
CBMH  
CBML  
CBVS  
CBGP  
CB18  
CB35  
CBDD  
1.0  
|VCOMLVSS|  
Source driver voltage regulator Smoothing capacitor  
Gate driver voltage regulator Smoothing capacitor  
Logic power supply voltage regulator Smoothing capacitor  
1.0  
VSCEVSS  
1.0  
VRGPVSS  
2.2  
V18VSS  
Standard voltage circuit  
Smoothing capacitor  
1.0  
V35VSS  
Power supply bypass capacitor Bypass capacitor  
2.2  
VDDVSS  
<Note 1> Symbols for the theoretical voltages are as follows:  
Np1: primary booster circuit, positive (VP output voltage) with boosting of Np1=1.5 or 2.  
Nn1: primary booster circuit, negative (VN output voltage) with boosting of Nn1=1 or 1.5 or 2.  
N2: secondary booster circuit with boosting of Np1=2 or 3 or 4.  
N3: tertiary booster circuit with boosting of Np1=2 or 3 or 4.  
<Note 2> "ELECTRICAL CHARACTERISTICS" describe characteristics when the above characteristics are  
applied. However, characteristics change depending on the evaluation environment, parts used,  
etc. Test and confirm for each application, and set to a capacity that stabilizes the liquid drive  
voltage.  
48  
Rev. 1.1  
S1F75520 Series  
DIMENSIONAL OUTLINE DRAWING  
TQFP12-48pin  
[Note] The dimensions are subject to change without notice  
Plastic TQFP 48pin Body size 7 × 7 × 1mm (TQFP12)  
Reference  
HD  
D
36PIN  
25PIN  
37PIN  
24PIN  
48PIN  
13PIN  
12PIN  
1PIN  
e
b1  
θ
2
R1  
R
θ
C1  
L2  
L
θ
3
Unit : mm  
L1  
Dimension in Milimeter  
Symbol  
E
Min.  
Typ.  
7.0  
7.0  
Max.  
0.9  
0˚  
D
Amax  
A1  
A2  
e
1.2  
0.1  
1.0  
0.5  
0.2  
0.125  
1.1  
b1  
c1  
θ
10˚  
L
0.08  
0.5  
1
L1  
L2  
0.5  
9
HE  
HD  
θ2  
9
12˚  
12˚  
0.14  
θ3  
R
R1  
Rev. 1.1  
49  
S1F75520 Series  
QFN7-48pin  
[Note] The dimensions are subject to change without notice  
Plastic QFN 48pin  
Reference  
D
D1  
24  
13  
25  
12  
b
36  
1
e
P
37  
48  
θ
Unit : mm  
Dimension in Milimeter  
Symbol  
Min.  
Typ.  
7.0  
Max.  
D
E
7.0  
D1  
E1  
P
6.75  
6.75  
0.42  
0.85  
0.01  
0.65  
A
1.0  
A1  
A2  
θ
12˚  
b
0.23  
0.5  
e
L
0.4  
Q
R
x
0.2  
0.17  
0.1  
y
0.08  
50  
Rev. 1.1  
S1F75520 Series  
CHARACTERISTIC GRAPH  
Characteristic graph displays the general characteristic trend, which changes by evaluation environment and  
parts used, etc. The conditions of the pins are as follows:  
Power supply voltage  
Frequency  
: VDD = 3.0V  
: PCK = 20kHz (External clock input)  
: VP = 2-times boosting VN = 2-times boosting  
Primary booster circuit  
Secondary booster circuit : VGON = 4-times boosting  
Tertiary booster circuit  
VSCE output voltage  
VRGP output voltage  
Load conditions  
: VGOFF = 4-times boosting  
: RVS = VSCE connection (3.5V output)  
: RVP = VRGP connection (3.3V output)  
: No-load  
Fig. 30 Output voltage waveform at boost  
start time (XSLPX)  
Fig. 31 Output voltage waveform at electric  
discharge (XSLPX)  
Fig. 32 Output voltage waveform at boost  
start time (XSLPY)  
Fig. 33 Output voltage waveform at electric  
discharge (XSLPY)  
Rev. 1.1  
51  
S1F75520 Series  
NOTICE:  
No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson  
reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any  
inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this  
material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights  
is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free  
from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to  
strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry  
of International Trade and Industry or other approval from another government agency.  
© Seiko Epson Corporation 2003, All rights reserved.  
All other product names mentioned herein are trademarks and/or registered trademarks of their respective companies.  
ELECTRONIC DEVICES MARKETING DIVISION  
IC Marketing & Engineering Group  
EPSON Electronic Devices Website  
http://www.epsondevice.com/  
ED International Marketing Department  
421-8 Hino, Hino-shi, Tokyo 191-8501, JAPAN  
Phone: 042  
587  
5814 FAX: 042  
587  
5117  
First issue October, 2001  
Printed in Japan H  
Rev. 1.1  

相关型号:

S1F75520D5A0000

SWITCHED CAPACITOR REGULATOR, 28kHz SWITCHING FREQ-MAX, UUC72, 4.30 X 4.30 MM, GOLD BUMP, DIE-72
SEIKO

S1F75520F0A0000

SWITCHED CAPACITOR REGULATOR, 28kHz SWITCHING FREQ-MAX, PQFP48, 7 X 7 MM, 1 MM HEIGHT, PLASTIC, TQFP12-48
SEIKO

S1F75520F5A0000

SWITCHED CAPACITOR REGULATOR, 28kHz SWITCHING FREQ-MAX, PQCC48, PLASTIC, QFN7-48
SEIKO

S1F76310M1A0

0.1A SWITCHING REGULATOR, 55kHz SWITCHING FREQ-MAX, PDSO8, SOP3-8
SEIKO

S1F76310M1B0

Switching Regulator, 0.1A, 50kHz Switching Freq-Max, CMOS, PDSO8, SOP3-8
SEIKO

S1F76310M1K0

0.1 A SWITCHING REGULATOR, 50 kHz SWITCHING FREQ-MAX, PDSO8, SOP3-8
SEIKO

S1F76310M1L0

0.1A SWITCHING REGULATOR, 45kHz SWITCHING FREQ-MAX, PDSO8, SOP3-8
SEIKO

S1F76330M1B0

0.1A SWITCHING REGULATOR, PDSO8, SOP3-8
SEIKO

S1F76380M1H0

0.1A SWITCHING REGULATOR, 45kHz SWITCHING FREQ-MAX, PDSO8, SOP3-8
SEIKO

S1F76380M1L0

0.1A SWITCHING REGULATOR, 45kHz SWITCHING FREQ-MAX, PDSO8, SOP3-8
SEIKO

S1F76540C0A0

SWITCHED CAPACITOR REGULATOR, 28kHz SWITCHING FREQ-MAX, PDIP16, DIP-16
SEIKO

S1F76540M0A0

SWITCHED CAPACITOR REGULATOR, 28kHz SWITCHING FREQ-MAX, PDSO16, SSOP-16
SEIKO