KM4132G112Q-8/F8 [SAMSUNG]

Video DRAM, 1MX32, 6ns, CMOS, PQFP100, 14 X 20 MM, 3 MM HEIGHT, 0.65 MM PITCH, PLASTIC, QFP-100;
KM4132G112Q-8/F8
型号: KM4132G112Q-8/F8
厂家: SAMSUNG    SAMSUNG
描述:

Video DRAM, 1MX32, 6ns, CMOS, PQFP100, 14 X 20 MM, 3 MM HEIGHT, 0.65 MM PITCH, PLASTIC, QFP-100

动态存储器
文件: 总50页 (文件大小:1203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KM4132G112  
CMOS SGRAM  
32Mbit SGRAM  
512K x 32bit x 2 Banks  
Synchronous Graphic RAM  
LVTTL  
Revision 1.4  
June 1999  
Samsung Electronics reserves the right to change products or specification without notice.  
Rev. 1.4 (Jun. 1999)  
- 1 -  
KM4132G112  
CMOS SGRAM  
Revision History  
Revision 1.4 (June 10th, 1999)  
• AC values of tRCD/tRP/tRAS/tRC are returned to the number of clock cycles. Those can be also converted to ns unit  
based values by multiplying the number of clock cycles and clock cycle time of each part together. Accordingly,  
- Changed tRCD and tRP of KM4132G112-5/7/8 each from 18ns to 20ns/21ns/20ns  
- Changed tRC of KM4132G112-7/8 each from 67ns/68ns to 70ns  
- Changed tRC of KM4132G112-5 from 65ns(13CLK) to 60ns (12CLK)  
- Changed tRC of KM4132G112-6 from 66ns(11CLK) to 60ns (10CLK)  
• Add KM4132G112-C(183MHz@CL3) part .For -C part, tRDL=1CLK can be supported within restricted amounts and it will  
be distingusihed by bucket code "NV"  
Revision 1.3 (April 1999)  
• Modified power-up sequence.  
• Changed ILI and ILO from +/- 5uA to +/-10uA.  
• Changed tSAC and tSHZ of KM4132G112-8@CL2 from 7ns to 6ns.  
Revision 1.2 (March 1999)  
• Removed KM4132G112-Z(125MHz@CL2) and KM4132G112-10.  
• Changed tRDL of KM4132G112-7/8 from 1CLK to 2CLK. For -6/7/8, tRDL=1CLK product can be supported within  
restricted amounts and it will be distingusihed by bucket code "NV"  
Revision 1.1 (February 1999)  
• Removed KM4132G112-7@CL2 (115MHz@CL2) part  
• Changed VDD Condition of KM4132G112-8@CL2 from 3.135V~3.6V to 3.0V~3.6V.  
• Changed AC characteristics table format.  
Revision 1.0 (February 1999) : Final Spec.  
• Changed AC Parameters based on next generation spec.  
• Add KM4132G112-5/F5 and KM4132G112-Z/FZ products.  
Revision 0.3 (January 1999) : Preliminary Spec.  
Revision 0.2 (September 1998)  
• Added the Low Power Products in all speed grade.  
- KM4132G112-F*  
• Changed the clock cycle time of KM4132G112 -7/F7 @ CL2 from 12ns to 8.7ns, accordingly, the AC and DC parameters  
of KM4132G112 -7/F7 @ CL2 are changed in AC/DC CHARACTERISTICS.  
• Changed the clock cycle time of KM4132G112 -8/F8 @ CL2 from 12ns to 10ns, accordingly, the AC and DC parameters  
of KM4132G112 -8/F8 @ CL2 are changed in AC/DC CHARACTERISTICS.  
• Added KM4132G112-10/F10 products.  
• AC Operating Condition is changed as defined :  
- VIH(max) = 5.6V AC. The overshoot voltage duration is £ 3ns.  
- VIL(min) = -2.0V AC. The undershoot voltage duration is £ 3ns.  
• Added DC Characteristics  
- Estimated Current Data  
Revision 0.1 (June 1998)  
• Initial Industry Release.  
Revision 0.0 (April 1998)  
• Initial Release for Internal Review.  
Rev. 1.4 (Jun. 1999)  
- 2 -  
KM4132G112  
CMOS SGRAM  
512K x 32Bit x 2 Banks Synchronous Graphic RAM  
FEATURES  
GENERAL DESCRIPTION  
• 3.3V power supply  
The KM4132G112 is 33,554,432 bits synchronous high data  
rate Dynamic RAM organized as 2 x 524,288 words by 32 bits,  
fabricated with SAMSUNG¢s high performance CMOS technol-  
ogy. Synchronous design allows precise cycle control with the  
use of system clock. I/O transactions are possible on every  
clock cycle. Range of operating frequencies, programmable  
burst length, and programmable latencies allows the same  
device to be useful for a variety of high bandwidth, high perfor-  
mance memory system applications.  
• LVTTL compatible with multiplexed address  
• Dual bank operation  
• MRS cycle with address key programs  
-. CAS Latency (2, 3)  
-. Burst Length (1, 2, 4, 8 & full page)  
-. Burst Type (Sequential & Interleave)  
• All inputs are sampled at the positive going edge of the  
system clock  
Write per bit and 8 columns block write improves performance in  
graphics systems.  
• Burst Read Single-bit Write operation  
• DQM 0-3 for byte masking  
ORDERING INFORMATION  
• Auto & self refresh  
Part NO.  
Max Freq.  
200MHz  
183MHz  
166MHz  
143MHz  
125MHz  
200MHz  
183MHz  
166MHz  
143MHz  
125MHz  
Interface Package  
• 32ms refresh period (2K cycle)  
• 100 Pin PQFP, TQFP (14 x 20 mm)  
KM4132G112Q-5/F5  
KM4132G112Q-C/FC  
KM4132G112Q-6/F6  
KM4132G112Q-7/F7  
KM4132G112Q-8/F8  
KM4132G112TQ-5/F5  
KM4132G112TQ-C/FC  
KM4132G112TQ-6/F6  
KM4132G112TQ-7/F7  
KM4132G112TQ-8/F8  
LVTTL 100 PQFP  
Graphics Features  
• SMRS cycle.  
-. Load mask register  
-. Load color register  
• Write Per Bit(Old Mask)  
• Block Write(8 Columns)  
LVTTL 100 TQFP  
FUNCTIONAL BLOCK DIAGRAM  
MASK  
REGISTER  
DQMi  
BLOCK  
COLOR  
REGISTER  
WRITE  
WRITE  
CONTROL  
CONTROL  
LOGIC  
LOGIC  
MUX  
·
CLK  
CKE  
CS  
COLUMN  
MASK  
DQi  
(i=0~31)  
DQMi  
RAS  
CAS  
WE  
512Kx32  
CELL  
512Kx32  
CELL  
·
ARRAY  
ARRAY  
DSF  
DQMi  
ROW DECORDER  
BANK SELECTION  
·
SERIAL  
COUNTER  
COLUMN ADDRESS  
BUFFER  
ROW ADDRESS  
BUFFER  
REFRESH  
COUNTER  
ADDRESS REGISTER  
Samsung Electronics reserves the right to  
change products or specification without  
notice.  
*
CLOCK ADDRESS(A0~A10,BA)  
Rev. 1.4 (Jun. 1999)  
- 3 -  
KM4132G112  
CMOS SGRAM  
PIN CONFIGURATION (TOP VIEW)  
DQ29  
VSSQ  
DQ30  
DQ31  
VSS  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
VDD  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
A7  
A6  
A5  
A4  
VSS  
A10  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
VDD  
A3  
100 Pin QFP  
Forward Type  
2
20 x 14 mm  
0.65mm pin Pitch  
DQ0  
DQ1  
VSSQ  
DQ2  
A2  
A1  
A0  
*PQFP (Height = 3.0mmMAX)  
TQFP (Height = 1.2mmMAX)  
PIN CONFIGURATION DESCRIPTION  
PIN  
CLK  
NAME  
System Clock  
INPUT FUNCTION  
Active on the positive going edge to sample all inputs.  
Disables or enables device operation by masking or enabling all inputs except  
CLK, CKE and DQMi  
CS  
Chip Select  
Masks system clock to freeze operation from the next clock cycle.  
CKE should be enabled at least one clock + tSS prior to new command.  
Disable input buffers for power down in standby.  
CKE  
Clock Enable  
Row / Column addresses are multiplexed on the same pins.  
Row address : RA0 ~ RA10, Column address : CA0 ~ CA7  
A0 ~ A10  
BA  
Address  
Selects bank to be activated during row address latch time.  
Selects bank for read/write during column address latch time.  
Bank Select Address  
Row Address Strobe  
Latches row addresses on the positive going edge of the CLK with RAS low.  
Enables row access & precharge.  
RAS  
Latches column addresses on the positive going edge of the CLK with CAS low.  
Enables column access.  
CAS  
WE  
Column Address Strobe  
Write Enable  
Enables write operation and Row precharge.  
Makes data output Hi-Z, tSHZ after the clock and masks the output.  
Blocks data input when DQM active.(Byte Masking)  
DQMi  
Data Input/Output Mask  
DQi  
Data Input/Output  
Data inputs/outputs are multiplexed on the same pins.  
Enables write per bit, block write and special mode register set.  
Power Supply : +3.3V±0.3V/Ground  
DSF  
Define Special Function  
Power Supply /Ground  
Data Output Power /Ground  
No Connection  
VDD/VSS  
VDDQ/VSSQ  
N.C  
Provide isolated Power/Ground to DQs for improved noise immunity.  
Rev. 1.4 (Jun. 1999)  
- 4 -  
KM4132G112  
CMOS SGRAM  
ABSOLUTE MAXIMUM RATINGS(Voltage referenced to VSS)  
Parameter  
Voltage on any pin relative to Vss  
Voltage on VDD supply relative to Vss  
Storage temperature  
Symbol  
VIN, VOUT  
VDD, VDDQ  
TSTG  
Value  
-1.0 ~ 4.6  
-1.0 ~ 4.6  
-55 ~ +150  
1
Unit  
V
V
°C  
W
Power dissipation  
PD  
Short circuit current  
IOS  
50  
mA  
Note :  
Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded.  
Functional operation should be restricted to recommended operating condition.  
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.  
DC OPERATING CONDITIONS  
Recommended operating conditions (Voltage referenced to VSS = 0V)  
Parameter  
Supply voltage  
Symbol  
VDD, VDDQ  
VIH  
Min  
3.0  
2.0  
-0.3  
2.4  
-
Typ  
Max  
Unit  
V
Note  
3.3  
3.6  
5
Input high voltage  
3.0  
VDDQ+0.3  
V
1
Input low voltage  
VIL  
0
-
0.8  
-
V
2
Output high voltage  
Output low voltage  
Input leakage current  
Output leakage current  
Output Loading Condition  
VOH  
V
IOH = -2mA  
VOL  
-
0.4  
10  
10  
V
IOL = 2mA  
ILI  
-10  
-10  
-
uA  
3
4
ILO  
-
uA  
see figure 1  
Note : 1. VIH (max) = 5.6V AC. The overshoot voltage duration is £ 3ns.  
2. VIL (min) = -2.0V AC. The undershoot voltage duration is £ 3ns.  
3. Any input 0V £ VIN £ VDDQ.  
Input leakage currents include HI-Z output leakage for all bi-directional buffers with Tri-State outputs.  
4. Dout is disabled, 0V £ VOUT £ VDD.  
5. The VDD condition of KM4132G112-5/C/6 is 3.135V~3.6V.  
CAPACITANCE (VDD/VDDQ = 3.3V, TA = 23°C, f = 1MHz)  
Pin  
Symbol  
CCLK  
CIN  
Min  
Max  
4.0  
4.0  
4.0  
5.0  
Unit  
pF  
Clock  
-
-
-
-
RAS, CAS, WE, CS, CKE, DQMi,DSF  
pF  
Address  
DQi  
CADD  
COUT  
pF  
pF  
DECOUPLING CAPACITANCE GUIDE LINE  
Recommended decoupling capacitance added to power line at board.  
Parameter  
Symbol  
Value  
Unit  
uF  
Decoupling Capacitance between VDD and VSS  
Decoupling Capacitance between VDDQ and VSSQ  
CDC1  
CDC2  
0.1 + 0.01  
0.1 + 0.01  
uF  
Note :  
1. VDD and VDDQ pins are separated each other.  
All VDD pins are connected in chip. All VDDQ pins are connected in chip.  
2. VSS and VSSQ pins are separated each other  
All VSS pins are connected in chip. All VSSQ pins are connected in chip.  
Rev. 1.4 (Jun. 1999)  
- 5 -  
KM4132G112  
CMOS SGRAM  
DC CHARACTERISTICS  
(Recommended operating condition unless otherwise noted, TA = 0 to 70°C, VIH(min)/VIL(max)=2.0V/0.8V)  
Speed  
-6  
200 190 180 160 150  
CAS  
Latency  
Parameter  
Symbol  
Test Condition  
Unit Note  
-5  
-C  
-7  
-8  
3
2
Operating Current  
(One Bank Active)  
Burst Length =1  
tRC ³ tRC(min), tCC ³ tCC(min), Io = 0mA  
ICC1  
mA  
mA  
2
-
-
-
-
150  
ICC2P  
CKE £ VIL(max), tCC = 15ns  
2
2
Precharge Standby Current  
in power-down mode  
ICC2PS CKE & CLK £ VIL(max), tCC = ¥  
CKE ³ VIH(min), CS ³ VIH(min), tCC = 15ns  
Input signals are changed one time during 30ns  
ICC2N  
30  
15  
Precharge Standby Current  
in non power-down mode  
mA  
mA  
mA  
CKE ³ VIH(min), CLK £ VIL(max), tCC = ¥  
Input signals are stable  
ICC2NS  
ICC3P  
CKE £ VIL(max), tCC = 15ns  
3
3
Active Standby Current  
in power-down mode  
ICC3PS CKE £ VIL(max), tCC = ¥  
CKE ³ VIH(min), CS ³ VIH(min), tCC = 15ns  
Input signals are changed one time during 30ns  
ICC3N  
50  
30  
Active Standby Current  
in non power-down mode  
(One Bank Active)  
CKE ³ VIH(min), CLK £ VIL(max), tCC = ¥  
Input signals are stable  
ICC3NS  
3
2
3
2
290 270 260 230 200  
160  
200 190 180 160 150  
Operating Current  
(Burst Mode)  
Io = 0 mA, Page Burst  
All bank Activated, tCCD = tCCD(min)  
ICC4  
ICC5  
mA  
mA  
2
3
-
-
-
-
Refresh Current  
tRC ³ tRC(min)  
-
-
-
2
-
150  
mA  
uA  
4
5
Self Refresh Current  
ICC6  
ICC7  
CKE £ 0.2V  
450  
Operating Current  
(One Bank Block Write)  
tCC ³ tCC(min), Io=0mA, tBWC(min)  
230 210 200 170 150 mA  
Note :  
1. Unless otherwise notes, Input level is CMOS(VIH/VIL=VDDQ/VSSQ) in LVTTL.  
2. Measured with outputs open. Addresses are changed only one time during tcc(min).  
3. Refresh period is 32ms. Addresses are changed only one time during tcc(min).  
4. KM4132G112*  
5. KM4132G112-F* ; Low Power version  
Rev. 1.4 (Jun. 1999)  
- 6 -  
KM4132G112  
CMOS SGRAM  
AC OPERATING TEST CONDITIONS (VDD = 3.3V±0.3V, TA = 0 to 70°C)  
Parameter  
Input levels (Vih/Vil)  
Value  
2.4 / 0.4  
1.4  
Unit  
V
Input timing measurement reference level  
Input rise and fall time  
V
ns  
V
tr/tf =1 / 1  
1.4  
Output timing measurement reference level  
Output load condition  
See Fig. 2  
3.3V  
Vtt = 1.4V  
1200W  
50W  
VOH (DC) = 2.4V, IOH = -2mA  
VOL (DC) = 0.4V, IOL = 2mA  
·
·
·
·
Output  
Output  
Z0=50W  
30pF  
30pF  
870W  
(Fig. 1) DC Output Load Circuit  
1. The VDD condition of KM4132G112-5/C/6 is 3.135V~3.6V.  
(Fig. 2) AC Output Load Circuit  
Note :  
OPERATING AC PARAMETER  
(AC operating conditions unless otherwise noted)  
Version  
-6  
Parameter  
Symbol  
Unit  
Note  
-5  
-C  
-7  
-8  
CAS Latency  
CLK cycle time  
CL  
3
5
2
-
3
2
-
3
6
2
-
3
7
2
-
3
8
2
CLK  
ns  
tCC(min)  
tRRD(min)  
tRCD(min)  
tRP(min)  
tRAS(min)  
tRAS(max)  
5.5  
10  
Row active to row active delay  
RAS to CAS delay  
2
CLK  
CLK  
CLK  
CLK  
us  
1
1
1
1
4
4
8
-
-
-
3
3
7
-
-
-
3
3
7
-
-
-
3
3
7
-
-
-
3
3
6
2
2
5
Row precharge time  
Row active time  
Row cycle time  
100  
tRC(min)  
12  
-
10  
-
10  
-
10  
-
9
7
CLK  
1
Last data in to row precharge  
Last data in to new col.address delay  
Last data in to burst stop  
tRDL(min)  
tCDL(min)  
tBDL(min)  
tCCD(min)  
tBPL(min)  
tBWC(min)  
tMRS(min)  
2
1
1
1
2
1
1
2
1
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
2, 5  
2
2
Col. address to col. address delay  
Block Write data-in to PRE command  
Block write cycle time  
3
4
Mode Register Set cycle time  
CAS Latency=3  
CAS Latency=2  
Number of valid output data  
ea  
Note :  
1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then  
rounding off to the next higher integer. Refer to the following ns-unit based AC table.  
Rev. 1.4 (Jun. 1999)  
- 7 -  
KM4132G112  
CMOS SGRAM  
Version  
-6  
Parameter  
Symbol  
Unit  
-8  
-5  
5
-C  
5.5  
-7  
7
CLK cycle time  
tCC(min)  
6
8
ns  
ns  
ns  
ns  
ns  
us  
ns  
Row active to row active delay  
RAS to CAS delay  
tRRD(min)  
tRCD(min)  
tRP(min)  
10  
20  
20  
40  
11  
12  
14  
21  
21  
49  
16  
20  
20  
48  
16.5  
16.5  
38.5  
18  
Row precharge time  
18  
tRAS(min)  
tRAS(max)  
tRC(min)  
42  
Row active time  
Row cycle time  
100  
60  
60  
55  
70  
70  
2. Minimum delay is required to complete write.  
3. This parameter means minimum CAS to CAS delay at block write cycle only.  
4. In case of row precharge interrupt, auto precharge and read burst stop.  
5. For -C/6/7/8, tRDL =1CLK product can be supported within restricted amounts and it will be distinguished by bucket code  
"NV". From the next generation, tRDL will be only 2CLK for every clock frequency.  
AC CHARACTERISTICS (AC operating conditions unless otherwise noted)  
-5  
-C  
-6  
-7  
-8  
Parameter  
Symbol  
tCC  
Unit Note  
Min Max Min Max Min Max Min Max Min Max  
CAS Latency=3  
5
-
5.5  
-
6
7
8
10  
-
CLK cycle time  
1000  
1000  
1000  
1000  
1000 ns  
1
CAS Latency=2  
CAS Latency=3  
CAS Latency=2  
-
-
-
4.5  
-
5
-
-
-
5.5  
-
5.5  
6
6
-
CLK to valid  
output delay  
tSAC  
ns  
1, 2  
-
-
-
-
-
-
-
-
-
Output data hold time  
CLK high pulse width  
tOH  
tCH  
2
2
-
-
2
2
-
-
2.5  
2.5  
-
2.5  
2.5  
ns  
ns  
2
3
CAS Latency=3  
CAS Latency=2  
CAS Latency=3  
CAS Latency=2  
CAS Latency=3  
CAS Latency=2  
-
-
3
-
-
-
-
-
-
3
3
-
-
-
-
-
-
2
-
-
2
-
-
2.5  
-
3
CLK low  
pulse width  
ns  
ns  
3
3
tCL  
tSS  
-
-
-
1.5  
-
-
1.5  
-
-
1.5  
-
1.75  
2
2.5  
1
Input setup time  
-
-
-
1
1
-
Input hold time  
tSH  
1
1
-
-
-
1
1
-
-
1
-
-
-
-
-
-
ns  
ns  
3
2
CLK to output in Low-Z  
tSLZ  
-
1
1
CAS latency=3  
CAS latency=2  
4.5  
-
5
-
-
5.5  
-
5.5  
-
-
6
6
CLK to output  
in Hi-Z  
tSHZ  
ns  
-
-
-
-
-
-
Note :  
1. Parameters depend on programmed CAS latency.  
2. If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.  
3. Assumed input rise and fall time (tr & tf)=1ns.  
If tr & tf is longer than 1ns, transient time compensation should be considered,  
i.e., [(tr + tf)/2-1]ns should be added to the parameter.  
Rev. 1.4 (Jun. 1999)  
- 8 -  
KM4132G112  
CMOS SGRAM  
SIMPLIFIED TRUTH TABLE  
COMMAND  
CKEn-1 CKEn CS RAS CAS WE DSF DQM BA A8 A10,A9,A7~A0  
Note  
1, 2  
1,2,7  
3
Register  
Refresh  
Mode Register Set  
Special Mode Register Set  
Auto Refresh  
L
H
H
L
X
L
L
L
L
L
L
L
X
X
X
X
OP CODE  
H
H
L
H
L
X
Entry  
3
Self  
Refresh  
L
H
X
H
X
H
X
3
Exit  
H
X
X
X
H
3
Bank Active Write Per Bit Disable  
L
4, 5  
4,5,9  
4
H
L
L
L
H
L
H
H
V
V
Row Address  
& Row Addr.  
Write Per Bit Enable  
H
Read &  
Column  
Address  
Auto Precharge Disable  
Auto Precharge Enable  
Auto Precharge Disable  
Auto Precharge Enable  
L
Column  
Address  
(A0~A7)  
H
H
H
X
X
X
H
L
L
X
X
X
H
L
4, 6  
4, 5  
Write &  
Column  
Address  
Column  
Address  
(A0~A7)  
L
L
H
H
L
L
L
L
V
V
H
L
4,5,6,9  
4, 5  
Block Write Auto Precharge Disable  
&
Auto Precharge Enable  
Column  
Column  
Address  
(A0~A7)  
H
4,5,6,9  
7
H
Burst Stop  
H
H
X
X
L
L
H
L
H
H
L
L
L
L
X
X
X
Bank Selection  
Precharge  
V
X
L
X
Both Banks  
H
L
H
X
L
H
X
X
H
X
V
X
H
X
X
H
X
V
X
H
X
X
H
X
V
X
Entry  
H
L
X
X
Clock Suspend or  
Active Power Down  
X
X
Exit  
L
H
L
X
X
X
X
Entry  
H
H
L
Precharge Power Down  
Mode  
V
X
Exit  
L
H
X
X
H
DQM  
H
H
X
V
X
X
X
8
L
H
X
H
X
H
X
No Operation Command  
X
H
(V=Valid, X=Don¢t Care, H=Logic High, L=Logic Low)  
Note :1. OP Code : Operand Code  
A0 ~ A10, BA : Program keys. (@MRS)  
A5, A6 : LMR or LCR select. (@SMRS)  
Color register exists only one per DQi which both banks share.  
So dose Mask Register.  
Color or mask is loaded into chip through DQ pin.  
2. MRS can be issued only at both banks precharge state.  
SMRS can be issued only if DQ¢s are idle.  
A new command can be issued at the next clock of MRS/SMRS.  
Rev. 1.4 (Jun. 1999)  
- 9 -  
KM4132G112  
CMOS SGRAM  
SIMPLIFIED TRUTH TABLE  
3. Auto refresh functions as same as CBR refresh of DRAM.  
The automatical precharge without Row precharge command is meant by "Auto".  
Auto/Self refresh can be issued only at both precharge state.  
4. BA : Bank select address.  
If "Low" at read, (block) write, Row active and precharge, bank A is selected.  
If "High" at read, (block) write, Row active and precharge, bank B is selected.  
If A8 is "High" at Row precharge, BA is ignored and both banks are selected.  
5. It is determined at Row active cycle.  
whether Normal/Block write operates in write per bit mode or not.  
For A bank write, at A bank Row active, for B bank write, at B bank Row active.  
Terminology : Write per bit =I/O mask  
(Block) Write with write per bit mode=Masked(Block) Write  
6. During burst read or write with auto precharge, new read/(block) write command cannot be issued.  
Another bank read/(block) write command can be issued at tRP after the end of burst.  
7. Burst stop command is valid only at full page burst length.  
8. DQM sampled at positive going edge of a CLK.  
masks the data-in at the very CLK(Write DQM latency is 0)  
but makes Hi-Z state the data-out of 2 CLK cycles after.(Read DQM latency is 2)  
9. Graphic features added to SDRAM¢s original features.  
If DSF is tied to low, graphic functions are disabled and chip operates as a 32M SDRAM with 32 DQ¢s.  
SGRAM vs SDRAM  
Function  
MRS  
Bank Active  
Write  
DSF  
L
H
L
H
L
H
Bank Active  
with  
Write per bit  
Disable  
Bank Active  
with  
Write per bit  
Enable  
SGRAM  
Function  
Normal  
Write  
Block  
Write  
MRS  
SMRS  
If DSF is low, SGRAM functionality is identical to SDRAM functionality.  
SGRAM can be used as an unified memory by the appropriate DSF control  
--> SGRAM=Graphic Memory + Main Memory  
Rev. 1.4 (Jun. 1999)  
- 10  
KM4132G112  
CMOS SGRAM  
MODE REGISTER FIELD TABLE TO PROGRAM MODES  
Register Programmed with MRS  
Address  
BA  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Function  
RFU  
W.B.L  
TM  
CAS Latency  
BT  
Burst Length  
(Note 1)  
(Note 2)  
Test Mode  
Type  
CAS Latency  
Burst Type  
Type  
Burst Length  
A8  
A7  
0
A6  
0
A5  
A4  
0
Latency  
Reserved  
-
A3  
A2  
A1  
A0  
0
BT=0  
BT=1  
Reserved  
Reserved  
4
0
0
1
1
Mode Register Set  
0
0
1
1
0
0
1
1
0
1
Sequential  
Interleave  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
1
2
1
Vendor  
Use  
Only  
0
1
1
0
0
0
2
0
4
1
0
1
3
1
8
8
Write Burst Length  
Length  
1
0
Reserved  
Reserved  
Reserved  
Reserved  
0
Reserved  
Reserved  
Reserved  
256(Full)  
Reserved  
Reserved  
Reserved  
Reserved  
A9  
0
1
1
1
Burst  
1
0
0
1
Single Bit  
1
1
1
(Note 3)  
Special Mode Register Programmed with SMRS  
Address  
BA  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Function  
X
LC  
LM  
X
Load Color  
Load Mask  
A6  
0
Function  
Disable  
Enable  
A5  
0
Function  
Disable  
1
1
Enable  
(Note 4)  
POWER UP SEQUENCE  
SGRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.  
1. Apply power and start clock. Must maintain CKE= "H", DQM= "H" and the other pins are NOP condition at the inputs.  
2. Maintain stable power, stable clock and NOP input condition for a minimum of 200us.  
3. Issue precharge commands for all banks of the devices.  
4. Issue 2 or more auto-refresh commands.  
5. Issue a mode register set command to initialize the mode register.  
cf.) Sequence of 4 & 5 may be changed.  
The device is now ready for normal operation.  
Note : 1. RFU(Reserved for Future Use) should stay "0" during MRS cycle.  
2. If A9 is high during MRS cycle, "Burst Read Single Bit Write" function will be enabled.  
3. The full column burst(256bit) is available only at Sequential mode of burst type.  
4. If LC and LM both high(1), data of mask and color register will be unknown.  
Rev. 1.4 (Jun. 1999)  
- 11  
KM4132G112  
CMOS SGRAM  
BURST SEQUENCE (BURST LENGTH = 4)  
Initial address  
Sequential  
Interleave  
A1  
A0  
0
0
0
1
2
3
1
2
3
0
2
3
0
1
3
0
1
2
0
1
2
3
1
0
3
2
2
3
0
1
3
2
1
0
0
1
1
0
1
1
BURST SEQUENCE (BURST LENGTH = 8)  
Initial address  
Sequential  
Interleave  
A2  
0
A1  
0
A0  
0
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
5
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
1
2
3
0
1
6
7
4
5
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
4
5
2
3
0
1
7
6
5
4
3
2
1
0
0
0
1
6
7
0
1
2
3
4
0
3
2
5
4
7
6
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
PIXEL to DQ MAPPING(at BLOCK WRITE)  
Column address  
3 Byte  
I/O31 - I/O24  
DQ24  
2 Byte  
1 Byte  
0 Byte  
A2  
0
A1  
0
A0  
0
I/O23 - I/O16  
DQ16  
I/O15 - I/O8  
DQ8  
I/O7 - I/O0  
DQ0  
0
0
1
DQ25  
DQ17  
DQ9  
DQ1  
0
1
0
DQ26  
DQ18  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
DQ2  
0
1
1
DQ27  
DQ19  
DQ3  
1
0
0
DQ28  
DQ20  
DQ4  
1
0
1
DQ29  
DQ21  
DQ5  
1
1
0
DQ30  
DQ22  
DQ6  
1
1
1
DQ31  
DQ23  
DQ7  
Rev. 1.4 (Jun. 1999)  
- 12  
KM4132G112  
CMOS SGRAM  
DEVICE OPERATIONS  
CLOCK (CLK)  
POWER-UP  
SGRAMs must be powered up and initialized in a pre-  
defined manner to prevent undefined operations.  
The clock input is used as the reference for all SGRAM opera-  
tions. All operations are synchronized to the positive going edge  
of the clock. The clock transitions must be monotonic between  
VIL and VIH. During operation with CKE high all inputs are  
assumed to be in a valid state (low or high) for the duration of  
set-up and hold time around positive edge of the clock for proper  
functionality and ICC specifications.  
1. Power must be applied to both CKE and DQM inputs to pull  
them high and other pins are NOP condition at the inputs  
before or along with VDD(and VDDQ) supply.  
The clock signal must also be asserted at the same time.  
2. After VDD reaches the desired voltage, a minimum pause of  
200 microseconds is required with inputs in NOP condition.  
3. Both banks must be precharged now.  
CLOCK ENABLE (CKE)  
4. Perform a minimum of 2 Auto refresh cycles to stabilize the  
internal circuitry.  
5. Perform a MODE REGISTER SET cycle to program the CAS  
latency, burst length and burst type as the default value of  
mode register is undefined.  
At the end of one clock cycle from the mode register set cycle,  
the device is ready for operation.  
When the above sequence is used for Power-up, all the outputs  
will be in high impedance state. The high impedance of outputs  
is not guaranteed in any other power-up sequence.  
cf.) Sequence of 4 & 5 may be changed.  
The clock enable(CKE) gates the clock onto SGRAM. If CKE  
goes low synchronously with clock (set-up and hold time are the  
same as other inputs), the internal clock is suspended from the  
next clock cycle and the state of output and burst address is fro-  
zen as long as the CKE remains low. All other inputs are ignored  
from the next clock cycle after CKE goes low. When both banks  
are in the idle state and CKE goes low synchronously with clock,  
the SGRAM enters the power down mode from the next clock  
cycle. The SGRAM remains in the power down mode ignoring  
the other inputs as long as CKE remains low. The power down  
exit is synchronous as the internal clock is suspended. When  
CKE goes high at least "tSS + 1CLOCK" before the high going  
edge of the clock, then the SGRAM becomes active from the  
same clock edge accepting all the input commands.  
MODE REGISTER SET (MRS)  
The mode register stores the data for controlling the various  
operating modes of SGRAM. It programs the CAS latency,  
addressing mode, burst length, test mode and various vendor  
specific options to make SGRAM useful for variety of different  
applications. The default value of the mode register is not  
defined, therefore the mode register must be written after power  
up to operate the SGRAM. The mode register is written by  
asserting low on CS, RAS, CAS, WE and DSF (The SGRAM  
should be in active mode with CKE already high prior to writing  
the mode register). The state of address pins A0 ~ A10 and BA in  
the same cycle as CS, RAS, CAS, WE and DSF going low is the  
data written in the mode register. One clock cycle is required to  
complete the write in the mode register. The mode register con-  
tents can be changed using the same command and clock cycle  
requirements during operation as long as both banks are in the  
idle state. The mode register is divided into various fields  
depending on functionality. The burst length field uses A0 ~ A2,  
burst type uses A3, addressing mode uses A4 ~ A6, A7 ~ A8 , A10  
and BA are used for vendor specific options or test mode. And  
the write burst length is programmed using A9. A7 ~ A8 , A10 and  
BA must be set to low for normal SGRAM operation. Refer to  
table for specific codes for various burst length, addressing  
modes and CAS latencies.  
BANK SELECT (BA)  
This SGRAM is organized as two independent banks of 524,288  
words x 32 bits memory arrays. The BA inputs is latched at the  
time of assertion of RAS and CAS to select the bank to be used  
for the operation. When BA is asserted low, bank A is selected.  
When BA is asserted high, bank B is selected. The bank select  
BA is latched at bank activate, read, write mode register set and  
precharge operations.  
ADDRESS INPUT (A0 ~ A10)  
The 19 address bits required to decode the 524,288 word loca-  
tions are multiplexed into 11 address input pins(A0~A10). The 11  
bit row address is latched along with RAS and BA during bank  
activate command. The 8 bit column address is latched along  
with CAS, WE and BA during read or write command.  
NOP and DEVICE DESELECT  
When RAS, CAS and WE are high, the SGRAM performs no  
operation (NOP). NOP does not initiate any new operation, but  
is needed to complete operations which require more than sin-  
gle clock cycle like bank activate, burst read, auto refresh, etc.  
The device deselect is also a NOP and is entered by asserting  
CS high. CS high disables the command decoder so that RAS,  
CAS, WE, DSF and all the address inputs are ignored.  
Rev. 1.4 (Jun. 1999)  
- 13  
KM4132G112  
CMOS SGRAM  
DEVICE OPERATIONS  
cycles in adjacent addresses depending on burst length and  
BANK ACTIVATE  
burst sequence. By asserting low on CS, CAS and WE with valid  
column address, a write burst is initiated. The data inputs are  
provided for the initial address in the same clock cycle as the  
burst write command. The input buffer is deselected at the end  
of the burst length, even though the internal writing may not  
have been completed yet. The writing can not complete to burst  
length. The burst write can be terminated by issuing a burst  
read and DQM for blocking data inputs or burst write in the same  
or the other active bank. The burst stop command is valid only at  
full page burst length where the writing continues at the end of  
burst and the burst is wrapped around. The write burst can also  
be terminated by using DQM for blocking data and precharging  
the bank "tRDL" after the last data input to be written into the  
active row. See DQM OPERATION also.  
The bank activate command is used to select a random row in  
an idle bank. By asserting low on RAS and CS with desired row  
and bank addresses, a row access is initiated. The read or write  
operation can occur after a time delay of tRCD(min) from the time  
of bank activation. tRCD(min) is an internal timing parameter of  
SGRAM, therefore it is dependent on operating clock frequency.  
The minimum number of clock cycles required between bank  
activate and read or write command should be calculated by  
dividing tRCD(min) with cycle time of the clock and then rounding  
off the result to the next higher integer. The SGRAM has two  
internal banks on the same chip and shares part of the internal  
circuitry to reduce chip area, therefore it restricts the activation  
of both banks immediately. Also the noise generated during  
sensing of each bank of SGRAM is high requiring some time for  
power supplies to recover before the other bank can be sensed  
reliably. tRRD(min) specifies the minimum time required between  
activating different banks. The number of clock cycles required  
between different bank activation must be calculated similar to  
tRCD specification. The minimum time required for the bank to be  
active to initiate sensing and restoring the complete row of  
dynamic cells is determined by tRAS(min) specification before a  
precharge command to that active bank can be asserted. The  
maximum time any bank can be in the active state is determined  
by tRAS(max). The number of cycles for both tRAS(min) and  
tRAS(max) can be calculated similar to tRCD specification.  
DQM OPERATION  
The DQM is used to mask input and output operations. It works  
similar to OE during read operation and inhibits writing during  
write operation. The read latency is two cycles from DQM and  
zero cycle for write, which means DQM masking occurs two  
cycles later in the read cycle and occurs in the same cycle dur-  
ing write cycle. DQM operation is synchronous with the clock,  
therefore the masking occurs for a complete cycle. The DQM  
signal is important during burst interrupts of write with read or  
precharge in the SGRAM. Due to asynchronous nature of the  
internal write, the DQM operation is critical to avoid unwanted or  
incomplete writes when the complete burst write is not required.  
DQM is also used for device selection, byte selection and bus  
control in a memory system. DQM0 controls DQ0 to DQ7,  
DQM1 controls DQ8 to DQ15, DQM2 controls DQ16 to DQ23,  
DQM3 controls DQ24 to DQ31. DQM masks the DQ¢s by a byte  
regardless that the corresponding DQ¢s are in a state of WPB  
masking or Pixel masking. Please refer to DQM timing diagram  
also.  
BURST READ  
The burst read command is used to access burst of data on con-  
secutive clock cycles from an active row in an active bank. The  
burst read command is issued by asserting low on CS and CAS  
with WE being high on the positive edge of the clock. The bank  
must be active for at least tRCD(min) before the burst read com-  
mand is issued. The first output appears CAS latency number of  
clock cycles after the issue of burst read command. The burst  
length, burst sequence and latency from the burst read com-  
mand is determined by the mode register which is already pro-  
grammed. The burst read can be initiated on any column  
address of the active row. The address wraps around if the initial  
address does not start from a boundary such that number of out-  
puts from each I/O are equal to the burst length programmed in  
the mode register. The output goes into high-impedance at the  
end of the burst, unless a new burst read was initiated to keep  
the data output gapless. The burst read can be terminated by  
issuing another burst read or burst write in the same bank or the  
other active bank or a precharge command to the same bank.  
The burst stop command is valid only at full page burst length  
where the output does not go into high impedance at the end of  
burst and the burst is wrapped around..  
PRECHARGE  
The precharge operation is performed on an active bank by  
asserting low on CS, RAS, WE and A8/AP with valid BA of the  
bank to be precharged. The precharge command can be  
asserted anytime after tRAS(min) is satisfied from the bank acti-  
vate command in the desired bank. "tRP" is defined as the mini-  
mum time required to precharge a bank. The minimum number  
of clock cycles required to complete row precharge is calculated  
by dividing "tRP" with clock cycle time and rounding up to the  
next higher integer. Care should be taken to make sure that  
burst write is completed or DQM is used to inhibit writing before  
precharge command is asserted. The maximum time any bank  
can be active is specified by tRAS(max). Therefore, each bank  
has to be precharged within tRAS(max) from the bank activate  
command. At the end of precharge, the bank enters the idle  
state and is ready to be activated again.  
BURST WRITE  
The burst write command is similar to burst read command, and  
is used to write data into the SGRAM on consecutive clock  
Rev. 1.4 (Jun. 1999)  
- 14  
KM4132G112  
CMOS SGRAM  
DEVICE OPERATIONS (Continued)  
Entry to Power Down, Auto refresh, Self refresh and Mode reg-  
ister Set etc. is possible only when both banks are in idle state.  
SELF REFRESH  
The self refresh is another refresh mode available in the  
SGRAM. The self refresh is the preferred refresh mode for data  
retention and low power operation of SGRAM. In self refresh  
mode, the SGRAM disables the internal clock and all the input  
buffers except CKE. The refresh addressing and timing are  
internally generated to reduce power consumption.  
The self refresh mode is entered from all banks idle state by  
asserting low on CS, RAS, CAS and CKE with high on WE.  
Once the self refresh mode is entered, only CKE state being low  
matters, all the other inputs including the clock are ignored in  
order to remain in the self refresh mode.  
The self refresh is exited by restarting the external clock and  
then asserting high on CKE. This must be followed by NOP¢s  
for a minimum time of "tRC" before the SGRAM reaches idle  
state to begin normal operation. If the system uses burst auto  
refresh during normal operation, it is recommended to use burst  
2048 auto refresh cycles immediately after exiting self refresh.  
AUTO PRECHARGE  
The precharge operation can also be performed by using auto  
precharge. The SGRAM internally generates the timing to satisfy  
tRAS(min) and "tRP" for the programmed burst length and CAS  
latency. The auto precharge command is issued at the same  
time as burst read or burst write by asserting high on A8/AP. If  
burst read or burst write command is issued with low on A8/AP,  
the bank is left active until a new command is asserted. Once  
auto precharge command is given, no new commands are pos-  
sible to that particular bank until the bank achieves idle state.  
BOTH BANKS PRECHARGE  
Both banks can be precharged at the same time by using Pre-  
charge all command. Asserting low on CS, RAS, and WE with  
high on A8/AP after both banks have satisfied tRAS(min) require-  
ment, performs precharge on both banks. At the end of tRP after  
performing precharge all, both banks are in idle state.  
DEFINE SPECIAL FUNCTION(DSF)  
The DSF controls the graphic applications of SGRAM. If DSF is  
tied to low, SGRAM functions as 512K x 32 x2 Bank SDRAM.  
SGRAM can be used as an unified memory by the appropriate  
DSF command. All the graphic function modes can be entered  
only by setting DSF high when issuing commands which other-  
wise would be normal SDRAM commands. SDRAM functions  
such as RAS Active, Write, and WCBR change to SGRAM func-  
tions such as RAS Active with WPB, Block Write and SWCBR  
respectively. See the section below for the graphic functions that  
DSF controls.  
AUTO REFRESH  
The storage cells of SGRAM need to be refreshed every 32ms  
to maintain data. An auto refresh cycle accomplishes refresh of  
a single row of storage cells. The internal counter increments  
automatically on every auto refresh cycle to refresh all the rows.  
An auto refresh command is issued by asserting low on CS,RAS  
and CAS with high on CKE and WE. The auto refresh command  
can only be asserted with both banks being in idle state and the  
device is not in power down mode (CKE is high in the previous  
cycle). The time required to complete the auto refresh operation  
is specified by "tRC(min)". The minimum number of clock cycles  
required can be calculated by driving "tRC" with clock cycle time  
and them rounding up to the next higher integer. The auto  
refresh command must be followed by NOP¢s until the auto  
refresh operation is completed. Both banks will be in the idle  
state at the end of auto refresh operation. The auto refresh is the  
preferred refresh mode when the SGRAM is being used for nor-  
mal data transactions. The auto refresh cycle can be performed  
once in 15.6us or a burst of 2048 auto refresh cycles once in  
32ms.  
SPECIAL MODE REGISTER SET(SMRS)  
There are two kinds of special mode registers in SGRAM.One is  
color register and the other is mask register. Those usage will be  
explained in the "WRITE PER BIT" and "BLOCK WRITE" sec-  
tions. When A5 and DSF goes high in the same cycle as CS,  
RAS, CAS and WE going low, Load Mask Register(LMR) pro-  
cess is executed and the mask registers are filled with the  
masks for associated DQ¢s through DQ pins. And when A6 and  
DSF goes high in the same cycle as CS, RAS, CAS and WE  
going low, Load Color Register(LCR) process is executed and  
the color register is filled with color data for associated DQ¢s  
through the DQ pins. If both A5 and A6 are high at SMRS, data  
of mask and color cycle are required to complete the write in the  
mask register and the color register at LMR and LCR respec-  
tively. A new command can be issued in the next clock of LMR  
or LCR. SMRS, compared with MRS, can be issued at the active  
state under the condition that DQ¢s are idle. As in write opera-  
tion, SMRS accepts the data needed through DQ pins. There-  
fore bus contention must be avoided. The more detailed  
materials can be obtained by referring corresponding timing dia-  
gram.  
Rev. 1.4 (Jun. 1999)  
- 15  
KM4132G112  
CMOS SGRAM  
DEVICE OPERATIONS (Continued)  
Timing Diagram to lllustrate tBWC  
WRITE PER BIT  
Write per bit(i.e. I/O mask mode) for SGRAM is a function that  
selectively masks bits of data being written to the devices. The  
mask is stored in an internal register and applied to each bit of  
data written when the mask is enabled. Bank active command  
with DSF=High enables write per bit for associated bank. Bank  
active command with DSF=Low disables write per bit for the  
associated bank. The mask used for write per bit operations is  
stored in the mask register accessed by SWCBR(Special Mode  
Register Set Command). When a mask bit=1, the associated  
data bit is written when a write command is executed and write  
per bit has been enabled for the bank being written. When a  
mask bit=0, the associated data bit is unaltered when a write  
command is executed and the write per bit has been enabled for  
the bank being written. No additional timing conditions are  
required for write per bit operations. Write per bit writes can be  
either single write, burst writes or block writes. DQM masking is  
the same for write per bit and non-WPB write.  
0
1
2
CLOCK  
CKE  
CS  
HIGH  
RAS  
CAS  
WE  
DSF  
1 CLK BW  
BLOCK WRITE  
Block write is a feature allowing the simultaneous writing of  
consecutive 8 columns of data within a RAM device during a sin-  
gle access cycle. During block write the data to be written comes  
from an internal "color" register and DQ I/O pins are used for  
independent column selection. The block of column to be written  
is aligned on 8 column boundaries and is defined by the column  
address with the 3 LSB¢s ignored. Write command with DSF=1  
enables block write for the associated bank. A write command  
with DSF=0 enables normal write for the associated bank. The  
block width is 8 column where column="n" bits for by "n" part.  
The color register is the same width as the data port of the  
chip.It is written via a SWCBR where data present on the DQ pin  
is to be coupled into the internal color register. The color register  
provides the data masked by the DQ column select, WPB  
mask(If enabled), and DQM byte mask. Column data mask-  
ing(Pixel masking) is provided on an individual column basis for  
each byte of data. The column mask is driven on the DQ pins  
during a block write command. The DQ column mask function is  
segmented on a per bit basis(i.e. DQ[0:7] provides the column  
mask for data bits[0:7], DQ[8:15] provides the column mask for  
data bits[8:15], DQ0 masks column[0] for data bits[0:7], DQ9  
masks column [1] for data bits [8:15], etc). Block writes are  
always non-burst, independent of the burst length that has been  
programmed into the mode register. Back to back block writes  
are allowed provided that the specified block write cycle  
time(tBWC) is satisfied. If write per bit was enabled by the bank  
active command with DSF=1, then write per bit masking of the  
color register data is enabled.  
If write per bit was disabled by a bank active command with  
DSF=0, the write per bit masking of the color register data is dis-  
abled. DQM masking provides independent data byte masking  
during block write exactly the same as it does during normal  
write operations, except that the control is extended to the con-  
secutive 8 columns of the block write.  
Rev. 1.4 (Jun. 1999)  
- 16  
KM4132G112  
CMOS SGRAM  
SUMMARY OF 4M Byte SGRAM BASIC FEATURES AND BENEFITS  
Features  
512K x 32 x 2 SGRAM  
Benefits  
Better interaction between memory and system without wait-state of  
asynchronous DRAM.  
Interface  
Synchronous  
High speed vertical and horizontal drawing.  
High operating frequency allows performance gain for SCROLL, FILL,  
and BitBLT.  
Pseudo-infinite row length by on-chip interleaving operation.  
Hidden row activation and precharge.  
Bank  
2 ea  
Page Depth / 1 Row  
Total Page Depth  
256 bit  
High speed vertical and horizontal drawing.  
High speed vertical and horizontal drawing.  
2048 bytes  
Programmable burst of 1, 2, ,4, 8 and full page transfer per column  
addresses.  
Burst Length(Read)  
1, 2, 4, 8 Full Page  
1, 2, 4, 8 Full Page  
Programmable burst of 1, 2, ,4, 8 and full page transfer per column  
addresses.  
Burst Length(Write)  
BRSW  
Sequential & Interleave  
2, 3  
Switch to burst length of 1 at write without MRS.  
Compatible with Intel and Motorola CPU based system.  
Programmable CAS latency.  
Burst Type  
CAS Latency  
High speed FILL, CLEAR, Text with color registers.  
Maximum 32 byte data transfers(e.g. for 8bpp : 32 pixels) with plane and  
byte masking functions.  
Block Write  
8 Columns  
Color Register  
Mask Register  
1 ea.  
1 ea.  
A and B bank share.  
Write-per-bit capability(bit plane masking). A and B banks share.  
Byte masking(pixel masking for 8bpp system) for data-out/in  
Each bit of the mask register directly controls a corresponding bit plane.  
Byte masking(pixel masking for 8bpp system) for color by DQi  
DQM0-3  
Mask function  
Write per bit  
Pixel Mask at Block Write  
Rev. 1.4 (Jun. 1999)  
- 17  
KM4132G112  
CMOS SGRAM  
BASIC FEATURE AND FUNCTION DESCRIPTIONS  
1. CLOCK Suspend  
1) Clock Suspended During Write (BL=4)  
2) Clock Suspended During Read (BL=4)  
CLK  
CMD  
CKE  
WR  
RD  
Masked by CKE  
Masked by CKE  
Internal  
CLK  
Q1  
DQ(CL2)  
DQ(CL3)  
D0  
D0  
D1  
D1  
D2  
D3  
D3  
Q0  
Q2  
Q1  
Q3  
Q2  
Q3  
D2  
Q0  
Not Written  
SuspendedDout  
Note : CKE to CLK disable/enable=1 clock  
2. DQM Operation  
1) Write Mask (BL=4)  
2) Read Mask (BL=4)  
CLK  
WR  
RD  
CMD  
DQMi  
Note 1  
Masked by DQM  
D3  
Masked by DQM  
Hi-Z  
DQ(CL2)  
DQ(CL3)  
D0  
D0  
D1  
D1  
Q0  
Q2  
Q1  
Q3  
Q2  
Hi-Z  
D3  
Q3  
DQM to Data-in Mask = 0CLK  
DQM to Data-out Mask = 2CLK  
3) DQM with Clock Suspended (Full Page Read) Note 2  
CLK  
CMD  
RD  
CKE  
DQM  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQ(CL2)  
DQ(CL3)  
Q6  
Q5  
Q0  
Q2  
Q1  
Q4  
Q3  
Q7  
Q6  
Q8  
Q7  
*Note : 1. There are 4 DQMi(i=0~3).  
Each DQMi masks 8 DQi¢s.(1 Byte, 1 Pixel for 8 bpp)  
2. DQM makes data out Hi-Z after 2 clocks which should masked by CKE " L".  
Rev. 1.4 (Jun. 1999)  
- 18  
KM4132G112  
3. CAS Interrupt (I)  
1) Read interrupted by Read (BL=4)Note 1  
CLK  
CMOS SGRAM  
CMD  
RD  
A
RD  
B
ADD  
DQ(CL2)  
QA0 QB0 QB1 QB2 QB3  
QA0 QB0 QB1 QB2 QB3  
DQ(CL3)  
tCCD  
Note 2  
2) Write interrupted by(Block) Write (BL=2)  
CLK  
3) Write interrupted by Read (BL=2)  
WR RD  
CMD  
WR WR  
tCCD  
WR BW  
tCCD  
Note 2  
Note 2  
tCCD  
Note 2  
A
B
C
D
A
B
ADD  
DQ  
Note 4  
DQ(CL2)  
DQ(CL3)  
DA0 DB0 DB1  
DC0 Pixel  
DA0  
DA0  
QB0 QB1  
QB0 QB1  
tCDL  
tCDL  
Note 3  
Note 3  
tCDL  
Note 3  
4) Block Write to Block Write  
CLK  
CMD  
ADD  
BW BW  
A
B
Note 4  
DQ  
Pixel Pixel  
tBWC  
Note 5  
*Note :  
1. By " Interrupt ", It is possible to stop burst read/write by external command before the end of burst.  
By "CAS Interrupt" , to stop burst read/write by CAS access ; read, write and block write.  
2. tCCD : CAS to CAS delay. (=1CLK)  
3. tCDL : Last data in to new column address delay. (=1CLK)  
4. Pixel :Pixel mask.  
5. tBWC : Block write minimum cycle time.  
Rev. 1.4 (Jun. 1999)  
- 19  
KM4132G112  
CMOS SGRAM  
4. CAS Interrupt (II) : Read Interrupted by Write & DQM  
(1) CL=2, BL=4  
CLK  
i) CMD  
DQM  
DQ  
ii) CMD  
RD WR  
D0  
D1  
D2  
D3  
D2  
RD  
WR  
DQM  
DQ  
Hi-Z  
D0  
D1  
D3  
D2  
iii) CMD  
RD  
WR  
DQM  
DQ  
Hi-Z  
D0  
D1  
D3  
D2  
iv) CMD  
RD  
WR  
DQM  
DQ  
Hi-Z  
Q0  
D0  
D1  
D3  
Note 1  
(2) CL=3, BL=4  
CLK  
i) CMD  
DQM  
RD WR  
D0  
D1  
D2  
D3  
D2  
DQ  
ii) CMD  
DQM  
RD  
WR  
DQ  
iii) CMD  
DQM  
D0  
D1  
D3  
D2  
RD  
RD  
RD  
WR  
D0  
D1  
D3  
D2  
D1  
DQ  
iv) CMD  
DQM  
WR  
Hi-Z  
DQ  
v) CMD  
DQM  
D0  
D1  
D3  
D2  
WR  
Hi-Z  
Q0  
D0  
D3  
DQ  
Note 2  
*Note :  
1. To prevent bus contention, there should be at least one gap between data in and data out.  
2. To prevent bus contention, DQM should be issued which makes at least one gap between data in and data out.  
Rev. 1.4 (Jun. 1999)  
- 20  
KM4132G112  
CMOS SGRAM  
5. Write Interrupted by Precharge & DQM  
CLK  
Note 2,3  
CMD  
DQM  
DQ  
WR  
D0  
PRE  
Note 1  
D1  
D2  
D3  
Masked by DQM  
*Note : 1. To inhibit invalid write, DQM should be issued.  
2. This precharge command and burst write command should be of the same bank, otherwise it is not precharge  
interrupt but only another bank precharge of dual banks operation.  
3. For -C/6/7/8, tRDL=1CLK product can be supported within restricted amounts and it will be distinguished by bucket code "NV"  
.
From the next generation, tRDL will be only 2CLK for every clock frequency.  
6. Precharge  
1) Normal Write (BL=4)  
2) Block Write  
CLK  
CLK  
CMD  
CMD  
WR  
D0  
PRE  
BW  
PRE  
DQ  
DQ  
D1  
D2  
D3  
Pixel  
tRDL  
tBPL  
Note 1,4  
Note 1  
3) Read (BL=4)  
CLK  
CMD  
RD  
PRE  
Q2  
Note 2  
Q3  
1
DQ(CL2)  
Q0  
Q1  
Q0  
Q3  
Q2  
2
DQ(CL3)  
Q1  
7. Auto Precharge  
1) Normal Write (BL=4)  
2) Block Write  
CLK  
CLK  
CMD  
CMD  
WR  
D0  
BW  
DQ  
DQ  
(CL 2, 3)  
D1  
D2  
D3  
Pixel  
tBPL  
tRP  
Note 3,4  
Auto Precharge Starts  
3) Read (BL=4)  
Note 3  
Auto Precharge Starts  
CLK  
CMD  
RD  
DQ(CL2)  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
DQ(CL3)  
Q3  
Note 3  
Auto Precharge Starts  
*Note :1. tBPL : Block write data-in to PRE command delay  
2. Number of valid output data after Row Precharge : 1, 2 for CAS Latency =2, 3 respectively.  
3. The row active command of the precharge bank can be issued after tRP from this point. The new read/write command of other activated  
bank can be issued from this point. At burst read/write with auto precharge, CAS interrupt of the same/another bank is illegal.  
4. For -C/6/7/8, tRDL=1CLK product can be supported within restricted amounts and it will be distinguished by bucket code "NV"  
.
From the next generation, tRDL will be only 2CLK for every clock frequency.  
Rev. 1.4 (Jun. 1999)  
- 21  
KM4132G112  
CMOS SGRAM  
8. Burst Stop & Precharge Interrupt  
1) Write Interrupted by Precharge (BL=4)  
CLK  
2) Write Burst Stop (Full Page Only)  
CLK  
WR  
PRE  
WR  
STOP  
CMD  
DQM  
DQ  
CMD  
D3  
DQ  
D0  
D1  
D2  
D0  
D1  
D2  
tBDL  
tRDL Note 1,5  
3) Read Interrupted by Precharge (BL=4)  
CLK  
4) Read Burst Stop (Full Page Only)  
CLK  
CMD  
DQ(CL2)  
DQ(CL3)  
RD  
PRE  
Q0  
CMD  
DQ(CL2)  
DQ(CL3)  
RD  
STOP  
Note 3  
Note 3  
Q1  
1
1
Q1  
Q0  
Q1  
Q0  
2
2
Q0  
Q1  
9. MRS & SMRS  
2) Special Mode Register Set  
CLK  
1) Mode Register Set  
CLK  
Note 4  
CMD  
PRE  
MRS ACT  
CMD  
SMRS ACT SMRS SMRS BW  
tRP  
1CLK  
1CLK 1CLK  
1CLK 1CLK  
*Note :  
1. tRDL : 1 CLK, Last Data in to Row Precharge.  
2. tBDL : 1 CLK, Last Data in to Burst Stop Delay.  
3. Number of valid output data after Row precharge or burst stop : 1, 2 for CAS latency= 2, 3 respectiviely.  
4. PRE : Both banks precharge if necessary.  
MRS can be issued only at all bank precharge state.  
5. For -C/6/7/8, tRDL=1CLK product can be supported within restricted amounts and it will be distinguished by bucket code "NV"  
.
From the next generation, tRDL will be only 2CLK for every clock frequency.  
Rev. 1.4 (Jun. 1999)  
- 22  
KM4132G112  
CMOS SGRAM  
10. Clock Suspend Exit & Power Down Exit  
1) Clock Suspend (=Active Power Down) Exit  
CLK  
2) Power Down (=Precharge Power Down) Exit  
CLK  
CKE  
CKE  
tSS  
tSS  
Internal  
Internal  
CLK  
Note 1  
Note 2  
CLK  
CMD  
CMD  
ACT  
NOP  
RD  
11. Auto Refresh & Self Refresh  
Note 3  
1) Auto Refresh  
CLK  
Note 4  
Note 5  
CMD  
CKE  
PRE  
AR  
CMD  
tRP  
tRC  
Note 6  
2) Self Refresh  
CLK  
Note 4  
CMD  
CKE  
SR  
PRE  
CMD  
tRP  
tRC  
*Note :  
1. Active power down : one or more bank active state.  
2. Precharge power down : both bank precharge state.  
3. The auto refresh is the same as CBR refresh of conventional DRAM.  
No precharge commands are required after Auto Refresh command.  
During tRC from auto refresh command, any other command can not be accepted.  
4. Before executing auto/self refresh command, both banks must be idle state.  
5. (S)MRS, Bank Active, Auto/Self Refresh, Power Down Mode Entry.  
6. During self refresh mode, refresh interval and refresh operation are perfomed internally.  
After self refresh entry, self refresh mode is kept while CKE is LOW.  
During self refresh mode, all inputs expect CKE will be don¢t cared, and outputs will be in Hi-Z state.  
During tRC from self refresh exit command, any other command can not be accepted.  
Before/After self refresh mode, burst auto refresh cycle (2K cycles) is recommended.  
Rev. 1.4 (Jun. 1999)  
- 23  
KM4132G112  
CMOS SGRAM  
12. About Burst Type Control  
At MRS A3 = "0". See the BURST SEQUENCE TABLE. (BL=4,8)  
BL=1, 2, 4, 8 and full page wrap around.  
Sequential Counting  
Basic  
MODE  
At MRS A3 = "1". See the BURST SEQUENCE TABLE. (BL=4,8)  
BL=4, 8. At BL=1, 2 Interleave Counting = Sequential Counting  
Interleave Counting  
At MRS A3 = "1".(See to Interleave Counting Mode)  
Starting Address LSB 3 bits A0-2 should be "000" or "111".@BL=8.  
-- if LSB="000" : Increment Counting.  
-- if LSB="111" : Decrement Counting.  
Pseudo-  
Decrement Sequential  
Counting  
For Example,(Assume Addresses except LSB 3 bits are all 0, BL=8)  
-- @ write, LSB="000", Accessed Column in order 0-1-2-3-4-5-6-7  
-- @ read, LSB="111", Accessed Column in order 7-6-5-4-3-2-1-0  
At BL=4, same applications are possible. As above example, at Interleave Counting mode,  
by confining starting address to some values, Pseudo-Decrement Counting Mode can be  
realized. See the BURST SEQUENCE TABLE carefully.  
Pseudo-  
MODE  
At MRS A3 = "0".(See to Sequential Counting Mode)  
A0-2 = "111".(See to Full Page Mode)  
Using Full Page Mode and Burst Stop Command, Binary Counting Mode can be realized.  
-- @ Sequential Counting, Accessed Column in order 3-4-5-6-7-1-2-3(BL=8)  
-- @ Pseudo-Binary Counting,  
Pseudo-  
Binary Counting  
Accessed Column in order 3-4-5-6-7-8-9-10(Burst Stop command)  
Note. The next column address of 256 is 0.  
Every cycle Read/Write Command with random column address can realize  
Random Column Access.  
That is similar to Extended Data Out (EDO) Operation of conventional DRAM.  
Random column Access  
tCCD = 1 CLK  
Random  
MODE  
13. About Burst Length Control  
At MRS A2,1,0 = "000".  
At auto precharge, tRAS should not be violated.  
1
At MRS A2,1,0 = "001".  
At auto precharge, tRAS should not be violated.  
2
Basic  
MODE  
At MRS A2,1,0 = "010".  
At MRS A2,1,0 = "011".  
4
8
At MRS A2,1,0 = "111".  
Full Page  
Wrap around mode(Infinite burst length)should be stopped by burst stop,  
RAS interrupt or CAS interrupt.  
At MRS A9 = "1".  
BRSW  
Read burst =1, 2, 4, 8, full page/write Burst =1  
At auto precharge of write, tRAS should not be violated.  
Special  
MODE  
8 Column Block Write. LSB A0-2 are ignored. Burst length=1.  
tBWC should not be violated.  
At auto precharge, tRAS should not be violated.  
Block Write  
Burst Stop  
Random  
MODE  
tBDL= 1, Valid DQ after burst stop is 1, 2 for CL=2, 3 respectively  
Using burst stop command, it is possible only at full page burst length.  
Before the end of burst, Row precharge command of the same bank  
stops read/write burst with Row precharge.  
tRDL= 2 with DQM, valid DQ after burst stop is 1, 2 for CL= 2, 3 respectively  
During read/write burst with auto precharge, RAS interrupt cannot be issued.  
RAS Interrupt  
(Interrupted by Precharge)  
Interrupt  
MODE  
Before the end of burst, new read/write stops read/write burst and starts new  
read/write burst or block write.  
CAS Interrupt  
During read/write burst with auto precharge, CAS interrupt can not be issued.  
Rev. 1.4 (Jun. 1999)  
- 24  
KM4132G112  
CMOS SGRAM  
14. Mask Functions  
1) Normal Write  
I/O masking : By Mask at Write Per Bit Mode, the selected bit planes keep the original data.  
If bit plane 0, 3, 7, 9, 15, 22, 24, and 31 keep the original value.  
i) STEP  
- SMRS(LMR) :Load mask[31-0]="0111, 1110, 1011,1111, 0111, 1101, 0111, 0110"  
- Row Active with DSF "H" :Write Per Bit Mode Enable  
- Perform Normal Write.  
i) ILLUSTRATION  
I/O(=DQ)  
External Data-in  
DQMi  
31  
24  
23  
16  
15  
8
7
0
1 1 1 1 1 1 1 1  
DQM3=0  
1 1 1 1 1 1 1 1  
DQM2=0  
0 0 0 0 0 0 0 0  
DQM1=0  
0 0 0 0 0 0 0 0  
DQM0=1  
Mask Register  
Before Write  
After Write  
0 1 1 1 1 1 1 0  
0 0 0 0 0 0 0 0  
0 1 1 1 1 1 1 0  
1 0 1 1 1 1 1 1  
0 0 0 0 0 0 0 0  
1 0 1 1 1 1 1 1  
0 1 1 1 1 1 0 1  
1 1 1 1 1 1 1 1  
1 0 0 0 0 0 1 0  
0 1 1 1 0 1 1 0  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
Note 1  
2) Block Write  
Pixel masking : By Pixel Data issued through DQ pin, the selected pixels keep the original data.  
See PIXEL TO DQ MAPPING TABLE.  
If Pixel 0, 4, 9, 13, 18, 22, 27 and 31 keep the original white color.  
Assume 8bpp,  
White = "0000,0000", Red="1010,0011", Green = "1110,0001", Yellow = "0000,1111", Blue = "1100,0011"  
i) STEP  
- SMRS(LCR) :Load color(for 8bpp, through x32 DQ color0-3 are loaded into color registers)  
Load(color3, color2, color1, color0) = (Blue, Green, Yellow, Red)  
= "1100,0011, 1110, 0001, 0000, 1111, 1010, 0011"  
- Row Active with DSF "L" : I/O Mask by Write Per Bit Mode Disable  
- Block write with DQ[31-0] = "0111, 0111, 1011, 1011, 1101, 1101, 1110, 1110"  
i) ILLUSTRATION  
I/O(=DQ)  
DQMi  
31  
24  
23  
16  
15  
8
7
0
DQM3=0  
DQM2=0  
DQM1=0  
DQM0=1  
Color Register  
Color3=Blue  
White DQ24=H  
White DQ25=H  
White DQ26=H  
White DQ27=L  
White DQ28=H  
White DQ29=H  
White DQ30=H  
White DQ31=L  
Blue  
Color2=Green  
White DQ16=H  
White DQ17=H  
White DQ18=L  
White DQ19=H  
White DQ20=H  
White DQ21=H  
White DQ22=L  
White DQ23=H  
Green  
Color1=Yellow  
White DQ8=H  
White DQ9=L  
White DQ10=H  
White DQ11=H  
White DQ12=H  
White DQ13=L  
White DQ14=H  
White DQ15=H  
Yellow  
Color0=Red  
White DQ0=L  
White DQ1=H  
White DQ2=H  
White DQ3=H  
White DQ4=L  
White DQ5=H  
White DQ6=H  
White DQ7=H  
White  
000  
Before  
Block  
Write  
&
DQ  
(Pixel  
data)  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
Blue  
Green  
White  
White  
Blue  
White  
Yellow  
White  
After  
Block  
Write  
White  
Green  
Yellow  
White  
Blue  
Green  
Yellow  
White  
Blue  
Green  
White  
White  
Blue  
White  
Yellow  
White  
111  
White  
Green  
Yellow  
White  
Note 2  
*Note :  
1. DQM byte masking.  
2. At normal write, ONE column is selected among columns decorded by A2-0(000-111).  
At block write, instead of ignored address A2-0, DQ0-31 control each pixel.  
Rev. 1.4 (Jun. 1999)  
- 25  
KM4132G112  
CMOS SGRAM  
(Continued)  
Pixel and I/O masking : By Mask at Write Per Bit Mode, the selected bit planes keep the original data.  
By Pixel Data issued through DQ pin, the selected pixels keep the original data.  
See PIXEL TO DQ MAPPING TABLE.  
Assume 8bpp,  
White = "0000,0000", Red="1010,0011", Green ="1110,0001", Yellow ="0000,1111", Blue ="1100,0011"  
i) STEP  
- SMRS(LCR) : Load color(for 8bpp, through x 32 DQ color0-3 are loaded into color registers)  
Load(color3, color2, color1, color0) = (Blue, Green, Yellow, Red)  
= "1100,0011,1110,0001,0000,1111,1010,0011"  
- SMRS(LMR ): Load mask. Mask[31-0] ="1111,1111,1101,1101, 0100,0010,0111,0110"  
--> Byte 3 : No I/O Masking ; Byte 2 : I/O Masking ; Byte 1 : I/O and Pixel Masking ; Byte 0 : DQM Byte Masking  
- Row Active with DSF "H" : I/O Mask by Write Per Bit Mode Enable  
- Block Write with DQ[31-0] = "0111,0111,1111,1111,0101,0101,1110,1110"  
(Pixel Mask)  
i) ILLUSTRATION  
I/O(=DQ)  
31  
24  
23  
16  
15  
8
7
0
Blue  
1 1 0 0 0 0 1 1  
Green  
1 1 1 0 0 0 0 1  
Yellow  
0 0 0 0 1 1 1 1  
Red  
1 0 1 0 0 0 1 1  
Color Register  
DQMi  
DQM3=0  
DQM2=0  
DQM1=0  
DQM0=1  
Mask Register  
1 1 1 1 1 1 1 1  
1 1 0 1 1 1 0 1  
0 1 0 0 0 0 1 0  
0 1 1 1 0 1 1 0  
Yellow  
0 0 0 0 1 1 1 1  
Yellow  
0 0 0 0 1 1 1 1  
Green  
1 1 1 0 0 0 0 1  
White  
0 0 0 0 0 0 0 0  
Before Write  
Blue  
1 1 0 0 0 0 1 1  
Blue  
1 1 0 0 0 0 1 1  
Red  
1 0 1 0 0 0 1 1  
White  
0 0 0 0 0 0 0 0  
After Write  
Note 1  
I/O(=DQ)  
DQMi  
31  
24  
23  
16  
15  
8
7
0
DQM3=0  
DQM2=0  
DQM1=0  
DQM0=1  
Color Register  
Color3=Blue  
Yellow DQ24=H  
Yellow DQ25=H  
Yellow DQ26=H  
Yellow DQ27=L  
Yellow DQ28=H  
Yellow DQ29=H  
Yellow DQ30=H  
Yellow DQ31=L  
Blue  
Color2=Green  
Yellow DQ16=H  
Yellow DQ17=H  
Yellow DQ18=H  
Yellow DQ19=H  
Yellow DQ20=H  
Yellow DQ21=H  
Yellow DQ22=H  
Yellow DQ23=H  
Blue  
Color1=Yellow  
Green DQ8=H  
Green DQ9=L  
Green DQ10=H  
Green DQ11=L  
Green DQ12=H  
Green DQ13=L  
Green DQ14=H  
Green DQ15=L  
Red  
Color0=Red  
White DQ0=L  
White DQ1=H  
White DQ2=H  
White DQ3=H  
White DQ4=L  
White DQ5=H  
White DQ6=H  
White DQ7=H  
White  
000  
Before  
Block  
Write  
&
DQ  
(Pixel  
data)  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
Blue  
Blue  
Green  
White  
Blue  
Blue  
Red  
White  
After  
Block  
Write  
Yellow  
Blue  
Green  
White  
Blue  
Blue  
Red  
White  
Blue  
Blue  
Green  
White  
Blue  
Blue  
Red  
White  
111  
Note 2  
Yellow  
Blue  
Green  
White  
Note 1  
PIXEL MASK  
I/O MASK  
PIXEL & I/O MASK  
BYTE MASK  
*Note :  
1. DQM byte masking.  
2. At normal write, ONE column is selected among columns decorded by A2-0(000-111).  
At block write, instead of ignored address A2-0, DQ0-31 control each pixel.  
Rev. 1.4 (Jun. 1999)  
- 26  
KM4132G112  
CMOS SGRAM  
Power On Sequence & Auto Refresh  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
High level is necessary  
CKE  
CS  
tRP  
tRC  
RAS  
CAS  
Ra  
KEY  
ADDR  
BA  
KEY  
KEY  
BS  
Ra  
A8/AP  
WE  
DSF  
DQM  
DQ  
High level is necessary  
High-Z  
Precharge  
(All Banks)  
Auto Refresh  
Auto Refresh  
Mode Register Set  
Row Active  
(Write per Bit  
Enable or Disable)  
: Don¢t care  
Rev. 1.4 (Jun. 1999)  
- 27  
KM4132G112  
CMOS SGRAM  
Single Bit Read-Write-Read Cycle(Same Page) @CAS Latency=3, Burst Length=1  
tCH  
4
0
1
2
3
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
tCL  
tRAS  
tCC  
HIGH  
CKE  
CS  
tRC  
*Note 1  
tSH  
tRP  
tRCD  
tSS  
tSH  
RAS  
CAS  
ADDR  
BA  
tCCD  
tSS  
tSH  
tSS  
Ca  
tSS  
tSH  
Ra  
Cb  
tSH  
Cc  
Rb  
tSS  
*Note 2  
*Note 2,3  
*Note 2,3  
*Note 2,3 *Note 4  
*Note 2  
BS  
BS  
BS  
BS  
BS  
BS  
*Note 3  
*Note 3  
*Note 3 *Note 4  
Ra  
A8/AP  
Rb  
tSH  
WE  
tSS  
*Note 6  
*Note 5  
*Note 5  
DSF  
tSS  
tSH  
tSS  
tSH  
tSH  
DQM  
DQ  
tRAC  
tSAC  
tSLZ  
Qa  
tOH  
Db  
Qc  
tSS  
tSHZ  
Row Active  
(Write per Bit  
Enable or Disable)  
Read  
Write  
or  
Block Write  
Read  
Row Active  
(Write per Bit  
Enable or  
Disable)  
Precharge  
: Don¢t care  
Rev. 1.4 (Jun. 1999)  
- 28  
KM4132G112  
CMOS SGRAM  
*Note :  
1. All input can be don't care when CS is high at the CLK high going edge.  
2. Bank active & read/write are controlled by BA.  
BA  
0
Active & Read/Write  
Bank A  
1
Bank B  
3. Enable and disable auto precharge function are controlled by A8/AP in read/write command.  
A8/AP  
0
BA  
0
Operation  
Disable auto precharge, leave bank A active at end of burst.  
Disable auto precharge, leave bank B active at end of burst.  
Enable auto precharge, precharge bank A at end of burst.  
Enable auto precharge, precharge bank B at end of burst.  
1
0
1
1
4. A8/AP and BA control bank precharge when precharge command is asserted.  
A8/AP  
BA  
0
Precharge  
Bank A  
0
0
1
1
Bank B  
X
Both Bank  
5. Enable and disable Write-per Bit function are controlled by DSF in Row Active command.  
BA  
0
DSF  
L
Operation  
Bank A row active, disable write per bit function for bank A  
Bank A row active, enable write per bit function for bank A  
Bank B row active, disable write per bit function for bank B  
Bank B row active, enable write per bit function for bank B  
H
L
1
H
6. Block write/normal write is controlled by DSF.  
Operation  
Normal write  
Block write  
DSF  
L
Minimum cycle time  
tCCD  
tBWC  
H
Rev. 1.4 (Jun. 1999)  
- 29  
KM4132G112  
CMOS SGRAM  
Read & Write Cycle at Same Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
*Note 1  
tRC  
CS  
tRCD  
RAS  
CAS  
*Note 2  
Ra  
Ca0  
Rb  
Cb0  
ADDR  
BA  
Ra  
Rb  
A8/AP  
WE  
DSF  
DQM  
tOH  
DQ  
(CL=2)  
Qa0 Qa1 Qa2 Qa3  
Db0 Db1 Db2 Db3  
tRAC  
tRDL  
*Note 4  
*Note 3  
tSAC  
tSHZ  
*Note 5  
tOH  
Qa0 Qa1 Qa2 Qa3  
DQ  
(CL=3)  
Db0 Db1 Db2 Db3  
tRAC  
tRDL  
*Note 3  
tSAC  
*Note 4  
tSHZ  
*Note 5  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Precharge  
(A-Bank)  
: Don¢t care  
1. Minimum row cycle times is required to complete internal DRAM operation.  
*Note :  
2. Row precharge can interrupt burst on any cycle. [CAS Latency - 1] valid output data available after Row  
enters precharge. Last valid output will be Hi-Z after tSHZ from the clcok.  
3. Access time from Row address. tCC *(tRCD + CAS latency - 1) + tSAC  
4. Ouput will be Hi-Z after the end of burst. (1, 2, 4, & 8). At Full page bit burst, burst is wrap-around.  
5. For -C/6/7/8, tRDL=1CLK product can be supported within restricted amounts and it will be distinguished by bucket code "NV"  
.
From the next generation, tRDL will be only 2CLK for every clock frequency.  
Rev. 1.4 (Jun. 1999)  
- 30  
KM4132G112  
CMOS SGRAM  
Page Read & Write Cycle at Same Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
tRCD  
RAS  
CAS  
*Note 2  
Ra  
Ca0  
Cb0  
Cc0  
Cd0  
ADDR  
BA  
Ra  
A8/AP  
*Note 4  
tRDL  
tCDL  
WE  
*Note 2  
DSF  
*Note 1  
*Note 3  
DQM  
DQ  
Qa0 Qa1 Qb0 Qb1  
Qa0 Qa1 Qb0  
Dc0 Dc1 Dd0 Dd1  
Dc0 Dc1 Dd0 Dd1  
(CL=2)  
DQ  
(CL=3)  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Read  
(A-Bank)  
Write  
(A-Bank)  
Write  
(A-Bank)  
Precharge  
(A-Bank)  
: Don¢t care  
*Note :  
1. To write data before burst read ends, DQM should be asserted three cycle prior to write command to avoid bus contention.  
2. Row precharge will interrupt writing. Last data input, tRDL before Row precharge, will be written.  
3. DQM should mask invalid input data on precharge command cycle when asserting precharge  
before end of burst. Input data after Row precharge cycle will be masked internally.  
4. For -C/6/7/8, tRDL=1CLK product can be supported within restricted amounts and it will be distinguished by bucket code "NV"  
.
From the next generation, tRDL will be only 2CLK for every clock frequency.  
Rev. 1.4 (Jun. 1999)  
- 31  
KM4132G112  
CMOS SGRAM  
Block Write cycle(with Auto Precharge)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
RAS  
CAS  
*Note 2  
CBb  
CBa  
RAa  
RAa  
CAa CAb  
RBa  
ADDR  
BA  
RBa  
A8/AP  
WE  
DSF  
tBWC  
DQM  
DQ  
*Note 1  
Pixel Pixel  
Mask Mask  
Pixel Pixel  
Mask Mask  
Block Write with  
Auto Precharge  
(B-Bank)  
Row Active with  
Write-per-Bit  
Enable  
Masked  
Block Write  
(A-Bank)  
Row Active  
(B-Bank)  
(A-Bank)  
Block Write  
(B-Bank)  
Masked  
Block Write with  
Auto Precharge  
(A-Bank)  
: Don¢t care  
*Note :  
1. Column Mask(DQi=L : Mask, DQi=H :Non Mask)  
2. At Block Write, CA0~2 are ignored.  
Rev. 1.4 (Jun. 1999)  
- 32  
KM4132G112  
CMOS SGRAM  
SMRS and Block/Normal Write @ Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
RAS  
CAS  
*Note 1  
CBa  
RAa  
RBa  
A0-2  
A3,4,7,8  
CBa  
CBa  
CBa  
RAa  
RAa  
RAa  
RAa  
CAa  
CAa  
CAa  
RBa  
RBa  
RBa  
RBa  
A5  
A6  
A8/AP  
BA  
WE  
DSF  
DQM  
DQ  
I/O  
Mask  
Pixel  
Mask  
I/O  
Mask  
Color  
Color  
DBa0 DBa1 DBa2 DBa3  
Load Color Load Mask  
Register Register  
Row Active Load Color  
with WPB*  
Enable  
Register  
WPB* : Write-Per-Bit  
Row Active  
with WPB*  
Enable  
Masked  
Block Write  
(A-Bank)  
Masked Write  
with Auto  
Precharge  
(B-Bank)  
(B-Bank)  
Load Mask Register  
(A-Bank)  
: Don¢t care  
*Note : 1. At the next clock of special mode set command, new command is possible.  
Rev. 1.4 (Jun. 1999)  
- 33  
KM4132G112  
CMOS SGRAM  
Page Read Cycle at Different Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
*Note 1  
CS  
RAS  
CAS  
ADDR  
BA  
*Note 2  
RAa  
RAa  
CAa RBb  
CBb  
CAc  
CBd  
CAe  
RBb  
A8/AP  
WE  
LOW  
DSF  
DQM  
DQ  
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1  
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1  
(CL=2)  
DQ  
(CL=3)  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Read  
(B-Bank)  
Read  
(A-Bank)  
Read  
(B-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Read  
(A-Bank)  
: Don¢t care  
*Note :  
1. CS can be don¢t care when RAS, CAS and WE are high at the clock high going edge.  
2. To interrupt a burst read by row precharge, both the read and the precharge banks must be the same.  
Rev. 1.4 (Jun. 1999)  
- 34  
KM4132G112  
CMOS SGRAM  
Page Write Cycle at Different Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
RAS  
CAS  
ADDR  
BA  
RAa Key  
CAa RBb  
CBb  
CAc  
CBd  
RAa  
RBb  
A8/AP  
tCDL  
WE  
DSF  
DQM  
DQ  
Mask  
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3 DAc0 DAc1 DAc2 DAc3 DBd0 DBd1 DBd2 DBd3  
Load Mask  
Register  
Row Active  
(B-Bank)  
Write  
(B-Bank)  
Masked Write  
with auto  
precharge  
(A-Bank)  
Write with auto  
Precharge  
(B-Bank)  
Row Active with  
Write-Per-Bit  
enable  
Masked Write  
(A-Bank)  
(A-Bank)  
: Don¢t care  
Rev. 1.4 (Jun. 1999)  
- 35  
KM4132G112  
CMOS SGRAM  
Read & Write Cycle at Different Bank @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
RAS  
CAS  
RAa  
RAa  
CAa  
RBb  
RBb  
CBb RAc  
CAc  
ADDR  
BA  
RAc  
A8/AP  
tCDL  
*Note 1  
WE  
DSF  
DQM  
DQ  
DBb0 DBb1 DBb2 DBb3  
DBb0 DBb1 DBb2 DBb3  
QAc0 QAc1 QAc2  
QAa0 QAa1 QAa2 QAa3  
(CL=2)  
DQ  
(CL=3)  
QAa0 QAa1 QAa2 QAa3  
QAc0 QAc1  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Write  
(B-Bank)  
Read  
(A-Bank)  
Row Active  
(B-Bank)  
Row Active  
(A-Bank)  
: Don¢t care  
*Note : 1. tCDL should be met to complete write.  
Rev. 1.4 (Jun. 1999)  
- 36  
KM4132G112  
CMOS SGRAM  
Read & Write Cycle with Auto Precharge I @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
RAS  
CAS  
ADDR  
BA  
RAa  
RAa  
CBb  
RBb CAa  
RBb  
A8/AP  
WE  
DSF  
DQMi  
DQ  
DBb0 DBb1 DBb2 DBb3  
DBb0 DBb1 DBb2 DBb3  
QAa0 QAa1 QAa2 QAa3  
(CL=2)  
DQ  
(CL=3)  
QAa0 QAa1 QAa2 QAa3  
Read with  
Auto Precharge  
(A-Bank)  
Auto Precharge  
Start Point  
Auto Precharge  
Start Point  
Row Active  
(A-Bank)  
Write with  
Auto Precharge  
(B-Bank)  
(A-Bank)  
(B-Bank)  
Row Active  
(B-Bank)  
: Don¢t care  
*Note :  
1. tRCD should be controlled to meet minimum tRAS before internal precharge start.  
(In the case of Burst Length=1 & 2, BRSW mode and Block write)  
Rev. 1.4 (Jun. 1999)  
- 37  
KM4132G112  
CMOS SGRAM  
Read & Write Cycle with Auto Precharge II @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
RAS  
CAS  
Ra  
Rb  
Ca  
Cb  
Ra  
Ca  
ADDR  
BA  
A8/AP  
Ra  
Rb  
Ra  
WE  
DSF  
DQM  
DQ  
Qb3  
Da0  
Da0  
Da1  
Da1  
Qa0  
Qa1  
Qb0  
Qb1  
Qb0  
Qb2  
(CL=2)  
Qa0  
Qa1  
Qb1 Qb2  
Qb3  
DQ  
(CL=3)  
Read without Auto  
precharge(B-Bank)  
Auto Precharge  
Start Point  
Read with  
Auto Pre  
charge  
Write with  
Auto Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Precharge  
(B-Bank)  
Row Active  
(A-Bank)  
(A-Bank)  
*Note 1  
(A-Bank)  
Row Active  
(B-Bank)  
: Don¢t care  
*Note:  
1. When Read(Write) command with auto precharge is issued at A-Bank after A and B Bank activation.  
- if Read(Write) command without auto precharge is issued at B-Bank before A Bank auto precharge starts, A Bank  
auto precharge will start at B Bank read command input point .  
- any command can not be issued at A Bank during tRP after A Bank auto precharge starts.  
Rev. 1.4 (Jun. 1999)  
- 38  
KM4132G112  
CMOS SGRAM  
Read & Write Cycle with Auto Precharge III @Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
RAS  
CAS  
Ra  
Ca  
Rb  
Cb  
ADDR  
BA  
A8/AP  
Rb  
Ra  
WE  
DSF  
DQM  
DQ  
Qa0  
Qa1  
Qa2  
Qa1  
Qa3  
Qa2  
Qb0  
Qb1  
Qb2  
Qb3  
(CL=2)  
DQ  
(CL=3)  
Qa0  
Qa3  
Qb0  
Qb1  
Qb2  
Qb3  
*Note 1  
Read with  
Auto Precharge  
(A-Bank)  
Auto Precharge  
Start Point  
(A-Bank)  
Row Active  
(A-Bank)  
Read with  
Auto Precharge  
(B-Bank)  
Auto Precharge  
Start Point  
(B-Bank)  
Row Active  
(B-Bank)  
: Don¢t care  
*Note :  
1. Any command to A-bank is not allowed in this period.  
tRP is determined from at auto precharge start point  
Rev. 1.4 (Jun. 1999)  
- 39  
KM4132G112  
CMOS SGRAM  
Read Interrupted by Precharge Command & Read Burst Stop Cycle (@Full page Only)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
RAS  
CAS  
RAa  
RAa  
CAa  
CAb  
ADDR  
BA  
*Note 1  
*Note 1  
A8/AP  
WE  
DSF  
DQM  
1
1
*Note 2  
DQ  
(CL=2)  
QAa0 QAa1 QAa2 QAa3 QAa4  
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5  
2
QAa0 QAa1 QAa2 QAa3 QAa4  
2
DQ  
(CL=3)  
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Burst Stop  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
: Don¢t care  
*Note :  
1. At full page mode, burst is wrap-around at the end of burst. So auto precharge is impossible.  
2. About the valid DQ¢s after burst stop, it is same as the case of RAS interrupt.  
Both cases are illustrated above timing diagram. See the label 1, 2 on them.  
But at burst write, Burst stop and RAS interrupt should be compared carefully.  
Refer the timing diagram of "Full page write burst stop cycle".  
Rev. 1.4 (Jun. 1999)  
- 40  
KM4132G112  
CMOS SGRAM  
Write Interrupted by Precharge Command & Write Burst Stop Cycle (@ Full page Only)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
HIGH  
CKE  
CS  
RAS  
CAS  
ADDR  
BA  
RAa  
CAa  
CAb  
*Note 1  
*Note 1  
RAa  
A8/AP  
tBDL  
*Note 5  
tRDL  
WE  
DSF  
*Note 3  
DQM  
DQ  
*Note 2  
DAa0 DAa1 DAa2 DAa3 DAa4  
DAb0 DAb1 DAb2 DAb3 DAb4 DAb5  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Burst Stop  
Write  
(A-Bank)  
Precharge  
(A-Bank)  
: Don¢t care  
*Note :  
1. At full page mode, burst is wrap-around at the end of burst. So auto precharge is impossible.  
2. Data-in at the cycle of burst stop command cannot be written into the corresponding memory cell.  
It is defined by AC parameter of tBDL(=1CLK).  
3. Data-in at the cycle of interrupted by precharge cannot be written into the corresponding memory cell.  
It is defined by AC parameter of tRDL(=2CLK).  
DQM at write interrupted by precharge command is needed to ensure tRDL of 2CLK.  
DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst.  
Input data after Row precharge cycle will be masked internally.  
4. Burst stop is valid only at full page burst length.  
5. For -C/6/7/8, tRDL=1CLK product can be supported within restricted amounts and it will be distinguished by bucket code "NV"  
.
From the next generation, tRDL will be only 2CLK for every clock frequency.  
Rev. 1.4 (Jun. 1999)  
- 41  
KM4132G112  
CMOS SGRAM  
Burst Read Single bit Write Cycle @Burst Length=2, BRSW  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
*Note 1  
HIGH  
CS  
RAS  
*Note 2  
CAS  
RAa  
RAa  
CAa RBb CAb  
RAc CBc  
CAd  
ADDR  
BA  
RBb  
RAc  
A8/AP  
WE  
DSF  
DQMi  
QAb0 QAb1  
QAd0 QAd1  
DQ  
DBc0  
DBc0  
DAa0  
DAa0  
(CL=2)  
QAb0 QAb1  
QAd0 QAd1  
DQ  
(CL=3)  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Write  
Write with  
(A-Bank)  
Auto Precharge  
(B-Bank)  
Read with  
Auto Precharge  
(A-Bank)  
: Don¢t care  
*Note :  
1. BRSW mode is enabled by setting A9 "High" at MRS (Mode Register Set).  
At the BRSW Mode, the burst length at write is fixed to "1" regardless of programed burst length.  
2. When BRSW write command with auto precharge is executed, keep it in mind that tRAS should not be violated.  
Auto precharge is executed at the burst-end cycle, so in the case of BRSW write command,  
the next cycle starts the precharge.  
3. WPB function is also possible at BRSW mode.  
Rev. 1.4 (Jun. 1999)  
- 42  
KM4132G112  
CMOS SGRAM  
Clock suspension & DQM operation cycle @CAS Latency=2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
CS  
RAS  
CAS  
ADDR  
Ra  
Ca  
Cb  
Cc  
BA  
Ra  
A8/AP  
WE  
DSF  
DQM  
DQ  
*Note 1  
Qb0 Qb1  
tSHZ  
Dc0  
Dc2  
Qa0 Qa1  
Qa2  
Qa3  
tSHZ  
Row Active  
Read  
Read  
Clock  
Suspension  
Write  
DQM  
Read DQM  
Write  
Clock  
Suspension  
: Don¢t care  
*Note : 1. DQM needed to prevent bus contention.  
Rev. 1.4 (Jun. 1999)  
- 43  
KM4132G112  
CMOS SGRAM  
Active/Precharge Power Down Mode @CAS Lantency=2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
*Note 2  
tSS  
tSS  
tSS  
tSS  
*Note 1  
*Note 3  
CS  
RAS  
CAS  
Ra  
Ca  
ADDR  
BA  
A8/AP  
WE  
Ra  
DSF  
DQM  
DQ  
Qa0 Qa1 Qa2  
Precharge  
Precharge  
Power-down  
Entry  
Precharge  
Power-down  
Exit  
Read  
Row Active  
Active  
Power-down  
Entry  
Active  
Power-down  
Exit  
: Don¢t care  
*Note :  
1. All banks should be in idle state prior to entering precharge power down mode.  
2. CKE should be set high at least "1CLK + tSS" prior to Row active command.  
3. Cannot violate minimum refresh specification. (32ms)  
Rev. 1.4 (Jun. 1999)  
- 44  
KM4132G112  
CMOS SGRAM  
Self Refresh Entry & Exit Cycle  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
*Note 4  
*Note 2  
tRCmin.  
*Note 6  
*Note 1  
tSS  
*Note 3  
tSS  
*Note 5  
CS  
RAS  
CAS  
*Note 7  
*Note 7  
ADDR  
BA  
A8/AP  
WE  
DSF  
DQM  
Hi-Z  
DQ  
Hi-Z  
Self Refresh Exit  
Self Refresh Entry  
*Note :  
Auto Refresh  
TO ENTER SELF REFRESH MODE  
1. CS, RAS & CAS with CKE should be low at the same clock cycle.  
: Don¢t care  
2. After 1 clock cycle, all the inputs including the system clock can be don¢t care except for CKE.  
3. The device remains in self refresh mode as long as CKE stays "Low".  
cf.) Once the device enters self refresh mode, minimum tRAS is required before exit from self refresh.  
TO EXIT SELF REFRESH MODE  
4. System clock restart and be stable before returning CKE high.  
5. CS starts from high.  
6. Minimum tRC is required after CKE going high to complete self refresh exit.  
7. 2K cycle of burst auto refresh is required before self refresh entry and after self refresh exit  
if the system uses burst refresh.  
Rev. 1.4 (Jun. 1999)  
- 45  
KM4132G112  
CMOS SGRAM  
Mode Register Set Cycle  
Auto Refresh Cycle  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
CLOCK  
CKE  
HIGH  
HIGH  
CS  
*Note 2  
tRC  
RAS  
CAS  
*Note 1  
*Note 3  
ADDR  
Key Ra  
WE  
DSF  
DQM  
DQ  
Hi-Z  
Hi-Z  
MRS New  
Command  
New Command  
Auto Refresh  
: Don¢t care  
* Both banks precharge should be completed before Mode Register Set cycle and auto refresh cycle.  
MODE REGISTER SET CYCLE  
*Note :  
1. CS, RAS, CAS, & WE activation and DSF of low at the same clock cycle with address key will set internal  
mode register.  
2. Minimum 1 clock cycles should be met before new RAS activation.  
3. Please refer to Mode Register Set table.  
Rev. 1.4 (Jun. 1999)  
- 46  
KM4132G112  
CMOS SGRAM  
FUNCTION TRUTH TABLE(TABLE 1)  
Current  
State  
CS  
RAS  
CAS  
WE  
DSF  
BA  
ADDR  
ACTION  
NOTE  
H
L
L
L
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
X
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
L
X
X
X
X
NOP  
NOP  
X
X
ILLEGAL  
ILLEGAL  
2
2
X
H
H
L
BA  
BA  
BA  
BA  
X
CA  
RA  
RA  
PA  
X
H
H
H
H
L
Row Active ; Latch Row Address ; Non-IO Mask  
L
H
L
Row Active ; Latch Row Address ; IO Mask  
IDLE  
L
NOP  
4
5
L
L
H
L
ILLEGAL  
L
H
H
L
X
X
Auto Refresh or Self Refresh  
L
L
H
L
X
X
ILLEGAL  
L
L
OP Code  
OP Code  
Mode Register Access  
5
6
L
L
L
H
X
X
X
L
Special Mode Register Access  
X
H
H
H
H
H
H
L
X
H
H
L
X
H
L
X
X
NOP  
X
X
X
X
NOP  
ILLEGAL  
2
2
6
3
H
H
L
BA  
X
CA,AP  
X
Begin Read ; Latch CA ; Determine AP  
ILLEGAL  
L
H
L
L
BA  
BA  
BA  
BA  
X
CA,AP  
CA,AP  
RA  
Begin Write ;Latch CA ; Determine AP  
Block Write ;Latch CA ; Determine AP  
ILLEGAL  
Row  
Active  
L
L
H
X
L
H
H
H
L
H
L
L
PA  
Precharge  
L
L
H
X
L
X
ILLEGAL  
L
H
L
X
X
ILLEGAL  
L
L
X
X
ILLEGAL  
L
L
L
H
X
X
L
OP Code  
Special Mode Register Access  
NOP(Continue Burst to End --> Row Active)  
NOP(Continue Burst to End --> Row Active)  
Term burst --> Row active  
ILLEGAL  
X
H
H
H
H
H
H
H
L
X
H
H
H
L
X
H
L
X
X
X
X
X
X
L
H
L
X
X
CA,AP  
X
H
H
L
BA  
X
Term burst ; Begin Read ; Latch CA ; Determine AP  
ILLEGAL  
L
H
L
Read  
L
BA  
BA  
BA  
BA  
X
CA,AP  
CA.AP  
RA  
Term burst ; Begin Write ; Latch CA ; Determine AP  
Term burst ; Block Write ; Latch CA ; Determine AP  
ILLEGAL  
3
3
2
3
L
L
H
X
L
H
H
H
L
H
L
L
PA  
Term Burst ; Precharge timing for Reads  
ILLEGAL  
L
L
H
X
X
X
L
X
L
X
X
H
L
X
X
ILLEGAL  
X
H
H
H
H
H
H
H
X
H
H
H
L
X
X
NOP(Continue Burst to End --> Row Active)  
NOP(Continue Burst to End --> Row Active)  
Term burst --> Row active  
ILLEGAL  
X
X
X
X
L
H
L
X
X
Write  
H
H
L
BA  
X
CA,AP  
X
Term burst ; Begin Read ; Latch CA ; Determine AP  
ILLEGAL  
3
L
H
L
L
BA  
BA  
CA,AP  
CA,AP  
Term burst ; Begin Write ; Latch CA ; Determine AP  
Term burst ; Block Write ; Latch CA ; Determine AP  
3
3
L
L
H
Rev. 1.4 (Jun. 1999)  
- 47  
KM4132G112  
CMOS SGRAM  
FUNCTION TRUTH TABLE(TABLE 1, Continued)  
Current  
State  
CS  
RAS  
CAS  
WE  
DSF  
BA  
ADDR  
ACTION  
NOTE  
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
H
H
L
H
L
X
L
BA  
BA  
X
RA  
ILLEGAL  
2
PA  
Term Burst : Precharge timing for Writes  
3
Write  
L
L
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
ILLEGAL  
L
X
X
H
L
X
X
ILLEGAL  
X
H
H
H
H
L
X
H
H
L
X
X
NOP(Continue Burst to End --> Precharge)  
X
X
NOP(Continue Burst to End --> Precharge)  
Read with  
Auto  
Precharge  
X
X
ILLEGAL  
H
L
BA  
BA  
BA  
X
CA,AP  
ILLEGAL  
2
2
L
CA,AP  
ILLEGAL  
H
L
X
X
X
H
L
RA,PA  
ILLEGAL  
L
X
ILLEGAL  
2
X
H
H
H
H
L
X
H
H
L
X
X
NOP(Continue Burst to End --> Precharge)  
X
X
NOP(Continue Burst to End --> Precharge)  
Write with  
Auto  
Precharge  
X
X
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
H
L
BA  
BA  
BA  
X
CA,AP  
2
2
L
CA,AP  
H
L
X
X
X
H
L
RA,PA  
L
X
2
X
H
H
H
L
X
H
H
L
X
X
NOP --> Idle after tRP  
NOP --> Idle after tRP  
ILLEGAL  
X
X
X
X
Precharging  
X
H
L
BA  
BA  
BA  
X
CA,AP  
ILLEGAL  
ILLEGAL  
2
2
2
4
H
H
L
RA  
L
PA  
NOP --> Idle after tRP  
ILLEGAL  
L
X
X
H
L
X
X
H
H
H
L
X
H
H
L
X
X
NOP --> Row Active after tBWC  
NOP --> Row Active after tBWC  
ILLEGAL  
X
X
Block  
Write  
Recovering  
X
X
CA,AP  
RA  
PA  
X
X
H
L
BA  
BA  
BA  
X
ILLEGAL  
2
2
2
2
H
H
L
ILLEGAL  
L
Term Block Write : Precharge timing for Block Write  
ILLEGAL  
L
X
X
H
L
X
H
H
H
L
X
H
H
L
X
X
NOP --> Row Active after tRCD  
NOP --> Row Active after tRCD  
ILLEGAL  
X
X
X
X
Row  
Activating  
X
H
L
BA  
BA  
BA  
X
CA,AP  
RA  
PA  
X
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
2
2
2
2
H
H
L
L
L
X
X
X
X
X
X
X
H
H
L
X
H
L
X
X
NOP --> Idle after tRC  
NOP --> Idle after tRC  
ILLEGAL  
X
X
Refreshing  
X
X
H
L
X
X
ILLEGAL  
ILLEGAL  
L
X
X
Rev. 1.4 (Jun. 1999)  
- 48  
KM4132G112  
CMOS SGRAM  
FUNCTION TRUTH TABLE (TABLE 1, Continued)  
ABBREVIATIONS  
RA = Row Address(A0~A10)  
NOP = No Operation Command  
BA = Bank Address  
CA = Column Address(A0~A7)  
PA = Precharge All(A8)  
AP = Auto Precharge(A8)  
*Note :  
1. All entries assume that CKE was active(High) during the preceding clock cycle and the current clock cycle.  
2. Illegal to bank in specified state ; Function may be legal in the bank indicated by BA, depending on the state of that bank.  
3. Must satisfy bus contention, bus turn around, and/or write recovery requirements.  
4. NOP to bank precharging or in idle state. May precharge bank indicated by BA(and PA).  
5. Illegal if any banks is not idle.  
6. Legal only if all banks are in idle or row active state.  
FUNCTION TRUTH TABLE for CKE(TABLE 2)  
Current  
State  
CKE  
n-1  
CKE  
n
CS  
RAS  
CAS  
WE  
DSF  
ADDR  
ACTION  
NOTE  
H
L
X
H
H
H
H
H
L
X
H
L
X
X
H
H
H
L
X
X
H
H
L
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
X
INVALID  
X
7
7
Exit Self Refresh --> ABI after tRC  
Exit Self Refresh --> ABI after tRC  
ILLEGAL  
L
X
Self  
Refresh  
L
L
X
L
L
X
X
X
X
X
H
L
X
ILLEGAL  
L
L
X
X
X
X
H
H
L
X
ILLEGAL  
L
X
X
H
L
X
X
X
H
H
H
L
X
NOP(Maintain Self Refresh)  
INVALID  
H
L
X
H
H
H
H
H
L
X
X
Exit Power Down --> ABI  
Exit Power Down --> ABI  
ILLEGAL  
8
8
Both  
Bank  
Precharge  
Power  
L
X
L
L
X
L
L
X
X
X
X
X
H
L
X
ILLEGAL  
Down  
L
L
X
X
X
X
H
H
L
X
ILLEGAL  
L
X
X
H
L
X
X
X
H
H
H
L
X
NOP(Maintain Power Down Mode)  
Refer to Table 1  
H
H
H
H
H
H
H
H
H
L
H
L
X
X
Enter Power Down  
Enter Power Down  
ILLEGAL  
9
9
L
X
L
L
X
All  
Banks  
Idle  
L
L
X
H
H
L
X
ILLEGAL  
L
L
H
L
RA  
Row (& Bank) Active  
Enter Self Refresh  
Mode Register Access  
Special Mode Register Access  
NOP  
L
L
L
L
X
9
L
L
L
L
L
OP Code  
L
L
L
L
L
H
X
X
X
X
X
OP Code  
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
H
L
H
L
Refer to Operations in Table 1  
Begin Clock Suspend next cycle  
Exit Clock Suspend next cycle  
Maintain clock Suspend  
Any State  
other than  
Listed  
10  
10  
H
L
Above  
L
ABBREVIATIONS : ABI = All Banks Idle  
*Note :  
7. After CKE¢s low to high transition to exist self refresh mode. And a time of tRC(min) has to be elapse after CKE¢s low to high  
transition to issue a new command.  
8. CKE low to high transition is asynchronous as if restarts internal clock.  
A minimum setup time "tSS + one clock" must be satisfied before any command other than exit.  
9. Power-down and self refresh can be entered only from the all banks idle state.  
10. Must be a legal command.  
Rev. 1.4 (Jun. 1999)  
- 49  
KM4132G112  
CMOS SGRAM  
PACKAGE DIMENSIONS (TQFP)  
Dimensions in Millimeters  
0 ~ 7°  
17.20 ± 0.20  
14.00 ± 0.10  
#100  
#1  
23.20 ± 0.20  
20.00 ± 0.10  
0.825  
0.09~0.20  
0.30 ± 0.08  
0.65  
0.13 MAX  
1.00 ± 0.10  
1.20 MAX *  
0.10 MAX  
0.05 MIN  
0.80 ± 0.20  
* All Package Dimensions of PQFP & TQFP are same except Height.  
- PQFP (Height = 3.0mmMAX)  
- TQFP (Height = 1.2mmMAX)  
Rev. 1.4 (Jun. 1999)  
- 50  

相关型号:

KM4132G112Q-FC

Synchronous Graphics RAM, 1MX32, 5ns, CMOS, PQFP100, 14 X 20 MM, PLASTIC, QFP-100
SAMSUNG

KM4132G112TQ-6/F6

Video DRAM, 1MX32, 5.5ns, CMOS, PQFP100, 14 X 20 MM, 1.20 MM HEIGHT, 0.65 MM PITCH, TQFP-100
SAMSUNG

KM4132G112TQ-8/F8

Video DRAM, 1MX32, 6ns, CMOS, PQFP100, 14 X 20 MM, 1.20 MM HEIGHT, 0.65 MM PITCH, TQFP-100
SAMSUNG

KM4132G271A

128K x 32Bit x 2 Banks Synchronous Graphic RAM
SAMSUNG

KM4132G271A-10

128K x 32Bit x 2 Banks Synchronous Graphic RAM
SAMSUNG

KM4132G271A-12

128K x 32Bit x 2 Banks Synchronous Graphic RAM
SAMSUNG

KM4132G271A-8

128K x 32Bit x 2 Banks Synchronous Graphic RAM
SAMSUNG

KM4132G271AQ-10

128K x 32Bit x 2 Banks Synchronous Graphic RAM
SAMSUNG

KM4132G271AQ-7

Video DRAM, 256KX32, 70ns, CMOS, PQFP100, 14 X 20 MM, PLASTIC, QFP-100
SAMSUNG

KM4132G271AQ-8

Video DRAM, 256KX32, 80ns, CMOS, PQFP100, 14 X 20 MM, PLASTIC, QFP-100
SAMSUNG

KM4132G271B

128K x 32bit x 2 Banks Synchronous Graphic RAM LVTTL
SAMSUNG

KM4132G271BQ(R)-10

128K x 32bit x 2 Banks Synchronous Graphic RAM LVTTL
SAMSUNG