K4T56163QI-ZLD50 [SAMSUNG]

Synchronous DRAM, 16MX16, 0.5ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84;
K4T56163QI-ZLD50
型号: K4T56163QI-ZLD50
厂家: SAMSUNG    SAMSUNG
描述:

Synchronous DRAM, 16MX16, 0.5ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84

动态存储器 内存集成电路
文件: 总42页 (文件大小:727K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DDR2 SDRAM  
K4T56163QI  
256Mb I-die DDR2 SDRAM Specification  
84FBGA with Pb-Free  
(RoHS compliant)  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL  
INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure couldresult in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
Rev. 1.0 October 2007  
1 of 42  
DDR2 SDRAM  
K4T56163QI  
Table of Contents  
1.0 Ordering Information ....................................................................................................................4  
2.0 Key Features .................................................................................................................................4  
3.0 Package Pinout/Mechanical Dimension & Addressing .............................................................5  
3.1 x16 package pinout (Top View) : 84ball FBGA Package .......................................................................5  
3.2 FBGA Package Dimension(x16) .......................................................................................................6  
4.0 Input/Output Functional Description ..........................................................................................7  
5.0 DDR2 SDRAM Addressing ...........................................................................................................8  
6.0 Absolute Maximum DC Ratings ...................................................................................................9  
7.0 AC & DC Operating Conditions ...................................................................................................9  
7.1 Recommended DC Operating Conditions (SSTL - 1.8) .........................................................................9  
7.2 Operating Temperature Condition ..................................................................................................10  
7.3 Input DC Logic Level ....................................................................................................................10  
7.4 Input AC Logic Level ....................................................................................................................10  
7.5 AC Input Test Conditions ..............................................................................................................10  
7.6 Differential input AC logic Level .....................................................................................................11  
7.7 Differential AC output parameters ..................................................................................................11  
8.0 ODT DC electrical characteristics .............................................................................................11  
9.0 OCD default characteristics ......................................................................................................12  
10.0 IDD Specification Parameters and Test Conditions ..............................................................13  
11.0 DDR2 SDRAM IDD Spec ...........................................................................................................15  
12.0 Input/Output capacitance .........................................................................................................16  
13.0 Electrical Characteristics & AC Timing for DDR2-800/667/533/400 ......................................16  
13.1 Refresh Parameters by Device Density ........................................................................................16  
13.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin .............................................16  
13.3 Timing Parameters by Speed Grade ............................................................................................17  
14.0 General notes, which may apply for all AC parameters ........................................................19  
15.0 Specific Notes for dedicated AC parameters..........................................................................21  
Rev. 1.0 October 2007  
2 of 42  
DDR2 SDRAM  
K4T56163QI  
Revision History  
Revision  
Month  
Year  
History  
1.0  
October  
2007  
- Initial Release  
Rev. 1.0 October 2007  
3 of 42  
DDR2 SDRAM  
K4T56163QI  
1.0 Ordering Information  
Org.  
DDR2-800 5-5-5  
DDR2-800 6-6-6  
DDR2-667 5-5-5  
DDR2-533 4-4-4  
DDR2-400 3-3-3  
Package  
16Mx16 K4T56163QI-ZC(L)E7 K4T56163QI-ZC(L)F7  
K4T56163QI-ZC(L)E6  
K4T56163QI-ZC(L)D5 K4T56163QI-ZC(L)CC  
84 FBGA  
Note :  
1. Speed bin is in order of CL-tRCD-tRP  
2. RoHS Compliant  
2.0 Key Features  
Speed  
CAS Latency  
tRCD(min)  
tRP(min)  
DDR2-800 5-5-5  
DDR2-800 6-6-6  
DDR2-667 5-5-5  
DDR2-533 4-4-4  
DDR2-400 3-3-3  
Units  
tCK  
ns  
5
6
5
4
3
12.5  
12.5  
57.5  
15  
15  
60  
15  
15  
60  
15  
15  
60  
15  
15  
55  
ns  
tRC(min)  
ns  
JEDEC standard 1.8V ± 0.1V Power Supply  
VDDQ = 1.8V ± 0.1V  
200 MHz fCK for 400Mb/sec/pin, 267MHz fCK for 533Mb/sec/  
pin, 333MHz fCK for 667Mb/sec/pin, 400MHz fCK for 800Mb/  
sec/pin  
4 Banks  
Posted CAS  
Programmable CAS Latency: 3, 4, 5, 6  
Programmable Additive Latency: 0, 1 , 2 , 3, 4 , 5  
Write Latency(WL) = Read Latency(RL) -1  
Burst Length: 4 , 8(Interleave/nibble sequential)  
Programmable Sequential / Interleave Burst Mode  
Bi-directional Differential Data-Strobe (Single-ended data-  
strobe is an optional feature)  
Off-Chip Driver(OCD) Impedance Adjustment  
On Die Termination  
The 256Mb DDR2 SDRAM is organized as a 4Mbit x 16 I/Os x 4  
banks device. This synchronous device achieves high speed dou-  
ble-data-rate transfer rates of up to 800Mb/sec/pin (DDR2-800) for  
general applications.  
The chip is designed to comply with the following key DDR2  
SDRAM features such as posted CAS with additive latency, write  
latency = read latency -1, Off-Chip Driver(OCD) impedance  
adjustment and On Die Termination.  
All of the control and address inputs are synchronized with a pair  
of externally supplied differential clocks. Inputs are latched at the  
crosspoint of differential clocks (CK rising and CK falling). All I/Os  
are synchronized with a pair of bidirectional strobes (DQS and  
DQS) in a source synchronous fashion. The address bus is used  
to convey row, column, and bank address information in a RAS/  
CAS multiplexing style. For example, 256Mb(x16) device receive  
13/9/2 addressing.  
The 256Mb DDR2 device operates with a single 1.8V ± 0.1V  
power supply and 1.8V ± 0.1V VDDQ.  
The 256Mb DDR2 device is available in 84ball FBGAs(x16).  
Special Function Support  
Note : The functionality described and the timing specifications included in  
-PASR(Partial Array Self Refresh)  
this data sheet are for the DLL Enabled mode of operation.  
-50ohm ODT  
-High Temperature Self-Refresh rate enable  
Average Refresh Period 7.8us at lower than TCASE 85°C,  
3.9us at 85°C < TCASE < 95 °C  
All of Lead-free products are compliant for RoHS  
Note : This data sheet is an abstract of full DDR2 specification and does not cover the common features which are described in “Samsung’s DDR2  
SDRAM Device Operation & Timing Diagram”  
Rev. 1.0 October 2007  
4 of 42  
DDR2 SDRAM  
K4T56163QI  
3.0 Package Pinout/Mechanical Dimension & Addressing  
3.1 x16 package pinout (Top View) : 84ball FBGA Package  
1
2
3
7
8
9
A
VSSQ  
UDQS  
VDDQ  
DQ10  
VSSQ  
UDQS  
VSSQ  
VDDQ  
VDD  
NC  
VSS  
UDM  
VDDQ  
DQ11  
VSS  
DQ14  
VSSQ  
B
C
DQ15  
VDDQ  
VDDQ  
DQ12  
VDD  
DQ9  
DQ8  
D
E
F
VSSQ  
LDQS  
VSSQ  
DQ13  
VSSQ  
NC  
VDDQ  
DQ6  
VSSQ  
DQ1  
LDM  
LDQS  
VDDQ  
DQ2  
DQ7  
VDDQ  
DQ4  
VDDQ  
DQ3  
DQ0  
VSSQ  
CK  
VDDQ  
G
H
J
VSSQ  
VREF  
CKE  
DQ5  
VDDL  
VSS  
WE  
VSSDL  
RAS  
VDD  
ODT  
K
CK  
NC  
L
BA0  
A10/AP  
A3  
BA1  
A1  
CAS  
A2  
CS  
A0  
A4  
A8  
M
N
P
R
VDD  
VSS  
VSS  
A5  
A6  
A7  
A9  
A11  
VDD  
A12  
NC  
NC  
NC  
Note :  
1. VDDL and VSSDL are power and ground for the DLL.  
2. In case of only 8 DQs out of 16 DQs are used, LDQS, LDQSB and DQ0~7 must be used.  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
Ball Locations (x16)  
: Populated Ball  
: Depopulated Ball  
+
G
H
J
Top View  
(See the balls through the Package)  
K
L
+
+
+
+
+
+
M
N
P
R
Rev. 1.0 October 2007  
5 of 42  
DDR2 SDRAM  
K4T56163QI  
3.2 FBGA Package Dimension(x16)  
Unit : mm  
9.00 ± 0.10  
0.80 x 8 = 6.40  
3.20  
A
# A1 INDEX MARK  
B
0.80  
1.60  
4
9
8
7
6
5
3
2
1
(Datum A)  
(Datum B)  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
(0.95)  
84-0.45 Solder ball  
MOLDING AREA  
(1.90)  
(Post reflow 0.50 ± 0.05)  
0.2 M  
A
B
Bottom  
9.00 ± 0.10  
#A1  
0.35  
1.10  
±
0.05  
0.10  
±
Top  
Rev. 1.0 October 2007  
6 of 42  
DDR2 SDRAM  
K4T56163QI  
4.0 Input/Output Functional Description  
Symbol  
Type  
Function  
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of the  
positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK (both  
directions of crossing).  
CK, CK  
Input  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and out-  
put drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or Active  
Power-Down (row Active in any bank). CKE is synchronous for power down entry and exit, and for self refresh entry.  
CKE is asynchronous for self refresh exit. After V  
has become stable during the power on and initialization  
REF  
CKE  
CS  
Input  
Input  
swquence, it must be maintained for proper operation of the CKE receiver. For proper self-refresh entry and exit, V  
must be maintained to this input. CKE must be maintained high throughout read and write accesses. Input buffers,  
excluding CK, CK, ODT and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during  
self refresh.  
REF  
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on sys-  
tems with multiple Ranks. CS is considered part of the command code.  
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR2 SDRAM. When  
enabled, ODT is only applied to each DQ, UDQS/UDQS, LDQS/LDQS, UDM, and LDM signal for x16 configuration.  
The ODT pin will be ignored if the Extended Mode Register Set(EMRS) is programmed to disable ODT.  
ODT  
Input  
Input  
Input  
RAS, CAS, WE  
(L)UDM  
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coinci-  
dent with that input data during a Write access. DM is sampled on both edges of DQS. Although DM pins are input only,  
the DM loading matches the DQ and DQS loading.  
Bank Address Inputs: BA0, BA1 and BA2 define to which bank an Active, Read, Write or Precharge command is  
being applied. Bank address also determines if the mode register or extended mode register is to be accessed during  
a MRS or EMRS cycle.  
BA0 - BA1  
Input  
Input  
Address Inputs: Provided the row address for Active commands and the column address and Auto Precharge bit for  
Read/Write commands to select one location out of the memory array in the respective bank. A10 is sampled during a  
Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If  
only one bank is to be precharged, the bank is selected by BA0, BA1 and BA2. The address inputs also provide the op-  
code during Mode Register Set commands.  
A0 - A12  
DQ  
Input/Output Data Input/ Output: Bi-directional data bus.  
Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the  
x16, LDQS corresponds to the data on DQ0-DQ7; UDQS corresponds to the data on DQ8-DQ15. The data strobes  
LDQS and UDQS may be used in single ended mode or paired with optional complementary signals LDQS and UDQS  
to provide differential pair signaling to the system during both reads and writes. A control bit at EMRS(1)[A10] enables  
LDQS, (LDQS)  
UDQS, (UDQS)  
or disables all complementary data strobe signals.  
Input/Output  
In this data sheet, "differential DQS signals" refers to any of the following with A10 = 0 of EMRS(1)  
x16 LDQS/LDQS and UDQS/UDQS  
"single-ended DQS signals" refers to any of the following with A10 = 1 of EMRS(1)  
x16 LDQS and UDQS  
NC  
No Connect: No internal electrical connection is present.  
V
/V  
Power Supply: 1.8V +/- 0.1V, DQ Power Supply: 1.8V +/- 0.1V  
Ground, DQ Ground  
Supply  
Supply  
Supply  
Supply  
Supply  
DD DDQ  
V
/V  
SS SSQ  
V
DLL Power Supply: 1.8V +/- 0.1V  
DLL Ground  
DDL  
V
SSDL  
V
Reference voltage  
REF  
Rev. 1.0 October 2007  
7 of 42  
DDR2 SDRAM  
K4T56163QI  
5.0 DDR2 SDRAM Addressing  
256Mb  
Configuration  
# of Banks  
16Mb x16  
4
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A8  
* Reference information: The following tables are address mapping information for other densities  
512Mb  
Configuration  
# of Banks  
128Mb x4  
4
64Mb x 8  
4
32Mb x16  
4
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0,BA1  
A10/AP  
BA0,BA1  
A10/AP  
A0 ~ A13  
A0 ~ A9  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A9  
A0 ~ A13  
A0 ~ A9,A11  
1Gb  
2Gb  
4Gb  
Configuration  
# of Banks  
256Mb x4  
8
128Mb x 8  
8
64Mb x16  
8
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0 ~ BA2  
A10/AP  
BA0 ~ BA2  
A10/AP  
A0 ~ A13  
A0 ~ A9  
BA0 ~ BA2  
A10/AP  
A0 ~ A12  
A0 ~ A9  
A0 ~ A13  
A0 ~ A9,A11  
Configuration  
# of Banks  
512Mb x4  
8
256Mb x 8  
8
128Mb x16  
8
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0 ~ BA2  
A10/AP  
BA0 ~ BA2  
A10/AP  
A0 ~ A14  
A0 ~ A9  
BA0 ~ BA2  
A10/AP  
A0 ~ A13  
A0 ~ A9  
A0 ~ A14  
A0 ~ A9,A11  
Configuration  
# of Banks  
1 Gb x4  
8
512Mb x 8  
8
256Mb x16  
8
Bank Address  
BA0 ~ BA2  
A10/AP  
BA0 ~ BA2  
A10/AP  
A0 - A15  
A0 - A9  
BA0 ~ BA2  
A10/AP  
A0 - A14  
A0 - A9  
Auto precharge  
Row Address  
A0 - A15  
A0 - A9,A11  
Column Address/page size  
Rev. 1.0 October 2007  
8 of 42  
DDR2 SDRAM  
K4T56163QI  
6.0 Absolute Maximum DC Ratings  
Symbol  
Parameter  
Rating  
Units  
V
Notes  
Voltage on V pin relative to V  
V
- 1.0 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
-55 to +100  
1
1
DD  
SS  
DD  
Voltage on V  
Voltage on V  
pin relative to V  
V
V
DDQ  
DDL  
SS  
DDQ  
pin relative to V  
V
V
1
SS  
DDL  
Voltage on any pin relative to V  
Storage Temperature  
V
V
V
1
SS  
IN, OUT  
T
°C  
1, 2  
STG  
Note :  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2  
standard.  
7.0 AC & DC Operating Conditions  
7.1 Recommended DC Operating Conditions (SSTL - 1.8)  
Rating  
Typ.  
1.8  
Symbol  
Parameter  
Units  
Notes  
Min.  
1.7  
Max.  
1.9  
V
Supply Voltage  
V
V
DD  
V
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1.7  
1.8  
1.9  
4
4
DDL  
V
1.7  
1.8  
1.9  
V
DDQ  
V
0.49*V  
0.50*V  
0.51*V  
DDQ  
mV  
V
1,2  
3
REF  
DDQ  
DDQ  
V
V
-0.04  
V
V
+0.04  
TT  
REF  
REF  
REF  
Note : There is no specific device V supply voltage requirement for SSTL-1.8 compliance. However under all conditions V  
must be less than or equal  
DD  
DDQ  
to V  
.
DD  
1. The value of V  
may be selected by the user to provide optimum noise margin in the system. Typically the value of V  
is expected to be about 0.5  
REF  
REF  
x V  
of the transmitting device and V  
is expected to track variations in V  
.
DDQ  
REF  
DDQ  
2. Peak to peak AC noise on V  
may not exceed +/-2% V  
(DC).  
REF  
REF  
3. V of transmitting device must track V  
of receiving device.  
TT  
REF  
DDQ  
4. AC parameters are measured with V , V  
and V  
tied together.  
DD  
DDL  
Rev. 1.0 October 2007  
9 of 42  
DDR2 SDRAM  
K4T56163QI  
7.2 Operating Temperature Condition  
Symbol  
TOPER  
Parameter  
Operating Temperature  
Rating  
0 to 95  
Units  
°C  
Notes  
1, 2  
Note :  
1. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51.2  
standard.  
2. At 85 - 95 °C operation temperature range, doubling refresh commands in frequency to a 32ms period ( tREFI=3.9 us ) is required, and to enter to  
self refresh mode at this temperature range, an EMRS command is required to change internal refresh rate.  
7.3 Input DC Logic Level  
Symbol  
IH(DC)  
VIL(DC)  
Parameter  
Min.  
VREF + 0.125  
Max.  
VDDQ + 0.3  
Units  
V
Notes  
V
DC input logic high  
DC input logic low  
- 0.3  
VREF - 0.125  
V
7.4 Input AC Logic Level  
DDR2-400, DDR2-533  
DDR2-667, DDR2-800  
Symbol  
Parameter  
Units  
Min.  
Max.  
Min.  
Max.  
V
(AC)  
(AC)  
VREF + 0.250  
-
VREF + 0.200  
V
V
AC input logic high  
AC input logic low  
IH  
V
-
VREF - 0.250  
VREF - 0.200  
IL  
7.5 AC Input Test Conditions  
Symbol  
Condition  
Value  
Units  
Notes  
V
Input reference voltage  
0.5 * V  
V
1
REF  
DDQ  
V
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
1.0  
V
1
SWING(MAX)  
SLEW  
1.0  
V/ns  
2, 3  
Note :  
1. Input waveform timing is referenced to the input signal crossing through the V  
(AC) level applied to the device under test.  
IH/IL  
2. The input signal minimum slew rate is to be maintained over the range from V  
to V (AC) min for rising edges and the range from V  
to V (AC)  
REF  
IH  
REF IL  
max for falling edges as shown in the below figure.  
3. AC timings are referenced with input waveforms switching from V (AC) to V (AC) on the positive transitions and V (AC) to V (AC) on the negative  
IL  
IH  
IH  
IL  
transitions.  
V
V
V
V
V
V
V
DDQ  
(AC) min  
IH  
IH  
(DC) min  
V
SWING(MAX)  
REF  
(DC) max  
IL  
(AC) max  
IL  
SS  
delta TF  
V
delta TR  
- V (AC) max  
IL  
V
(AC) min - V  
delta TR  
REF  
IH  
REF  
Falling Slew =  
Rising Slew =  
delta TF  
< AC Input Test Signal Waveform >  
Rev. 1.0 October 2007  
10 of 42  
DDR2 SDRAM  
K4T56163QI  
7.6 Differential input AC logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units  
Notes  
VID(AC)  
0.5  
VDDQ + 0.6  
V
1
AC differential input voltage  
AC differential cross point voltage  
VIX(AC)  
0.5 * VDDQ - 0.175  
0.5 * VDDQ + 0.175  
V
2
Note :  
1. VID(AC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input signal (such as CK, DQS, LDQS or UDQS)  
and VCP is the complementary input signal (such as CK, DQS, LDQS or UDQS). The minimum value is equal to V IH (AC) - V IL(AC).  
2. The typical value of VIX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VIX(AC) is expected to track variations in VDDQ . VIX(AC)  
indicates the voltage at which differential input signals must cross.  
VDDQ  
VTR  
VCP  
Crossing point  
VID  
VIX or VOX  
VSSQ  
< Differential signal levels >  
7.7 Differential AC output parameters  
Symbol  
Parameter  
Min.  
Max.  
Units  
Note  
VOX(AC)  
0.5 * VDDQ - 0.125  
0.5 * VDDQ + 0.125  
V
1
AC differential cross point voltage  
Note :  
1. The typical value of VOX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VOX(AC) is expected to track variations in VDDQ .  
VOX(AC) indicates the voltage at which differential output signals must cross.  
8.0 ODT DC electrical characteristics  
PARAMETER/CONDITION  
Rtt effective impedance value for EMRS(A6,A2)=0,1; 75 ohm  
Rtt effective impedance value for EMRS(A6,A2)=1,0; 150 ohm  
Rtt effective impedance value for EMRS(A6,A2)=1,1; 50 ohm  
Deviation of VM with respect to VDDQ/2  
SYMBOL  
Rtt1(eff)  
Rtt2(eff)  
Rtt3(eff)  
delta VM  
MIN  
60  
NOM  
75  
MAX  
90  
UNITS  
ohm  
ohm  
ohm  
%
NOTES  
1
1
1
1
120  
40  
150  
50  
180  
60  
- 6  
+ 6  
Note :  
1. Test condition for Rtt measurements  
Measurement Definition for Rtt(eff) : Apply V (ac) and V (ac) to test pin separately, then measure current I(V (ac)) and I( V (ac)) respectively.  
IH  
IL  
IH  
IL  
V
(ac), V (ac), and VDDQ values defined in SSTL_18  
IL  
IH  
VIH (ac) - VIL (ac)  
Rtt(eff) =  
I(VIH (ac)) - I(VIL (ac))  
2 x Vm  
- 1  
x 100%  
delta VM =  
VDDQ  
Measurement Definition for VM: Measure voltage (VM) at test pin (midpoint) with no load.  
Rev. 1.0 October 2007  
11 of 42  
DDR2 SDRAM  
K4T56163QI  
9.0 OCD default characteristics  
Description  
Parameter  
Min  
Nom  
Max  
Unit  
Notes  
Normal 18ohms  
See full strength default driver characteristics  
Output impedance  
ohms  
1,2  
Output impedance step size for OCD calibration  
Pull-up and pull-down mismatch  
Output slew rate  
0
0
1.5  
4
ohms  
ohms  
V/ns  
6
1,2,3  
Sout  
1.5  
5
1,4,5,6,7,8  
Note :  
1. Absolute Specifications (0°C T  
+95°C; VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V)  
CASE  
2. Impedance measurement condition for output source dc current: VDDQ = 1.7V; VOUT = 1420mV; (VOUT-VDDQ)/Ioh must be less than 23.4 ohms for  
values of VOUT between VDDQ and VDDQ- 280mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7V; VOUT = 280mV;  
VOUT/Iol must be less than 23.4 ohms for values of VOUT between 0V and 280mV.  
3. Mismatch is absolute value between pull-up and pull-dn, both are measured at same temperature and voltage.  
4. Slew rate measured from V (AC) to V (AC).  
IL  
IH  
5. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC. This is guaran-  
teed by design and characterization.  
6. This represents the step size when the OCD is near 18 ohms at nominal conditions across all process and represents only the DRAM uncertainty.  
Output slew rate load :  
VTT  
25 ohms  
Output  
(VOUT)  
Reference  
Point  
7. DRAM output slew rate specification applies to 400Mb/sec/pin, 533Mb/sec/pin, 667Mb/sec/pin and 800Mb/sec/pin speed bins.  
8. Timing skew due to DRAM output slew rate mis-match between DQS / DQS and associated DQs is included in tDQSQ and tQHS specification.  
Rev. 1.0 October 2007  
12 of 42  
DDR2 SDRAM  
K4T56163QI  
10.0 IDD Specification Parameters and Test Conditions  
(IDD values are for full operating range of Voltage and Temperature, Notes 1 - 5)  
Symbol  
Proposed Conditions  
Operating one bank active-precharge current;  
CK = CK(IDD), RC = RC(IDD), RAS = RASmin(IDD); CKE is HIGH, CS\ is HIGH between valid commands;  
Address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Units  
Notes  
t
t
t
t
t
t
IDD0  
mA  
Operating one bank active-read-precharge current;  
t
t
t
t
t
t
t
IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; CK = CK(IDD), RC = RC (IDD), RAS = RASmin(IDD), RCD =  
IDD1  
mA  
t
RCD(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address businputs are SWITCHING; Data pat-  
tern is same as IDD4W  
Precharge power-down current;  
All banks idle; CK = CK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are  
FLOATING  
t
IDD2P  
IDD2Q  
IDD2N  
IDD3P  
IDD3N  
t
mA  
mA  
mA  
Precharge quiet standby current;  
t
t
All banks idle; CK = CK(IDD); CKE is HIGH, CS\ is HIGH; Other control and address bus inputsare STABLE; Data  
bus inputs are FLOATING  
Precharge standby current;  
t
t
All banks idle; CK = CK(IDD); CKE is HIGH, CS\ is HIGH; Other control and address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
Active power-down current;  
mA  
mA  
Fast PDN Exit MRS(12) = 0mA  
t
t
All banks open; CK = CK(IDD); CKE is LOW; Other control and address bus  
Slow PDN Exit MRS(12) = 1mA  
inputs are STABLE; Data bus inputs are FLOATING  
Active standby current;  
t
t
t
t
t
t
mA  
mA  
All banks open; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS\ is HIGH between valid  
commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Operating burst write current;  
t
t
t
t
t
All banks open, Continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; CK = CK(IDD), RAS = RASmax(IDD), RP  
IDD4W  
IDD4R  
t
= RP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus  
inputs are SWITCHING  
Operating burst read current;  
t
t
t
t
All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; CK = CK(IDD), RAS = RAS-  
mA  
mA  
t
t
max(IDD), RP = RP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCH-  
ING; Data pattern is same as IDD4W  
Burst auto refresh current;  
t
t
t
IDD5B  
IDD6  
CK = CK(IDD); Refresh command at every RFC(IDD) interval; CKE is HIGH, CS\ is HIGH between valid com-  
mands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Self refresh current;  
Normal  
mA  
mA  
CK and CK\ at 0V; CKE 0.2V; Other control and address bus inputs are  
FLOATING; Data bus inputs are FLOATING  
Low Power  
Operating bank interleave read current;  
All bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = RCD(IDD)-1* CK(IDD); CK = CK(IDD), RC  
t
t
t
t
t
IDD7  
t
t
t
t
t
t
t
= RC(IDD), RRD = RRD(IDD), FAW = FAW(IDD), RCD = 1* CK(IDD); CKE is HIGH, CS\ is HIGH between valid  
commands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4R; Refer to the fol-  
lowing page for detailed timing conditions  
mA  
Rev. 1.0 October 2007  
13 of 42  
DDR2 SDRAM  
K4T56163QI  
Note :  
1. IDD specifications are tested after the device is properly initialized  
2. Input slew rate is specified by AC Parametric Test Condition  
3. IDD parameters are specified with ODT disabled.  
4. Data bus consists of DQ, DM, DQS, DQS\, RDQS, RDQS\, LDQS, LDQS\, UDQS, and UDQS\. IDD values must be met with all combinations of EMRS  
bits 10 and 11.  
5. Definitions for IDD  
LOW is defined as Vin VILAC(max)  
HIGH is defined as Vin VIHAC(min)  
STABLE is defined as inputs stable at a HIGH or LOW level  
FLOATING is defined as inputs at VREF = VDDQ/2  
SWITCHING is defined as:  
inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for address and control  
signals, and  
inputs changing between HIGH and LOW every other data transfer (once per clock) for DQ signals not including  
masks or strobes.  
For purposes of IDD testing, the following parameters are utilized  
DDR2-800  
DDR2-800  
DDR2-667  
DDR2-533  
DDR2-400  
Units  
Parameter  
5-5-5  
6-6-6  
5-5-5  
4-4-4  
3-3-3  
CL(IDD)  
5
6
5
4
3
tCK  
t
12.5  
57.5  
15  
60  
15  
60  
15  
60  
15  
55  
7.5  
5
RCD(IDD)  
ns  
ns  
t
RC(IDD)  
t
ns  
RRD(IDD)-x16  
7.5  
2.5  
7.5  
2.5  
7.5  
3
7.5  
t
3.75  
CK(IDD)  
ns  
ns  
t
45  
45  
15  
45  
15  
45  
15  
40  
15  
105  
RASmin(IDD)  
t
12.5  
105  
ns  
ns  
RP(IDD)  
t
105  
105  
105  
RFC(IDD)  
Detailed IDD7  
The detailed timings are shown below for IDD7.  
Legend: A = Active; RA = Read with Autoprecharge; D = Deselect  
IDD7: Operating Current: All Bank Interleave Read operation  
All banks are being interleaved at minimum RC(IDD) without violating RRD(IDD) and FAW(IDD) using a burst length of 4. Control and address bus  
inputs are STABLE during DESELECTs. IOUT = 0mA  
t
t
t
Timing Patterns for 4 bank devices x16  
-DDR2-400 3/3/3  
A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D  
-DDR2-533 4/4/4  
A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D  
-DDR2-667 5/5/5  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D  
-DDR2-800 6/6/6  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D D  
-DDR2-800 5/5/5  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D  
Rev. 1.0 October 2007  
14 of 42  
DDR2 SDRAM  
K4T56163QI  
11.0 DDR2 SDRAM IDD Spec  
16Mx16 (K4T56163QI)  
667@CL=5  
Symbol  
Unit  
Notes  
800@CL=5  
CE7 LE7  
800@CL=6  
CF7 LF7  
533@CL=4  
CD5 LD5  
400@CL=3  
CCC LCC  
CE6  
LE6  
IDD0  
IDD1  
85  
100  
10  
80  
95  
80  
90  
75  
85  
70  
80  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD2P  
IDD2Q  
IDD2N  
IDD3P-F  
IDD3P-S  
IDD3N  
IDD4W  
IDD4R  
IDD5  
10  
10  
10  
10  
35  
35  
30  
30  
30  
45  
40  
38  
35  
35  
35  
35  
30  
30  
30  
10  
10  
10  
10  
10  
60  
55  
55  
50  
50  
160  
180  
100  
10  
150  
190  
95  
140  
170  
90  
135  
160  
90  
130  
150  
90  
IDD6  
10  
10  
10  
10  
IDD7  
220  
215  
210  
205  
200  
Rev. 1.0 October 2007  
15 of 42  
DDR2 SDRAM  
K4T56163QI  
12.0 Input/Output capacitance  
Parameter  
DDR2-400  
DDR2-533  
DDR2-667  
DDR2-800  
Units  
Symbol  
Min  
1.0  
x
Max  
2.0  
Min  
1.0  
x
Max  
2.0  
Min  
1.0  
x
Max  
2.0  
Input capacitance, CK and CK  
CCK  
CDCK  
CI  
pF  
pF  
pF  
pF  
pF  
pF  
Input capacitance delta, CK and CK  
0.25  
2.0  
0.25  
2.0  
0.25  
1.75  
0.25  
3.5  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
Input/output capacitance, DQ, DM, DQS, DQS  
Input/output capacitance delta, DQ, DM, DQS, DQS  
1.0  
x
1.0  
x
1.0  
x
CDI  
0.25  
4.0  
0.25  
3.5  
CIO  
2.5  
x
2.5  
x
2.5  
x
CDIO  
0.5  
0.5  
0.5  
13.0 Electrical Characteristics & AC Timing for DDR2-800/667/533/400  
(0 °C < TOPER < 95 °C; VDDQ = 1.8V + 0.1V; VDD = 1.8V + 0.1V)  
13.1 Refresh Parameters by Device Density  
Parameter  
Refresh to active/Refresh command time  
Symbol  
256Mb  
75  
512Mb  
105  
1Gb  
127.5  
7.8  
2Gb  
195  
7.8  
4Gb  
327.5  
7.8  
Units  
ns  
tRFC  
tREFI  
0 °C T  
85°C  
7.8  
7.8  
µs  
CASE  
Average periodic refresh interval  
85 °C < T  
95°C  
3.9  
3.9  
3.9  
3.9  
3.9  
µs  
CASE  
13.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin  
Speed  
Bin (CL - tRCD - tRP)  
Parameter  
tCK, CL=3  
tCK, CL=4  
tCK, CL=5  
tCK, CL=6  
tRCD  
DDR2-800(E7)  
5-5-5  
DDR2-800(F7)  
6-6-6  
DDR2-667(E6)  
5 - 5 - 5  
DDR2-533(D5)  
4 - 4 - 4  
DDR2-400(CC)  
3 - 3 - 3  
Units  
min  
5
max  
8
min  
-
max  
-
min  
5
max  
8
min  
5
max  
8
min  
5
max  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.75  
2.5  
-
8
3.75  
3
8
3.75  
3
8
3.75  
3.75  
-
8
5
8
8
8
8
8
-
-
-
2.5  
15  
15  
60  
45  
8
-
-
-
-
-
12.5  
12.5  
57.5  
45  
-
-
15  
15  
60  
45  
-
15  
-
15  
15  
55  
40  
-
tRP  
-
-
-
-
-
-
15  
-
-
-
-
tRC  
60  
tRAS  
70000  
70000  
70000  
45  
70000  
70000  
Rev. 1.0 October 2007  
16 of 42  
DDR2 SDRAM  
K4T56163QI  
13.3 Timing Parameters by Speed Grade  
(Refer to notes for informations related to this table at the bottom)  
DDR2-800  
DDR2-667  
DDR2-533  
DDR2-400  
Parameter  
Symbol  
Units Notes  
min  
- 400  
- 350  
0.45  
0.45  
max  
400  
min  
max  
+450  
+400  
0.55  
0.55  
min  
max  
+500  
+450  
0.55  
0.55  
min  
max  
+600  
+500  
0.55  
0.55  
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK high-level width  
tAC  
-450  
-400  
0.45  
0.45  
-500  
-450  
0.45  
0.45  
-600  
-500  
0.45  
0.45  
ps  
ps  
tDQSCK  
tCH  
350  
0.55  
0.55  
tCK  
tCK  
CK low-level width  
tCL  
min(tCL,t  
CH)  
min(tCL,  
tCH)  
min(tCL,  
tCH)  
min(tCL,  
tCH)  
CK half period  
tHP  
x
8000  
x
x
8000  
x
x
8000  
x
x
8000  
x
ps  
ps  
ps  
20,21  
24  
Clock cycle time, CL=x  
DQ and DM input hold time  
tCK  
2500  
3000  
3750  
5000  
15,16,  
17,20  
tDH(base)  
125  
175  
225  
275  
15,16,  
17,21  
DQ and DM input setup time  
tDS(base)  
50  
x
100  
x
100  
x
150  
x
ps  
Control & Address input pulse width for each input tIPW  
0.6  
0.35  
x
x
x
0.6  
0.35  
x
x
x
0.6  
0.35  
x
x
x
0.6  
0.35  
x
x
x
tCK  
tCK  
ps  
DQ and DM input pulse width for each input  
Data-out high-impedance time from CK/CK  
DQS low-impedance time from CK/CK  
tDIPW  
tHZ  
tAC max  
tAC max  
tAC max  
tAC max  
tLZ(DQS)  
tAC min tAC max tAC min tAC max  
tAC min tAC max tAC min tAC max  
ps  
27  
27  
2* tAC  
min  
2*tAC  
min  
DQ low-impedance time from CK/CK  
tLZ(DQ)  
tAC max  
tAC max 2* tACmin tAC max 2* tACmin tAC max  
ps  
DQS-DQ skew for DQS and associated DQ sig-  
nals  
tDQSQ  
tQHS  
tQH  
x
200  
300  
x
x
240  
340  
x
x
x
300  
400  
x
x
x
350  
450  
x
ps  
ps  
ps  
22  
21  
DQ hold skew factor  
x
x
tHP -  
tQHS  
tHP -  
tQHS  
tHP -  
tQHS  
tHP -  
tQHS  
DQ/DQS output hold time from DQS  
First DQS latching transition to associated clock  
edge  
tDQSS  
- 0.25  
0.25  
-0.25  
0.25  
-0.25  
0.25  
-0.25  
0.25  
tCK  
DQS input high pulse width  
DQS input low pulse width  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
Write postamble  
tDQSH  
tDQSL  
tDSS  
0.35  
0.35  
0.2  
0.2  
2
x
x
0.35  
0.35  
0.2  
0.2  
2
x
x
0.35  
0.35  
0.2  
0.2  
2
x
x
0.35  
0.35  
0.2  
0.2  
2
x
x
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
x
x
x
x
tDSH  
x
x
x
x
tMRD  
x
x
x
x
tWPST  
tWPRE  
0.4  
0.35  
0.6  
x
0.4  
0.35  
0.6  
x
0.4  
0.35  
0.6  
x
0.4  
0.35  
0.6  
x
19  
Write preamble  
14,16,  
18,23  
Address and control input hold time  
Address and control input setup time  
tIH(base)  
tIS(base)  
250  
175  
x
x
275  
200  
x
x
375  
250  
x
x
475  
350  
x
x
ps  
ps  
14,16,  
18,22  
Read preamble  
Read postamble  
tRPRE  
tRPST  
0.9  
0.4  
1.1  
0.6  
0.9  
0.4  
1.1  
0.6  
0.9  
0.4  
1.1  
0.6  
0.9  
0.4  
1.1  
0.6  
tCK  
tCK  
28  
28  
Active to active command period for 1KB page  
size products  
tRRD  
7.5  
x
7.5  
x
7.5  
x
7.5  
x
ns  
12  
Rev. 1.0 October 2007  
17 of 42  
DDR2 SDRAM  
K4T56163QI  
DDR2-800  
DDR2-667  
DDR2-533  
DDR2-400  
Parameter  
Symbol  
Units Notes  
min  
max  
min  
max  
min  
max  
min  
max  
Four Activate Window for 1KB page size products tFAW  
Four Activate Window for 2KB page size products tFAW  
35  
45  
37.5  
50  
37.5  
50  
37.5  
ns  
ns  
50  
2
CAS to CAS command delay  
Write recovery time  
tCCD  
tWR  
2
x
x
x
2
2
tCK  
ns  
15  
15  
x
x
x
15  
x
x
x
15  
x
x
x
Auto precharge write recovery + precharge time tDAL  
WR+tRP  
7.5  
WR+tRP  
7.5  
WR+tRP  
7.5  
WR+tRP  
10  
tCK  
ns  
23  
33  
11  
Internal write to read command delay  
Internal read to precharge command delay  
Exit self refresh to a non-read command  
Exit self refresh to a read command  
tWTR  
tRTP  
7.5  
7.5  
7.5  
7.5  
ns  
tXSNR  
tXSRD  
tRFC + 10  
200  
tRFC + 10  
200  
tRFC + 10  
200  
tRFC + 10  
200  
ns  
x
x
x
tCK  
Exit precharge power down to any non-read com-  
mand  
tXP  
2
2
2
2
x
x
2
2
x
x
2
2
x
x
tCK  
tCK  
tCK  
Exit active power down to read command  
tXARD  
tXARDS  
9
Exit active power down to read command  
(slow exit, lower power)  
8 - AL  
7 - AL  
6 - AL  
6 - AL  
9, 10  
CKE minimum pulse width  
(high and low pulse width)  
t
CKE  
3
2
3
2
3
2
3
2
tCK  
tCK  
ns  
36  
t
ODT turn-on delay  
AOND  
2
2
2
2
tAC(max)  
+ 0.7  
tAC(max)  
+0.7  
tAC(max)  
+1  
tAC(max)  
+1  
t
ODT turn-on  
AON  
tAC(min)  
tAC(min)  
tAC(min)  
tAC(min)  
13, 25  
2tCK +  
tAC(max)  
+1  
2tCK+tA  
C(max)+  
1
tAC(min)+  
2
tAC(min)+ 2tCK+tAC tAC(min)+  
tAC(min)+ 2tCK+tAC  
t
ODT turn-on(Power-Down mode)  
AONPD  
ns  
2
(max)+1  
2
2
(max)+1  
t
ODT turn-off delay  
ODT turn-off  
AOFD  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
tCK  
ns  
tAC(max)  
+ 0.6  
tAC(max)  
+ 0.6  
tAC(max)  
+ 0.6  
tAC(max)  
+ 0.6  
t
AOF  
tAC(min)  
tAC(min)  
tAC(min)  
tAC(min)  
26  
24  
2.5tCK +  
tAC(max)  
+1  
2.5tCK+t  
AC(max)  
+1  
2.5tCK+  
tAC(max)  
+1  
2.5tCK+  
tAC(max)  
+1  
tAC(min)+  
2
tAC(min)+  
2
tAC(min)+  
2
tAC(min)+  
2
t
ODT turn-off (Power-Down mode)  
AOFPD  
ns  
ODT to power down entry latency  
ODT power down exit latency  
OCD drive mode output delay  
tANPD  
tAXPD  
tOIT  
3
8
0
3
8
0
3
8
0
3
8
0
tCK  
tCK  
ns  
12  
12  
12  
12  
Minimum time clocks remains ON after CKE asyn-  
chronously drops LOW  
tIS+tCK  
+tIH  
tIS+tCK  
+tIH  
tIS+tCK  
+tIH  
tIS+tCK  
+tIH  
tDelay  
ns  
Rev. 1.0 October 2007  
18 of 42  
DDR2 SDRAM  
K4T56163QI  
14.0 General notes, which may apply for all AC parameters  
1. DDR2 SDRAM AC timing reference load  
Figure 1 represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise repre  
sentation of the typical system environment or a depiction of the actual load presented by a production tester. System designers will use IBIS or other  
simulation tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their production test conditions (generally  
a coaxial transmission line terminated at the tester electronics).  
VDDQ  
DQ  
DQS  
DQS Output  
DUT  
V
= V  
/2  
TT  
DDQ  
RDQS  
RDQS  
25Ω  
Timing  
reference  
point  
Figure 1 - AC Timing Reference Load  
The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output timing reference voltage level for differential  
signals is the crosspoint of the true (e.g. DQS) and the complement (e.g. DQS) signal.  
2. Slew Rate Measurement Levels  
a) Output slew rate for falling and rising edges is measured between VTT - 250 mV and VTT + 250 mV for single ended signals. For differential signals  
(e.g. DQS - DQS) output slew rate is measured between DQS - DQS = - 500 mV and DQS - DQS = + 500 mV. Output slew rate is guaranteed by  
design, but is not necessarily tested on each device.  
b) Input slew rate for single ended signals is measured from Vref(dc) to VIH(ac),min for rising edges and from Vref(dc) to VIL(ac),max for falling edges.  
For differential signals (e.g. CK - CK) slew rate for rising edges is measured from CK - CK = - 250 mV to CK - CK = + 500 mV (+ 250 mV to - 500 mV  
for falling edges).  
c) VID is the magnitude of the difference between the input voltage on CK and the input voltage on CK, or between DQS and DQS for differential strobe.  
3. DDR2 SDRAM output slew rate test load  
Output slew rate is characterized under the test conditions as shown in Figure 2.  
VDDQ  
DUT  
DQ  
Output  
Test point  
DQS, DQS  
RDQS, RDQS  
V
= V  
/2  
DDQ  
TT  
25Ω  
Figure 2 - Slew Rate Test Load  
Rev. 1.0 October 2007  
19 of 42  
DDR2 SDRAM  
K4T56163QI  
4. Differential data strobe  
DDR2 SDRAM pin timings are specified for either single ended mode or differential mode depending on the setting of the EMRS "Enable DQS" mode bit;  
timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM pin timings are measured is mode depen-  
dent. In single ended mode, timing relationships are measured relative to the rising or falling edges of DQS crossing at VREF. In differential mode, these  
timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinction in timing methods is guaranteed by design  
and characterization. Note that when differential data strobe mode is disabled via the EMRS, the complementary pin, DQS, must be tied externally to VSS  
through a 20 to 10 kresistor to insure proper operation.  
tDQSH  
tDQSL  
DQS  
DQS/  
DQS  
DQS  
tWPRE  
tWPST  
V
IH(dc)  
V
IH(ac)  
DQ  
DM  
D
D
D
D
V
IL(ac)  
VIL(dc)  
tDH  
tDH  
tDS  
DMin  
tDS  
V
IH(ac)  
V
IH(dc)  
DMin  
DMin  
DMin  
V
IL(ac)  
V
IL(dc)  
Figure 3 - Data Input (Write) Timing  
t
t
CL  
CH  
CK  
CK  
CK/CK  
DQS  
DQS  
DQS/DQS  
DQ  
t
t
RPRE  
RPST  
Q
Q
Q
Q
t
DQSQmax  
t
DQSQmax  
t
t
QH  
QH  
Figure 4 - Data Output (Read) Timing  
5. AC timings are for linear signal transitions. See Specific Notes on derating for other signal transitions.  
6. All voltages are referenced to VSS.  
7. These parameters guarantee device behavior, but they are not necessarily tested on each device.  
They may be guaranteed by device design or tester correlation.  
8. Tests for AC timing, IDD, and electrical (AC and DC) characteristics, may be conducted at nominal reference/supply voltage levels, but the related  
specifications and device operation are guaranteed for the full voltage range specified.  
Rev. 1.0 October 2007  
20 of 42  
DDR2 SDRAM  
K4T56163QI  
15.0 Specific Notes for dedicated AC parameters  
1. User can choose which active power down exit timing to use via MRS (bit 12). tXARD is expected to be used for fast active power down exit timing.  
tXARDS is expected to be used for slow active power down exit timing.  
2. AL = Additive Latency.  
3. This is a minimum requirement. Minimum read to precharge timing is AL + BL / 2 provided that the tRTP and tRAS(min) have been satisfied.  
4. A minimum of two clocks (2 x tCK or 2 x nCK) is required irrespective of operating frequency.  
5. Timings are specified with command/address input slew rate of 1.0 V/ns.  
6. Timings are specified with DQs, DM, and DQS’s (DQS/RDQS in single ended mode) input slew rate of 1.0V/ns.  
7. Timings are specified with CK/CK differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS signals with a differential slew rate of 2.0 V/ns in  
differential strobe mode and a slew rate of 1.0 V/ns in single ended mode.  
8. Data setup and hold time derating.  
Table 1 - DDR2-400/533 tDS/tDH derating with differential data strobe  
tDS, tDH Derating Values of DDR2-400, DDR2-533 (ALL units in ‘ps’, the note applies to entire Table)  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
0.8V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
125  
45  
21  
0
-
-
-
-
-
-
125  
83  
0
-11  
-
-
-
-
-
45  
21  
0
-14  
-
-
-
-
-
125  
83  
0
-11  
-25  
-
-
-
-
45  
21  
0
-14  
-31  
-
-
-
-
-
95  
12  
1
-13  
-31  
-
-
33  
12  
-2  
-19  
-42  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
23  
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
83  
0
-
-
-
-
-
-
24  
13  
-1  
-19  
-43  
-
24  
10  
-7  
-30  
-59  
-
DQ  
Siew  
rate  
25  
11  
-7  
-31  
-74  
-
22  
5
-18  
-47  
-89  
-
-
17  
-6  
-35  
-77  
17  
-7  
-50  
6
-23  
-65  
-
5
-38  
-
V/ns  
-19  
-62  
-11  
-53  
-
-
-
-
-
-
-127 -140 -115 -128 -103 -116  
Table 2 - DDR2-667/800 tDS/tDH derating with differential data strobe  
tDS, tDH Derating Values for DDR2-667, DDR2-800 (ALL units in ‘ps’, the note applies to entire Table)  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
0.8V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
100  
45  
21  
0
-
-
-
-
-
-
100  
45  
21  
0
-14  
-
-
-
-
-
100  
67  
0
-5  
-13  
-
-
-
-
45  
21  
0
-14  
-31  
-
-
-
-
-
79  
12  
7
-1  
-10  
-
-
33  
12  
-2  
-19  
-42  
-
-
-
24  
19  
11  
2
-10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
17  
-6  
-35  
-77  
-140  
-
-
-
-
-
38  
26  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
67  
0
-
-
-
-
-
-
67  
0
-5  
-
-
-
24  
10  
-7  
-30  
-59  
-
DQ  
Slew  
rate  
31  
23  
14  
2
-24  
-
22  
5
-18  
-47  
-89  
-
-
35  
26  
14  
-12  
-52  
6
-
-
V/ns  
-23  
-65  
-128  
38  
12  
-28  
-11  
-53  
-116  
-
-
-
-
-
-
-
-40  
Rev. 1.0 October 2007  
21 of 42  
DDR2 SDRAM  
K4T56163QI  
Table 3 - DDR2-400/533 tDS1/tDH1 derating with single-ended data strobe  
tDS1, tDH1 Derating Values for DDR2-400, DDR2-533(All units in ‘ps’; the note applies to the entire table)  
DQS Single-ended Slew Rate  
2.0 V/ns  
1.5 V/ns  
1.0 V/ns  
0.9 V/ns  
0.8 V/ns  
0.7 V/ns  
0.6 V/ns  
0.5 V/ns  
0.4 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
1
188  
1
188  
1
167  
125  
42  
31  
-
1
146  
125  
83  
69  
-
1
125  
83  
0
1
63  
42  
0
1
-
1
-
1
-
1
-
1
-
1
-
1
-
-
1
-
1
-
1
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
146  
167  
81  
-2  
-13  
-27  
-45  
-
43  
1
-
-
-
-
-
-
-
-
63  
-
125  
-7  
-18  
-32  
-50  
-74  
-
-13  
-27  
-44  
-67  
-96  
-
-
-
-
-
-
DQ  
Slew  
rate  
-
-
-
-
-
-
-11  
-25  
-
-14  
-31  
-
-13  
-30  
-53  
-
-29  
-43  
-61  
-85  
-45  
-62  
-85  
-
-
-
-
-
-60  
-78  
-86  
-
-
-
-
-
-109 -108 -152  
V/ns  
-
-
-
-
-
-114 -102 -138 -138 -181 -183 -246  
-
-
-
-
-
-
-
-128 -156 -145 -180 -175 -223 -226 -288  
-210 -243 -240 -286 -291 -351  
-
-
-
-
-
-
-
-
-
-
-
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value to the  
tDS and tDH derating value respectively. Example: tDS (total setup time) =tDS(base) +tDS.  
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing of Vih(ac)min.  
Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing of Vil(ac)max. If  
the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(dc) to ac region’, use nominal slew rate for derating value (See  
Figure 5 for differential data strobe and Figure 6 for single-ended data strobe.) If the actual signal is later than the nominal slew rate line anywhere  
between shaded ’VREF(dc) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see  
Figure 7 for differential data strobe and Figure 8 for single-ended data strobe)  
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vil(dc)max and the first crossing of VREF(dc). Hold  
(tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of Vih(dc)min and the first crossing of VREF(dc). If the  
actual signal is always later than the nominal slew rate line between shaded ’dc level to VREF(dc) region’, use nominal slew rate for derating value (see  
Figure 9 for differential data strobe and Figure 10 for single-ended data strobe) If the actual signal is earlier than the nominal slew rate line anywhere  
between shaded ’dc to VREF(dc) region’, the slew rate of a tangent line to the actual signal from the dc level to VREF(dc) level is used for derating value  
(see Figure 11 for differential data strobe and Figure 12 for single-ended data strobe)  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac) at the time of the rising clock  
transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac).  
For slew rates in between the values listed in Tables 1, 2 and 3, the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
Rev. 1.0 October 2007  
22 of 42  
DDR2 SDRAM  
K4T56163QI  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
V
DDQ  
V
min  
min  
IH(ac)  
VREF to ac  
region  
V
IH(dc)  
nominal  
slew rate  
V
REF(dc)  
nominal slew  
rate  
V
max  
IL(dc)  
VREF to ac  
region  
V
max  
IL(ac)  
tVAC  
V
SS  
TF  
TR  
V
- Vil(ac)max  
Vih(ac)min - V  
REF(dc)  
Setup Slew Rate  
Rising Signal  
REF(dc)  
Setup Slew Rate  
=
=
Falling Signal  
TR  
TF  
Figure 5 - IIIustration of nominal slew rate for tDS (differential DQS,DQS)  
Rev. 1.0 October 2007  
23 of 42  
DDR2 SDRAM  
K4T56163QI  
VDDQ  
VIH(ac) min  
VIH(dc) min  
DQS  
Note1  
V
REF(dc)  
VIL(dc) max  
VIL(ac) max  
VSS  
tDH  
tDS  
tDS  
tDH  
V
DDQ  
V
min  
IH(ac)  
VREF to ac  
region  
V
min  
IH(dc)  
nominal  
slew rate  
V
REF(dc)  
nominal slew  
rate  
V
max  
IL(dc)  
VREF to ac  
region  
V
max  
IL(ac)  
V
SS  
TF  
TR  
V
- Vil(ac)max  
TF  
Vih(ac)min - V  
REF(dc)  
REF(dc)  
Setup Slew Rate  
Rising Signal  
Setup Slew Rate  
=
=
Falling Signal  
TR  
Note : DQS signal must be monotonic between Vil(dc)max and Vih(dc)min.  
Figure 6 - IIIustration of nominal slew rate for tDS (single-ended DQS)  
Rev. 1.0 October 2007  
24 of 42  
DDR2 SDRAM  
K4T56163QI  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
V
DDQ  
nominal  
line  
V
V
min  
IH(ac)  
V
to ac  
REF  
region  
min  
IH(dc)  
tangent  
line  
V
REF(dc)  
tangent  
line  
V
V
max  
IL(dc)  
IL(ac)  
V
to ac  
REF  
region  
max  
nominal  
line  
TR  
V
SS  
tangent line[Vih(ac)min - V  
]
REF(dc)  
Setup Slew Rate  
=
Rising Signal  
TF  
TR  
tangent line[V  
- Vil(ac)max]  
Setup Slew Rate  
REF(dc)  
=
Falling Signal  
TF  
Figure 7 - IIIustration of tangent line for tDS (differential DQS, DQS)  
Rev. 1.0 October 2007  
25 of 42  
DDR2 SDRAM  
K4T56163QI  
VDDQ  
VIH(ac) min  
VIH(dc) min  
DQS  
Note1  
V
REF(dc)  
VIL(dc) max  
VIL(ac) max  
VSS  
tDH  
tDS  
tDS  
tDH  
V
DDQ  
nominal  
line  
V
V
min  
IH(ac)  
V
to ac  
REF  
region  
min  
IH(dc)  
tangent  
line  
V
REF(dc)  
tangent  
line  
V
V
max  
IL(dc)  
IL(ac)  
V
to ac  
REF  
region  
max  
nominal  
line  
TR  
V
SS  
tangent line[Vih(ac)min - V  
]
REF(dc)  
Setup Slew Rate  
=
Rising Signal  
TR  
TF  
tangent line[V  
- Vil(ac)max]  
Setup Slew Rate  
REF(dc)  
=
Falling Signal  
TF  
Note : DQS signal must be monotonic between Vil(dc)max and Vih(dc)min.  
Figure 8 - IIIustration of tangent line for tDS (single-ended DQS)  
Rev. 1.0 October 2007  
26 of 42  
DDR2 SDRAM  
K4T56163QI  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
V
DDQ  
V
V
min  
IH(ac)  
IH(dc)  
min  
dc to V  
region  
REF  
nominal  
slew rate  
V
REF(dc)  
nominal  
dc to V  
region  
REF  
slew rate  
V
V
max  
IL(dc)  
IL(ac)  
max  
V
SS  
TF  
TR  
Hold Slew Rate  
V
- Vil(dc)max  
TR  
Hold Slew Rate  
Rising Signal  
REF(dc)  
Vih(dc)min - V  
REF(dc)  
=
=
Falling Signal  
TF  
Figure 9 - IIIustration of nominal slew rate for tDH (differential DQS, DQS)  
Rev. 1.0 October 2007  
27 of 42  
DDR2 SDRAM  
K4T56163QI  
VDDQ  
VIH(ac) min  
VIH(dc) min  
DQS  
Note1  
V
REF(dc)  
VIL(dc) max  
VIL(ac) max  
VSS  
tDH  
tDS  
tDS  
tDH  
V
DDQ  
V
V
min  
min  
IH(ac)  
IH(dc)  
dc to V  
REF  
nominal  
region  
slew rate  
V
REF(dc)  
nominal  
dc to V  
region  
REF  
slew rate  
V
V
max  
IL(dc)  
IL(ac)  
max  
V
SS  
TF  
TR  
Hold Slew Rate  
V
- Vil(dc)max  
TR  
Hold Slew Rate  
Rising Signal  
REF(dc)  
Vih(dc)min - V  
REF(dc)  
=
=
Falling Signal  
TF  
Note : DQS signal must be monotonic between Vil(dc)max and Vih(dc)min.  
Figure 10 - IIIustration of nominal slew rate for tDH (single-ended DQS)  
Rev. 1.0 October 2007  
28 of 42  
DDR2 SDRAM  
K4T56163QI  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
V
DDQ  
V
V
min  
min  
IH(ac)  
IH(dc)  
nominal  
line  
dc to V  
region  
REF  
tangent  
line  
V
REF(dc)  
tangent  
dc to V  
region  
REF  
line  
nominal  
line  
V
V
max  
IL(dc)  
IL(ac)  
max  
V
SS  
TF  
TR  
- Vil(dc)max ]  
tangent line [ V  
REF(dc)  
Hold Slew Rate  
=
Rising Signal  
TR  
tangent line [ Vih(dc)min - V  
]
REF(dc)  
Hold Slew Rate  
=
Falling Signal  
TF  
Figure 11 - IIIustration of tangent line for tDH (differential DQS, DQS)  
Rev. 1.0 October 2007  
29 of 42  
DDR2 SDRAM  
K4T56163QI  
VDDQ  
VIH(ac) min  
VIH(dc) min  
DQS  
Note1  
V
REF(dc)  
VIL(dc) max  
VIL(ac) max  
VSS  
tDH  
tDS  
tDS  
tDH  
V
DDQ  
V
V
min  
min  
IH(ac)  
IH(dc)  
nominal  
line  
dc to V  
REF  
tangent  
line  
region  
V
REF(dc)  
tangent  
dc to V  
region  
REF  
line  
nominal  
line  
V
V
max  
IL(dc)  
IL(ac)  
max  
V
SS  
TF  
TR  
- Vil(dc)max ]  
tangent line [ V  
REF(dc)  
Hold Slew Rate  
Rising Signal  
=
TR  
tangent line [ Vih(dc)min - V  
]
REF(dc)  
Hold Slew Rate  
=
Falling Signal  
TF  
Note : DQS signal must be monotonic between Vil(dc)max and Vih(dc)min.  
Figure 12 - IIIustration of tangent line for tDH (single-ended DQS)  
Rev. 1.0 October 2007  
30 of 42  
DDR2 SDRAM  
K4T56163QI  
9. tIS and tIH (input setup and hold) derating  
Table 4 - Derating values for DDR2-400, DDR2-533  
tIS, tIH Derating Values for DDR2-400, DDR2-533  
CK, CK Differential Slew Rate  
1.5 V/ns 1.0 V/ns  
2.0 V/ns  
Units  
Notes  
tIS  
+187  
+179  
+167  
+150  
+125  
+83  
tIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
tIS  
+217  
+209  
+197  
+180  
+155  
+113  
+30  
tIH  
+124  
+119  
+113  
+105  
+75  
tIS  
+247  
+239  
+227  
+210  
+185  
+143  
+60  
tIH  
+154  
+149  
+143  
+135  
+105  
+81  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+51  
0
+30  
+60  
-11  
-14  
+19  
+16  
+49  
+46  
Command/  
AddressSlew  
rate(V/ns)  
-25  
-31  
+5  
-1  
+35  
+29  
-43  
-54  
-13  
-24  
+17  
+6  
-67  
-83  
-37  
-53  
-7  
-23  
-110  
-175  
-285  
-350  
-525  
-800  
-1450  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
-80  
-95  
-50  
-65  
-145  
-255  
-320  
-495  
-770  
-1420  
-158  
-262  
-345  
-470  
-678  
-1095  
-115  
-225  
-290  
-465  
-740  
-1390  
-128  
-232  
-315  
-440  
-648  
-1065  
Rev. 1.0 October 2007  
31 of 42  
DDR2 SDRAM  
K4T56163QI  
Table 5 - Derating values for DDR2-667, DDR2-800  
tIS and tIH Derating Values for DDR2-667, DDR2-800  
CK, CK Differential Slew Rate  
1.5 V/ns 1.0 V/ns  
2.0 V/ns  
Units  
Notes  
tIS  
+150  
+143  
+133  
+120  
+100  
+67  
0
tIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
tIS  
+180  
+173  
+163  
+150  
+130  
+97  
+30  
+25  
+17  
+8  
tIH  
+124  
+119  
+113  
+105  
+75  
tIS  
+210  
+203  
+193  
+180  
+160  
+127  
+60  
tIH  
+154  
+149  
+143  
+135  
+105  
+81  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+51  
+30  
+60  
-5  
-14  
+16  
+55  
+46  
Command/  
Address Slew  
rate(V/ns)  
-13  
-31  
-1  
+47  
+29  
-22  
-54  
-24  
+38  
+6  
-34  
-83  
-4  
-53  
+26  
-23  
-60  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
-30  
-95  
0
-65  
-100  
-168  
-200  
-325  
-517  
-1000  
-70  
-158  
-262  
-345  
-470  
-678  
-1095  
-40  
-128  
-232  
-315  
-440  
-648  
-1065  
-138  
-170  
-295  
-487  
-970  
-108  
-140  
-265  
-457  
-940  
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value to the tIS  
and tIH derating value respectively. Example: tIS (total setup time) = tIS(base) + tIS  
Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing of Vih(ac)min.  
Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing of Vil(ac)max. If  
the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(dc) to ac region’, use nominal slew rate for derating value (see  
Figure 13). If the actual signal is later than the nominal slew rate line anywhere between shaded ’VREF(dc) to ac region’, the slew rate of a tangent line to  
the actual signal from the ac level to dc level is used for derating value (see Figure 14).  
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vil(dc)max and the first crossing of VREF(dc). Hold  
(tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of Vih(dc)min and the first crossing of VREF(dc). If the  
actual signal is always later than the nominal slewrate line between shaded ’dc to VREF(dc) region’, use nominal slew rate for derating value (see Figure  
15). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(dc) region’, the slew rate of a tangent line to the  
actual signal from the dc level to VREF(dc) level is used for derating value (see Figure 16).  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac) at the time of the rising clock  
transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac).  
For slew rates in between the values listed in Tables 4 and 5, the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
Rev. 1.0 October 2007  
32 of 42  
DDR2 SDRAM  
K4T56163QI  
CK  
CK  
tIH  
tIH  
tIS  
tIS  
V
DDQ  
V
min  
IH(ac)  
VREF to ac  
region  
V
min  
IH(dc)  
nominal  
slew rate  
V
REF(dc)  
nominal slew  
rate  
V
max  
IL(dc)  
VREF to ac  
region  
V
max  
IL(ac)  
V
SS  
TF  
TR  
V
- Vil(ac)max  
Vih(ac)min - V  
REF(dc)  
REF(dc)  
Setup Slew Rate  
Rising Signal  
Setup Slew Rate  
Falling Signal  
=
=
TF  
TR  
Figure 13 - IIIustration of nominal slew rate for tIS  
Rev. 1.0 October 2007  
33 of 42  
DDR2 SDRAM  
K4T56163QI  
CK  
CK  
tIH  
tIH  
tIS  
tIS  
V
DDQ  
nominal  
line  
V
V
min  
IH(ac)  
V
to ac  
REF  
region  
min  
IH(dc)  
tangent  
line  
V
REF(dc)  
tangent  
line  
V
V
max  
IL(dc)  
IL(ac)  
V
to ac  
REF  
region  
max  
nominal  
line  
TR  
V
SS  
tangent line[Vih(ac)min - V  
]
REF(dc)  
Setup Slew Rate  
=
Rising Signal  
TR  
TF  
tangent line[V  
- Vil(ac)max]  
REF(dc)  
Setup Slew Rate  
Falling Signal  
=
TF  
Figure 14 - IIIustration of tangent line for tIS  
Rev. 1.0 October 2007  
34 of 42  
DDR2 SDRAM  
K4T56163QI  
CK  
CK  
tIH  
tIH  
tIS  
tIS  
V
DDQ  
V
V
min  
IH(ac)  
IH(dc)  
min  
dc to V  
region  
REF  
nominal  
slew rate  
V
REF(dc)  
nominal  
dc to V  
region  
REF  
slew rate  
V
V
max  
IL(dc)  
IL(ac)  
max  
V
SS  
TF  
TR  
Hold Slew Rate  
V
- Vil(dc)max  
TR  
Hold Slew Rate  
Rising Signal  
REF(dc)  
Vih(dc)min - V  
REF(dc)  
=
=
Falling Signal  
TF  
Figure 15 - IIIustration of nominal slew rate for tIH  
Rev. 1.0 October 2007  
35 of 42  
DDR2 SDRAM  
K4T56163QI  
CK  
CK  
tIH  
tIH  
tIS  
tIS  
V
DDQ  
V
V
min  
IH(ac)  
IH(dc)  
nominal  
line  
min  
dc to V  
region  
REF  
tangent  
line  
V
REF(dc)  
tangent  
dc to V  
region  
REF  
line  
nominal  
line  
V
V
max  
IL(dc)  
IL(ac)  
max  
V
SS  
TF  
TR  
- Vil(dc)max ]  
tangent line [ V  
REF(dc)  
Hold Slew Rate  
Rising Signal  
=
TR  
tangent line [ Vih(dc)min - V  
]
REF(dc)  
Hold Slew Rate  
Falling Signal  
=
TF  
Figure 16 - IIIustration of tangent line for tIH  
Rev. 1.0 October 2007  
36 of 42  
DDR2 SDRAM  
K4T56163QI  
10. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance  
(bus turnaround) will degrade accordingly.  
11. MIN ( tCL, tCH) refers to the smaller of the actual clock LOW time and the actual clock HIGH time as provided to the device (i.e. this value can be  
greater than the minimum specification limits for tCL and tCH). For example, tCL and tCH are = 50% of the period, less the half period jitter ( tJIT(HP))  
of the clock source, and less the half period jitter due to crosstalk ( tJIT(crosstalk)) into the clock traces.  
12. tQH = tHP - tQHS, where :  
tHP = minimum half clock period for any given cycle and is defined by clock HIGH or clock LOW (tCH, tCL).  
tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits; and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are, separately, due  
to data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers.  
13. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate  
mismatch between DQS/ DQS and associated DQ in any given cycle.  
14. tDAL = WR + RU{ tRP[ns] / tCK[ns] }, where RU stands for round up.  
WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer.  
tCK refers to the application clock period.  
Example: For DDR533 at tCK = 3.75ns with WR programmed to 4 clocks.  
tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.  
15. The clock frequency is allowed to change during self refresh mode or precharge power-down mode.  
16. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT  
resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is 10 ns (= 2 x 5 ns)  
after the clock edge that registered a first ODT HIGH if tCK = 5 ns. For DDR2-667/800, tAOND is 2 clock cycles after the clock edge that registered a  
first ODT HIGH counting the actual input clock edges.  
17. ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are mea-  
sured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is 12.5 ns (= 2.5 x 5 ns) after the clock edge that regis-  
tered a first ODT LOW if tCK = 5 ns. For DDR2-667/800, if tCK(avg) = 3 ns is assumed, tAOFD is 1.5 ns (= 0.5 x 3 ns) after the second trailing clock  
edge counting from the clock edge that registered a first ODT LOW and by counting the actual input clock edges.  
18. tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which  
specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) . Figure 17 shows a method to calculate the point when device is no  
longer driving (tHZ), or beginsdriving (tLZ) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as  
long as the calculation is consistent. tLZ(DQ) refers to tLZ of the DQS and tLZ(DQS) refers to tLZ of the (U/L/R)DQS and (U/L/R)DQS each treated as  
single-ended signal.  
19. tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST),  
or begins driving (tRPRE). Figure 17 shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving  
(tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consis-  
tent.  
VOH + x mV  
VOH + 2x mV  
VTT + 2x mV  
VTT + x mV  
tLZ  
tHZ  
tRPRE begin point  
tRPST end point  
VOL + 2x mV  
VOL + x mV  
VTT - x mV  
T2  
T1  
VTT - 2x mV  
T1  
T2  
tHZ,tRPST end point = 2*T1-T2  
tLZ,tRPRE begin point = 2*T1-T2  
Figure 17 - Method for calculating transitions and endpoints  
Rev. 1.0 October 2007  
37 of 42  
DDR2 SDRAM  
K4T56163QI  
20. Input waveform timing tDS with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the VIH(ac) level to the  
differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL(ac) level to the differential data strobe crosspoint for  
a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(dc)max and Vih(dc)min. See Figure 18.  
21. Input waveform timing tDH with differential data strobe enabled MR[bit10]=0, is referenced from the differential data strobe crosspoint to the input sig-  
nal crossing at the VIH(dc) level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the VIL(dc) level for  
a rising signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(dc)max and Vih(dc)min. See Figure 18.  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(ac) min  
VIH(dc) min  
VREF(dc)  
VIL(dc) max  
VIL(ac) max  
VSS  
Figure 18 - Differential input waveform timing - tDS and tDH  
22. Input waveform timing is referenced from the input signal crossing at the VIH(ac) level for a rising signal and VIL(ac) for a falling signal applied to the  
device under test. See Figure 19.  
23. Input waveform timing is referenced from the input signal crossing at the VIL(dc) level for a rising signal and VIH(dc) for a falling signal applied to the  
device under test. See Figure 19.  
CK  
CK  
tIH  
tIH  
tIS  
tIS  
VDDQ  
VIH(ac) min  
VIH(dc) min  
VREF(dc)  
VIL(dc) max  
VIL(ac) max  
VSS  
Figure 19 - Differential input waveform timing - tIS and tIH  
Rev. 1.0 October 2007  
38 of 42  
DDR2 SDRAM  
K4T56163QI  
24. tWTR is at lease two clocks (2 x tCK or 2 x nCK) independent of operation frequency.  
25. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(ac) level to the  
single-ended data strobe crossing VIH/L(dc) at the start of its transition for a rising signal, and from the input signal crossing at the VIL(ac) level to the  
single-ended data strobe crossing VIH/L(dc) at the start of its transition for a falling signal applied to the device under test. The DQS signal must be  
monotonic between Vil(dc)max and Vih(dc)min.  
26. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(dc) level to the  
single-ended data strobe crossing VIH/L(ac) at the end of its transition for a rising signal, and from the input signal crossing at the VIL(dc) level to the  
single-ended data strobe crossing VIH/L(ac) at the end of its transition for a falling signal applied to the device under test. The DQS signal must be  
monotonic between Vil(dc)max and Vih(dc)min.  
27. tCKEmin of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire  
time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period  
of tIS + 2 x tCK + tIH.  
28. If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.  
29. These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respec-  
tive clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup  
and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is  
present or not.  
30. These parameters are measured from a data strobe signal ((L/U/R)DQS/DQS) crossing to its respective clock signal (CK/CK) crossing. The spec val-  
ues are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these  
parameters should be met whether clock jitter is present or not.  
31. These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/  
R)DQS/DQS) crossing.  
32. For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK(avg)}, which is in clock  
cycles, assuming all input clock jitter specifications are satisfied.  
For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means:  
For DDR2-667 5-5-5, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 5, i.e. as long as the input clock jitter specifications  
are met, Precharge command at Tm and Active command at Tm+5 is valid even if (Tm+5 - Tm) is less than 15ns due to input clock jitter.  
33. tDAL [nCK] = WR [nCK] + tnRP [nCK] = WR + RU {tRP [ps] / tCK(avg) [ps] }, where WR is the value programmed in the mode register set.  
34. New units, ’tCK(avg)’ and ’nCK’, are introduced in DDR2-667 and DDR2-800. Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under  
operation. Unit ’nCK’ represents one clock cycle of the input clock, counting the actual clock edges.  
Note that in DDR2-400 and DDR2-533, ’tCK’ is used for both concepts.  
ex) tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm+2, even if (Tm+2 - Tm) is 2 x  
tCK(avg) + tERR(2per),min.  
35. Input clock jitter spec parameter. These parameters and the ones in the table below are referred to as 'input clock jitter spec parameters' and these  
parameters apply to DDR2-667 and DDR2-800 only. The jitter specified is a random jitter meeting a Gaussian distribution.  
DDR2-667  
Min  
DDR2-800  
Parameter  
Symbol  
units  
Notes  
Max  
125  
100  
250  
200  
175  
225  
250  
250  
350  
450  
125  
Min  
-100  
-80  
Max  
100  
80  
Clock period jitter  
tJIT(per)  
tJIT(per,lck)  
tJIT(cc)  
-125  
-100  
-250  
-200  
-175  
-225  
-250  
-250  
-350  
-450  
-125  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
Clock period jitter during DLL locking period  
Cycle to cycle clock period jitter  
-200  
-160  
-150  
-175  
-200  
-200  
-300  
-450  
-100  
200  
160  
150  
175  
200  
200  
300  
450  
100  
Cycle to cycle clock period jitter during DLL locking period  
Cumulative error across 2 cycles  
tJIT(cc,lck)  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6-10per)  
tERR(11-50per)  
tJIT(duty)  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across n cycles, n = 6 ... 10, inclusive  
Cumulative error across n cycles, n = 11 ... 50, inclusive  
Duty cycle jitter  
Rev. 1.0 October 2007  
39 of 42  
DDR2 SDRAM  
K4T56163QI  
Definitions :  
- tCK(avg)  
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window.  
N
/N  
tCK(avg) =  
where  
tCK  
j
j = 1  
N = 200  
- tCH(avg) and tCL(avg)  
tCH(avg) is defined as the average HIGH pulse width, as calculated across any consecutive 200 HIGH pulses.  
N
/(N x tCK(avg))  
tCH(avg) =  
where  
tCH  
j
j = 1  
N = 200  
tCL(avg) is defined as the average LOW pulse width, as calculated across any consecutive 200 LOW pulses.  
N
/(N x tCK(avg))  
tCL(avg) =  
where  
tCL  
j
j = 1  
N = 200  
- tJIT(duty)  
tJIT(duty) is defined as the cumulative set of tCH jitter and tCL jitter. tCH jitter is the largest deviation of any single tCH from tCH(avg). tCL jitter is the larg-  
est deviation of any single tCL from tCL(avg).  
tJIT(duty) = Min/max of {tJIT(CH), tJIT(CL)}  
where,  
tJIT(CH) = {tCHi- tCH(avg) where i=1 to 200}  
tJIT(CL) = {tCLi- tCL(avg) where i=1 to 200}  
- tJIT(per), tJIT(per,lck)  
tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg).  
tJIT(per) = Min/max of {tCKi- tCK(avg) where i=1 to 200}  
tJIT(per) defines the single period jitter when the DLL is already locked.  
tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.  
tJIT(per) and tJIT(per,lck) are not guaranteed through final production testing.  
- tJIT(cc), tJIT(cc,lck)  
tJIT(cc) is defined as the difference in clock period between two consecutive clock cycles : tJIT(cc) = Max of |tCK - tCKi|  
i+1  
tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.  
tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.  
tJIT(cc) and tJIT(cc,lck) are not guaranteed through final production testing.  
- tERR(2per), tERR (3per), tERR (4per), tERR (5per), tERR (6-10per) and tERR (11-50per)  
tERR is defined as the cumulative error across multiple consecutive cycles from tCK(avg).  
i + n - 1  
- n x tCK(avg)  
tERR(nper) =  
tCK  
j
j = 1  
n = 2  
for tERR(2per)  
for tERR(3per)  
for tERR(4per)  
for tERR(5per)  
for tERR(6-10per)  
n = 3  
n = 4  
n = 5  
where  
6 n 10  
11 n 50 for tERR(11-50per)  
Rev. 1.0 October 2007  
40 of 42  
DDR2 SDRAM  
K4T56163QI  
36. These parameters are specified per their average values, however it is understood that the following relationship between the average timing and the  
absolute instantaneous timing holds at all times. (Min and max of SPEC values are to be used for calculations in the table below.)  
Parameter  
Symbol  
Min  
Max  
Units  
Absolute clock Period  
tCK(abs)  
tCK(avg),min + tJIT(per),min  
tCK(avg),max + tJIT(per),max  
ps  
tCH(avg),min x tCK(avg),min +  
tJIT(duty),min  
tCH(avg),max x tCK(avg),max +  
tJIT(duty),max  
Absolute clock HIGH pulse width  
Absolute clock LOW pulse width  
tCH(abs)  
tCL(abs)  
ps  
ps  
tCL(avg),min x tCK(avg),min +  
tJIT(duty),min  
tCL(avg),max x tCK(avg),max +  
tJIT(duty),max  
Example: For DDR2-667, tCH(abs),min = ( 0.48 x 3000 ps ) - 125 ps = 1315 ps  
37. tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter. It is used  
in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the following equation;  
tHP = Min ( tCH(abs), tCL(abs) ),  
where,  
tCH(abs) is the minimum of the actual instantaneous clock HIGH time;  
tCL(abs) is the minimum of the actual instantaneous clock LOW time;  
38. tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output; and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of  
each other, due to data pin skew, output pattern effects, and p-channel to n-channel variation of the output drivers  
39. tQH = tHP - tQHS, where:  
tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the max column.  
{The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}  
Examples:  
1) If the system provides tHP of 1315 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 975 ps minimum.  
2) If the system provides tHP of 1420 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 1080 ps minimum.  
40. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output derat-  
ings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per),min = - 272 ps and tERR(6-10per),max = + 293 ps, then  
tDQSCK,min(derated) = tDQSCK,min - tERR(6-10per),max = - 400 ps - 293 ps = - 693 ps and tDQSCK,max(derated) = tDQSCK,max - tERR(6-  
10per),min = 400 ps + 272 ps = + 672 ps. Similarly, tLZ(DQ) for DDR2-667 derates to tLZ(DQ),min(derated) = - 900 ps - 293 ps = - 1193 ps and  
tLZ(DQ),max(derated) = 450 ps + 272 ps = + 722 ps.  
41. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per) of the input clock. (output deratings are  
relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT(per),min = - 72 ps and tJIT(per),max = + 93 ps, then tRPRE,min(derated) =  
tRPRE,min + tJIT(per),min = 0.9 x tCK(avg) - 72 ps = + 2178 ps and tRPRE,max(derated) = tRPRE,max + tJIT(per),max = 1.1 x tCK(avg) + 93 ps =  
+ 2843 ps.  
42. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(duty) of the input clock. (output deratings are  
relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT(duty),min = - 72 ps and tJIT(duty),max = + 93 ps, then tRPST,min(derated) =  
tRPST,min + tJIT(duty),min = 0.4 x tCK(avg) - 72 ps = + 928 ps and tRPST,max(derated) = tRPST,max + tJIT(duty),max = 0.6 x tCK(avg) + 93 ps = +  
1592 ps.  
43. When the device is operated with input clock jitter, this parameter needs to be derated by { - tJIT(duty),max - tERR(6-10per),max } and { -  
tJIT(duty),min - tERR(6-10per),min } of the actual input clock. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per),min = - 272 ps, tERR(6- 10per),max = + 293 ps, tJIT(duty),min = -  
106 ps and tJIT(duty),max = + 94 ps, then tAOF,min(derated) = tAOF,min + { - tJIT(duty),max - tERR(6-10per),max } = - 450 ps + { - 94 ps - 293 ps} =  
- 837 ps and tAOF,max(derated) = tAOF,max + { - tJIT(duty),min - tERR(6-10per),min } = 1050 ps + { 106 ps + 272 ps } = + 1428 ps.  
Rev. 1.0 October 2007  
41 of 42  
DDR2 SDRAM  
K4T56163QI  
44. For tAOFD of DDR2-400/533, the 1/2 clock of tCK in the 2.5 x tCK assumes a tCH, input clock HIGH pulse width of 0.5 relative to tCK. tAOF,min and  
tAOF,max should each be derated by the same amount as the actual amount of tCH offset present at the DRAM input with respect to 0.5.  
For example, if an input clock has a worst case tCH of 0.45, the tAOF,min should be derated by subtracting 0.05 x tCK from it, whereas if an input clock  
has a worst case tCH of 0.55, the tAOF,max should be derated by adding 0.05 x tCK to it. Therefore, we have;  
tAOF,min(derated) = tAC,min - [0.5 - Min(0.5, tCH,min)] x tCK  
tAOF,max(derated) = tAC,max + 0.6 + [Max(0.5, tCH,max) - 0.5] x tCK  
or  
tAOF,min(derated) = Min(tAC,min, tAC,min - [0.5 - tCH,min] x tCK)  
tAOF,max(derated) = 0.6 + Max(tAC,max, tAC,max + [tCH,max - 0.5] x tCK)  
where tCH,min and tCH,max are the minimum and maximum of tCH actually measured at the DRAM input balls.  
45. For tAOFD of DDR2-667/800, the 1/2 clock of nCK in the 2.5 x nCK assumes a tCH(avg), average input clock HIGH pulse width of 0.5 relative to  
tCK(avg). tAOF,min and tAOF,max should each be derated by the same amount as the actual amount of tCH(avg) offset present at the DRAM input  
with respect to 0.5.  
For example, if an input clock has a worst case tCH(avg) of 0.48, the tAOF,min should be derated by subtracting 0.02 x tCK(avg) from it, whereas if an  
input clock has a worst case tCH(avg) of 0.52, the tAOF,max should be derated by adding 0.02 x tCK(avg) to it. Therefore, we have;  
tAOF,min(derated) = tAC,min - [0.5 - Min(0.5, tCH(avg),min)] x tCK(avg)  
tAOF,max(derated) = tAC,max + 0.6 + [Max(0.5, tCH(avg),max) - 0.5] x tCK(avg)  
tAOF,min(derated) = Min(tAC,min, tAC,min - [0.5 - tCH(avg),min] x tCK(avg))  
tAOF,max(derated) = 0.6 + Max(tAC,max, tAC,max + [tCH(avg),max - 0.5] x tCK(avg))  
where tCH(avg),min and tCH(avg),max are the minimum and maximum of tCH(avg) actually measured at the DRAM input balls.  
Note that these deratings are in addition to the tAOF derating per input clock jitter, i.e. tJIT(duty) and tERR(6-10per). However tAC values used in the  
equations shown above are from the timing parameter table and are not derated. Thus the final derated values for tAOF are;  
tAOF,min(derated_final) = tAOF,min(derated) + { - tJIT(duty),max - tERR(6-10per),max }  
tAOF,max(derated_final) = tAOF,max(derated) + { - tJIT(duty),min - tERR(6-10per),min }  
Rev. 1.0 October 2007  
42 of 42  

相关型号:

K4T56163QI-ZLE60

Synchronous DRAM, 16MX16, 0.45ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
SAMSUNG

K4T56163QI-ZLE70

Synchronous DRAM, 16MX16, 0.4ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
SAMSUNG

K4T56163QN

Consumer Memory
SAMSUNG

K4T56163QN-HCE6

DDR DRAM, 16MX16, 0.45ns, CMOS, PBGA84,
SAMSUNG

K4T56163QN-HCE60

DDR DRAM, 16MX16, 0.45ns, CMOS, PBGA84, HALOGEN FREE AND ROHS COMPLIANT, FBGA-84
SAMSUNG

K4T56163QN-HCE6T

DDR DRAM, 16MX16, 0.45ns, CMOS, PBGA84,
SAMSUNG

K4T56163QN-HCE7

DDR DRAM, 16MX16, 0.4ns, CMOS, PBGA84,
SAMSUNG

K4T56163QN-HCE70

DDR DRAM, 16MX16, 0.4ns, CMOS, PBGA84, HALOGEN FREE AND ROHS COMPLIANT, FBGA-84
SAMSUNG