LA1784 [SANYO]

Single-Chip Tuner IC for Car Radios; 单芯片调谐器IC,适用于车载收音机
LA1784
型号: LA1784
厂家: SANYO SEMICON DEVICE    SANYO SEMICON DEVICE
描述:

Single-Chip Tuner IC for Car Radios
单芯片调谐器IC,适用于车载收音机

文件: 总50页 (文件大小:563K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ordering number : ENN6039  
Monolithic Linear IC  
LA1784M  
Single-Chip Tuner IC for Car Radios  
— Excellent FM signal meter linearity  
Overview  
— Modified N.C. circuit for improved noise rejection  
• Double conversion AM tuner (up conversion)  
Reduces the number of external components required as  
compared to earlier double conversion tuners, in  
particular, no crystal is required (when used in  
conjunction with the LC72144).  
• Sample-to-sample variation reduction circuit built into  
the FM IF circuit.  
(Fixed resistors are used for the SD, keyed AGC, mute  
on adjustment, ATT, SNC, and HCC functions.)  
• The LA1784 inherits the block arrangement of the  
LA1780M and supports pin-compatible designs.  
The LA1784M integrates all six blocks required in a car  
radio tuner on a single chip.  
Functions  
• FM front end  
• FM IF  
• Noise canceller  
• Multiplex  
• AM up-conversion  
• FM/AM switch  
• MRC  
Features  
• Improved noise reduction methods  
Package Dimensions  
Unit:mm  
— The FM front end provides excellent 3-signal  
characteristics equivalent to those of the LA1193M.  
— Superlative listenability due to improved medium and  
weak field noise canceller characteristics.  
— Improved separation characteristics  
3159-QIP64E  
[LA1784M]  
17.2  
1.6  
1.0  
14.0  
0.35  
1.0  
48  
0.8  
0.15  
33  
— Anti-birdie filter  
— Improved AM and FM thermal characteristics  
32  
49  
3
Mounted on a 40 × 80 × 1.3 mm  
17  
glass epoxy printed circuit board  
64  
Independent IC  
1
16  
0.1  
2.7  
15.6  
0.8  
SANYO: QIP64E  
Ambient temperature, Ta — °C  
Any and all SANYO products described or contained herein do not have specifications that can handle  
applications that require extremely high levels of reliability, such as life-support systems, aircraft’s  
control systems, or other applications whose failure can be reasonably expected to result in serious  
physical and/or material damage. Consult with your SANYO representative nearest you before using  
any SANYO products described or contained herein in such applications.  
SANYO assumes no responsibility for equipment failures that result from using products at values that  
exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other  
parameters) listed in products specifications of any and all SANYO products described or contained  
herein.  
SANYO Electric Co.,Ltd. Semiconductor Company  
TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN  
61501TN (OT) No. 6039-1/50  
LA1784M  
Specifications  
Maximum Ratings at Ta = 25°C  
Parameter  
Symbol  
Conditions  
Ratings  
Unit  
V
V
CC1 max  
CC2 max  
Pins 6, 40, and 61  
9
12  
Maximum supply voltage  
V
Pins 7, 45, 54, 59, and 60  
V
Allowable power dissipation  
Operating temperature  
Storage temperature  
Pd max  
Topr  
Ta 55°C  
950  
mW  
°C  
°C  
–40 to +85  
Tstg  
–40 to +150  
Operating Conditions at Ta = 25°C  
Parameter  
Symbol  
VCC  
CCST IND Pin 26  
CC op  
Conditions  
Ratings  
Unit  
V
Pins 6, 7, 40, 45, 54, 59, 60, and 61  
8
5
Recommended supply voltage  
Operating supply voltage range  
V
V
V
7.5 to 9.0  
V
Operating Characteristics at Ta = 25°C, V = 8.0V, in the specified test cricuit for the FM IF input  
CC  
Ratings  
unit  
Parameter  
Symbol  
Conditions  
min  
typ  
max  
[FM Characteristics] At the FM IF input  
Current drain  
I
CCO-FM  
No input, I40 + I45 + I54 + I59 + I60 + I61  
60  
205  
190  
–1  
94  
310  
295  
0
110  
415  
380  
+1  
mA  
mVrms  
mVrms  
dB  
Demodulation output  
Pin 31 demodulation output  
Channel balance  
VO-FM  
10.7 MHz, 100dBµ, 1 kHz, 100%mod, The pin 15 output  
10.7 MHz, 100dBµ, 1 kHz, 100%mod, The pin 31 output  
The ratio between pins 15 and 16 at 10.7 MHz, 100 dBµ, 1 kHz  
VO-FM31  
CB  
Total harmonic distortion  
Signal-to-noise ratio: IF  
AM suppression ratio: IF  
THD-FM mono 10.7 MHz, 100 dBµ, 1 kHz, 100% mod, pin 15  
0.3  
82  
1
%
S/N-FM IF  
AMR IF  
10.7 MHz, 100 dBµ, 1 kHz, 100% mod, pin 15  
75  
55  
dB  
10.7 MHz, 100 dBµ, 1 kHz, fm = 1 kHz, 30% AM, pin 15  
68  
dB  
10.7 MHz, 100 dBµ, 1 kHz. The pin 15  
attenuation when V33 goes from 0 to 2 V  
Att-1  
Att-2  
5
10  
20  
33  
40  
15  
25  
38  
dB  
dB  
dB  
dB  
10.7 MHz, 100 dBµ, 1 kHz. The pin 15  
attenuation when V33 goes from 0 to 2 V*1  
Muting attenuation  
Separation  
15  
28  
30  
10.7 MHz, 100 dBµ, 1 kHz. The pin 15  
attenuation when V33 goes from 0 to 2 V*2  
Att-3  
10.7 MHz, 100 dBµ, L+R = 90%, pilot = 10%. The pin 15 output  
ratio  
Separation  
Stereo on level  
ST-ON  
ST-OFF  
The pilot modulation such that V26 < 0.5 V  
2.1  
1.2  
4.1  
3.1  
0.3  
6.5  
1.2  
%
%
%
Stereo off level  
The pilot modulation such that V26 > 3.5 V  
Main total harmonic distortion  
THD-Main L  
10.7 MHz, 100 dBµ, L+R = 90%, pilot = 10%. The pin 15 signal  
10.7 MHz, 100 dBµ, pilot = 10%.  
The pin 15 signal/the pilot level leakage. DIN audio  
Pilot cancellation  
PCAN  
AttSNC  
20  
1
30  
5
dB  
dB  
dB  
dB  
10.7 MHz, 100 dBµ, L-R = 90%, pilot = 10%.  
V28 = 3 V 0.6 V, pin 15  
SNC output attenuation  
9
10.7 MHz, 100 dBµ, 10 kHz, L+R = 90%, pilot = 10%.  
V29 = 3 V 0.6 V, pin 15  
AttHCC-1  
AttHCC-2  
0.5  
6
4.5  
10  
8.5  
14  
HCC output attenuation  
10.7 MHz, 100 dBµ, 10 kHz, L+R = 90%,  
pilot = 10%. V29 = 3 V 0.1 V, pin 15  
100 dBµ, 10.7 MHz, 30% modulation. The IF input such  
that the input reference output goes down by 3 dB  
Input limiting voltage  
Muting sensitivity  
Vi-lim  
Vi-mute  
33  
27  
54  
40  
35  
62  
47  
43  
70  
dBµ  
dBµ  
dBµ  
The IF input level (unmodulated) when V33 = 2 V  
The IF input level (unmodulated) (over 100 mV rms)  
such that the IF counter buffer output goes on  
SD-sen1 FM  
SD sensitivity  
SD-sen2 FM  
VIFBUFF-FM  
54  
130  
0.0  
62  
200  
0.1  
70  
270  
0.3  
dBµ  
IF counter buffer output  
10.7 MHz, 100 dBµ, unmodulated. The pin 23 output  
No input. The pin 24 DC output, unmodulated  
50 dBµ. The pin 24 DC output, unmodulated  
70 dBµ. The pin 24 DC output, unmodulated  
100 dBµ. The pin 24 DC output, unmodulated  
100 dBµ. The bandwidth when V33 = 2 V, unmodulated  
100 dBµ, 0 dBµ. The pin 33 DC output, unmodulated  
mVrms  
V
SM FM-1  
V
V
VSM FM-2  
0.4  
1.0  
1.5  
Signal meter output  
V
SM FM-3  
SM FM-4  
2.0  
2.7  
3.5  
V
V
4.7  
5.5  
6.2  
V
Muting bandwidth  
Mute drive output  
BW-mute  
VMUTE-100  
150  
0.00  
220  
0.03  
290  
0.20  
kHz  
V
Continued on next page.  
No. 6039-2/50  
LA1784M  
Continued from preceding page.  
Ratings  
typ  
unit  
Parameter  
[FM FE Mixer Input  
N-AGC on input  
Symbol  
Conditions  
min  
max  
83 MHz, unmodulated.  
VN-AGC  
VWAGC  
81  
88  
95  
dBµ  
dBµ  
The input such that the pin 2 voltage is 2.0 V or below  
83 MHz, unmodulated. The input such that the pin 2  
voltage is 2.0 V or below. (When the keyed AGC is set to 4.0 V.)  
W-AGC on input  
104  
110  
116  
Conversion gain  
A.V  
83 MHz, 80 dBµ, unmodulated. The FE CF output  
No input  
19  
85  
30  
48  
mVrms  
mVrms  
Oscillator buffer output  
[NC Block] NC input (pin 30)  
Gate time  
VOSCBUFFFM  
110  
165  
τGATE1  
f = 1 kHz, for a 1-µs, 100-mV p-o pulse  
55  
40  
µs  
The level of a 1 = kHz, 1-µs pulse input that starts  
noise canceller operation. Measured at pin 30.  
Noise sensitivity  
SN  
mVp-o  
The pulse rejection effect provided by the noise canceller.  
For a repeated 1-µs wide pulse, frequency = 10 kHz,  
150 mV p-o. The ratio of the FM mode pin 15 output  
referenced to the AM mode pin 15 output (effective value)  
NC effect  
SN-NC  
5
[Multipath Rejection Circuit] MRC input (pin 27)  
MRC output  
VMRC  
V24 = 5 V  
2.2  
10  
2.3  
15  
2.4  
20  
V
The pin 32 input level at f = 70 kHz such that  
pin 24 goes to 5 V and pin 27 goes to 2 V  
MRC operating level  
MRC-ON  
mVrms  
[AM Characteristics] AM ANT input  
Practical sensitivity  
S/N-30  
VO-AM  
1 MHz, 30 dBµ, fm = 1 kHz, 30% modulation, pin 15  
1 MHz, 74 dBµ, fm = 1 kHz, 30% modulation, pin 15  
1 MHz, 74 dBµ, fm = 1 kHz, 30% modulation, pin 31  
20  
dB  
Detector output  
130  
110  
195  
175  
270  
230  
mVrms  
mVms  
Pin 31 detector output  
VO-AM31  
1 MHz, 74 dBµ, referenced to the output, the input amplitude  
such that the output falls by 10 dB. Pin 15  
AGC F.O.M.  
VAGC-FOM  
59  
47  
64  
69  
dB  
Signal-to-noise ratio  
S/N-AM  
1 MHz, 74 dBµ, fm = 1 kHz, 30% modulation  
1 MHz, 74 dBµ, fm = 1 kHz, 80% modulation  
No input  
52  
0.3  
0.2  
4.4  
230  
98  
dB  
%
Total harmonic distortion  
THD-AM  
1
V
V
SM AM-1  
SM AM-2  
0.0  
3.5  
185  
92  
0.5  
6.1  
V
Signal meter output  
1 MHz, 130 dBµ, unmodulated  
V
Oscillator buffer output  
Wide band AGC sensitivity  
VOSCBUFF AM1 No input, the pin 15 output  
mVrms  
dBµ  
dBµ  
dBµ  
dBµ  
mVrms  
W-AGCsen1  
W-AGCsen2  
SD-sen1 AM  
SD-sen2 AM  
VIFBUFF-AM  
1.4 MHz, the input when V46 = 0.7 V  
104  
95  
1.4 MHz, the input when V46 = 0.7 V (seek mode)  
83  
89  
1 MHz, the ANT input level such that the IF counter output turns on.  
1 MHz, the ANT input level such that the SD pin goes to the on state.  
1 MHz, 74 dBµ, unmodulated. The pin 23 output  
24  
30  
36  
SD sensitivity  
24  
30  
36  
IF buffer output  
200  
290  
Note: These measurements must be made using the either the IC-51-0644-824 or KS8277 IC socket (manufactured by Yamaichi Electronics).  
* 1. When the resistor between pin 58 and ground is 200 k.  
* 2. When the resistor between pin 58 and ground is 30 k.  
No. 6039-3/50  
LA1784M  
Function List  
FM Front End (Equivalent to the Sanyo LA1193)  
• Double input type double balanced mixer  
• Pin diode drive AGC output  
• MOSFET second gate drive AGC output  
• Keyed AGC adjustment pin  
Multiplex Functions  
• Adjustment-free VCO circuit  
• Level follower type pilot canceller circuit  
• HCC (high cut control)  
• Automatic stereo/mono switching  
• VCO oscillation stop function (AM mode)  
• Forced monaural  
• Differential IF amplifier  
• Wide band AGC sensitivity setting pin, and narrow  
band AGC sensitivity setting pin  
• Local oscillator  
• SNC (stereo noise controller)  
• Stereo display pin  
• Anti-birdie filter  
FM IF  
• IF limiter amplifier  
AM  
• S-meter output (also used for AM) 6-stage pickup  
• Multipath detection pin (shared FM signal meter)  
• Quadrature detection  
• Double balanced mixer (1st, 2nd)  
• IF amplifier  
• Detection  
• AF preamplifier  
• RF AGC (narrow/wide)  
• AGC output  
• Pin diode drive pin  
• Band muting  
• IF AGC  
• Weak input muting  
• Signal meter output (also used for FM)  
• Local oscillator circuits (first and second)  
• Local oscillator buffer output  
• IF counter buffer output (also used by the FM IF)  
• SD (IF counter buffer on level) adjustment pin  
• SD output (active high) (also used for AM)  
• Wide AGC  
• Soft muting adjustment pin  
• Muting attenuation adjustment pin  
• IF counter buffer output (also used for AM)  
• SD (IF counter buffer on level) adjustment pin  
• SD output (active high) (also used for AM)  
Noise Canceller  
• Detection output frequency characteristics  
adjustment pin (low cut, high deemphasis)  
• AM stereo buffer  
• High-pass filter (first order)  
• Delay circuit based low-pass filter (fourth order)  
• Noise AGC  
• Pilot signal compensation circuit  
• Noise sensitivity setting pin  
• Function for disabling the noise canceller in AM  
mode  
MRC (multipath noise rejection circuit)  
AM/FM switching output (linked to the FM V  
)
CC  
No. 6039-4/50  
LA1784M  
Operating Characteristics and Symbols Used in the Test Circuit Diagrams  
Switches (SW)  
Switch on = 1, SW off = 0  
There are two switches that use signal transfer.  
— SW2: switches between the mixer input and the IF input.  
— SW4: switches between noise canceler input and IF output + noise canceler input.  
Types of SG used  
PG1 (AC1) Used for noise canceler testing. A pulse generator and an AF oscillator are required.  
AC2  
AC3  
AC4  
AC5  
Used for FM front end testing. Outputs an 83 MHz signal.  
Used for FM IF, noise canceler, and MPX testing. Outputs a 10.7 MHz signal. Stereo modulation must be possible.  
Used for AM testing. Outputs 1 MHz and 1.4 MHz signals.  
Used with the MRC. Can also be used for AF and OSC.  
Power supply  
VCC  
8 V  
V
V
V
CC1  
5 V  
SD, stereo, seek/stop  
Keyed AGC, Mute ATT  
HCC, SNC, SASC (MRC)  
CC2  
CC3  
0.1 V / 0.7 V / 2 V / 4 V  
0.1 V / 0.6 V / 2 V  
These levels  
must be variable.  
• Switches  
Parameter  
ON  
FM  
OFF  
AM  
SW1  
SW2  
SW3  
SW4  
SW5  
SW6  
SW7  
SW8  
SW9  
AM/FM switching. The FE VCC is supplied to pin 62.  
FM IF switching. Pin 51/FE output  
For conversion gain testing  
FE IF OUT (A)  
AC3 (B)  
Conversion gain measurement (A)  
AC1 (A)  
Other/purposes  
Other/purposes  
Other/purposes  
Seek (IF buffer output)  
OFF  
For switching between noise canceler input and IF output + noise canceler.  
High-speed SD  
High-speed SD  
STOP  
SEEK/STOP (IF BUFF ON/OFF)  
MUTE ATT 200 kΩ  
MUTE 200 kΩ  
MUTE ATT 30 kΩ  
MUTE 30 kΩ  
OFF  
For pilot cancellation testing  
When pilot cancellation is used  
MUTE OFF  
When pilot cancellation is not used  
MUTE ON  
SW10 Mute off (pin 33)  
• Trimmers (variable resistors)  
VR1  
VR2  
Separation adjustment  
Pilot cancellation adjustment  
Test Points  
• DC voltages  
VD1  
VD2  
VD3  
VD4  
VD5  
VD6  
VD7  
FM RF AGC voltage  
Pin 2  
AM/FM SD, AM Tweet, FM stereo indicator Pin 26  
AM/FM S-meter  
Pin 24  
Pin 27  
Pin 33  
Pin 46  
Pin 8  
MRC output  
Mute drive output  
AM antenna damping voltage  
N.C. Gate time  
• AC voltages  
VA1  
VA2  
VA3  
VA4  
VA5  
AM/FM OSC Buff  
Pin 4  
First IF output  
Pin 53 CF pin 51 load level (10.7 MHz)  
Pin 23 (10.7 MHz/450 kHz)  
Pin 15 (AF)  
IF counter buffer  
MPX OUT Left ch  
MPX OUT Right ch  
Pin 16 (AF)  
No. 6039-5/50  
LA1784M  
Pin Descriptions  
Pin No.  
Function  
Description  
Equivalent circuit  
62 pin  
V
CC  
ANT  
RF  
AGC  
1000 pF  
An antenna damping current flows  
when the RF AGC voltage (pin 2)  
reaches VCC – VD.  
300  
1
Antenna damping drive  
100 Ω  
1
100 Ω  
1000 pF  
A11711  
V
CC  
FET  
2ND GATE  
12 kΩ  
2
+
Used to control the FET  
second gate.  
2
RF AGC  
DAMPING  
DRIVER  
ANT  
N
W
AGC  
DET  
AGC  
DET  
V
CC  
KEYED  
AGC  
A11712  
3
F.E.GND  
V
CC  
Oscillator connection  
4
The transistor and capacitors  
required for the oscillator circuit.  
4
OSC  
25 pF  
20 pF  
2 kΩ  
V
T
A11713  
7
V
CC  
AM first oscillator  
This circuit can oscillator up to the  
SW band.  
7
AM OSC  
An ALC circuit is included.  
A
L C  
A11714  
Continued on next page.  
No. 6039-6/50  
LA1784M  
Continued from preceding page.  
Pin No.  
Function  
Description  
Equivalent circuit  
3 kΩ  
3 kΩ  
15 kΩ  
After setting up the medium field  
(about 50 dBµ) sensitivity with the  
noise sensitivity setting pin (pin 8),  
set the weak field (about 20 to  
30 dBµ) sensitivity with the AGC  
adjustment pin (pin 9)  
200 Ω  
8
9
Noise AGC sensitivity  
AGC adjustment  
8
9
3 kΩ  
0.01 µF  
+
0.47 µF  
1 MΩ  
A11715  
0.01 µF  
6800 pF  
3.9 kΩ  
13  
12  
11  
V
CC  
11  
12  
Recording circuit used during  
noise canceller operation.  
Memory circuit connection  
Differential  
amp  
Gate  
circuit  
LPF  
A11716  
V
CC  
30 kΩ  
PLL  
13  
Pilot input  
Pin 13 is the PLL circuit input pin.  
N.C  
12  
13  
0.01 µF  
A11717  
Ground for the N.C., MPX, and  
MRC circuits.  
14  
N.C, MPX, MRC, GND  
Continued on next page.  
No. 6039-7/50  
LA1784M  
Continued from preceding page.  
Pin No.  
Function  
Description  
Equivalent circuit  
V
CC  
Deemphasis  
50 µs: 0.015 µF  
75 µs: 0.022 µF  
15  
16  
MPX output (left)  
MPX output (right)  
3.3 kΩ  
3.3 kΩ  
15  
16  
0.015 µF  
0.015 µF  
A11718  
V
CC  
20 kΩ  
10 kΩ  
Adjustment is required since the  
pilot signal level varies with the  
sample-to-sample variations in  
the IF output level and other  
parameters.  
6.7 kΩ  
17  
Pilot canceller signal output  
17  
18  
0.01 µF  
100 kΩ  
A11719  
V
CC  
Pin 18 is the output pin for the  
pilot canceller signal.  
18  
Pilot canceller signal output  
1.5 kΩ  
17  
18  
0.01 µF  
100 kΩ  
A11720  
Continued on next page.  
No. 6039-8/50  
LA1784M  
Continued from preceding page.  
Pin No. Function  
Description  
Equivalent circuit  
DECODER  
Composite  
signal  
5 kΩ  
Use a trimmer to adjust the  
subdecoder input level.  
(The output level is not modified in  
mono and main modes.)  
Separation  
adjustment pin  
19  
19  
30 kΩ  
0.047 µF  
A11721  
CSB  
912  
JF108  
20  
V
REF  
20  
VCO  
The oscillator frequency is 912 Hz.  
KBR-912F108  
10 pF  
(Kyocera Corporation)  
CSB-912JF108  
(Murata Mfg. Co., Ltd.)  
A11722  
V
REF  
15 kΩ  
15 kΩ  
21  
22  
PHASE COMP.  
PHASE COMP.  
+
19 kΩ  
21  
22  
A11723  
Continued on next page.  
No. 6039-9/50  
LA1784M  
Continued from preceding page.  
Pin No. Function  
Description  
Equivalent circuit  
+
4.9 V  
AM MUTE  
50 kΩ  
+
1.3 V  
IF counter  
buffer  
V
CC  
This pin functions both as the IF  
counter buffer (AC output) and as  
the seek/stop switch pin.  
The voltage V23 switches  
between the following three  
modes.  
10 kΩ  
+
150 Ω  
SW  
50F  
IF counter buffer seek/stop  
switching  
During FM reception:  
5 V: Seek mode  
23  
2.5 V: Forced SD mode  
0 V: Reception mode  
AM reception  
SD circuit  
23  
51 kΩ  
(two modes: 0 and 5 V)  
5 V: Seek mode  
0 V: Reception mode  
STOP  
IF  
BUFF.  
Forced  
SEEK  
SD: 2.5 V  
5 V  
A11724  
V
CC  
FM  
S-meter  
32  
24  
32  
AM/FM signal meter  
Fixed-current drive signal meter  
output  
10 kΩ  
AM  
S-meter  
In AM mode, pin 32 outputs a  
1-mA current. Thus the HCC  
circuit is turned off.  
24  
Dedicated FM signal meter  
10 kΩ  
AM/FM  
SW  
Outputs a 1-mA  
current during AM  
reception  
AM/FM  
SW  
MRC  
A11725  
The voltage V23 switches  
between three modes as follows.  
FM reception:  
5 V: The SD pin operates linked  
to the IF counter buffer.  
AM/FM  
SD  
Stereo  
indicator  
2.5 V: Forced SD mode: operates  
as the SD pin.  
Seek/stop  
switching  
26  
Stereo indicator for the SD pin  
0.7 V: Reception mode: stereo  
indicator  
26  
AM reception: (two modes: 0 and 5 V)  
5 V: Operates as the seek SD pin.  
0 V: Reception mode. Not used.  
100 kΩ  
V
DD  
A11726  
Continued on next page.  
No. 6039-10/50  
LA1784M  
Continued from preceding page.  
Pin No. Function  
Description  
Equivalent circuit  
V
CC  
V
CC  
2 µA  
C2  
27  
The MRC detector time constant  
is determined by a 100 resistor  
and C2 when discharging and by  
the 2-µA current and C2 when  
charging.  
100 Ω  
27  
MRC control voltage time  
constant  
Pin 28  
A11727  
V
REF  
The sub-output is controlled by a  
0 to 1-V input.  
28  
SNC control input  
28  
A11728  
V
REF  
The high band frequency output is  
controlled by a 0 to 1-V input.  
It can also be controlled by the  
MRC output.  
29  
HCC control input  
Use a resistor of at least 100 kΩ  
when controlling with the pin 32  
FM S-meter signal.  
32  
29  
+
1 µF  
A11729  
Continued on next page.  
No. 6039-11/50  
LA1784M  
Continued from preceding page.  
Pin No.  
Function  
Description  
Equivalent circuit  
V
CC  
FM  
detector  
output  
31  
Pin 30 is the noise canceller input.  
The input impedance is 50 k.  
10 kΩ  
30  
31  
Noise canceller input  
AM/FM detector output  
V
CC  
Pin 31 is the AM and FM detector  
output  
In FM mode, this is a low-  
impedance output.  
In AM mode, the output  
impedance is 10 k.  
To improve the low band  
separation, use a coupling  
capacitor of over 10 µF.  
1 µF  
AM  
detector  
+
30  
Noise  
canceller  
50 kΩ  
4.2 V  
A11730  
V
CC  
32  
FM S-meter output block  
MRC AC input block  
Adjust the external 1-kresistor  
to attenuate the MRC AC input  
and control the circuit.  
10 kΩ  
+
1 µF  
32  
IF S-meter output and MRC  
DC input  
1 kΩ  
MRC input  
A11731  
C1  
+
0.1 µF  
•The muting time constant is  
determined by an external RC  
circuit as described below.  
Attack time: TA = 10 k× C1  
Release time: TR = 50 k× C1  
33  
V
CC  
50 kΩ  
10 kΩ  
MUTE  
AMP.  
•Noise convergence adjustment  
The noise convergence can be  
adjusted when there is no input  
signal by inserting a resistor  
between pin 33 and ground.  
SEEK  
OFF  
33  
Mute drive output  
SOFT HOLE  
MUTE DET  
Band  
muting  
50 kΩ  
•Muting off function  
Ground pin 33 through a 4-kΩ  
resistor.  
SD circuit  
A11732  
Continued on next page.  
No. 6039-12/50  
LA1784M  
Continued from preceding page.  
Pin No.  
Function  
Description  
Equivalent circuit  
0.1 µF  
V
R1  
REF  
V
CC  
C
R2  
36  
37  
35  
34  
V
CC  
•The resistor R1 determines the  
width of the band muting function.  
Increasing the value of R1  
narrows the band.  
Reducing the value of R1 widens  
the band.  
Quadrature  
detector  
34  
35  
36  
37  
AGC  
QD output  
QD input  
VREF  
•Null voltage  
When tuned, the voltage between  
pins 34 and 37, V  
The band muting function turns  
HOLE  
DET  
, will be 0 V.  
34 – 37  
3 pF  
on when |V34 – 37| 0.7 V.  
V
37 = 4.9 V  
1 kΩ  
IF limitter amplifier  
Band  
muting  
A11733  
R
SD ADJ  
38  
A 130-µA current flows from pin  
38 and, in conjunction with the  
external resistance R, determines  
the comparison voltage.  
38  
FM SD ADJ  
130 µA  
+
SD  
Comparator  
24  
24  
S-meter  
A11734  
S-meter  
6.4 kΩ  
3.6 kΩ  
The keyed AGC operates when  
the voltage created by dividing the  
pin 24 S-meter output voltage by  
the 6.4 and 3.6 kresistors  
becomes lower than the voltage  
determined by the resistor  
Comparator  
KEYED  
AGC  
+
39  
39  
Keyed AGC  
AM stereo buffer  
90 µA  
1.3 V  
between pin 39 and ground.  
V
CC  
This pin also is used as the AM  
stereo IF buffer pin.  
AM IF out  
50 pF  
150 Ω  
A11735  
Continued on next page.  
No. 6039-13/50  
LA1784M  
Continued from preceding page.  
Pin No. Function  
Description  
Equivalent circuit  
V
CC  
20 kΩ  
+
20 kΩ  
The HCC frequency characteristics  
are determined by the external  
capacitor connected at this pin.  
41  
HCC capacitor  
41  
2200 pF  
A11736  
This pin is used to change the  
frequency characteristics of the  
unneeded audio band under  
100 Hz in AM mode to produce  
a clear audio signal.  
V
CC  
C
42  
Note: The LC capacitor must be  
connected between this pin  
and VCC (pin 40).  
V
CC  
DET  
42  
AM L.C. pin  
This is because the detector  
circuit operates referenced  
50 kΩ  
50 kΩ  
1 kΩ  
+
to VCC  
.
1 kΩ  
The cutoff frequency fC is  
determined by the following  
formula.  
A11737  
fC = 1/2π × 50 k × C  
V
CC  
19 kHz 0°  
BIAS  
30 kΩ  
Inserting a 1-Mresistor between  
pin 43 and VCC will force the IC  
to mono mode.  
30 kΩ  
30 kΩ  
43  
Pilot detector  
+
43  
1 µF  
+
A11738  
Continued on next page.  
No. 6039-14/50  
LA1784M  
Continued from preceding page.  
Pin No. Function  
Description  
Equivalent circuit  
V
CC  
+
C
0.022 µF  
2.2 µF  
240 kΩ  
42  
44  
V
CC  
G1; Used for time constant  
switching during seeks.  
• Reception  
τ = 2.2 µF × 300 kΩ  
• Seek  
DET  
50 kΩ  
50 kΩ  
44  
IF AGC  
τ = 2.2 µF × 10 Ω  
The external capacitors are  
connected to VCC  
This is because the IF amplifier  
operates referenced to VCC  
.
IF  
AGC  
G1  
.
SEEK  
ON  
10 Ω  
A11739  
Pin 40 V  
CC  
45  
Pin 40 V  
CC  
45  
IF output  
The IF amplifier load  
DET  
A11740  
V
CC  
50 pF  
46  
100 Ω  
AM antenna damping  
drive output  
Wide band AGC input  
I46 = 6 mA (maximum)  
This is the antenna damping  
current.  
46  
20 kΩ  
V
CC  
W.AGC AMP.  
ANT DAMPING  
DRIVER  
A11741  
Continued on next page.  
No. 6039-15/50  
LA1784M  
Continued from preceding page.  
Pin No. Function  
Description  
Equivalent circuit  
30 kΩ  
R
47  
V
CC  
Modify the value of the external  
resistor to adjust the muting on  
level.  
140 µA  
FM muting on level  
adjustment  
47  
+
Inverter  
Pin 24  
MUTE  
A11742  
V
CC  
5.6 V  
10 kΩ  
RF AGC rectification capacitor  
The low frequency distortion is  
determined as follows:  
+
Antenna  
damping  
48  
+
Increasing C48 and C57 improves  
the distortion but makes the  
response slower.  
3.3 µF  
48  
57  
RF AGC bypass  
RF AGC  
Reducing C48 and C57  
aggravates the distortion but  
makes the response faster.  
For AGC use  
57  
+
47 µF  
A11743  
2.6 V  
10 kΩ  
10 kΩ  
Due to the high gain of the limiter  
amplifer, care must be taken when  
choosing the grounding point for  
the limiter amplifer input capacitor  
to prevent oscillation.  
50  
50  
51  
IF bypass  
FM IF input  
330 Ω  
51  
0.022 µF  
IF in  
A11744  
2 kΩ  
100 Ω  
52  
IF input  
The input impedance is 2 k.  
52  
A11745  
Continued on next page.  
No. 6039-16/50  
LA1784M  
Continued from preceding page.  
Pin No.  
Function  
Description  
Equivalent circuit  
V
CC  
IF OUT 53  
• Input and output pin or the first  
IF amplifier  
300 Ω  
• Inverting amplifier  
300 Ω  
53  
56  
IF amplifier output  
IF amplifier input  
V56 = 2 V  
Input impedance: RIN = 330 Ω  
2.75 V  
V53 = 5.3 V  
Output impedance  
ROUT = 330 Ω  
IF IN 56  
Pin 40 V  
A11746  
CC  
Pin 40 V  
CC  
54  
OSC  
The mixer coil connected to the  
pin 54 mixer output must be  
wired to VCC (pin 40).  
54  
49  
Mixer output: 130 µA  
Mixer input  
The pin 49 mixer input  
impedance is 330 Ω  
49  
330 Ω  
A11747  
W-AGC  
N-AGC  
Pin 62  
V
CC  
Pins 55 and 58 include built-in  
DC cut capacitors.  
The AGC on level is determined  
by the values of the capacitors  
C1 and C2.  
30 pF  
55  
58  
W-AGC IN  
AM SD ADJ  
Pin 55 functions as the SD  
sensitivity adjustment pin in  
AM mode.  
55  
58  
C1  
50 pF  
N-AGC IN  
Muting attenuation  
adjustment pin  
The output current I55 is 50 µA,  
and V55 varies depending on the  
value of the external resistor.  
The SD function operates by  
comparing V55 with the S-meter  
voltage.  
MIX  
IN  
C2  
50 µA  
+
MIX  
OUT  
AM SD  
Signal meter  
A11748  
Continued on next page.  
No. 6039-17/50  
LA1784M  
Continued from preceding page.  
Pin No.  
Function  
Description  
Equivalent circuit  
1ST.IF  
O
S
C
59  
60  
Double balanced mixer  
Pins 59 and 60 are the mixer  
10.7-MHz output  
V
CC  
59  
60  
Mixer output  
Mixer input  
Pins 63 and 64 are the mixer  
input.  
This is an emitter insertion type  
circuit, and the amount of  
insertion is determined by the  
capacitors C1 and C2.  
30 Ω  
V
CC  
63  
64  
C1  
63  
64  
5 pF  
C2  
Note:The lines for pins 63 and 64  
must be kept separated from  
the lines for pins 59 and 60.  
RF AMP  
5 pF  
620 Ω  
620 Ω  
A11749  
510 Ω  
V
CC  
SD  
Pin 6 functions both as the FM  
front end VCC and the AM/FM  
switching circuit.  
AM/FM  
switching circuit  
+
6
+
6
Front end VCC AM/FM  
switching  
FM.F.E  
AGC  
100 kΩ  
V6 voltage  
When 8 V FM  
OPEN AM  
Mode  
3.3 V  
8 V  
3
GND  
A11750  
AM 1st  
MIX  
to RF  
Amp.  
62  
10 kΩ  
First mixer input  
The input impedance is about  
10 k.  
1st MIX  
INPUT  
62  
2.1 V  
A11751  
10 kΩ  
20 pF  
33 pF  
5.6 V  
to 2nd  
MIX  
Crystal oscillator circuit  
The Kinseki, Ltd. HC-49/U-S and  
a CL of 20 pF must be used.  
10  
AM 2nd OSC  
10  
X tal  
A11752  
No. 6039-18/50  
LA1784M  
Block Diagram  
V
CC  
0.022µF  
TO AM STEREO  
GND  
(IF OUT)  
+
10kΩ  
+
+
+
+
+
0.1µF  
240kΩ  
10kΩ  
37 36  
RFAGC  
MUTE DRIVE  
33  
30Ω  
0.022µF  
0.022µF  
1µF  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
35  
34  
1kΩ  
620Ω  
1MH  
100µF  
100kΩ  
FM  
ANT  
D
OSC  
BUFF  
49  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
OSC  
METER  
50kΩ  
AM LEVEL ADJ  
AM HC  
FC18  
DET OUT  
FM IF IN  
100µH  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
MUTE  
AMP  
+
0.022µF  
Q.DET  
F imte
limiter  
IF  
220Ω  
+
8200pF  
amplifier  
30MH  
0.022µF  
BUFF  
NC-IN  
HCC  
100Ω  
1µF  
HOLE  
DET  
MUTE  
DRIVE  
AM IF IN  
IF  
AGC  
AMVSM  
AM SD  
FMVSM  
FM SD  
DET  
L.C.  
510kΩ  
ANTD  
0.022µF  
DC-C AFC  
DET CLAMP  
SNC  
FM IF OUT  
IF BUFF  
1µF  
MRC  
10kΩ  
AM SD ADJ  
AM MIX OUT  
+
MIX  
SNC  
HCC  
IF  
REG  
AM/FM  
SW  
RF AGC  
WB AGC  
TWEET  
FM WB AGCIN  
FE IF IN  
20kΩ  
SEEKAM/FM SD  
STOPFM ST IND.  
GND  
AM FM  
VREF  
AM/FM  
5V  
0.47µF  
FF  
19k<90  
k
SEEK  
SW  
S-METER  
VCO  
STOP  
PHASE  
COMP  
200kΩ  
62pF  
300Ω  
SD/ST  
IND  
MAIN  
W.B.AGC  
RF AGC  
HC  
0.022µF  
FF  
VCO  
MUTE ATT  
5.6kΩ  
19k<0  
2kΩ  
AMP  
KEYED  
AGC  
INPUT  
+
+
V
30Ω  
CC  
0.22µF  
PILOT  
DET  
1µF  
*
HPF  
LPF  
TRIG  
*
CSB912JF108  
or  
MIX  
AM/FM  
FEV  
CC  
KBR912F108  
P-CAN  
NOISE  
AMP  
+
0.022µF  
0.047µF 20kΩ  
FF  
38k<0  
AMP  
V
PICAN  
INPUT  
CC  
SEP.ADJ  
BUFF  
8pF  
30Ω  
BUFF  
AM  
1ST  
FF  
AGC TRIG  
GATE  
SUB MAT  
DEC RIX  
1000pF  
5pF  
100kΩ  
COUNTER  
OSC  
22pF 22pF  
ANT  
D
5pF  
0.01µF  
PI.CAN ADJ  
1000pF  
1
2
3
4
5
6
7
8
9
10  
AM  
OSC  
11  
12  
13  
14  
15  
MPX  
OUT  
16  
+
18pF  
6800pF 0.01µF  
200kΩ  
GND  
0.1µF  
30kΩ  
10pF  
+
5pF  
100Ω  
0.022µF  
30kΩ  
GND  
300pF  
10.26MHz  
NC MPX GND  
30kΩ  
18pF  
10µF  
10µF  
10µF  
R
L
10µF  
0.22µF  
1µF  
10kΩ  
2.2kΩ  
10kΩ  
10µF  
0.01µF  
3SK583  
+B  
12V  
100pF 100pF 100pF 100pF  
0.22µF  
18 17  
22pF  
+
20  
19  
16  
15  
14  
13  
12  
11  
V
PD  
V
FM IN AM IN  
5.6V  
SS  
DD  
7.2MHz  
LC7216M  
CE  
2
CI  
3
CL  
DO  
5
FM/AM  
10  
+
1
4
6
7
8
9
9.1V  
22pF  
100pF  
CE  
CI  
CL  
DO  
RDS  
ADC MUTE SD/MONO  
ST  
R ON  
LC867148  
A11753  
No. 6039-19/50  
LA1784M  
AC Characteristics Test Circuit  
V
CC  
8V  
GND  
V
CC  
+
0.022µF  
IF OUT  
10kΩ  
VA2  
IF IN  
SW3  
50Ω  
300Ω  
4.3kΩ  
B
+
+
VD5  
MRC-IN  
1µF  
+
SW2 ( i )  
MIX  
+
+
AC3  
SG3  
A
0.1µF  
240kΩ  
10kΩ  
37 36  
RFAGC  
MUTE DRIVE  
33  
V
2
CC  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
35  
34  
FM S-METER  
ANT  
D
49  
OSC  
BUFF  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
OSC  
FM IF  
IN  
AM LEVEL ADJ  
AC5  
PG1  
DET OUT  
+
50  
SW4 (T)  
A
MUTE  
AMP  
Q.DET  
8200pF AM HC  
IF limiter  
amplifier  
B
NC-IN  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
30Ω  
0.022µF  
BUFF  
NC-IN  
HCC  
(AC1)  
HOLE  
DET  
MUTE  
DRIVE  
AM IF IN  
IF  
AGC  
AMVSM  
AM SD  
FMVSM  
FM SD  
DET  
L.C.  
HCC  
SNC  
0.022µF  
1MH  
DC-C AFC  
DET CIAMP  
SNC  
620Ω  
V
3
CC  
FM IF OUT  
IF BUFF  
1µF  
100µH  
VD4  
AM SD ADJ  
AM MIX OUT  
+
MIX  
FC18  
RF AGC  
W.B. AGC  
MRC  
VD2  
SEEKAM/FM SD  
TWEET  
100µH  
5030Ω  
15pF  
FM WB AGCIN  
FE IF IN  
GND  
STOPAM ST BUFFER  
+
FM ST IND.  
65pF  
AC2  
SG2  
AM/FM  
S-METER  
0.47µF  
FF  
19<90  
k
50kΩ  
PHASE  
COMP  
JIS  
DUMMY  
SNC  
HCC  
10pF  
AM FM  
VREF  
510Ω  
VA3  
5V  
HPF  
LPF  
W.B.AGC  
RF AGC  
ANTD  
0.022µF  
V
1
CC  
FF  
19<0  
FM/AM IFBUFF.  
VCO  
MUTE ATT  
5.6kΩ  
1kΩ  
0.022µF  
KEYED  
AGC  
+
VCO  
STOP  
50kΩ  
FF FM/AM  
REG  
+
300kΩ  
0.22µF  
SW  
VD6  
+
PILOT  
DET  
1µF  
CSB912JF108  
TRIG  
SW5  
SW6  
MIX  
AM/FM  
V
FEV  
CC  
CC  
BUFF  
V
CC  
BUFF  
P-CAN  
VD3  
0.047µF 20kΩ  
SW8  
SW7  
FF  
38k<0  
AM  
1ST  
OSC  
VR1  
SEP.ADJ  
8V  
V
2
CC  
3pF  
3pF  
50Ω  
25Ω  
1000µF  
MAIN  
HC  
SW9  
0.022µF  
FF  
VA8  
SUB MA  
DEC TRIX  
5pF  
5pF  
AGC TRIG  
GATE  
AC1  
SG1  
100kΩ  
VR2  
0.01µF  
PI.CAN ADJ  
ANT  
D
1
2
3
4
5
6
7
8
9
10  
AM  
11  
12  
13  
14  
15  
MPX  
OUT  
16  
OSC  
20pF  
OSC  
+
VD1  
6800pF 0.01µF  
100Ω  
+
100Ω  
0.022µF  
8V  
SW10  
GND  
3pF  
20kΩ  
0.022µF  
10.26MHz  
X TAL  
0.022µF  
V
V
CC  
10µF  
VA6  
CC  
10µF  
VA7  
SW1  
8V  
VT  
VA1  
VA9  
A11754  
No. 6039-20/50  
LA1784M  
Test Conditions  
Switch states  
Parameter  
Symbol  
SW1  
SW2  
b
SW3  
SW4  
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
a
a
a
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
SW5  
SW6  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
SW7  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
SW8  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
SW9  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
SW10  
ON  
Current drain  
ICCO-FM  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
Demodulation output  
Pin 31 demodulation output  
Channel balance  
VO-FM  
b
VO-FM31  
CB  
ON  
b
ON  
b
Total harmonic distortion (FM)  
Signal-to-noise ratio: IF  
AM suppression ratio: IF  
THD-FMmono  
S/N-FM IF  
AMR IF  
ON  
b
ON  
b
ON  
b
Att-1  
ON  
b
Muting attenuation  
Att-2  
ON  
b
Att-3  
ON  
b
Separation  
Separation  
ST-ON  
ON  
b
Stereo on level  
ON  
b
Stereo off level  
ST-OFF  
THD-Main L  
PCAN  
ON  
b
Main total harmonic distortion  
Pilot cancellation  
ON  
b
ON  
b
OFF OFF/ON  
SNC output attenuation  
HCC output attenuation 1  
HCC output attenuation 2  
Input limiting voltage  
Muting sensitivity  
AttSNC  
ON  
b
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
AttHCC-1  
AttHCC-2  
Vi-lim  
ON  
b
ON  
b
ON  
b
Vi-mute  
ON  
b
SD sensitivity 1  
SD-sen1 FM  
SD-sen2 FM  
VIFBUFF-FM  
ON  
b
OFF  
ON  
OFF  
SD sensitivity 2  
ON  
b
IF counter buffer output  
ON  
b
VSM FM-1  
ON  
b
VSM FM-2  
ON  
b
Signal meter output (FM)  
V
SM FM-3  
SM FM-4  
ON  
b
V
ON  
b
Muting bandwidth  
Mute drive output  
N-AGC on input  
W-AGC on input  
Conversion gain  
Oscillator buffer output  
Gate time 1  
BW-mute  
VMUTE-100  
VNAGC  
ON  
b
ON  
b
ON  
a
VWAGC  
ON  
a
ON  
A.V  
ON  
a
ON  
VOSCBUFFFM  
τGATE1  
SN  
ON  
a
ON  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Noise sensitivity  
NC effect  
ON  
SN-NC  
ON/OFF  
ON  
MRC output  
VMRC  
MRC operating level  
Practical sensitivity  
Detection output  
Pin 31 detection output  
AGC F.O.M.  
MRC-ON  
S/N-30  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
VO-AM  
VO-AM31  
VAGC-FOM  
S/N-AM  
THD-AM  
VSM AM-1  
Signal-to-noise ratio  
Total harmonic distortion (AM)  
Signal meter output (AM)  
Oscillator buffer output  
Wide band AGC sensitivity  
VSM AM-2  
VOSCBUFF AM-1  
W-AGCsen 1  
W-AGCsen 2  
SD-sen1 AM  
SD-sen2 AM  
VIFBUFF-AM  
SD sensitivity  
IF buffer output  
No. 6039-21/50  
LA1784M  
Usage Notes  
1. Notes on V and Ground  
CC  
Pin 40  
Pin 25  
Pin 14  
Pin 61  
* Pin 6  
Pin 3  
VCC for the FM IF, AM, NC, MPX, and MRC blocks  
Ground for the FM IF and AM blocks  
Ground for the NC, MPX, and MRC blocks  
V
V
CC for the FM front end, AM first mixer, and first oscillator blocks  
CC for the FM front end and AGC blocks, and the AM/FM switching pin  
Ground for the FM front end, first mixer, and first oscillator blocks  
2. Notes on AM Coil Connection  
The V used for the first oscillator coil connected to pin 7 must be at the same potential as pin 61.  
CC  
Connect to the IFT connected with pin 45, and to the MIX coil connected with pin 54. V must be at the same potential  
CC  
as pin 40.  
3. AM/FM Switching  
Pin 6 is also used as the FM front end and RF AGC V  
CC  
Pin 6 voltage  
Mode  
FM  
8
OPEN  
AM  
Fig. 1  
4. Notes on the FM Front End  
Notes on interference rejection characteristics  
• Intermodulation characteristics  
The LA1784M applies two high-band AGC functions to prevent IM (the generation of intermodulation). These are  
the narrow AGC (pin 58: mixer input detection type) and the wide AGC (for the pin 55 input), and this results in the  
antenna frequency characteristics shown in figure 2. The levels at which the AGC functions turn on are determined  
by the capacitors attached at pins 55 and 58.  
f — AGC Sensitivity  
When f = 0, 98.1 MHz  
110  
100  
The wide AGC  
sensitivity when  
90  
pin 39 is 5 V.  
80  
70  
The narrow AGC  
sensitivity when  
pin 39 is at ground.  
60  
50  
–3  
–2 –1  
0
1
2
3
4
5
–5  
–4  
f  
MHz  
Fig. 2  
No. 6039-22/50  
LA1784M  
• Notes on second-channel attenuation suppression  
Keyed AGC (3D AGC) is a technique for achieving good characteristics for both intermodulation and second-  
channel attenuation at the same time. When the desired signal is faint or nonexistent, the high-band AGC level will  
be essentially 0, and as a result automatic tuning may malfunction and blocking oscillation may occur in the  
presence of strong interfering stations. Keyed AGC helps resolve these problems.  
This 3D AGC technique uses information that has the following three frequency characteristics and is a unique  
Sanyo-developed system for determining the high-band AGC level.  
RF and ANT circuit information: Mixer input AGC  
Mixer circuit information: Mixer output AGC  
CF selectivity information: S-meter output  
• 3D AGC Features  
Feature  
Merit  
Only the narrow AGC sensitivity (operation at f < 1.5 MHz) is  
controlled by the field strength of the desired station.  
• Effective in resolving second-channel attenuation problems.  
The narrow AGC sensitivity is controlled by a voltage (V23) that is  
under 0.5 V.  
• Allows effective resolution of second-channel attenuation problems without  
degrading three-signal characteristics.  
• Seek operations may stop incorrectly due to the occurrence of  
intermodulation.  
• It is possible to prevent the occurrence of intermodulation in the RF tuning  
circuit and antenna in the presence of strong interfering stations, and  
blocking oscillation due to AGC operation can be prevented.  
The wide AGC can operate even when V23 = 0 (when the desired  
station is not present).  
The narrow and wide AGC sensitivities can be set independently.  
(See figure 3 and 4.)  
• Settings can be optimized for the field conditions.  
• Since the narrow AGC operates for the desired station and adjacent  
stations, the wide AGC sensitivity can be lowered and AGC malfunction  
due to local oscillator signal can be prevented.  
The system has two AGC systems: narrow and wide AGC.  
(See figure 5.)  
f — AGC on Level (ANT input)Fig.4  
f — AGC on Level (ANT input)  
Fig.3  
Pin 55 capacitor: 3 pF  
110  
100  
110  
100  
90  
90  
80  
70  
60  
50  
Pin 55 capacitor: 10 pF  
Pin 58 capacitor:  
10 pF  
80  
keyed AGC  
keyed AGC  
70  
39  
39  
Pin 58 capacitor:  
47 pF  
60  
5V  
50  
–3  
–2 –1  
0
1
2
3
4
5
–3  
–2 –1  
0
1
2
3
4
5
–5  
–4  
–5  
–4  
f  
MHz  
f  
MHz  
W-AGC, N-AGC — f  
Fig.5  
70  
80  
90  
100  
110  
120  
AGC input level frequency  
characteristics such that  
130  
140  
VRFAGC (pin 2) falls under 2 V.  
7
2
3
5
7
2
3
5
7
100  
2
3
5
1.0  
10  
Frequency, f — MHz  
No. 6039-23/50  
LA1784M  
3D AGC Sensitivity Characteristics  
AGC sensitivity  
Wide AGC sensitivity  
F  
1
2
Second-channel  
attenuation improvement  
Narrow AGC sensitivity  
3
Desired station AGC sensitivity  
4
V
(Desired station field strength)  
23  
A12075  
Fig. 6  
Figure 6 3D AGC Sensitivity — f, V characteristics  
23  
• The wide AGC sensitivity is determined by the antenna and RF circuit selectivity, regardless of V .  
23  
• The narrow AGC sensitivity is determined by the following.  
The total selectivity of the antenna, RF circuit, and mixer when V 0.5 V  
23  
The above selectivity and V when V < 0.5 V  
23  
23  
• The improvement in the second-channel attenuation corresponds to the area occupied by the narrow AGC in the  
total AGC sensitivity area.  
Figure 8 on the next page shows the actual operation of the circuit.  
f — AGC on Level (ANT input)  
110  
f
= 98.1 MHz  
Second-channel pad  
D
100  
90  
80  
70  
60  
50  
ANT IN  
V
IN  
fu = 98.1 MHz + f  
A12076  
–3  
–2 –1  
0
1
2
3
4
5
–5  
–4  
f  
MHz  
Fig. 7  
No. 6039-24/50  
LA1784M  
7. Notes on 3D AGC (Keyed AGC)  
V
CC  
W-AGC  
DET  
55  
N-AGC  
DET  
58  
S-meter  
90µA  
+
V
CC  
+
1
2
+
39  
24  
ANT  
DUMPING  
VS-meter  
A11763  
Fig. 8  
• The antenna damping current from the pin due to the pin diode flows when the V2 pin reaches the V - V  
CC  
BE  
level.  
• The narrow AGC operates as follows.  
When pin V39 > pin V24: The narrow AGC turns off.  
When pin V39 < pin V24: The narrow AGC turns on.  
No. 6039-25/50  
LA1784M  
• The LA1784M includes two AGC circuits in its front end block.  
— Antenna input limiter using a pin diode.  
— FET second gate control  
The AGC input pin is pin 59, and the AGC circuit turns on when a signal of about 30 mVrms is input.  
AGC activation  
The pin diode drive circuit turns on when V – V2 is greater than or equal to about 1 V, and input limitation is  
CC  
applied to the antenna circuit. In application circuits, there will be an attenuation of about 30 to 40 dB. Next, when  
an adequate current flows in the antenna attenuator pin diode, the inductance falls, the FET second gate voltage  
drops, the FET gm falls, and the AGC operates. The recommended FET is the Sanyo 3SK263, which is an  
enhancement-type MOSFET. Therefore, full AGC is applied when the voltage, V , between the second gate and  
G2-S  
the source is 0. Note that if a depletion-type MOSFET is used, AGC will not be applied unless V  
is less than 0.  
G2-S  
V2 AGC Characteristics  
Fig.9  
9
8
7
6
5
4
3
2
1
fr = 98.0 Hz  
V
= 8 V  
CC  
Ta = 25°C  
Range where AGC level AGC level due  
the AGC does due to the  
to the MOSFET  
second gate:  
about 35 dB  
not operate  
pin diode:  
about 35 dB  
0
–10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140  
ANT IN  
dBµ  
• Mixer  
The mixer circuit in this IC is a double-balanced mixer with both  
balanced input and balanced output.  
Input circuit type  
64  
59  
60  
63 62  
Emitter input  
Input impedance: 25 Ω  
Due to optimized device geometry, emitter current, the bias, this IC  
achieves the following performance.  
MIX  
Mixer input usable sensitivity: 15 dBµ  
Mixer input IMQS: 90.5 dBµ  
(For an oscillator level of 200 mVrms)  
OSC  
* The mixer input IMQS is defined as:  
fr = 98.8 MHz, no input  
fu1 = 98.8 MHz, 1 kHz, 30% modulation  
fu2 = 99.6 MHz, no modulation  
The interference 1 and 2  
input levels such that  
generated intermodulation  
output signal-to-noise ratio  
becomes 30 dB when an  
interference signal with the  
same level as the mixer input  
is input, and distortion occurs  
in the mixer.  
Mixer circuit  
Fig. 10  
A12077  
No. 6039-26/50  
LA1784M  
• Oscillator  
Figure 11 shows the type of oscillator circuit used in this IC. It includes both an oscillator and an oscillator buffer.  
V
CC  
18pF  
4
25pF  
20pF  
AM/FM  
OSC BUFFER OUT  
5
VT  
A12078  
Fig. 11  
• Figure 12 shows the type of FM first IF amplifier used in this IC. It is a differential single-stage amplifier.  
330Ω  
TO MIX  
FM IF input  
56  
53  
330Ω  
+
330Ω  
A12079  
Fig. 12  
Specifications  
Input impedance: 330 Ω  
Output impedance: 330 Ω  
Gain: 20 dB  
No. 6039-27/50  
LA1784M  
5. FM IF  
• Notes on the FM SD and SD adjustment  
The figure below presents an overview of the FM SD and the IF count buffer.  
+
R
R
4.9V  
+
R
Band  
muting  
Muting  
drive  
output  
HOLE  
CLET  
STEREO  
IND  
S-meter  
IF count buffer  
+
FM IF  
39  
24  
33  
23  
26  
5V  
IF count output  
SD  
STEREO/MONO  
2.5V 5V  
Fig. 13  
A11759  
Figure 14 shows the relationship between the FM SD, the IF count buffer output, the S-meter, and the muting drive  
output.  
Larger  
S-meter  
V
V
V
values  
of R  
24  
38  
33  
33  
Smaller values of R  
33  
V
V
33  
over 0.7 V  
33  
over 0.7 V  
V
26  
5 V  
On as an  
SD signal  
SD  
ON  
SD  
ON  
Mono  
0.7 V  
Stereo  
V
23AC  
IF count  
buffer  
OFF  
OFF  
IF counter output off  
2.5 V  
V
23DC  
5 V  
0 V  
RDS and other types of SD detection can be used by switching these modes.  
New LA1784M functionality: For stereo input (when the V26 pin voltage is 0.7 V),  
when this pin is shorted to ground (0.1 V or lower)  
the IC will operate in forced mono mode.  
A11758  
Fig. 14  
No. 6039-28/50  
LA1784M  
• Transient response characteristics during automatic tuning  
The transient characteristics for SD and IF count buffer on/off operation are determined by the time constants of  
the RC circuits attached to the following pins.  
(1) Muting time constant: pin 33  
(2) S-meter time constant: pin 24  
(3) AFC time constant: pin 34  
There are two points that require consideration when using fast tuning.  
(1) The SD time constant due to the S-meter time constant  
Since the current I24 (pin 24) varies with the field strength, the time constant also changes. There is no hysteresis  
in the comparator.  
If C24 is made smaller and the pin 24 voltage is used for the keyed AGC pin 23, C23 must be chosen so that  
AGC during keyed AGC operation does not become unstable.  
S-meter  
SD comparator  
I
24  
R
24  
C
24  
24  
A12080  
Fig. 15  
(2) The SD time constant due to the pin 33 muting voltage time constant  
The changes in volume due to field fluctuation during weak field reception can be made smoother by setting the  
attack and release times during soft muting operation.  
Mute  
drive  
Mute  
amp  
Muting time constants  
Attack: 10 k× C33  
Release: 50 k× C33  
10kΩ  
50kΩ  
Attack  
Release  
33  
C
33  
A11766  
Fig. 16  
SD Sensitivity Adjustment  
Fig.17  
50  
40  
30  
20  
10  
0
6
10  
14  
18  
22  
26  
30  
34  
Resistance between the pin and ground — kΩ  
No. 6039-29/50  
LA1784M  
However, when testing this stop sensitivity, note that when checking the waveform on the IF count buffer output  
(pin 23), there are cases, such as that shown below, where current in the test system may be seen as flowing to  
ground and cause oscillation that causes the IF count buffer output to go to the output state.  
IF buffer  
amp  
F.E.  
IF  
0.022 µF  
5 V  
Test system capacitance  
The 10.7 MHz feeds back through ground.  
A12081  
Fig. 18  
• FM Muting control pin (pin 47) (R47: 30 kvariable resistor)  
The –3 dB limiting sensitivity can be adjusted with R47.  
FM Soft Muting (1)  
Fig.19  
R47 = 7.5 k  
DET out  
15 kΩ  
20 kΩ  
10 kΩ  
Antenna input dBµ  
• FM muting attenuation adjustment (pin 58)  
The muting attenuation can be switched between the three levels of –20, –30, and –40 dB by the resistor inserted  
between pin 58 and ground. (Note that the exact values depend on the total tuner gain.)  
The noise convergence with no input is determined by the pin 58 voltage.  
58  
R58  
Open  
Mute ATT  
–20 dB  
–30 dB  
–40 dB  
200 kΩ  
30 kΩ  
100Ω  
R
58  
A11764  
The attenuation can be set by making R33 smaller as listed  
in the table above.  
33  
R
33  
A11765  
Fig. 20  
No. 6039-30/50  
LA1784M  
FM Soft Muting (2)  
Fig.21  
FM Soft Muting (3)  
Fig.22  
R47 = 7.5 kΩ  
R47 = 7.5 kΩ  
DET out  
DET out  
10 kΩ  
10 kΩ  
15 kΩ  
20 kΩ  
15 kΩ  
200 k  
30 kΩ  
2 0kΩ  
Antenna input — dBµ  
Antenna input — dBµ  
V
CC  
Mute amp.  
(VCA)  
Quadrature detector  
200 k  
R
R
+
+
N-AGC  
Mute  
drive  
Limiter  
R
58  
33  
31  
DET out  
To MIX out  
Open  
200 kΩ  
30 kΩ  
A11767  
Fig. 23  
• FM muting off function  
Forcing this pin to the ground level turns muting off.  
Detector  
output  
0
1
When the pin is at the ground level, the noise convergence will  
be 10 dB and the –3 dB limiting sensitivity will be about 0 dBµ.  
20  
Antenna input  
A12082  
Fig. 24  
No. 6039-31/50  
LA1784M  
• Hall detection  
The Hall detection function detects the level of the pin 36 quadrature input signal and then applies peak detection  
to that result. The result is output from pin 33. This circuit has three effects.  
(1) It assures that muting will be applied for weak inputs with an antenna input of under 5 dBµ. The amount of  
attenuation is referenced to an antenna input of 60 dBµ, fm = 1 kHz, and a 22.5 kHz dev output, and is variable  
from 10 dB to 40 dB when there is no input. Thus one feature of this circuit is that the weak input noise  
attenuation and the –3 dB limiting sensitivity for over 5 dBµ inputs can be set independently.  
Hall Detection Output — Antenna Input Characteristics Fig.25  
5
Area muted by Hall detection  
4
3
2
1
0
–20  
–10  
0
10  
20  
30  
Antenna input  
— dBµ  
(2) When the pin 36 quadrature input is a saturated input, the pin 36 noise level (Va) is detected and a peak-hold  
function is applied to pin 33 (Vb) for locations rapid field strength variations and severe multipath occurs for  
fields that result in an antenna input level of over 5 dBµ.  
36  
33  
Vb  
+
Va  
0.1µF  
0
0
A12083  
Fig. 26  
(3) Unique features  
One unique feature of the LA1784M is that if there are adjacent stations such that f = 98.1 MHz and f =  
1
2
97.9 MHz, a search operation will not stop at 98.0 MHz. Since V  
= 0 V and V = 3.6 V at 98.0 MHz in  
SM  
AFC  
the situations shown in figure 27 and 28, even though Hall detection would normally not operate and SD would  
be high, in this IC the Hall detection circuit will operate, V  
will be set to 1.2 V (over 0.7 V) and the SD  
Mute  
signal will go low, thus preventing incorrect stopping of the search.  
No. 6039-32/50  
LA1784M  
Unique Features of the LA1784M Hall Detection Circuit (1) Fig.27  
Unique Features of the LA1784M Hall Detection Circuit (2) Fig.28  
2
1
2 When the tuner is moved in 50 kHz steps.  
With a 51 kresistor between pins 37 and 34.  
1 With the SD sensitivity adjusted to be 20 dBµ.  
When the tuner is moved in 50 kHz steps.  
With a 51 kresistor between pins 37 and 34.  
With the SD sensitivity adjusted to be 20 dBµ.  
f
1
ANT  
IN  
f
2
0
0
–1  
6
–1  
6
4
2
0
6
4
2
4
2
0
6
4
2
0
8
6
4
f
= 97.9 MHz, 120 dBµ  
0
8
6
4
2
2
f
= 97.9 MHz, 40 dBµ  
2
fm = 400 Hz, 22.5 kHz dev.  
fm = 400 Hz, 22.5 kHz dev.  
f
= 98.1 MHz, 120 dBµ  
1
f
= 98.1 MHz, 40 dBµ  
1
fm = 1 kHz, 22. 5kHz dev.  
fm = 1 kHz, 22.5 kHz dev.  
2
0
0
97.7  
97.8  
97.9  
98.0  
98.1  
98.2  
98.3  
97.7  
97.8  
97.9  
98.0  
98.1  
98.2  
98.3  
Frequency, fr — MHz  
Frequency, fr — MHz  
• Notes on the quadrature input level  
When a strong field is being received the quadrature signal input (pin 36) requires a 200 mV rms input, and the  
detection transformer and the damping resistor between pins 36 and 37 must be designed.  
(We recommend the Sumida SA-208 transformer and a 10 kresistor between pins 36 and 37.)  
When the pin 36 input level falls below 160 mV rms, the Hall detection circuit operates and the pin 33 mute drive  
output voltage increases. Therefore, when pin 36 input is from 160 to under 200 mV rms during strong field  
reception, the muting circuit may or may not operate due to sample-to-sample variations between individual ICs.  
Furthermore, the SD function may not operate, and the audio output level may be reduced. Incorrect operation due  
to sample-to-sample variations and temperature characteristics can be prevented by keeping the pin 36 voltage at  
200 mVrms or higher.  
SA208 + LA1784M IF Input Characteristics Fig.30  
Pin 33 VMute — QD Input Level Fig.29  
6
5
4
3
2
4 0.8  
With pins 34 and 37 shorted.  
With 5 V applied to pin 24.  
3 0.6  
2 0.4  
1 0.2  
THD 1 kHz  
75 kHz dev  
–100 –80 –60 –40 –20  
–120  
0
20 40 60 80 100 120  
f  
kHz  
With the resistor between  
pins 36 and 37 open.  
–0.2  
–0.4  
75  
0.022 µF  
75 Ω  
f=0  
+
10.7 MHz  
With a 10 kresistor  
SG  
between pins 36 and 37.  
1
0
–0.6  
–0.8  
36  
37  
Voltage between pins 37 and 34  
(referenced to the pin 37 voltage)  
10.7 MHz  
96  
94  
LA1888M  
100 102  
92  
98  
104  
106  
QD input level — dBµ  
No. 6039-33/50  
LA1784M  
Detector output Pin 36 AC level  
MPX OUT  
R36-37  
Open  
10 kΩ  
Vo  
QDIN  
330 mVrms  
280 mVrms  
235 mVrms  
200 mVrms  
• Band Muting Adjustment Procedure  
The muting bandwidth can be modified as shown in figure 31 with the resistor R  
between pin 34 and 37.  
BW  
R
BW  
— Muting Bandwidth  
Fig.31  
280  
240  
200  
160  
120  
80  
R
BW  
+
+
1 µF  
0.47 µF  
SA208  
Sumida  
34  
10 kΩ  
37 36  
35  
ANT IN 98 MHz 100 dBµ  
40  
0
2
3
5
7
2
3
5
7
100  
2
1.0  
10  
Resistor R  
between pins 34 and 37 — kΩ  
BW  
6. AM  
• AM AGC system  
The LA1784M RF AGC circuit takes its input from three sources: the WIDE AGC pin (pin 46), the MIDDLE  
AGC pin (pin 49) and NARROW AGC. There is also an IF AGC circuit.  
R
W
1st MIX 10.7MHz CF  
2nd MIX 450kHz CF  
IF Amp.  
DET  
62  
49  
52  
31  
RF  
V
CC  
CC  
42  
44  
1st OSC  
X'tal  
240 kΩ  
2.2 µF  
V
Amp.  
IF AGC  
46  
Middle AGC IN  
Narrow AGC IN  
Wide AGC IN  
ANT  
damping  
RF AGC  
57  
48  
Fig. 32  
+
+
47 µF  
3.3 µF  
A11762  
No. 6039-34/50  
LA1784M  
AM AGC f characteristics Fig.33  
100  
Wide AGC  
Operates for wide  
band interference  
Wide AGC  
Operates for  
wide band  
90  
interference  
Middle AGC  
Middle AGC  
Operates for  
Operates for  
80  
interference within  
±70 kHz of the  
received frequency.  
interference within  
±70 kHz of the  
received frequency.  
70 Narrow AGC  
Operates at the  
received frequency.  
60  
1000  
900  
1100  
1200  
800  
Frequency — Hz  
Wide Band AGC Circuit  
Fig.34  
120  
Received frequency:  
1 MHz  
30 Ω  
0.022 µF  
46  
110  
100  
90  
50 Ω  
50 Ω  
–6dB  
0.022 µF  
SG  
ANTD  
510 Ω  
0.022 µF  
80  
70  
1.0  
2
3
5
7
10  
2
3
5
Pin 46 input — MHz  
The wide band AGC circuit in this IC has the frequency characteristics shown above. The pin 46 input frequency  
characteristics are identical to those of the RF amplifier gate. This AGC circuit serves to prevent distortion at the  
FET input when a strong signal is applied to the antenna circuit. The level at which the AGC circuit turns on can be  
adjusted to an arbitrary level with the wide band AGC adjustment resistor. A delayed AGC on level can be handled  
by reducing the value of the adjustment resistor.  
Wide band AGC adjustment resistor  
30 Ω  
0.022 µF  
V
CC  
620 Ω  
1MH  
100 µH  
FC18  
57  
62  
100 µH  
+
Fig. 35  
A12084  
No. 6039-35/50  
LA1784M  
• Notes on AM SD (pin 26) and the SD adjustment pin  
SD and the IF buffer are operated by comparing the S-meter level (V24) and the 5 V reference voltage as shown in  
figure 36.  
S-meter  
AM IF  
Comparator  
V
CC  
+
IF buff amp.  
50 pF  
50 µA  
55  
100 kΩ  
24  
23  
26  
100 kΩ  
0.47 µF  
0.022 µF  
IF buffer  
5 V  
51 kΩ  
5 V  
SD  
Seek  
Fig. 36  
A12085  
Figure 37 shows the relationship between the AM SD, the IF count buffer, and the S-meter.  
Larger  
values  
S-meter  
V
24PIN  
of R  
55  
V
V
55  
26  
Smaller values of R  
55  
SD on  
V
23AC  
23DC  
IF buffer on  
5 V  
OFF  
V
Pin 55: AM SD adjustment pin  
0 V  
A11760  
Fig.38  
AM SD Sensitivity Adjustment  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
10  
20  
30  
40  
50  
Resistance between pin 55 and ground — kΩ  
No. 6039-36/50  
LA1784M  
• AM high band cut and detector output level adjustment methods  
The pin 31 AM and FM tuner output has an impedance of 10 kin AM mode and a few tens of Ohms in FM  
mode. Therefore, R31 is used to lower the AM detector output level and C31 determines the AM high band  
frequency characteristics.  
V
CC  
FM  
detector  
31  
R31  
C31  
V
CC  
+
AM  
detector  
10 kΩ  
30  
Noise  
canceler  
input  
50 kΩ  
A12086  
Fig. 39  
• AM stereo system pins  
To the AM stereo decoder  
V
CC  
GND  
400 mV rms  
450 kHz output  
IFT  
45  
39  
V
CC  
50 pF  
150 Ω  
Keyed AGC  
IF AMP.  
Fig. 40  
A11761  
No. 6039-37/50  
LA1784M  
• AM low band cut adjustment method  
The AM low band frequency characteristics can be adjusted with C42, which is inserted between pin 42 and V  
.
CC  
Since the detector is designed with V as the reference, C42 must be connected to V  
.
CC  
CC  
Detector Output — Frequency Fig.42  
20  
10  
80%mod  
V
0.1 µF  
CC  
With no  
C42  
C
used.  
31  
0
42  
30%mod  
0.022 µF  
0.047 µF  
0.1 µF  
–10  
–20  
–30  
C31pin  
= 6800 pF  
50 kΩ  
50 kΩ  
10 kΩ  
+
10 kΩ  
To pin 31  
AM  
detector  
Using SEP 450H  
C
=
42pin  
10 kΩ  
A12087  
Fig. 41  
–40  
–50  
fr = 100 kHz  
fm = 10 kHz 30%mod  
3
5
7
2
3
5
7
2
3
5
7
2
3
5
7
2
0.01  
0.1  
1.0  
10  
Frequency — Hz  
7. Noise Canceler Block  
• The noise canceler input (pin 30) has an input impedance of about 50 k. Check the low band frequency  
characteristics carefully when determining the value of the coupling capacitor used. Note that f will be about 3 Hz  
C
when a 1 µF capacitor is used in the application.  
• Pins 8 and 9 are used to set the noise detector sensitivity and the noise AGC. It is advisable to first set the noise  
sensitivity for a medium field (an antenna input of about 50 dBµ) with pin 8 (the noise sensitivity setting pin), and  
then set the AGC level for a weak field (20 to 30 dBµ) with pin 9 (the AGC adjustment pin). If the noise sensitivity  
is increased, the AGC will become more effective but, inversely, the weak field sensitivity will be reduced.  
Noise canceler 10 kHz overmodulation malfunction may be a problem. In particular, when an overmodulated  
signal is input, the noise canceler may, in rare cases, malfunction. This is due to the fact that the IF detector output  
has a waveform of the type shown in figure 43 due to the bands of the IF ceramic filters as shown below. (Here, the  
antenna input is 60 dBµ, the ceramic filters are 150 kHz × 1 and 180 kHz × 2, f = 10 kHz, 180 kHz dev.) The noise  
canceler reacts to the spikes (whiskers) generated due to this overmodulation, which results in distortion to the  
audio output. (The spike components due to overmodulation occur due to the bands of the ceramic filters in the  
tuner.) The following describes a method for resolving this problem. This incorrect operation due to  
overmodulation is prevented by removing the spike components due to this overmodulation with a low-pass filter  
consisting of a 1 kresistor and a 2200 pF capacitor shown in figure 44. However, note that the FM separation  
characteristics in the high band and the AM frequency characteristics will change.  
H1 W1  
2.5OU  
IF audio output  
f = 10 kHz,180 kHz dev  
IF output  
31  
Noise canceler input  
1 kΩ  
30  
1 µF  
2200 pF  
A12089  
Fig. 44  
–2.5OU  
–19.00 µs  
981.00 µs  
Fig. 43  
A12088  
No. 6039-38/50  
LA1784M  
8. Multiplexer Block  
• HCC (high cut control) frequency characteristics (pin 41)  
When the HCC function operates, the frequency characteristics of the output signal are determined by the  
capacitance of the external capacitor connected to pin 41.  
20 kΩ  
To the  
VO  
matrix  
(dB)  
41  
C
A12090  
Fig. 45  
f
1
(Hz)  
2πC × 20 kΩ  
1
f = ——————— [Hz]  
A12091  
C
Fig. 46  
2π × C × 20 kΩ  
Frequency Characteristics Fig.47  
Changes in the pin 41 capacitor capacitance (for a 100% high cut ratio)  
0.001 µF  
10  
0
–10  
–20  
–30  
–40  
0.0022 µF  
0.0047 µF  
V
= 8.0 V  
CC  
–50  
–60  
f = 98 MHz 100%mod  
80 dBµ IN  
3
5
7
2
3
5
7
2
3
5
7
10k  
2
3
100  
1k  
Frequency, f — Hz  
• Pilot canceler adjustment (pins 17 and 18)  
Noise  
30  
To the  
multiplexer  
canceler  
input  
Fig. 48  
Gate  
Pilot  
cancel  
11  
12 17  
18  
6800 pF 3.9 k0.01 µF 50 kΩ  
A12092  
The pilot canceler signal waveform (pin 19) is a 19 kHz signal that contains no third harmonic as shown in figure  
48. Since this signal has the same phase as the pilot signal, no capacitor is required between pin 18 and ground.  
Since it has no third harmonic component, excellent pilot cancellation can be acquired in both the left and right  
channels by adjusting with a variable resistor.  
No. 6039-39/50  
LA1784M  
• Separation adjustment (pin 19)  
5 kΩ  
To the  
Larger  
subdecoder  
19  
20 kΩ  
0.047 µF  
A12094  
C
Fig. 49  
A12093  
The separation is adjusted by modifying the input level to the subdecoder with the variable resistor connected to  
pin 19. Since only the sub-modulation level is changed by changing the variable resistor setting, the monaural  
(main) output level is not changed. Furthermore, degradation of high band separation in the decoder can be avoided  
if the impedance of the external capacitor (C) in the subchannel frequency band (23 to 53 kHz) is made sufficiently  
smaller than the variable resistor.  
9. MRC Circuit  
V
CC  
2 µA  
100 Ω  
FM  
S-meter  
S-meter  
DC buffer  
MRC  
QMRC  
30 kΩ  
6.4 kΩ  
10 kΩ  
75 pF  
3.6 kΩ  
1 kΩ  
24  
32  
27  
Noise amplifier  
High-pass filter with  
Fc = 70 kHz + amplifier  
+
+
C27  
V
CC  
An external transistor equivalent  
to the 2SC536 is required  
To the SNC, pin 28  
Reason: A QMRC level shifter is  
required to allow a simplified MRC  
circuit to be used in the LA1781M.  
A11768  
Fig. 50  
No. 6039-40/50  
LA1784M  
(1) When there is no AC noise on pin 32  
V
24  
= V –V  
27  
BE  
Q
MRC  
V27 is about 2.5 V when the antenna input is 60 dB or higher.  
(2) Since the MRC noise amplifier gain is fixed, the MRC circuit is adjusted by reducing the AC input level.  
32  
+
Fig. 51  
A11769  
(3) The MRC attack and release are determined by C27 on pin 27.  
Attack: 7 µA · C27 2 µA · C27  
Release: 500 · C27 100 Ω  
Notes on the Noise Canceler  
The noise canceler characteristics have been improved by implementing the circuit that determines the gate time in  
logic. Since the time constant in earlier noise cancelers was determined by an RC circuit such as that shown in figure  
52, the rise time shown in figure 53 was influenced by the values of the resistor and capacitor used. As a result the  
noise exclusion efficiency was reduced by this delay in the rise time. In the LA1784M, this rise time was shortened by  
implementing the circuit that determines the gate time in logic, allowing it to reliably exclude noise.  
A11772  
A11771  
Fig. 53  
Fig. 52  
No. 6039-41/50  
LA1784M  
Gain Distribution (FM)  
This section investigates the gain in each block in the LA1784M when the Sanyo recommended circuits are used.  
(Test conditions)  
Ambient temperature: 26°C  
Antenna and mixer input frequency: 98.1 MHz  
First and second IF input frequency: 10.7 MHz  
The input levels when V = 2 V will be as follows.  
SM  
ANT IN: 19 dBµ  
MIX IN: 30 dBµ  
1st IF IN: 42 dBµ  
2nd IF IN: 60 dBµ  
When the gains for each block are determined according to the above, the results are as follows.  
RF GAIN: 11 dB  
MIX GAIN: 12 dB  
1st IF GAIN: 18 dB  
1st IF IN 56 pin  
FM  
MIX IN 64 pin  
RF  
ANT IN  
2nd IF IN 51 pin  
11 dB  
12 dB  
18 dB  
A11773  
Fig. 54  
No. 6039-42/50  
LA1784M  
(AM)  
This section investigates the gain in each block in the LA1784M when the Sanyo recommended circuits are used.  
(Test conditions)  
Ambient temperature: 26°C  
Antenna and mixer input frequency: 1 MHz  
First and second mixer input frequency: 10.7 MHz  
Second IF input frequency: 450 kHz  
The gains at each stage will be as follows.  
RF Gain (ANT IN-pin62): 17 dB  
1st MIX Gain (pin62-pin56): 8 dB  
1st IF Gain (pin55-pin53): 15 dB  
AM  
1st MIX  
1st IF  
2nd MIX  
2nd IF  
AM DET  
RF  
RF  
Gain  
1st MIX  
Gain  
1st IF  
Gain  
2nd MIX  
Gain  
2nd IF  
Gain  
A11774  
Fig. 55  
No. 6039-43/50  
LA1784M  
Input Circuits for Each Stage  
[FM]  
• Mixer input  
• First IF input  
0.022 µF  
75 Ω  
0.022 µF  
300 Ω  
75 Ω  
63  
64  
56  
75 Ω  
75 Ω  
V
IN  
fr = 10.7 MHz  
Actual  
A11776  
measurement  
A11775  
• IF input  
0.022 µF  
75 Ω  
300 Ω  
51  
50  
75 Ω  
330 Ω  
0.022 µF  
fr = 10.7 MHz  
A11777  
[AM]  
• First mixer input  
• Second mixer input  
0.022 µF  
50 Ω  
0.022 µF  
50 Ω  
50 Ω  
62  
49  
50 Ω  
fr = RF  
fr = 10.71 MHz (f2nd osc + 0.45 MHz)  
A11778  
A11779  
IFT  
• IF input  
• Del input  
0.022 µF  
50 Ω  
0.022 µF  
50 Ω  
50 Ω  
50 Ω  
52  
45  
fr = 450 kHz  
fr = 450 kHz  
A11780  
A11781  
No. 6039-44/50  
LA1784M  
Sample AM tuner Circuit with the LC72144 Used Together  
2nd MIX  
IF  
CF  
CF  
CF  
RF  
450K  
1st IF  
300 Ω  
XBUFF  
fosc  
LC72144  
A11782  
AM 1st IF  
10.7 MHz  
10.8 MHz  
Step  
FM IF  
1
2
f
OSC 10.25 MHz  
OSC 10.35 MHz  
10 kHz, 11 kHz  
9 kHz, 10 kHz  
10.7 MHz  
10.8 MHz  
f
1st MIX  
IF  
10.71 MHz  
10 kΩ  
CF  
CF  
CF  
RF  
AF  
62  
59  
60  
56  
53  
49  
54  
52  
1st OSC  
2nd OSC  
Lch  
31  
NC  
MPX  
Rch  
10.26 MHz  
IF  
10.7 MHz  
AF  
CF  
CF  
Quadrature  
detector  
RF  
63  
64  
60  
59  
56  
53  
51  
A11783  
No. 6039-45/50  
LA1784M  
Crystal Oscillator Element  
Kinseki, Ltd.  
Frequency: 10.26 MHz  
CL: 20 pF  
Model No.: HC-49/U-S  
Coil Specifications  
Sumida Electronics, Ltd.  
[AM Block]  
AM FILTEER (A286LBIS-15327)  
AM OSC (V666SNS-213BY)  
S
1
2
3
3
2
1
4
6
4
6
AM IF1 (7PSGTC-5001A=S)  
AM IF2 (7PSGTC-5002Y=S)  
3
4
3
4
2
2
S
1
6
1
6
S
S
S
AM loading (269ANS-0720Z)  
AM ANT IN (385BNS-027Z)  
3
4
3
4
2
2
1
6
1
6
S
S
AM RF amplifier (187LY-222)  
0.1ø2UEW  
[FM Block]  
FM RF (V666SNS-208AQ)  
FM ANT (V666SNS-209BS)  
S
3
2
1
4
3
2
1
4
6
6
S
FM OSC (V666SNS-205APZ)  
FM MIX (371DH-1108FYH)  
S
3
2
1
4
C1  
8
3
2
1
4
6
7
C2  
6
S
FM DET (DM6000DEAS-8407GLF)  
S
3
S
4
2
1
6
No. 6039-46/50  
LA1784M  
The Toko Electric Corporation  
[AM Block]  
AM FILTEER  
AM OSC  
3
4
6
1
2
3
4
2
1
0.1ø2UEW  
6
AM IF1  
AM IF2  
3
2
1
4
6
3
2
1
4
6
0.05ø3UEW  
0.05ø3UEW  
AM loading  
AM ANT IN  
3
2
1
4
3
2
1
4
6
6
0.05ø3UEW  
0.06ø3UEW  
AM RF amplifier  
0.1ø2UEW  
[FM Block]  
FM RF  
FM ANT  
3
2
1
4
S
3
2
1
4
ø0.1–2UEW  
ø0.1–2UEW  
S
6
S
6
FM OSC  
FM MIX  
3
2
1
4
S
3
2
1
4
6
5
6
ø0.07–2UEW  
S
ø0.12–2UEW  
S
FM DET  
3
4
2
1
6
0.07ø2MUEW  
No. 6039-47/50  
LA1784M  
Antenna input — dBµ  
Antenna input — dBµ  
Input — dBµ  
Antenna input — dBµ  
Antenna input — dBµ  
Input — dBµ  
First IF input — dBµ  
Mixer input — dBµ  
No. 6039-48/50  
LA1784M  
Frequency, — MHz  
Frequency, — MHz  
Ambient temperature, Ta — °C  
Ambient temperature, Ta — °C  
AM I/O Characteristics  
20  
V
= 8.5 V  
CC  
f = 1 MHz  
mod = 1 k 30%  
OUT  
0
–20  
–40  
–60  
NOISE  
–80  
–100  
–20  
0
20  
40  
60  
80  
100  
120  
140  
Ambient temperature, Ta — °C  
ANT input, IN — dBµ  
AM Distortion  
AM DC Characteristics  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
V
= 8.5 V  
V
= 8.5 V  
CC  
RF AGC  
CC  
f = 1 MHz  
f = 1 MHz  
mod = 1 k 30% 80%  
1.0  
0
1.0  
0
–20  
0
20  
40  
60  
80  
100  
120  
140  
–20  
0
20  
40  
60  
80  
100  
120  
140  
ANT input, IN  
— dBµ  
ANT input, IN  
— dBµ  
No. 6039-49/50  
LA1784M  
AM Second-Channel Interference  
Rejection Characteristics  
AM Second-Channel Interference  
Rejection Characteristics  
20  
0
20  
0
40 kHz  
400kHz  
100 dBµ  
100 dBµ  
desire mod ON  
desire mod ON  
80 dBµ  
80 dBµ  
–20  
–40  
–20  
–40  
40 dBµ  
40 dBµ  
desire  
mod  
OFF  
desire  
mod  
OFF  
60 dBµ  
60 dBµ  
15pF  
15pF  
50/3  
ANT IN  
50/3Ω  
ANT IN  
f
= 1 MHz  
D
50Ω  
50/3Ω  
–60  
–80  
50Ω  
50/3Ω  
–60  
–80  
f
=1MHz  
D
30Ω  
65pF  
fm = 1 kHz 30%  
30Ω  
65pF  
fm=1kHz 30%  
V
V
5050/3Ω  
IN  
5050/3Ω  
IN  
fu=1040kHz  
fu = 1400 kHz  
JIS ANT. DUMMY  
120 140  
fm=400Hz 30%  
JIS ANT. DUMMY  
120 140  
fm = 400 Hz 30%  
40  
60  
80  
100  
40  
60  
80  
100  
ANT input, IN  
— dBµ  
ANT input, IN  
— dBµ  
Specifications of any and all SANYO products described or contained herein stipulate the performance,  
characteristics, and functions of the described products in the independent state, and are not guarantees  
of the performance, characteristics, and functions of the described products as mounted in the customer’s  
products or equipment. To verify symptoms and states that cannot be evaluated in an independent device,  
the customer should always evaluate and test devices mounted in the customer’s products or equipment.  
SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all  
semiconductor products fail with some probability. It is possible that these probabilistic failures could  
give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire,  
or that could cause damage to other property. When designing equipment, adopt safety measures so  
that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective  
circuits and error prevention circuits for safe design, redundant design, and structural design.  
In the event that any or all SANYO products (including technical data, services) described or contained  
herein are controlled under any of applicable local export control laws and regulations, such products must  
not be exported without obtaining the export license from the authorities concerned in accordance with the  
above law.  
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or  
mechanical, including photocopying and recording, or any information storage or retrieval system,  
or otherwise, without the prior written permission of SANYO Electric Co., Ltd.  
Any and all information described or contained herein are subject to change without notice due to  
product/technology improvement, etc. When designing equipment, refer to the “Delivery Specification”  
for the SANYO product that you intend to use.  
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not  
guaranteed for volume production. SANYO believes information herein is accurate and reliable, but  
no guarantees are made or implied regarding its use or any infringements of intellectual property rights  
or other rights of third parties.  
This catalog provides information as of June, 2001. Specifications and information herein are subject to  
change without notice.  
PS No. 6039-50/50  

相关型号:

LA1784M

Single-Chip Tuner IC for Car Radios
SANYO

LA1787M

Single-Chip Tuner IC for Car Radios
SANYO

LA1787M-MPB-E

单芯片调谐器,用于汽车无线电
ONSEMI

LA1787M_09

Single-Chip Tuner IC for Car Radios
SANYO

LA1787NM

Single-Chip Car Radio System IC
SANYO

LA1787NM_09

Single-Chip Car Radio System IC
SANYO

LA17B-10H

LED ARRAY
LIGITEK

LA17B-5H

LED ARRAY
LIGITEK

LA1800

FM/AM Single-Chip Radio
SANYO

LA1800

FM/AM SINGLE CHIP RADIO
TGS

LA1805

AM/FM-IF/MPX Tuner System for Radio-Casette Recorders, Music Centers
SANYO

LA1806

AM/FM-IF/MPX Tuner System for Radio-Cassette Recorders, Music Centers
SANYO