K7R320984C-FC30 [SAMSUNG]

Standard SRAM, 4MX9, 0.45ns, CMOS, PBGA165;
K7R320984C-FC30
型号: K7R320984C-FC30
厂家: SAMSUNG    SAMSUNG
描述:

Standard SRAM, 4MX9, 0.45ns, CMOS, PBGA165

静态存储器
文件: 总20页 (文件大小:457K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
36Mb QDRII SRAM Specification  
165 FBGA with Pb & Pb-Free  
(RoHS compliant)  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY.  
ALL INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or simi-  
lar applications where Product failure could result in loss of life or personal or physical harm, or any military  
or defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
Rev. 1.1 August 2006  
- 1 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
Document Title  
1Mx36-bit, 2Mx18 and 4Mx9-bit QDRTM II b4 SRAM  
Revision History  
Draft Date  
Remark  
Advance  
Preliminary  
Rev. No.  
History  
Jan. 17, 2006  
Apr. 26. 2006  
0.0  
1. Initial document.  
0.1  
1. Put the data in the table of DC Characteristics, Pin Capacitance  
and Thermal Resistance.  
Preliminary  
May. 4. 2006  
0.2  
1. Add 300MHz Bin  
2. Change AC Characteristics.  
Preliminary  
Preliminary  
Final  
Jun. 05, 2006  
Jun. 15, 2006  
Jul. 10, 2006  
0.3  
0.4  
1.0  
1. Change Samsung JEDEC Code in ID REGISTER DEFINITION  
1. Add x9 Organization.  
1. Final  
2. Change Vss/SA to NC/SA in Pin Configuration  
Final  
Aug. 23, 2006  
1.1  
1. Correct typo  
Rev. 1.1 August 2006  
- 2 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
TM  
1Mx36-bit, 2Mx18 and 4Mx9-bit QDR II b4 SRAM  
FEATURES  
• 1.8V+0.1V/-0.1V Power Supply.  
Part  
Cycle Access  
Time Time  
• DLL circuitry for wide output data valid window and future fre-  
quency scaling.  
Org.  
Unit  
Number  
• I/O Supply Voltage 1.5V+0.1V/-0.1V for 1.5V I/O,  
1.8V+0.1V/-0.1V for 1.8V I/O.  
• Separate independent read and write data ports  
with concurrent read and write operation  
• HSTL I/O  
• Full data coherency, providing most current data.  
• Synchronous pipeline read with self timed late write.  
• Registered address, control and data input/output.  
• DDR (Double Data Rate) Interface on read and write ports.  
• Fixed 4-bit burst for both read and write operation.  
• Clock-stop supports to reduce current.  
• Two input clocks (K and K) for accurate DDR timing at clock  
rising edges only.  
K7R323684C-F(E)C(I)33 3.0  
K7R323684C-F(E)C(I)30 3.3  
K7R323684C-F(E)C(I)25 4.0  
K7R321884C-F(E)C(I)33 3.0  
K7R321884C-F(E)C(I)30 3.3  
K7R321884C-F(E)C(I)25 4.0  
K7R320984C-F(E)C(I)33 3.0  
K7R320984C-F(E)C(I)30 3.3  
K7R320984C-F(E)C(I)25 4.0  
0.45  
0.45  
0.45  
0.45  
0.45  
0.45  
0.45  
0.45  
0.45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
X36  
X18  
X9  
• Two input clocks for output data (C and C) to minimize  
clock-skew and flight-time mismatches.  
• Two echo clocks (CQ and CQ) to enhance output data  
traceability.  
* -F(E)C(I)  
F(E) [Package type] : E-Pb Free, F-Pb  
C(I) [Operating Temperature] : C-Commercial, I-Industrial  
• Single address bus.  
• Byte write (x9, x18, x36) function.  
• Separate read/write control pin (R and W)  
• Simple depth expansion with no data contention.  
• Programmable output impedance.  
• JTAG 1149.1 compatible test access port.  
• 165FBGA(11x15 ball array) with body size of 15mmx17mm.  
& Lead Free  
• Operating in commercial and industrial temperature range.  
FUNCTIONAL BLOCK DIAGRAM  
36 (or 18)  
DATA  
REG  
D (Data in)  
72(or 36)  
72(or 36)  
WRITE DRIVER  
18  
18 (or 19,20)  
(or 19,20)  
ADD  
REG  
ADDRESS  
R
W
BWX  
72  
144  
1Mx36  
(2Mx18  
4Mx9)  
(or 36)  
36 (or 18)  
(or 72)  
CTRL  
Q (Data Out)  
LOGIC  
MEMORY  
ARRAY  
72  
4 (or 2)  
CQ, CQ  
(or 36)  
(Echo Clock out)  
K
K
CLK  
GEN  
C
C
SELECT OUTPUT CONTROL  
Notes: 1. Numbers in ( ) are for x18,x9 device  
QDR SRAM and Quad Data Rate comprise a new family of products developed by Cypress, Renesas, IDT, NEC and Samsung technology.  
Rev. 1.1 August 2006  
- 3 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
PIN CONFIGURATIONS(TOP VIEW) K7R323684C(1Mx36)  
1
2
NC/SA*  
Q18  
Q28  
D20  
D29  
Q21  
D22  
VREF  
Q31  
D32  
Q24  
Q34  
D26  
D35  
TCK  
3
NC/SA*  
D18  
D19  
Q19  
Q20  
D21  
Q22  
VDDQ  
D23  
Q23  
D24  
D25  
Q25  
Q26  
SA  
4
5
6
7
8
9
10  
NC/SA*  
Q17  
Q7  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
B
C
D
E
F
CQ  
W
BW2  
BW3  
SA  
K
BW1  
BW0  
SA  
R
SA  
Q27  
D27  
D28  
Q29  
Q30  
D30  
Doff  
D31  
Q32  
Q33  
D33  
D34  
Q35  
TDO  
SA  
K
SA  
D17  
D16  
Q16  
Q15  
D14  
Q13  
VDDQ  
D12  
Q12  
D11  
D10  
Q10  
Q9  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
SA  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
D15  
D6  
Q14  
D13  
VREF  
Q4  
G
H
J
K
L
D3  
Q11  
Q1  
M
N
P
R
D9  
SA  
SA  
D0  
SA  
SA  
C
SA  
SA  
SA  
TMS  
Notes : 1. * Checked No Connect (NC) pins are reserved for higher density address, i.e. 3A for 72Mb, 10A for 144Mb and 2A for 288Mb.  
2. BW0 controls write to D0:D8, BW1 controls write to D9:D17, BW2 controls write to D18:D26 and BW3 controls write to D27:D35.  
PIN NAME  
SYMBOL  
K, K  
PIN NUMBERS  
DESCRIPTION  
Input Clock  
NOTE  
6B, 6A  
C, C  
CQ, CQ  
Doff  
6P, 6R  
11A, 1A  
1H  
Input Clock for Output Data  
Output Echo Clock  
DLL Disable when low  
Address Inputs  
1
SA  
9A,4B,8B,5C,7C,5N-7N,4P,5P,7P,8P,3R-5R,7R-9R  
10P,11N,11M,10K,11J,11G,10E,11D,11C,10N,9M,9L  
9J,10G,9F,10D,9C,9B,3B,3C,2D,3F,2G,3J,3L,3M,2N  
1C,1D,2E,1G,1J,2K,1M,1N,2P  
D0-35  
Data Inputs  
11P,10M,11L,11K,10J,11F,11E,10C,11B,9P,9N,10L  
9K,9G,10F,9E,9D,10B,2B,3D,3E,2F,3G,3K,2L,3N  
3P,1B,2C,1E,1F,2J,1K,1L,2M,1P  
Q0-35  
Data Outputs  
W
R
4A  
8A  
Write Control Pin, active when low  
Read Control Pin, active when low  
Block Write Control Pin, active when low  
Input Reference Voltage  
Output Driver Impedance Control Input  
Power Supply (1.8 V)  
BW0, BW1,BW2, BW3  
7B,7A,5A,5B  
2H,10H  
VREF  
ZQ  
VDD  
VDDQ  
VSS  
11H  
2
3
5F,7F,5G,7G,5H,7H,5J,7J,5K,7K  
4E,8E,4F,8F,4G,8G,3H,4H,8H,9H,4J,8J,4K,8K,4L,8L  
4C,8C,4D-8D,5E-7E,6F,6G,6H,6J,6K,5L-7L,4M, 8M,4N,8N  
Output Power Supply (1.5V or 1.8V)  
Ground  
TMS  
TDI  
TCK  
TDO  
NC  
10R  
11R  
2R  
1R  
JTAG Test Mode Select  
JTAG Test Data Input  
JTAG Test Clock  
JTAG Test Data Output  
No Connect  
2A,3A,10A,6C  
Notes: 1. C, C, K or K cannot be set to VREF voltage.  
2. When ZQ pin is directly connected to VDD output impedance is set to minimum value and it cannot be connected to ground or left unconnected  
3. Not connected to chip pad internally.  
.
Rev. 1.1 August 2006  
- 4 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
PIN CONFIGURATIONS(TOP VIEW) K7R321884C(2Mx18)  
1
2
NC/SA*  
Q9  
3
4
5
6
7
8
9
SA  
10  
NC/SA*  
NC  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
B
C
D
E
F
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
SA  
W
BW1  
NC  
K
NC  
R
D9  
SA  
K
BW0  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
NC  
D10  
Q10  
Q11  
D12  
Q13  
VDDQ  
D14  
Q14  
D15  
D16  
Q16  
Q17  
SA  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
SA  
SA  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
SA  
Q7  
D11  
NC  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
NC  
D6  
Q12  
D13  
VREF  
NC  
NC  
G
H
J
NC  
VREF  
Q4  
K
L
NC  
D3  
Q15  
NC  
NC  
M
N
P
R
Q1  
D17  
NC  
NC  
SA  
SA  
D0  
TCK  
SA  
SA  
C
SA  
SA  
TMS  
Notes: 1. * Checked No Connect (NC) pins are reserved for higher density address, i.e. 10A for 72Mb and 2A for 144Mb.  
2. BW0 controls write to D0:D8 and BW1 controls write to D9:D17.  
PIN NAME  
SYMBOL  
K, K  
PIN NUMBERS  
DESCRIPTION  
Input Clock  
NOTE  
6B, 6A  
C, C  
CQ, CQ  
Doff  
6P, 6R  
11A, 1A  
1H  
Input Clock for Output Data  
Output Echo Clock  
DLL Disable when low  
Address Inputs  
1
SA  
3A,9A,4B,8B,5C,7C,5N-7N,4P,5P,7P,8P,3R-5R,7R-9R  
10P,11N,11M,10K,11J,11G,10E,11D,11C,3B,3C,2D  
3F,2G,3J,3L,3M,2N  
D0-17  
Data Inputs  
11P,10M,11L,11K,10J,11F,11E,10C,11B,2B,3D,3E  
2F,3G,3K,2L,3N,3P  
Q0-17  
Data Outputs  
W
R
4A  
8A  
7B, 5A  
2H,10H  
11H  
Write Control Pin, active when low  
Read Control Pin, active when low  
Block Write Control Pin, active when low  
Input Reference Voltage  
Output Driver Impedance Control Input  
Power Supply (1.8 V)  
BW0, BW1  
VREF  
ZQ  
2
VDD  
5F,7F,5G,7G,5H,7H,5J,7J,5K,7K  
VDDQ  
VSS  
4E,8E,4F,8F,4G,8G,3H,4H,8H,9H,4J,8J,4K,8K,4L,8L  
Output Power Supply (1.5V or 1.8V)  
Ground  
4C,8C,4D-8D,5E-7E,6F,6G,6H,6J,6K,5L-7L,4M-8M,4N,8N  
TMS  
TDI  
TCK  
TDO  
10R  
11R  
2R  
JTAG Test Mode Select  
JTAG Test Data Input  
JTAG Test Clock  
1R  
JTAG Test Data Output  
2A,10A,7A,1B,5B,9B,10B,1C,2C,6C,9C,1D,9D,10D,1E,2E,9E,1F  
9F,10F,1G,9G,10G,1J,2J,9J,1K,2K,9K,1L,9L,10L,1M  
2M,9M,1N,9N,10N,1P,2P,9P  
NC  
No Connect  
3
Notes: 1. C, C, K or K cannot be set to VREF voltage.  
2. When ZQ pin is directly connected to VDD output impedance is set to minimum value and it cannot be connected to ground or left unconnected  
3. Not connected to chip pad internally.  
.
Rev. 1.1 August 2006  
- 5 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
PIN CONFIGURATIONS(TOP VIEW) K7R360984C(4Mx9)  
1
2
NC/SA*  
NC  
3
SA  
NC  
NC  
NC  
Q4  
NC  
Q5  
VDDQ  
NC  
NC  
D6  
4
5
6
7
8
9
SA  
10  
SA  
11  
CQ  
Q3  
D3  
NC  
Q2  
NC  
NC  
ZQ  
D1  
NC  
Q0  
D0  
NC  
Q8  
TDI  
A
B
C
D
E
F
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
W
NC  
NC  
SA  
K
NC  
BW  
SA  
R
SA  
K
SA  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
NC  
D2  
NC  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
SA  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
SA  
D4  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
NC  
NC  
NC  
NC  
VREF  
Q1  
G
H
J
D5  
VREF  
NC  
K
L
NC  
NC  
NC  
NC  
NC  
D8  
Q6  
M
N
P
R
NC  
NC  
NC  
Q7  
SA  
D7  
NC  
SA  
SA  
TCK  
SA  
SA  
C
SA  
SA  
TMS  
Notes: 1. * Checked No Connect (NC) pins are reserved for higher density address, i.e. 2A for 72Mb.  
2. BW controls write to D0:D8 .  
PIN NAME  
SYMBOL  
K, K  
PIN NUMBERS  
DESCRIPTION  
Input Clock  
NOTE  
6B, 6A  
C, C  
CQ, CQ  
Doff  
SA  
D0-8  
6P, 6R  
11A, 1A  
1H  
Input Clock for Output Data  
Output Echo Clock  
DLL Disable when low  
Address Inputs  
1
3A,9A,10A,4B,8B,5C,7C,5N-7N,4P,5P,7P,8P,3R-5R,7R-9R  
11M,11J,10E,11C,2D,2G,3L,2N,10P  
11L,10J,11E,11B,3E,3G,2L,3P,11P  
Data Inputs  
Data Outputs  
Q0-8  
W
R
BW  
VREF  
ZQ  
VDD  
VDDQ  
VSS  
TMS  
TDI  
TCK  
TDO  
4A  
8A  
7B  
2H,10H  
Write Control Pin, active when low  
Read Control Pin, active when low  
Nybble Write Control Pin, active when low  
Input Reference Voltage  
Output Driver Impedance Control Input  
Power Supply (1.8 V)  
11H  
2
5F,7F,5G,7G,5H,7H,5J,7J,5K,7K  
4E,8E,4F,8F,4G,8G,3H,4H,8H,9H,4J,8J,4K,8K,4L,8L  
4C,8C,4D-8D,5E-7E,6F,6G,6H,6J,6K,5L-7L,4M-8M,4N,8N  
Output Power Supply (1.5V or 1.8V)  
Ground  
10R  
11R  
2R  
JTAG Test Mode Select  
JTAG Test Data Input  
JTAG Test Clock  
JTAG Test Data Output  
1R  
2A,7A,5A,1B,2B,3B,5B,9B,10B,1C,2C,3C,6C,9C,10C,1D,3D,9D,  
10D,11D,1E,2E,9E,1F,2F,3F,9F,10F,11F,1G,9G,10G,11G,1J,2J,  
3J,9J,1K,2K,3K,10K,11K,9K,1L,9L,10L,1M,2M,3M,9M,10M,1N,3N  
,9N,10N,11N,1P,2P,9P  
NC  
No Connect  
3
Notes: 1. C, C, K or K cannot be set to VREF voltage.  
2. When ZQ pin is directly connected to VDD output impedance is set to minimum value and it cannot be connected to ground or left unconnected  
3. Not connected to chip pad internally.  
.
Rev. 1.1 August 2006  
- 6 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
GENERAL DESCRIPTION  
The K7R323684C, K7R321884C and K7R320984C are 37,748,736-bits QDR (Quad Data Rate) Synchronous Pipelined Burst  
SRAMs. They are organized as 1,048,576 words by 36bits for K7R323684C and 2,097,152 words by 18 bits for K7R321884C and  
4,194,304 words by 9 bits for K7R320984C.  
The QDR operation is possible by supporting DDR read and write operations through separate data output and input ports with the  
same cycle. Memory bandwidth is maximized as data can be transferred into SRAM on every rising edge of K and K, and transferred  
out of SRAM on every rising edge of C and C. And totally independent read and write ports eliminate the need for high speed bus turn  
around.  
Address for read and write are latched on alternate rising edges of the input clock K. Data inputs, and all control signals are synchro-  
nized to the input clock (K or K). Normally data outputs are synchronized to output clocks (C and C), but when C and C are tied high,  
the data outputs are synchronized to the input clocks (K and K). Read data are referenced to echo clock (CQ or CQ) outputs.  
Common address bus is used to access address both for read and write operations. The internal burst counter is fixed to 4-bit  
sequential for both read and write operations, requiring tow full clock bus cycles. Any request that attempts to interrupt a burst opera-  
tion in progress is ignored. Synchronous pipeline read and late write enable high speed operations. Simple depth expansion is  
accomplished by using R and W for port selection. Byte write operation is supported with BW0 and BW1 (BW2 and BW3) pins. IEEE  
1149.1 serial boundary scan (JTAG) simplifies monitoring package pads attachment status with system.  
The K7R323684C, K7R321884C and K7R320984C are implemented with SAMSUNG's high performance 6T CMOS technology and  
is available in 165pin FBGA packages. Multiple power and ground pins minimize ground bounce.  
Read Operations  
Read cycles are initiated by activating R at the rising edge of the positive input clock K. Address is presented and stored in the read  
address register synchronized with K clock. For 4-bit burst DDR operation, it will access four 36-bit, 18-bit or 9-bit data words with  
each read command.  
The first pipelined data is transferred out of the device triggered by C clock following next K clock rising edge. Next burst data is trig-  
gered by the rising edge of following C clock rising edge. The process continues until all four data are transferred. Continuous read  
operations are initiated with K clock rising edge. And pipelined data are transferred out of device on every rising edge of both C and  
C clocks. In case C and C tied to high, output data are triggered by K and K instead of C and C.  
When the R is disabled after a read operation, the K7R323684C, K7R321884C and K7R320984C will first complete burst read oper-  
ation before entering into deselect mode at the next K clock rising edge. Then output drivers disabled automatically to high imped-  
ance state.  
Write Operations  
Write cycles are initiated by activating W at the rising edge of the positive input clock K. Address is presented and stored in the write  
address register synchronized with K clock. For 4-bit burst DDR operation, it will write four 36-bit, 18-bit or 9-bit data words with each  
write command.  
The first “late” data is transferred and registered in to the device synchronous with next K clock rising edge. Next burst data is trans-  
ferred and registered synchronous with following K clock rising edge. The process continues until all four data are transferred and  
registered. Continuous write operations are initiated with K rising edge. And “late write” data is presented to the device on every ris-  
ing edge of both K and K clocks.  
The device disregards input data presented on the same cycle W disabled. When the W is disabled after a read operation, the  
K7R323684C, K7R321884C and K7R320984C will first complete burst read operation before entering into deselect mode at the next  
K clock rising edge.  
The K7R323684C, K7R321884C and K7R320984C support byte write operations. With activating BW0 or BW1 (BW2 or BW3) in write  
cycle, only one byte of input data is presented. In K7R321884C, BW0 controls write operation to D0:D8, BW1 controls write operation  
to D9:D17. And in K7R323684C BW2 controls write operation to D18:D26, BW3 controls write operation to D27:D35. And in  
K7R320984C BW controls write operation to D0:D8.  
Rev. 1.1 August 2006  
- 7 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
Single Clock Mode  
The K7R323684C, K7R321884C and K7R320984C can be operated with the single clock pair K and K, instead of C or C for output  
clocks. To operate these devices in single clock mode, C and C must be tied high during power up and must be maintained high dur-  
ing operation. After power up, this device can’t change to or from single clock mode. System flight time and clock skew could not be  
compensated in this mode.  
Depth Expansion  
Separate input and output ports enables easy depth expansion. Each port can be selected and deselected independently and read  
and write operation do not affect each other. Before chip deselected, all read and write pending operations are completed.  
Programmable Impedance Output Buffer Operation  
The designer can program the SRAM's output buffer impedance by terminating the ZQ pin to VSS through a precision resistor(RQ).  
The value of RQ (within 15%) is five times the output impedance desired. For example, 250resistor will give an output impedance  
of 50.  
Impedance updates occur early in cycles that do not activate the outputs, such as deselect cycles. In all cases impedance updates  
are transparent to the user and do not produce access time "push-outs" or other anomalous behavior in the SRAM.  
There are no power up requirements for the SRAM. However, to guarantee optimum output driver impedance after power up, the  
SRAM needs 1024 non-read cycles.  
Echo clock operation  
To assure the output traceability, the SRAM provides the output Echo clock, pair of compliment clock CQ and CQ, which are syn-  
chronized with internal data output. Echo clocks run free during normal operation.  
The Echo clock is triggered by internal output clock signal, and transferred to external through same structures as output driver.  
Clock Consideration  
K7R323684C, K7R321884C and K7R320984C utilizes internal DLL (Delay-Locked Loops) for maximum output data valid window. It  
can be placed into a stopped-clock state to minimize power with a modest restart time of 1024 clock cycles.  
Circuitry automatically resets the DLL when absence of input clock is detected.  
Power-Up/Power-Down Supply Voltage Sequencing  
The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDDQ can be applied  
simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-up. The following power-down supply voltage  
removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ can be removed simultaneously, as long as VDDQ  
does not exceed VDD by more than 0.5V during power-down.  
Rev. 1.1 August 2006  
- 8 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
Detail Specification of Power-Up Sequence in QDRII SRAM  
QDRII SRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.  
Power-Up Sequence  
1. Apply power and keep Doff at low state (All other inputs may be undefined)  
- Apply VDD before VDDQ  
- Apply VDDQ before VREF or the same time with VREF  
2. Just after the stable power and clock (K, K, C, C), take Doff to be high.  
3. The additional 1024cycles of clock input is required to lock the DLL after enabling DLL  
* Notes: If you want to tie up the Doff pin to High with unstable clock, then you must stop the clock for a few seconds  
(Min. 30ns) to reset the DLL after it become a stable clock status.  
DLL Constraints  
1. DLL uses either K or C clock as its synchronizing input, the input should have low phase jitter which is specified as TKC var.  
2. The lower end of the frequency at which the DLL can operate is 8.4ns.  
3. If the incoming clock is unstable and the DLL is enabled, then the DLL may lock onto a wrong frequency  
and this may cause the failure in the initial stage.  
Power up & Initialization Sequence (Doff pin controlled)  
K,K  
1024 cycle  
Unstable  
Any  
Power-Up  
DLL Locking Range  
Inputs Clock  
Status  
CLKstage  
Command  
must be stable  
V
DD  
V
DDQ  
V
REF  
Doff  
Power up & Initialization Sequence (Doff pin Fixed high, Clock controlled)  
K,K  
Min 30ns  
1024 cycle  
Unstable  
Any  
Stop Clock  
Power-Up  
DLL Locking Range  
Inputs Clock  
Status  
CLKstage  
Command  
must be stable  
V
DD  
V
DDQ  
V
REF  
* Notes: When the operating frequency is changed, DLL reset should be required again.  
After DLL reset again, the minimum 1024 cycles of clock input is needed to lock the DLL.  
Rev. 1.1 August 2006  
- 9 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
TRUTH TABLES  
SYNCHRONOUS TRUTH TABLE  
D
Q
K
R
W
OPERATION  
D(A1)  
D(A2)  
D(A3)  
D(A4)  
Q(A1)  
Q(A2)  
Q(A3)  
Q(A4)  
Previous Previous Previous Previous Previous Previous Previous Previous  
Stopped  
X
H
X
H
X
Clock Stop  
state  
state  
state  
state  
state  
High-Z  
DOUT  
state  
High-Z  
DOUT  
state  
High-Z  
DOUT  
state  
X
X
X
X
High-Z No Operation  
DOUT  
Read  
L4  
X
X
X
X
at C(t+1) at C(t+2) at C(t+2) at C(t+3)  
Din  
Din  
Din  
Din  
H5  
L4  
X
X
X
X
Write  
at K(t+1) at K(t+1) at K(t+2) at K(t+2)  
Notes: 1. X means "Dont Care”.  
2. The rising edge of clock is symbolized by ( ).  
3. Before enter into clock stop status, all pending read and write operations will be completed.  
4. This signal was HIGH on previous K clock rising edge. Initiating consecutive READ or WRITE operations on consecutive K clock rising edges  
is not permitted. The device will ignore the second request.  
5. If this signal was LOW to initiated the previous cycle, this signal becomes a dont care for this operation however it is strongly recommended  
that this signal is brought HIGH as shown in the truth table.  
WRITE TRUTH TABLE(x18)  
K
K
BW0  
L
BW1  
L
OPERATION  
WRITE ALL BYTEs ( K↑ )  
WRITE ALL BYTEs ( K↑ )  
WRITE BYTE 0 ( K↑ )  
L
L
L
H
L
H
WRITE BYTE 0 ( K↑ )  
H
L
WRITE BYTE 1 ( K↑ )  
H
L
WRITE BYTE 1 ( K↑ )  
H
H
WRITE NOTHING ( K↑ )  
WRITE NOTHING ( K↑ )  
H
H
Notes: 1. X means “Dont Care”.  
2. All inputs in this table must meet setup and hold time around the rising edge of input clock K or K ( ).  
3. Assumes a WRITE cycle was initiated.  
4. This table illustrates operation for x18 devices. x9 device operation is similar except that BW controls D0:D8.  
WRITE TRUTH TABLE(x36)  
K
K
BW0  
L
BW1  
L
BW2  
L
BW3  
L
OPERATION  
WRITE ALL BYTEs ( K↑ )  
WRITE ALL BYTEs ( K↑ )  
WRITE BYTE 0 ( K↑ )  
L
L
L
L
L
H
H
L
H
H
H
H
L
H
H
H
H
L
L
WRITE BYTE 0 ( K↑ )  
H
H
H
H
H
H
WRITE BYTE 1 ( K↑ )  
L
WRITE BYTE 1 ( K↑ )  
H
H
H
H
WRITE BYTE 2 and BYTE 3 ( K↑ )  
WRITE BYTE 2 and BYTE 3 ( K↑ )  
WRITE NOTHING ( K↑ )  
WRITE NOTHING ( K↑ )  
L
L
H
H
H
H
Notes: 1. X means “Dont Care”.  
2. All inputs in this table must meet setup and hold time around the rising edge of input clock K or K ().  
3. Assumes a WRITE cycle was initiated.  
Rev. 1.1 August 2006  
- 10 -  
K7R323684C  
K7R321884C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
K7R320984C  
ABSOLUTE MAXIMUM RATINGS*  
PARAMETER  
Voltage on VDD Supply Relative to VSS  
Voltage on VDDQ Supply Relative to VSS  
Voltage on Input Pin Relative to VSS  
Storage Temperature  
SYMBOL  
VDD  
RATING  
-0.5 to 2.9  
UNIT  
V
VDDQ  
VIN  
-0.5 to VDD  
V
-0.5 to VDD+0.3  
-65 to 150  
V
TSTG  
TOPR  
TBIAS  
°C  
°C  
°C  
Operating Temperature  
Commercial / Industrial  
0 to 70 / -40 to 85  
-10 to 85  
Storage Temperature Range Under Bias  
*Note: 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification  
is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2. VDDQ must not exceed VDD during normal operation.  
OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
VDD  
Min  
1.7  
MAX  
1.9  
UNIT  
V
V
V
Supply Voltage  
Reference Voltage  
VDDQ  
1.4  
1.9  
VREF  
0.68  
0.95  
DC ELECTRICAL CHARACTERISTICS  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD=Max; VIN=VSS to VDDQ  
MIN  
MAX  
+2  
UNIT NOTES  
Input Leakage Current  
Output Leakage Current  
IIL  
-2  
-2  
-
µA  
µA  
IOL  
Output Disabled,  
+2  
-33  
-30  
-25  
-33  
-30  
-25  
-33  
-30  
-25  
-33  
-30  
-25  
850  
800  
750  
800  
750  
700  
750  
700  
650  
350  
330  
300  
VDD=Max, IOUT=0mA  
Cycle Time tKHKH Min  
Operating Current (x36)  
Operating Current (x18)  
Operating Current (x9)  
Standby Current (NOP)  
ICC  
ICC  
ICC  
ISB1  
-
mA  
mA  
mA  
mA  
1,5  
1,5  
1,5  
1,6  
-
-
VDD=Max, IOUT=0mA  
Cycle Time tKHKH Min  
-
-
-
VDD=Max, IOUT=0mA  
Cycle Time tKHKH Min  
-
-
-
Device deselected, IOUT=0mA, f=Max,  
All Inputs0.2V or VDD-0.2V  
-
-
Output High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Voltage  
Input Low Voltage  
Input High Voltage  
VOH1  
VOL1  
VOH2  
VOL2  
VIL  
VDDQ/2-0.12 VDDQ/2+0.12  
VDDQ/2-0.12 VDDQ/2+0.12  
V
V
V
V
V
V
2,7  
3,7  
4
IOH=-1.0mA  
IOL=1.0mA  
VDDQ-0.2  
VSS  
VDDQ  
0.2  
4
-0.3  
VREF-0.1  
VDDQ+0.3  
8,9  
8,10  
VIH  
VREF+0.1  
Notes: 1. Minimum cycle. IOUT=0mA.  
2. |IOH|=(VDDQ/2)/(RQ/5)±15% for 175Ω ≤ RQ 350.  
3. |IOL|=(VDDQ/2)/(RQ/5)±15% for 175Ω ≤ RQ 350.  
4. Minimum Impedance Mode when ZQ pin is connected to VDD.  
5. Operating current is calculated with 50% read cycles and 50% write cycles.  
6. Standby Current is only after all pending read and write burst operations are completed.  
7. Programmable Impedance Mode.  
8. These are DC test criteria. DC design criteria is VREF±50mV. The AC VIH/VIL levels are defined separately for measuring timing parameters.  
9. VIL (Min) DC=-0.3V, VIL (Min) AC=-1.5V(pulse width 3ns).  
10. VIH (Max)DC=VDDQ+0.3, VIH (Max)AC=VDDQ+0.85V(pulse width 3ns)  
Rev. 1.1 August 2006  
- 11 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
AC ELECTRICAL CHARACTERISTICS  
PARAMETER  
Input High Voltage  
Input Low Voltage  
SYMBOL  
MIN  
MAX  
-
UNIT  
V
NOTES  
1,2  
VIH (AC)  
VIL (AC)  
VREF + 0.2  
-
VREF - 0.2  
V
1,2  
Notes: 1. This condition is for AC function test only, not for AC parameter test.  
2. To maintain a valid level, the transiting edge of the input must:  
a) Sustain a constant slew rate from the current AC level through the target AC level, VIL(AC) or VIH(AC)  
b) Reach at least the target AC level  
c) After the AC target level is reached, continue to maintain at least the target DC level, VIL(DC) or VIH(DC)  
AC TIMING CHARACTERISTICS  
-33  
-30  
-25  
PARAMETER  
SYMBOL  
UNIT  
NOTE  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Clock  
Clock Cycle Time (K, K, C, C)  
Clock Phase Jitter (K, K, C, C)  
Clock High Time (K, K, C, C)  
Clock Low Time (K, K, C, C)  
Clock to Clock (K↑ → K, C↑ → C)  
Clock to data clock (K↑ → C, K↑→ C)  
DLL Lock Time (K, C)  
tKHKH  
tKC var  
tKHKL  
3.00  
8.40  
0.20  
3.30  
8.40  
0.20  
4.00  
8.40  
0.20  
ns  
ns  
5
1.2  
1.2  
1.32  
1.32  
1.49  
0.00  
1024  
30  
1.60  
1.60  
1.80  
0.00  
1024  
30  
ns  
tKLKH  
ns  
tKHKH  
tKHCH  
tKC lock  
tKC reset  
1.35  
0.00  
1024  
30  
ns  
1.30  
1.45  
1.80  
ns  
cycle  
ns  
6
K Static to DLL reset  
Output Times  
C, C High to Output Valid  
C, C High to Output Hold  
C, C High to Echo Clock Valid  
C, C High to Echo Clock Hold  
CQ, CQ High to Output Valid  
CQ, CQ High to Output Hold  
C, High to Output High-Z  
C, High to Output Low-Z  
Setup Times  
tCHQV  
tCHQX  
0.45  
0.45  
0.25  
0.45  
0.45  
0.45  
0.27  
0.45  
0.45  
0.45  
0.30  
0.45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
3
-0.45  
-0.45  
-0.25  
-0.45  
-0.45  
-0.45  
-0.27  
-0.45  
-0.45  
-0.45  
-0.30  
-0.45  
tCHCQV  
tCHCQX  
tCQHQV  
tCQHQX  
tCHQZ  
7
7
3
3
tCHQX1  
Address valid to K rising edge  
Control inputs valid to K rising edge  
Data-in valid to K, K rising edge  
Hold Times  
tAVKH  
tIVKH  
0.40  
0.40  
0.28  
0.40  
0.40  
0.30  
0.50  
0.50  
0.35  
ns  
ns  
ns  
2
tDVKH  
K rising edge to address hold  
K rising edge to control inputs hold  
K, K rising edge to data-in hold  
tKHAX  
tKHIX  
0.40  
0.40  
0.28  
0.40  
0.40  
0.30  
0.50  
0.50  
0.35  
ns  
ns  
ns  
tKHDX  
Notes: 1. All address inputs must meet the specified setup and hold times for all latching clock edges.  
2. Control singles are R, W,BW0,BW1 and (BW2, BW3, also for x36 and BW for x9)  
3. If C,C are tied high, K,K become the references for C,C timing parameters.  
4. To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ.  
The specs as shown do not imply bus contention because tCHQX1 is a MIN parameter that is worst case at totally different test conditions  
(0°C, 1.9V) than tCHQZ, which is a MAX parameter(worst case at 70°C, 1.7V)  
It is not possible for two SRAMs on the same board to be at such different voltage and temperature.  
5. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
6. Vdd slew rate must be less than 0.1V DC per 50 ns for DLL lock retention. DLL lock time begins once Vdd and input clock are stable.  
7. Echo clock is very tightly controlled to data valid/data hold. By design, there is a ± 0.1 ns variation from echo clock to data.  
The data sheet parameters reflect tester guard bands and test setup variations.  
Rev. 1.1 August 2006  
- 12 -  
K7R323684C  
K7R321884C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
K7R320984C  
THERMAL RESISTANCE  
PRMETER  
Junction to Ambient  
Junction to Case  
SYMBOL  
θJA  
TYP  
20.8  
2.3  
Unit  
°C/W  
°C/W  
°C/W  
NOTES  
θJC  
Junction to Pins  
θJB  
4.3  
Note: Junction temperature is a function of on-chip power dissipation, package thermal impedance, mounting site temperature and mounting site  
thermal impedance. TJ=TA + PD x θJA  
PIN CAPACITANCE  
PRMETER  
Address Control Input Capacitance  
Input and Output Capacitance  
Clock Capacitance  
SYMBOL  
CIN  
TESTCONDITION  
TYP  
3.5  
4
MAX  
Unit  
pF  
NOTES  
VIN=0V  
VOUT=0V  
-
4
5
4
COUT  
pF  
CCLK  
3
pF  
Note: 1. Parameters are tested with RQ=250and VDDQ=1.5V.  
2. Periodically sampled and not 100% tested.  
AC TEST CONDITIONS  
AC TEST OUTPUT LOAD  
Parameter  
Symbol  
VDD  
Value  
1.7~1.9  
1.4~1.9  
1.25/0.25  
0.75  
Unit  
V
0.75V  
Core Power Supply Voltage  
Output Power Supply Voltage  
Input High/Low Level  
VREF  
VDDQ/2  
VDDQ  
VIH/VIL  
VREF  
V
50Ω  
V
SRAM  
Zo=50Ω  
Input Reference Level  
V
250Ω  
Input Rise/Fall Time  
TR/TF  
0.3/0.3  
VDDQ/2  
ns  
V
ZQ  
Output Timing Reference Level  
Note: Parameters are tested with RQ=250Ω  
Overershoot Timing  
Undershoot Timing  
20% tKHKH(MIN)  
VIH  
VDDQ+0.5V  
VDDQ+0.25V  
VDDQ  
VSS  
VSS-0.25V  
VSS-0.5V  
20% tKHKH(MIN)  
VIL  
Note: For power-up, VIH VDDQ+0.3V and VDD 1.7V and VDDQ 1.4V t 200ms  
Rev. 1.1 August 2006  
- 13 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
APPLICATION INRORMATION  
R=250Ω  
R=250Ω  
ZQ  
ZQ  
SRAM#1  
SRAM#4  
CQ  
CQ  
Q
CQ  
CQ  
Q
Vt  
D
D
SA  
R
SA  
R W BW0 BW1 C C K K  
RW BW0 BW1 C C K K  
Data In  
Vt  
Vt  
Data Out  
Address  
R
R
W
BW  
MEMORY  
CONTROLLER  
Return CLK  
Vt  
Source CLK  
Return CLK  
Source CLK  
Vt  
R=50Vt=VREF  
SRAM1 Input CQ  
SRAM1 Input CQ  
SRAM4 Input CQ  
SRAM4 Input CQ  
Rev. 1.1 August 2006  
- 14 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
TIMING WAVE FORMS OF READ AND NOP  
READ  
READ  
NOP  
NOP  
tKHKH  
tKLKH  
K
tKHKH  
tKHKL  
K
tAVKH tKHAX  
SA  
R
A1  
A2  
tIVKH tKHIX  
tCHQX1  
Q
Q1-1  
Q1-2  
tCHQX  
Q1-3  
Q1-4  
Q2-1  
Q2-2  
Q2-3  
Q2-4  
(Data Out)  
tKHKH  
tKHCH  
tCHQV  
tKLKH  
C
tKHKL  
tKHKH  
tCHQZ  
C
tCHCQV  
tCHCQX  
tCHQV  
tCQHQV  
CQ  
CQ  
tCQHQX  
tCHCQV  
tCHCQX  
Dont Care  
Undefined  
Note: 1. Q1-1 refers to output from address A1+0, Q1-2 refers to output from address A1+1 i.e. the next internal burst address following A1+0.  
2. Outputs are disabled one cycle after a NOP.  
TIMING WAVE FORMS OF WRITE AND NOP  
WRITE  
WRITE  
NOP  
NOP  
tKHKH  
tKLKH  
K
tKHKH  
tKHKL  
K
tAVKH tKHAX  
SA  
A1  
A2  
tIVKH tKHIX  
tKHIX  
W
D (Data In)  
D1-1  
D1-2  
D1-3  
D1-4  
D2-1  
D2-2  
D2-3  
D2-4  
tDVKH  
tKHDX  
Dont Care  
Undefined  
Note: 1. D1-1 refers to input to address A1+0, D1-2 refers to input to address A1+1, i.e the next internal burst address following A1+0.  
2. BWx (NWx) assumed active.  
Rev. 1.1 August 2006  
- 15 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
TIMING WAVE FORMS OF READ, WRITE AND NOP  
READ  
WRITE  
READ  
WRITE  
NOP  
NOP  
K
K
SA  
W
A1  
A2  
A3  
A4  
R
D (Data In)  
D2-1  
Q1-1  
D2-2  
Q1-2  
D2-3  
Q1-3  
D2-4  
Q1-4  
D4-1  
D4-2  
Q3-2  
D4-3  
D (Data Out)  
Q3-1  
Q3-3  
C
C
Dont Care  
Undefined  
Note: 1. If address A3=A2, data Q3-1=D2-1, data Q3-2=D2-2 , data Q3-3=D2-3, data Q3-4=D2-4  
Write data is forwarded immediately as read results.  
2.BWx ( NWx) assumed active.  
Rev. 1.1 August 2006  
- 16 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG  
This part contains an IEEE standard 1149.1 Compatible Test Access Port (TAP). The package pads are monitored by the Serial Scan  
circuitry when in test mode. This is to support connectivity testing during manufacturing and system diagnostics. Internal data is not  
driven out of the SRAM under JTAG control. In conformance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Reg-  
ister, Bypass Register and ID register. The TAP controller has a standard 16-state machine that resets internally upon power-up,  
therefore, TRST signal is not required. It is possible to use this device without utilizing the TAP. To disable the TAP controller without  
interfacing with normal operation of the SRAM, TCK must be tied to VSS to preclude mid level input. TMS and TDI are designed so an  
undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be  
tied to VDD through a resistor. TDO should be left unconnected.  
JTAG Block Diagram  
JTAG Instruction Coding  
IR2 IR1 IR0 Instruction  
TDO Output  
Notes  
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
EXTEST  
IDCODE  
SAMPLE-Z  
Boundary Scan Register  
Identification Register  
Boundary Scan Register  
1
3
2
6
5
6
6
4
0
0
0
RESERVED Do Not Use  
A,D  
K,K  
C,C  
1
SAMPLE  
Boundary Scan Register  
1
RESERVED Do Not Use  
RESERVED Do Not Use  
SRAM  
CORE  
1
1
Q
CQ  
BYPASS  
Bypass Register  
CQ  
NOTE:  
1. Places DQs in Hi-Z in order to sample all input data regardless of other  
SRAM inputs. This instruction is not IEEE 1149.1 compliant.  
TDI  
BYPASS Reg.  
Identification Reg.  
Instruction Reg.  
2. Places DQs in Hi-Z in order to sample all input data regardless of other  
SRAM inputs.  
TDO  
3. TDI is sampled as an input to the first ID register to allow for the serial shift  
of the external TDI data.  
4. Bypass register is initiated to VSS when BYPASS instruction is invoked. The  
Bypass Register also holds serially loaded TDI when exiting the Shift DR  
states.  
5. SAMPLE instruction dose not places DQs in Hi-Z.  
6. This instruction is reserved for future use.  
Control Signals  
TAP Controller  
TMS  
TCK  
TAP Controller State Diagram  
1
0
Test Logic Reset  
0
1
1
0
1
Run Test Idle  
Select DR  
0
Capture DR  
0
Shift DR  
1
Exit1 DR  
0
Select IR  
0
1
1
1
1
Capture IR  
0
0
Shift IR  
1
Exit1 IR  
0
0
0
0
0
Pause DR  
1
Pause IR  
1
Exit2 IR  
1
Exit2 DR  
1
1
0
Update DR  
0
Update IR  
1
Rev. 1.1 August 2006  
- 17 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
SCAN REGISTER DEFINITION  
Part  
Instruction Register  
Bypass Register  
ID Register  
32 bits  
32 bits  
Boundary Scan  
109 bits  
1Mx36  
2Mx18  
4Mx9  
3 bits  
3 bits  
3 bits  
1 bit  
1 bit  
1 bit  
109 bits  
109 bits  
32 bits  
ID REGISTER DEFINITION  
Revision Number  
Part Configuration  
(28:12)  
00def0wx0t0q0b0s0  
00def0wx0t0q0b0s0  
00def0wx0t0q0b0s0  
Samsung JEDEC Code  
(11: 1)  
Part  
Start Bit(0)  
(31:29)  
000  
000  
1Mx36  
2Mx18  
00011001110  
00011001110  
00011001110  
1
1
1
4Mx9  
000  
Note : Part Configuration  
/def=010 for 36Mb, /wx=11 for x36, 10 for x18 and 00 for x9  
/t=1 for DLL Ver., 0 for non-DLL Ver. /q=1 for QDR, 0 for DDR /b=1 for 4Bit Burst, 0 for 2Bit Burst /s=1 for Separate I/O, 0 for Common I/O  
BOUNDARY SCAN EXIT ORDER  
ORDER  
PIN ID  
ORDER  
PIN ID  
10D  
9E  
ORDER  
73  
PIN ID  
2C  
3E  
2D  
2E  
1E  
2F  
3F  
1G  
1F  
3G  
2G  
1H  
1J  
2J  
3K  
3J  
2K  
1K  
2L  
3L  
1M  
1L  
3N  
3M  
1N  
2M  
3P  
2N  
2P  
1P  
3R  
4R  
4P  
5P  
5N  
5R  
Internal  
1
2
6R  
6P  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
3
4
6N  
7P  
10C  
11D  
9C  
9D  
11B  
11C  
9B  
10B  
11A  
10A  
9A  
5
6
7N  
7R  
7
8
8R  
8P  
9
9R  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
11P  
10P  
10N  
9P  
10M  
11N  
9M  
9N  
11L  
11M  
9L  
10L  
11K  
10K  
9J  
8B  
7C  
6C  
8A  
7A  
7B  
6B  
6A  
5B  
5A  
4A  
5C  
4B  
3A  
2A  
1A  
2B  
3B  
1C  
1B  
9K  
98  
99  
10J  
11J  
11H  
10G  
9G  
11F  
11G  
9F  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
10F  
11E  
10E  
3D  
3C  
1D  
Note: 1. NC pins are read as "X" (i.e. dont care.)  
Rev. 1.1 August 2006  
- 18 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
JTAG DC OPERATING CONDITIONS  
Parameter  
Symbol  
Min  
1.7  
Typ  
Max  
1.9  
Unit  
V
Note  
Power Supply Voltage  
VDD  
VIH  
1.8  
Input High Level  
1.3  
-
-
-
-
VDD+0.3  
0.5  
V
Input Low Level  
VIL  
-0.3  
1.4  
V
Output High Voltage(IOH=-2mA)  
Output Low Voltage(IOL=2mA)  
VOH  
VOL  
VDD  
V
VSS  
0.4  
V
Note: 1. The input level of SRAM pin is to follow the SRAM DC specification.  
JTAG AC TEST CONDITIONS  
Parameter  
Symbol  
VIH/VIL  
TR/TF  
Min  
1.8/0.0  
1.0/1.0  
0.9  
Unit  
V
Note  
Input High/Low Level  
Input Rise/Fall Time  
ns  
V
Input and Output Timing Reference Level  
Note: 1. See SRAM AC test output load on page 11.  
1
JTAG AC Characteristics  
Parameter  
Symbol  
Min  
50  
20  
20  
5
Max  
Unit  
Note  
TCK Cycle Time  
tCHCH  
tCHCL  
tCLCH  
tMVCH  
tCHMX  
tDVCH  
tCHDX  
tSVCH  
tCHSX  
tCLQV  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK High Pulse Width  
TCK Low Pulse Width  
TMS Input Setup Time  
TMS Input Hold Time  
TDI Input Setup Time  
TDI Input Hold Time  
-
-
5
-
5
-
5
-
SRAM Input Setup Time  
SRAM Input Hold Time  
Clock Low to Output Valid  
5
-
5
-
0
10  
JTAG TIMING DIAGRAM  
TCK  
tCHCH  
tCLCH  
tCHCL  
tMVCH  
tCHMX  
TMS  
TDI  
tDVCH  
tSVCH  
tCHDX  
tCHSX  
PI  
(SRAM)  
tCLQV  
TDO  
Rev. 1.1 August 2006  
- 19 -  
K7R323684C  
K7R321884C  
K7R320984C  
1Mx36, 2Mx18 & 4Mx9 QDRTM II b4 SRAM  
165 FBGA PACKAGE DIMENSIONS (Lead & Lead-Free)  
15mm x 17mm Body, 1.0mm Bump Pitch, 11x15 Ball Array  
B
Top View  
A
C
Side View  
D
A
G
E
B
F
Bottom View  
H ∅  
E
Symbol  
Value  
15 ± 0.1  
Units  
Note  
Symbol  
Value  
1.0  
Units  
mm  
mm  
mm  
mm  
Note  
A
B
C
D
mm  
mm  
mm  
mm  
E
F
17 ± 0.1  
1.3 ± 0.1  
0.35 ± 0.05  
14.0  
G
H
10.0  
0.5 ± 0.05  
Rev. 1.1 August 2006  
- 20 -  

相关型号:

K7R320984C-FC33

Standard SRAM, 4MX9, 0.45ns, CMOS, PBGA165
SAMSUNG

K7R320984C-FC330

QDR SRAM, 4MX9, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1MM PITCH, FBGA-165
SAMSUNG

K7R320984C-FI30

Standard SRAM, 4MX9, 0.45ns, CMOS, PBGA165
SAMSUNG

K7R320984C-FI300

QDR SRAM, 4MX9, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1MM PITCH, FBGA-165
SAMSUNG

K7R320984C-FI33T

Standard SRAM, 4MX9, 0.45ns, CMOS, PBGA165
SAMSUNG

K7R321882

1Mx36 & 2Mx18 & 4Mx9 QDRTM II b2 SRAM
SAMSUNG

K7R321882C

1Mx36 & 2Mx18 & 4Mx9 QDR II b2 SRAM
SAMSUNG

K7R321882C-EC20T

QDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, ROHS COMPLIANT, FBGA-165
SAMSUNG

K7R321882C-EC250

QDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, ROHS COMPLIANT, FBGA-165
SAMSUNG

K7R321882C-EC25T

QDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, ROHS COMPLIANT, FBGA-165
SAMSUNG

K7R321882C-EC300

QDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, 1 MM PITCH, ROHS COMPLIANT, FBGA-165
SAMSUNG

K7R321882C-EC30T

Standard SRAM, 2MX18, 0.45ns, CMOS, PBGA165
SAMSUNG