K4T1G164QD-ZLD5 [SAMSUNG]

DDR DRAM, 64MX16, 0.5ns, CMOS, PBGA84;
K4T1G164QD-ZLD5
型号: K4T1G164QD-ZLD5
厂家: SAMSUNG    SAMSUNG
描述:

DDR DRAM, 64MX16, 0.5ns, CMOS, PBGA84

动态存储器 双倍数据速率
文件: 总27页 (文件大小:589K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
1Gb D-die DDR2 SDRAM Specification  
60FBGA & 84FBGA with Pb-Free  
(RoHS compliant)  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL  
INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure couldresult in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
-1 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
Table of Contents  
1.0 Ordering Information ...................................................................................................................2  
2.0 Key Features ................................................................................................................................2  
3.0 Package Pinout/Mechanical Dimension & Addressing ............................................................3  
3.1 x8 package pinout (Top View) : 60ball FBGA Package ......................................................................3  
3.2 x16 package pinout (Top View) : 84ball FBGA Package ....................................................................4  
3.3 FBGA Package Dimension (x8) ......................................................................................................5  
3.4 FBGA Package Dimension (x16) ....................................................................................................6  
4.0 Input/Output Functional Description .........................................................................................7  
5.0 DDR2 SDRAM Addressing ..........................................................................................................8  
6.0 Absolute Maximum DC Ratings ..................................................................................................9  
7.0 AC & DC Operating Conditions .................................................................................................. 9  
7.1 Recommended DC Operating Conditions (SSTL - 1.8) ......................................................................9  
7.2 Operating Temperature Condition ...............................................................................................10  
7.3 Input DC Logic Level ..................................................................................................................10  
7.4 Input AC Logic Level ..................................................................................................................10  
7.5 AC Input Test Conditions ...........................................................................................................10  
7.6 Differential input AC logic Level ..................................................................................................11  
7.7 Differential AC output parameters ...............................................................................................11  
8.0 ODT DC electrical characteristics ............................................................................................12  
9.0 OCD default characteristics ......................................................................................................12  
10.0 IDD Specification Parameters and Test Conditions .............................................................13  
11.0 DDR2 SDRAM IDD Spec Table ................................................................................................15  
12.0 Input/Output capacitance ........................................................................................................16  
13.0 Electrical Characteristics & AC Timing for DDR2-800/667/533/400 .....................................16  
13.1 Refresh Parameters by Device Density .....................................................................................16  
13.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ...........................................16  
13.3 Timing Parameters by Speed Grade .........................................................................................17  
14.0 General notes, which may apply for all AC parameters .......................................................19  
15.0 Specific Notes for dedicated AC parameters ........................................................................21  
0 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
Revision History  
Revision  
Month  
Year  
History  
1.0  
March  
2007  
- Initial Release  
1 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
1.0 Ordering Information  
Org.  
DDR2-800 5-5-5  
DDR2-800 6-6-6  
DDR2-667 5-5-5  
DDR2-533 4-4-4  
DDR2-400 3-3-3  
Package  
128Mx8 K4T1G084QD-ZC(L)E7 K4T1G084QD-ZC(L)F7 K4T1G084QD-ZC(L)E6 K4T1G084QD-ZC(L)D5 K4T1G084QD-ZC(L)CC 60 FBGA  
64Mx16 K4T1G164QD-ZC(L)E7 K4T1G164QD-ZC(L)F7 K4T1G164QD-ZC(L)E6 K4T1G164QD-ZC(L)D5 K4T1G164QD-ZC(L)CC 84 FBGA  
Note :  
1. Speed bin is in order of CL-tRCD-tRP.  
2. RoHS Compliant.  
2.0 Key Features  
Speed  
CAS Latency  
tRCD(min)  
tRP(min)  
DDR2-800 5-5-5  
DDR2-800 6-6-6  
DDR2-667 5-5-5  
DDR2-533 4-4-4  
DDR2-400 3-3-3  
Units  
tCK  
ns  
5
6
5
4
3
12.5  
12.5  
57.5  
15  
15  
60  
15  
15  
60  
15  
15  
60  
15  
15  
55  
ns  
tRC(min)  
ns  
• JEDEC standard 1.8V ± 0.1V Power Supply  
• VDDQ = 1.8V ± 0.1V  
• 200 MHz fCK for 400Mb/sec/pin, 267MHz fCK for 533Mb/sec/  
pin, 333MHz fCK for 667Mb/sec/pin, 400MHz fCK for 800Mb/  
sec/pin  
• 8 Banks  
• Posted CAS  
• Programmable CAS Latency: 3, 4, 5, 6  
• Programmable Additive Latency: 0, 1, 2, 3, 4, 5  
• Write Latency(WL) = Read Latency(RL) -1  
• Burst Length: 4 , 8(Interleave/nibble sequential)  
• Programmable Sequential / Interleave Burst Mode  
• Bi-directional Differential Data-Strobe (Single-ended data-  
strobe is an optional feature)  
• Off-Chip Driver(OCD) Impedance Adjustment  
• On Die Termination  
The 1Gb DDR2 SDRAM is organized as a 16Mbit x 8 I/Os x  
8banks or 8Mbit x 16 I/Os x 8 banks device. This synchronous  
device achieves high speed double-data-rate transfer rates of up  
to 800Mb/sec/pin (DDR2-800) for general applications.  
The chip is designed to comply with the following key DDR2  
SDRAM features such as posted CAS with additive latency, write  
latency = read latency - 1, Off-Chip Driver(OCD) impedance  
adjustment and On Die Termination.  
All of the control and address inputs are synchronized with a pair  
of externally supplied differential clocks. Inputs are latched at the  
crosspoint of differential clocks (CK rising and CK falling). All I/Os  
are synchronized with a pair of bidirectional strobes (DQS and  
DQS) in a source synchronous fashion. The address bus is used  
to convey row, column, and bank address information in a RAS/  
CAS multiplexing style. For example, 1Gb(x8) device receive 14/  
10/3 addressing.  
The 1Gb DDR2 device operates with a single 1.8V ± 0.1V power  
supply and 1.8V ± 0.1V VDDQ.  
The 1Gb DDR2 device is available in 60ball FBGAs(x8) and in  
84ball FBGAs(x16).  
• Special Function Support  
- PASR(Partial Array Self Refresh)  
- 50ohm ODT  
Note : The functionality described and the timing specifications included in  
this data sheet are for the DLL Enabled mode of operation.  
- High Temperature Self-Refresh rate enable  
• Average Refresh Period 7.8us at lower than TCASE 85°C,  
3.9us at 85°C < TCASE < 95 °C  
• All of Lead-free products are compliant for RoHS  
Note : This data sheet is an abstract of full DDR2 specification and does not cover the common features which are described in “DDR2 SDRAM Device  
Operation & Timing Diagram”.  
2 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
3.0 Package Pinout/Mechanical Dimension & Addressing  
3.1 x8 package pinout (Top View) : 60ball FBGA Package  
1
2
3
7
8
9
NU/  
A
B
C
D
E
F
VDD  
DQ6  
VSS  
VSSQ  
DQS  
DQS  
VSSQ  
DQ0  
VDDQ  
DQ7  
RDQS  
DM/  
VSSQ  
DQ1  
RDQS  
VDDQ  
DQ4  
VDDQ  
DQ3  
VDDQ  
DQ2  
VDDQ  
DQ5  
VSSQ  
VSSQ  
VDDL VREF  
CKE  
VSS  
WE  
VSSDL  
RAS  
CK  
CK  
VDD  
ODT  
G
H
J
BA2  
BA0  
BA1  
CAS  
CS  
A10/AP  
A3  
A1  
A5  
A2  
A6  
A0  
A4  
VDD  
VSS  
VSS  
A7  
A9  
K
L
A11  
NC  
A8  
VDD  
A12  
NC  
A13  
Note:  
1. Pins B3 and A2 have identical capacitance as pins B7 and A8.  
2. For a read, when enabled, strobe pair RDQS & RDQS are identical in  
function and timing to strobe pair DQS & DQS and input masking function  
is disabled.  
3. The function of DM or RDQS/RDQS are enabled by EMRS command.  
4. VDDL and VSSDL are power and ground for the DLL.  
: Populated Ball  
Ball Locations (x8)  
: Depopulated Ball  
+
Top View (See the balls through the Package)  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+
+
+
G
H
J
+
+
+
K
L
3 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
3.2 x16 package pinout (Top View) : 84ball FBGA Package  
1
2
3
7
8
9
A
B
C
D
E
F
VDD  
DQ14  
VDDQ  
DQ12  
NC  
VSS  
VSSQ  
UDQS  
VDDQ  
DQ10  
UDQS  
VSSQ  
DQ8  
VDDQ  
DQ15  
VDDQ  
DQ13  
VSSQ  
DQ9  
UDM  
VDDQ  
DQ11  
VSSQ  
VSSQ  
VDD  
DQ6  
NC  
VSS  
VSSQ  
LDQS  
VDDQ  
DQ2  
VDDQ  
DQ7  
LDQS  
VSSQ  
DQ0  
VSSQ  
DQ1  
LDM  
VDDQ  
DQ3  
G
H
J
VDDQ  
DQ4  
VDDQ  
DQ5  
VSSQ  
VSSQ  
VDDL  
VREF  
CKE  
VSS  
WE  
VSSDL  
RAS  
CK  
CK  
VDD  
ODT  
K
L
BA2  
VSS  
BA0  
BA1  
CAS  
CS  
M
N
P
R
A10/AP  
A3  
A1  
A5  
A2  
A6  
A0  
A4  
VDD  
VSS  
A7  
A9  
A11  
NC  
A8  
VDD  
A12  
NC  
NC  
Note :  
1. VDDL and VSSDL are power and ground for the DLL.  
2. In case of only 8 DQs out of 16 DQs are used, LDQS,  
LDQSB and DQ0~7 must be used.  
: Populated Ball  
Ball Locations (x16)  
: Depopulated Ball  
+
Top View (See the balls through the Package)  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+
+
+
+
+
+
4 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
3.3 FBGA Package Dimension (x8)  
# A1 INDEX MARK  
B
MOLDING AREA  
9.00± 0.10  
A
0.80 x 8 = 6.40  
0.80  
1.60  
4
9
8
7
6
5
3
2
1
(Datum A)  
(Datum B)  
A
B
C
D
E
F
G
H
J
K
L
(0.95)  
(1.80)  
60-0.45±0.05  
0.2 M  
A B  
9.00 ± 0.10  
#A1  
0.35±0.05  
1.10±0.10  
5 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
3.4 FBGA Package Dimension (x16)  
9.00 ± 0.10  
# A1 INDEX MARK  
B
MOLDING AREA  
A
6.40  
0.80  
1.60  
4
9
8
7
6
5
3
2
1
(Datum A)  
(Datum B)  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
(0.95)  
(1.80)  
3.20  
84-0.45±0.05  
0.2 M  
A B  
9.00 ± 0.10  
#A1  
0.35±0.05  
1.10±0.10  
6 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
4.0 Input/Output Functional Description  
Symbol  
Type  
Function  
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of the  
positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK (both  
directions of crossing).  
CK, CK  
Input  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and out-  
put drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or Active  
Power-Down (row Active in any bank). CKE is synchronous for power down entry and exit, and for self refresh entry.  
CKE is asynchronous for self refresh exit. After VREF has become stable during the power on and initialization  
CKE  
CS  
Input  
Input  
swquence, it must be maintained for proper operation of the CKE receiver. For proper self-refresh entry and exit, VREF  
must be maintained to this input. CKE must be maintained high throughout read and write accesses. Input buffers,  
excluding CK, CK, ODT and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during  
self refresh.  
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on sys-  
tems with multiple Ranks. CS is considered part of the command code.  
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR2 SDRAM. When  
enabled, ODT is only applied to each DQ, DQS, DQS, RDQS, RDQS, and DM signal for x4/x8 configurations. For x16  
configuration ODT is applied to each DQ, UDQS/UDQS, LDQS/LDQS, UDM, and LDM signal. The ODT pin will be  
ignored if the Extended Mode Register (EMRS(1)) is programmed to disable ODT.  
ODT  
RAS, CAS, WE  
DM  
Input  
Input  
Input  
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coinci-  
dent with that input data during a Write access. DM is sampled on both edges of DQS. Although DM pins are input only,  
the DM loading matches the DQ and DQS loading. For x8 device, the function of DM or RDQS/RDQS is enabled by  
EMRS command.  
Bank Address Inputs: BA0, BA1 and BA2 define to which bank an Active, Read, Write or Precharge command is  
being applied. Bank address also determines if the mode register or extended mode register is to be accessed during  
a MRS or EMRS cycle.  
BA0 - BA2  
Input  
Input  
Address Inputs: Provided the row address for Active commands and the column address and Auto Precharge bit for  
Read/Write commands to select one location out of the memory array in the respective bank. A10 is sampled during a  
Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If  
only one bank is to be precharged, the bank is selected by BA0, BA1. The address inputs also provide the op-code dur-  
ing Mode Register Set commands.  
A0 - A13  
DQ  
Input/Out-  
put  
Data Input/ Output: Bi-directional data bus.  
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the  
x16, LDQS corresponds to the data on DQ0-DQ7; UDQS corresponds to the data on DQ8-DQ15. For the x8, an RDQS  
option using DM pin can be enabled via the EMRS(1) to simplify read timing. The data strobes DQS, LDQS, UDQS,  
and RDQS may be used in single ended mode or paired with optional complementary signals DQS, LDQS, UDQS, and  
RDQS to provide differential pair signaling to the system during both reads and writes. An EMRS(1) control bit enables  
or disables all complementary data strobe signals.  
DQS, (DQS)  
In this data sheet, "differential DQS signals" refers to any of the following with A10 = 0 of EMRS(1)  
x4 DQS/DQS  
(LDQS), (LDQS) Input/Out-  
(UDQS), (UDQS)  
(RDQS), (RDQS)  
put  
x8 DQS/DQS  
if EMRS(1)[A11] = 0  
x8 DQS/DQS, RDQS/RDQS,  
if EMRS(1)[A11] = 1  
x16 LDQS/LDQS and UDQS/UDQS  
"single-ended DQS signals" refers to any of the following with A10 = 1 of EMRS(1)  
x4 DQS  
x8 DQS if EMRS(1)[A11] = 0  
x8 DQS, RDQS, if EMRS(1)[A11] = 1  
x16 LDQS and UDQS  
NC  
No Connect: No internal electrical connection is present.  
V
DD/VDDQ  
Supply Power Supply: 1.8V +/- 0.1V, DQ Power Supply: 1.8V +/- 0.1V  
Supply Ground, DQ Ground  
VSS/VSSQ  
VDDL  
Supply DLL Power Supply: 1.8V +/- 0.1V  
Supply DLL Ground  
VSSDL  
VREF  
Supply Reference voltage  
7 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
5.0 DDR2 SDRAM Addressing  
1Gb Addressing  
Configuration  
# of Bank  
256Mb x4  
8
128Mb x 8  
8
64Mb x16  
8
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0 ~ BA2  
A10/AP  
BA0 ~ BA2  
A10/AP  
A0 ~ A13  
A0 ~ A9  
BA0 ~ BA2  
A10/AP  
A0 ~ A12  
A0 ~ A9  
A0 ~ A13  
A0 ~ A9,A11  
* Reference information: The following tables are address mapping information for other densities.  
256Mb  
Configuration  
# of Bank  
64Mb x4  
4
32Mb x 8  
4
16Mb x16  
4
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A9,A11  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A9  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A8  
512Mb  
Configuration  
# of Bank  
128Mb x4  
4
64Mb x 8  
4
32Mb x16  
4
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0,BA1  
A10/AP  
BA0,BA1  
A10/AP  
A0 ~ A13  
A0 ~ A9  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A9  
A0 ~ A13  
A0 ~ A9,A11  
2Gb  
Configuration  
# of Bank  
512Mb x4  
8
256Mb x 8  
8
128Mb x16  
8
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0 ~ BA2  
A10/AP  
BA0 ~ BA2  
A10/AP  
A0 ~ A14  
A0 ~ A9  
BA0 ~ BA2  
A10/AP  
A0 ~ A13  
A0 ~ A9  
A0 ~ A14  
A0 ~ A9,A11  
4Gb  
Configuration  
# of Bank  
1 Gb x4  
8
512Mb x 8  
8
256Mb x16  
8
Bank Address  
Auto precharge  
Row Address  
BA0 ~ BA2  
A10/AP  
BA0 ~ BA2  
A10/AP  
A0 - A15  
A0 - A9  
BA0 ~ BA2  
A10/AP  
A0 - A14  
A0 - A9  
A0 - A15  
A0 - A9,A11  
Column Address/page size  
8 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
6.0 Absolute Maximum DC Ratings  
Symbol  
VDD  
Parameter  
Rating  
Units  
V
Notes  
Voltage on VDD pin relative to VSS  
- 1.0 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
-55 to +100  
1
1
Voltage on VDDQ pin relative to VSS  
Voltage on VDDL pin relative to VSS  
Voltage on any pin relative to VSS  
Storage Temperature  
VDDQ  
VDDL  
V
V
1
V
IN, VOUT  
TSTG  
Note :  
V
1
°C  
1, 2  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2  
standard.  
7.0 AC & DC Operating Conditions  
7.1 Recommended DC Operating Conditions (SSTL - 1.8)  
Rating  
Typ.  
1.8  
Symbol  
Parameter  
Units  
Notes  
Min.  
1.7  
Max.  
1.9  
VDD  
VDDL  
VDDQ  
VREF  
VTT  
Supply Voltage  
V
V
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1.7  
1.8  
1.9  
4
4
1.7  
1.8  
1.9  
V
0.49*VDDQ  
VREF-0.04  
0.50*VDDQ  
VREF  
0.51*VDDQ  
VREF+0.04  
mV  
V
1,2  
3
Note : There is no specific device VDD supply voltage requirement for SSTL-1.8 compliance. However under all conditions VDDQ must be less than or equal  
to VDD  
.
1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5  
x VDDQ of the transmitting device and VREF is expected to track variations in VDDQ  
2. Peak to peak AC noise on VREF may not exceed +/-2% VREF(DC).  
3. VTT of transmitting device must track VREF of receiving device.  
.
4. AC parameters are measured with VDD, VDDQ and VDDL tied together.  
9 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
7.2 Operating Temperature Condition  
Symbol  
TOPER  
Parameter  
Operating Temperature  
Rating  
0 to 95  
Units  
°C  
Notes  
1, 2  
1. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to  
JESD51.2 standard.  
2. At 85 - 95 °C operation temperature range, doubling refresh commands in frequency to a 32ms period ( tREFI=3.9 us ) is required, and to enter to  
self refresh mode at this temperature range, an EMRS command is required to change internal refresh rate.  
7.3 Input DC Logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units  
Notes  
VIH(DC)  
VREF + 0.125  
VDDQ + 0.3  
V
DC input logic high  
DC input logic low  
VIL(DC)  
- 0.3  
VREF - 0.125  
V
7.4 Input AC Logic Level  
DDR2-400, DDR2-533  
DDR2-667, DDR2-800  
Symbol  
Parameter  
Units  
Min.  
Max.  
Min.  
Max.  
V
IH (AC)  
VREF + 0.250  
-
VREF + 0.200  
V
V
AC input logic high  
AC input logic low  
VIL (AC)  
-
VREF - 0.250  
VREF - 0.200  
7.5 AC Input Test Conditions  
Symbol  
Condition  
Value  
Units  
Notes  
VREF  
Input reference voltage  
0.5 * VDDQ  
V
1
VSWING(MAX)  
SLEW  
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
1.0  
1.0  
V
1
V/ns  
2, 3  
Note :  
1. Input waveform timing is referenced to the input signal crossing through the VIH/IL(AC) level applied to the device under test.  
2. The input signal minimum slew rate is to be maintained over the range from VREF to VIH(AC) min for rising edges and the range from VREF to VIL(AC)  
max for falling edges as shown in the below figure.  
3. AC timings are referenced with input waveforms switching from VIL(AC) to VIH(AC) on the positive transitions and VIH(AC) to VIL(AC) on the negative  
transitions.  
V
V
V
V
DDQ  
(AC) min  
IH  
(DC) min  
IH  
V
SWING(MAX)  
REF  
V (DC) max  
IL  
V (AC) max  
IL  
V
SS  
delta TF  
V
delta TR  
Rising Slew =  
V
(AC) min - V  
delta TR  
- V (AC) max  
IL  
IH  
REF  
REF  
Falling Slew =  
delta TF  
< AC Input Test Signal Waveform >  
10 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
7.6 Differential input AC logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units  
Notes  
VID(AC)  
0.5  
VDDQ + 0.6  
V
1
AC differential input voltage  
AC differential cross point voltage  
VIX(AC)  
0.5 * VDDQ - 0.175  
0.5 * VDDQ + 0.175  
V
2
Note :  
1. VID(AC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input signal (such as CK, DQS, LDQS or UDQS)  
and VCP is the complementary input signal (such as CK, DQS, LDQS or UDQS). The minimum value is equal to V IH (AC) - V IL(AC).  
2. The typical value of VIX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VIX(AC) is expected to track variations in VDDQ .  
VIX(AC) indicates the voltage at which differential input signals must cross.  
V
DDQ  
V
TR  
Crossing point  
V
ID  
V
V
IX or OX  
V
CP  
V
SSQ  
< Differential signal levels >  
7.7 Differential AC output parameters  
Symbol  
Parameter  
Min.  
0.5 * VDDQ - 0.125  
Max.  
0.5 * VDDQ + 0.125  
Units  
V
Note  
1
V
OX(AC)  
AC differential cross point voltage  
Note :  
1. The typical value of VOX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VOX(AC) is expected to track variations in VDDQ .  
VOX(AC) indicates the voltage at which differential output signals must cross.  
8.0 ODT DC electrical characteristics  
PARAMETER/CONDITION  
Rtt effective impedance value for EMRS(A6,A2)=0,1; 75 ohm  
Rtt effective impedance value for EMRS(A6,A2)=1,0; 150 ohm  
Rtt effective impedance value for EMRS(A6,A2)=1,1; 50 ohm  
Deviation of VM with respect to VDDQ/2  
SYMBOL  
Rtt1(eff)  
Rtt2(eff)  
Rtt3(eff)  
delta VM  
MIN  
60  
NOM  
75  
MAX  
90  
UNITS  
ohm  
ohm  
ohm  
%
NOTES  
1
1
1
1
120  
40  
150  
50  
180  
60  
- 6  
+ 6  
Note1: Test condition for Rtt measurements  
Measurement Definition for Rtt(eff): Apply VIH (ac) and VIL (ac) to test pin separately, then measure current I(VIH (ac)) and I( VIL (ac)) respectively. VIH  
(ac), VIL (ac), and VDDQ values defined in SSTL_18  
VIH (ac) - VIL (ac)  
Rtt(eff) =  
I(VIH (ac)) - I(VIL (ac))  
2 x Vm  
- 1  
x 100%  
delta VM =  
VDDQ  
Measurement Definition for VM: Measure voltage (VM) at test pin (midpoint) with no load.  
11 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
9.0 OCD default characteristics  
Description  
Parameter  
Min  
Nom  
Max  
Unit  
Notes  
Normal 18ohms  
See full strength default driver characteristics  
Output impedance  
ohms  
1,2  
Output impedance step size for OCD calibration  
Pull-up and pull-down mismatch  
Output slew rate  
0
0
1.5  
4
ohms  
ohms  
V/ns  
6
1,2,3  
Sout  
1.5  
5
1,4,5,6,7,8  
Note :  
1. Absolute Specifications (0°C TCASE +95°C; VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V)  
2. Impedance measurement condition for output source dc current: VDDQ = 1.7V; VOUT = 1420mV; (VOUT-VDDQ)/Ioh must be less than 23.4 ohms for  
values of VOUT between VDDQ and VDDQ- 280mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7V; VOUT = 280mV;  
VOUT/Iol must be less than 23.4 ohms for values of VOUT between 0V and 280mV.  
3. Mismatch is absolute value between pull-up and pull-dn, both are measured at same temperature and voltage.  
4. Slew rate measured from VIL(AC) to VIH(AC).  
5. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC. This is  
guaranteed by design and characterization.  
6. This represents the step size when the OCD is near 18 ohms at nominal conditions across all process and represents only the DRAM uncertainty.  
Output slew rate load :  
VTT  
25 ohms  
Output  
(VOUT)  
Reference  
Point  
7. DRAM output slew rate specification applies to 400Mb/sec/pin, 533Mb/sec/pin, 667Mb/sec/pin and 800Mb/sec/pin speed bins.  
8. Timing skew due to DRAM output slew rate mis-match between DQS / DQS and associated DQs is included in tDQSQ and tQHS specification.  
12 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
10.0 IDD Specification Parameters and Test Conditions  
(IDD values are for full operating range of Voltage and Temperature, Notes 1 - 5)  
Symbol  
Proposed Conditions  
Units  
Notes  
Operating one bank active-precharge current;  
CK = CK(IDD), RC = RC(IDD), RAS = RASmin(IDD); CKE is HIGH, CS\ is HIGH between valid commands;  
Address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
t
t
t
t
t
t
IDD0  
mA  
Operating one bank active-read-precharge current;  
t
t
t
t
t
t
t
IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; CK = CK(IDD), RC = RC (IDD), RAS = RASmin(IDD), RCD =  
IDD1  
mA  
t
RCD(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address businputs are SWITCHING; Data pat-  
tern is same as IDD4W  
Precharge power-down current;  
All banks idle; CK = CK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are  
FLOATING  
t
IDD2P  
IDD2Q  
IDD2N  
IDD3P  
IDD3N  
t
mA  
mA  
mA  
Precharge quiet standby current;  
t
t
All banks idle; CK = CK(IDD); CKE is HIGH, CS\ is HIGH; Other control and address bus inputsare STABLE; Data  
bus inputs are FLOATING  
Precharge standby current;  
t
t
All banks idle; CK = CK(IDD); CKE is HIGH, CS\ is HIGH; Other control and address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
Active power-down current;  
mA  
mA  
Fast PDN Exit MRS(12) = 0mA  
t
t
All banks open; CK = CK(IDD); CKE is LOW; Other control and address bus  
Slow PDN Exit MRS(12) = 1mA  
inputs are STABLE; Data bus inputs are FLOATING  
Active standby current;  
t
t
t
t
t
t
mA  
mA  
All banks open; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS\ is HIGH between valid  
commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Operating burst write current;  
t
t
t
t
t
All banks open, Continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; CK = CK(IDD), RAS = RASmax(IDD), RP  
IDD4W  
IDD4R  
t
= RP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus  
inputs are SWITCHING  
Operating burst read current;  
t
t
t
t
All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; CK = CK(IDD), RAS = RAS-  
mA  
mA  
t
t
max(IDD), RP = RP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCH-  
ING; Data pattern is same as IDD4W  
Burst auto refresh current;  
t
t
t
IDD5B  
IDD6  
CK = CK(IDD); Refresh command at every RFC(IDD) interval; CKE is HIGH, CS\ is HIGH between valid com-  
mands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Self refresh current;  
Normal  
mA  
mA  
CK and CK\ at 0V; CKE 0.2V; Other control and address bus inputs are  
FLOATING; Data bus inputs are FLOATING  
Low Power  
Operating bank interleave read current;  
All bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = RCD(IDD)-1* CK(IDD); CK = CK(IDD), RC  
t
t
t
t
t
IDD7  
t
t
t
t
t
t
t
= RC(IDD), RRD = RRD(IDD), FAW = FAW(IDD), RCD = 1* CK(IDD); CKE is HIGH, CS\ is HIGH between valid  
commands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4R; Refer to the fol-  
lowing page for detailed timing conditions  
mA  
13 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
Note :  
1. IDD specifications are tested after the device is properly initialized  
2. Input slew rate is specified by AC Parametric Test Condition  
3. IDD parameters are specified with ODT disabled.  
4. Data bus consists of DQ, DM, DQS, DQS\, RDQS, RDQS\, LDQS, LDQS\, UDQS, and UDQS\. IDD values must be met with all combinations of EMRS  
bits 10 and 11.  
5. Definitions for IDD  
LOW is defined as Vin VILAC(max)  
HIGH is defined as Vin VIHAC(min)  
STABLE is defined as inputs stable at a HIGH or LOW level  
FLOATING is defined as inputs at VREF = VDDQ/2  
SWITCHING is defined as:  
inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for address and control  
signals, and  
inputs changing between HIGH and LOW every other data transfer (once per clock) for DQ signals not including  
masks or strobes.  
For purposes of IDD testing, the following parameters are utilized  
DDR2-800  
DDR2-800  
DDR2-667  
DDR2-533  
DDR2-400  
Units  
Parameter  
5-5-5  
6-6-6  
5-5-5  
4-4-4  
3-3-3  
CL(IDD)  
5
6
5
4
3
tCK  
t
12.5  
57.5  
15  
60  
15  
60  
15  
60  
15  
55  
RCD(IDD)  
ns  
ns  
t
RC(IDD)  
t
7.5  
ns  
ns  
RRD(IDD)-x4/x8  
7.5  
7.5  
7.5  
7.5  
t
RRD(IDD)-x16  
10  
10  
10  
3
10  
10  
5
t
2.5  
2.5  
3.75  
CK(IDD)  
ns  
ns  
t
45  
45  
15  
45  
15  
45  
15  
40  
15  
RASmin(IDD)  
t
12.5  
127.5  
ns  
ns  
RP(IDD)  
t
127.5  
127.5  
127.5  
127.5  
RFC(IDD)  
Detailed IDD7  
The detailed timings are shown below for IDD7.  
Legend: A = Active; RA = Read with Autoprecharge; D = Deselect  
IDD7: Operating Current: All Bank Interleave Read operation  
All banks are being interleaved at minimum RC(IDD) without violating RRD(IDD) and FAW(IDD) using a burst length of 4. Control and address bus  
inputs are STABLE during DESELECTs. IOUT = 0mA  
t
t
t
Timing Patterns for 8bank devices x4/ x8  
-DDR2-400 3/3/3 : A0 RA0 A1 RA1 A2 RA2 A3 RA3 A4 RA4 A5 RA5 A6 RA6 A7 RA7  
-DDR2-533 4/4/4 : A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D  
-DDR2-667 5/5/5 : A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D  
-DDR2-800 6/6/6 : A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D  
-DDR2-800 5/5/5 : A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D  
Timing Patterns for 8bank devices x16  
-DDR2-400 3/3/3 : A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D  
-DDR2-533 4/4/4 : A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D  
-DDR2-667 5/5/5 : A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D  
-DDR2-800 6/6/6 : A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D  
-DDR2-800 5/5/5 : A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D  
14 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
(TA=0oC, VDD= 1.9V)  
11.0 DDR2 SDRAM IDD Spec Table  
128Mx8 (K4T1G084QD)  
667@CL=5  
Symbol  
Unit  
Notes  
800@CL=5  
CE7 LE7  
800@CL=6  
CF7 LF7  
533@CL=4  
CD5 LD5  
400@CL=3  
CCC LCC  
CE6  
LE6  
IDD0  
IDD1  
90  
90  
85  
95  
80  
90  
75  
85  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
100  
100  
IDD2P  
IDD2Q  
IDD2N  
IDD3P-F  
IDD3P-S  
IDD3N  
IDD4W  
IDD4R  
IDD5  
15  
8
15  
8
15  
8
15  
8
15  
8
40  
50  
40  
50  
40  
45  
40  
45  
35  
40  
40  
40  
40  
35  
35  
18  
18  
18  
18  
18  
65  
65  
60  
60  
55  
145  
155  
155  
145  
155  
155  
130  
140  
150  
120  
130  
150  
105  
115  
145  
IDD6  
15  
6
15  
6
15  
6
15  
6
15  
6
IDD7  
265  
260  
240  
240  
225  
(TA=0oC, VDD= 1.9V)  
64Mx16 (K4T1G164QD)  
667@CL=5  
Symbol  
Unit  
Notes  
800@CL=5  
CE7 LE7  
800@CL=6  
CF7 LF7  
533@CL=4  
CD5 LD5  
400@CL=3  
CCC LCC  
CE6  
LE6  
IDD0  
IDD1  
100  
110  
100  
110  
95  
90  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
105  
100  
100  
IDD2P  
IDD2Q  
IDD2N  
IDD3P-F  
IDD3P-S  
IDD3N  
IDD4W  
IDD4R  
IDD5  
15  
8
15  
8
15  
8
15  
8
15  
8
40  
50  
40  
50  
40  
45  
40  
45  
35  
40  
40  
40  
40  
35  
35  
18  
18  
18  
18  
18  
65  
65  
60  
60  
55  
175  
195  
155  
175  
195  
155  
150  
175  
150  
130  
150  
150  
120  
135  
145  
IDD6  
15  
6
15  
6
15  
6
15  
6
15  
6
IDD7  
280  
280  
255  
245  
245  
15 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
12.0 Input/Output capacitance  
DDR2-400  
DDR2-533  
DDR2-667  
DDR2-800  
Units  
Parameter  
Symbol  
Min  
1.0  
x
Max  
2.0  
Min  
1.0  
x
Max  
2.0  
Min  
1.0  
x
Max  
2.0  
Input capacitance, CK and CK  
CCK  
CDCK  
CI  
pF  
pF  
pF  
pF  
pF  
pF  
Input capacitance delta, CK and CK  
0.25  
2.0  
0.25  
2.0  
0.25  
1.75  
0.25  
3.5  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
Input/output capacitance, DQ, DM, DQS, DQS  
Input/output capacitance delta, DQ, DM, DQS, DQS  
1.0  
x
1.0  
x
1.0  
x
CDI  
0.25  
4.0  
0.25  
3.5  
CIO  
2.5  
x
2.5  
x
2.5  
x
CDIO  
0.5  
0.5  
0.5  
13.0 Electrical Characteristics & AC Timing for DDR2-800/667/533/400  
(0 °C < TOPER < 95 °C; VDDQ = 1.8V + 0.1V; VDD = 1.8V + 0.1V)  
13.1 Refresh Parameters by Device Density  
Parameter  
Refresh to active/Refresh command time  
Symbol  
256Mb  
75  
512Mb  
105  
1Gb  
127.5  
7.8  
2Gb  
195  
7.8  
4Gb  
327.5  
7.8  
Units  
ns  
tRFC  
tREFI  
0 °C TCASE 85°C  
85 °C < TCASE 95°C  
7.8  
7.8  
µs  
Average periodic refresh interval  
3.9  
3.9  
3.9  
3.9  
3.9  
µs  
13.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin  
Speed  
Bin (CL - tRCD - tRP)  
Parameter  
tCK, CL=3  
tCK, CL=4  
tCK, CL=5  
tCK, CL=6  
tRCD  
DDR2-800(E7)  
DDR2-800(F7)  
DDR2-667(E6)  
DDR2-533(D5)  
DDR2-400(CC)  
3 - 3 - 3  
5-5-5  
6-6-6  
5 - 5 - 5  
4 - 4 - 4  
Units  
min  
5
max  
8
min  
-
max  
-
min  
5
max  
8
min  
5
max  
8
min  
5
max  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.75  
2.5  
-
8
3.75  
3
8
3.75  
3
8
3.75  
3.75  
-
8
5
8
8
8
8
8
-
-
-
2.5  
15  
15  
60  
45  
8
-
-
-
-
-
12.5  
12.5  
57.5  
45  
-
-
15  
15  
60  
45  
-
15  
-
15  
15  
55  
40  
-
tRP  
-
-
-
-
-
-
15  
-
-
-
-
tRC  
60  
tRAS  
70000  
70000  
70000  
45  
70000  
70000  
16 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
13.3 Timing Parameters by Speed Grade  
(Refer to notes for informations related to this table at the bottom)  
DDR2-800  
DDR2-667  
DDR2-533  
DDR2-400  
Parameter  
Symbol  
Units Notes  
min  
- 400  
- 350  
0.45  
0.45  
max  
400  
min  
max  
+450  
+400  
0.55  
0.55  
min  
max  
+500  
+450  
0.55  
0.55  
min  
max  
+600  
+500  
0.55  
0.55  
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK high-level width  
tAC  
-450  
-400  
0.45  
0.45  
-500  
-450  
0.45  
0.45  
-600  
-500  
0.45  
0.45  
ps  
ps  
tDQSCK  
tCH  
350  
0.55  
0.55  
tCK  
tCK  
CK low-level width  
tCL  
min(tCL,t  
CH)  
min(tCL,  
tCH)  
min(tCL,  
tCH)  
min(tCL,  
tCH)  
CK half period  
tHP  
x
8000  
x
x
8000  
x
x
8000  
x
x
8000  
x
ps  
ps  
ps  
20,21  
24  
Clock cycle time, CL=x  
DQ and DM input hold time  
tCK  
2500  
3000  
3750  
5000  
15,16,  
17,20  
tDH(base)  
125  
175  
225  
275  
15,16,  
17,21  
DQ and DM input setup time  
tDS(base)  
50  
x
100  
x
100  
x
150  
x
ps  
Control & Address input pulse width for each input tIPW  
0.6  
0.35  
x
x
x
0.6  
0.35  
x
x
x
0.6  
0.35  
x
x
x
0.6  
0.35  
x
x
x
tCK  
tCK  
ps  
DQ and DM input pulse width for each input  
Data-out high-impedance time from CK/CK  
DQS low-impedance time from CK/CK  
tDIPW  
tHZ  
tAC max  
tAC max  
tAC max  
tAC max  
tLZ(DQS)  
tAC min tAC max tAC min tAC max  
tAC min tAC max tAC min tAC max  
ps  
27  
27  
2* tAC  
min  
2*tAC  
min  
DQ low-impedance time from CK/CK  
tLZ(DQ)  
tAC max  
tAC max 2* tACmin tAC max 2* tACmin tAC max  
ps  
DQS-DQ skew for DQS and associated DQ sig-  
nals  
tDQSQ  
tQHS  
tQH  
x
x
200  
300  
x
x
x
240  
340  
x
x
x
300  
400  
x
x
x
350  
450  
x
ps  
ps  
ps  
22  
21  
DQ hold skew factor  
tHP -  
tQHS  
tHP -  
tQHS  
tHP -  
tQHS  
tHP -  
tQHS  
DQ/DQS output hold time from DQS  
First DQS latching transition to associated clock  
edge  
tDQSS  
- 0.25  
0.25  
-0.25  
0.25  
-0.25  
0.25  
-0.25  
0.25  
tCK  
DQS input high pulse width  
DQS input low pulse width  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
Write postamble  
tDQSH  
tDQSL  
tDSS  
0.35  
0.35  
0.2  
0.2  
2
x
x
0.35  
0.35  
0.2  
0.2  
2
x
x
0.35  
0.35  
0.2  
0.2  
2
x
x
0.35  
0.35  
0.2  
0.2  
2
x
x
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
x
x
x
x
tDSH  
x
x
x
x
tMRD  
x
x
x
x
tWPST  
tWPRE  
0.4  
0.35  
0.6  
x
0.4  
0.35  
0.6  
x
0.4  
0.35  
0.6  
x
0.4  
0.35  
0.6  
x
19  
Write preamble  
14,16,  
18,23  
Address and control input hold time  
Address and control input setup time  
tIH(base)  
tIS(base)  
250  
175  
x
x
275  
200  
x
x
375  
250  
x
x
475  
350  
x
x
ps  
ps  
14,16,  
18,22  
Read preamble  
Read postamble  
tRPRE  
tRPST  
0.9  
0.4  
1.1  
0.6  
0.9  
0.4  
1.1  
0.6  
0.9  
0.4  
1.1  
0.6  
0.9  
0.4  
1.1  
0.6  
tCK  
tCK  
28  
28  
Active to active command period for 1KB page  
size products  
tRRD  
tRRD  
7.5  
10  
x
x
7.5  
10  
x
x
7.5  
10  
x
x
7.5  
10  
x
x
ns  
ns  
12  
12  
Active to active command period for 2KB page  
size products  
Four Activate Window for 1KB page size products tFAW  
Four Activate Window for 2KB page size products tFAW  
35  
45  
37.5  
50  
37.5  
50  
37.5  
ns  
ns  
50  
2
CAS to CAS command delay  
Write recovery time  
tCCD  
tWR  
2
x
x
x
2
2
tCK  
ns  
15  
15  
x
x
x
15  
x
x
x
15  
x
x
x
Auto precharge write recovery + precharge time tDAL  
WR+tRP  
7.5  
WR+tRP  
7.5  
WR+tRP  
7.5  
WR+tRP  
10  
tCK  
ns  
23  
33  
11  
Internal write to read command delay  
Internal read to precharge command delay  
Exit self refresh to a non-read command  
Exit self refresh to a read command  
tWTR  
tRTP  
7.5  
7.5  
7.5  
7.5  
ns  
tXSNR  
tXSRD  
tRFC + 10  
200  
tRFC + 10  
200  
tRFC + 10  
200  
tRFC + 10  
200  
ns  
x
x
x
tCK  
Exit precharge power down to any non-read com-  
mand  
tXP  
2
2
2
2
x
x
2
2
x
x
2
2
x
x
tCK  
tCK  
tCK  
Exit active power down to read command  
tXARD  
tXARDS  
9
Exit active power down to read command  
(slow exit, lower power)  
8 - AL  
7 - AL  
6 - AL  
6 - AL  
9, 10  
17 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
DDR2-800  
DDR2-667  
DDR2-533  
DDR2-400  
Parameter  
Symbol  
Units Notes  
min  
max  
min  
max  
min  
max  
min  
max  
CKE minimum pulse width  
(high and low pulse width)  
t
t
t
CKE  
3
2
3
2
3
2
3
2
tCK  
tCK  
ns  
36  
ODT turn-on delay  
AOND  
AON  
2
2
2
2
tAC(max)  
+ 0.7  
tAC(max)  
+0.7  
tAC(max)  
+1  
tAC(max)  
+1  
ODT turn-on  
tAC(min)  
tAC(min)  
tAC(min)  
tAC(min)  
13, 25  
2tCK +  
tAC(max)  
+1  
2tCK+tA  
C(max)+  
1
tAC(min)+  
2
tAC(min)+ 2tCK+tAC tAC(min)+  
tAC(min)+ 2tCK+tAC  
t
ODT turn-on(Power-Down mode)  
AONPD  
ns  
2
(max)+1  
2
2
(max)+1  
t
t
ODT turn-off delay  
ODT turn-off  
AOFD  
AOF  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
tCK  
ns  
tAC(max)  
+ 0.6  
tAC(max)  
+ 0.6  
tAC(max)  
+ 0.6  
tAC(max)  
+ 0.6  
tAC(min)  
tAC(min)  
tAC(min)  
tAC(min)  
26  
24  
2.5tCK +  
tAC(max)  
+1  
2.5tCK+t  
AC(max)  
+1  
2.5tCK+  
tAC(max)  
+1  
2.5tCK+  
tAC(max)  
+1  
tAC(min)+  
2
tAC(min)+  
2
tAC(min)+  
2
tAC(min)+  
2
t
ODT turn-off (Power-Down mode)  
AOFPD  
ns  
ODT to power down entry latency  
ODT power down exit latency  
OCD drive mode output delay  
tANPD  
tAXPD  
tOIT  
3
8
0
3
8
0
3
8
0
3
8
0
tCK  
tCK  
ns  
12  
12  
12  
12  
Minimum time clocks remains ON after CKE asyn-  
chronously drops LOW  
tIS+tCK  
+tIH  
tIS+tCK  
+tIH  
tIS+tCK  
+tIH  
tIS+tCK  
+tIH  
tDelay  
ns  
18 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
14.0 General notes, which may apply for all AC parameters  
1. Slew Rate Measurement Levels  
a. Output slew rate for falling and rising edges is measured between VTT - 250 mV and VTT + 250 mV for  
single ended signals. For differential signals (e.g. DQS - DQS) output slew rate is measured between DQS - DQS = -500 mV and DQS - DQS =  
+500mV. Output slew rate is guaranteed by design, but is not necessarily tested on each device.  
b. Input slew rate for single ended signals is measured from dc-level to ac-level: from VIL(dc) to VIH(ac) for rising edges and from VIH(dc) and VIL(ac)  
for falling edges.  
For differential signals (e.g. CK - CK) slew rate for rising edges is measured from CK - CK = -250 mV to CK - CK = +500 mV (250mV to -500 mV  
for falling edges).  
c. VID is the magnitude of the difference between the input voltage on CK and the input voltage on CK, or between DQS and DQS for differential strobe.  
2. DDR2 SDRAM AC timing reference load  
Following figure represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise  
representation of the typical system environment or a depiction of the actual load presented by a production tester. System designers will use IBIS or  
other simulation tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their production test conditions  
(generally a coaxial transmission line terminated at the tester electronics).  
VDDQ  
DQ  
DQS  
Output  
DQS  
RDQS  
RDQS  
DUT  
VTT = VDDQ/2  
Timing  
reference  
point  
25Ω  
<AC Timing Reference Load>  
The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output timing reference voltage level for differential  
signals is the crosspoint of the true (e.g. DQS) and the complement (e.g. DQS) signal.  
3. DDR2 SDRAM output slew rate test load  
Output slew rate is characterized under the test conditions as shown in the following figure.  
VDDQ  
DUT  
DQ  
Output  
Test point  
DQS, DQS  
RDQS, RDQS  
VTT = VDDQ/2  
25W  
<Slew Rate Test Load>  
19 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
4. Differential data strobe  
DDR2 SDRAM pin timings are specified for either single ended mode or differential mode depending on the setting of the EMRS “Enable DQS” mode  
bit; timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM pin timings are measured is mode  
dependent. In single ended mode, timing relationships are measured relative to the rising or falling edges of DQS crossing at VREF. In differential  
mode, these timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinction in timing methods is guar-  
anteed by design and characterization. Note that when differential data strobe mode is disabled via the EMRS, the complementary pin, DQS, must be  
tied externally to VSS through a 20 ohm to 10 K ohm resisor to insure proper operation.  
t
t
DQSL  
DQSH  
DQS  
DQS  
DQS/  
DQS  
t
t
WPST  
WPRE  
VIH(dc)  
VIL(dc)  
VIH(ac)  
DQ  
DM  
D
D
D
D
t
VIL(ac)  
t
t
DH  
DH  
DS  
t
DS  
VIH(ac)  
VIH(dc)  
DMin  
DMin  
DMin  
DMin  
VIL(ac)  
VIL(dc)  
<Data input (write) timing>  
t
t
CL  
CH  
CK  
CK  
CK/CK  
DQS  
DQS  
DQS/DQS  
DQ  
t
t
RPRE  
RPST  
Q
Q
Q
Q
t
DQSQmax  
t
DQSQmax  
t
t
QH  
QH  
<Data output (read) timing>  
5. AC timings are for linear signal transitions.  
6. These parameters guarantee device behavior, but they are not necessarily tested on each device. They may be guaranteed by device design or tester  
correlation.  
7. All voltages are referenced to VSS.  
8. Tests for AC timing, IDD, and electrical (AC and DC) characteristics, may be conducted at nominal reference/supply voltage levels, but the related  
specifications and device operation are guaranteed for the full voltage range specified.  
20 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
15.0 Specific Notes for dedicated AC parameters  
9. User can choose which active power down exit timing to use via MRS(bit 12). tXARD is expected to be used for fast active power down exit timing.  
tXARDS is expected to be used for slow active power down exit timing.  
10. AL = Additive Latency  
11. This is a minimum requirement. Minimum read to precharge timing is AL + BL/2 providing the tRTP and tRAS(min) have been satisfied.  
12. For DDR2-533/400, A minimum of two clocks (2*tCK) is required irrespective of operating frequency.  
For DDR2-800/667, tnPARAM=RU{tPARAM / tCK(avg)}, which is in clock cycles, assuming all input clock jitter specification are satisfied.  
13. Timings are guaranteed with command/address input slew rate of 1.0 V/ns.  
14. These parameters guarantee device behavior, but they are not necessarily tested on each device. They may be guaranteed by device design or tester  
correlation.  
15. Timings are guaranteed with data, mask, and (DQS/RDQS in singled ended mode) input slew rate of 1.0 V/ns.  
16. Timings are guaranteed with CK/CK differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS signals with a differential slew rate of 2.0 V/ns  
in differential strobe mode and a slew rate of 1V/ns in single ended mode.  
17. tDS and tDH derating Values  
tDS, tDH Derating Values of DDR2-400, DDR2-533 (ALL units in ‘ps’, Note 1 applies to entire Table)  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
0.8V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
125  
45  
21  
0
-
-
-
-
-
-
125  
83  
0
-11  
-
-
-
-
-
45  
21  
0
-14  
-
-
-
-
-
125  
83  
0
-11  
-25  
-
-
-
-
45  
21  
0
-14  
-31  
-
-
-
-
-
95  
12  
1
-13  
-31  
-
-
33  
12  
-2  
-19  
-42  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
23  
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
83  
0
-
-
-
-
-
-
24  
13  
-1  
-19  
-43  
-
24  
10  
-7  
-30  
-59  
-
DQ  
Siew  
rate  
25  
11  
-7  
-31  
-74  
-
22  
5
-18  
-47  
-89  
-
-
17  
-6  
-35  
-77  
17  
-7  
-50  
6
-23  
-65  
-
5
-38  
-
V/ns  
-19  
-62  
-11  
-53  
-
-
-
-
-
-
-127 -140 -115 -128 -103 -116  
tDS, tDH Derating Values for DDR2-667, DDR2-800 (ALL units in ‘ps’, Note 1 applies to entire Table)  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
0.8V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
100  
45  
21  
0
-
-
-
-
-
-
100  
45  
21  
0
-14  
-
-
-
-
-
100  
67  
0
-5  
-13  
-
-
-
-
45  
21  
0
-14  
-31  
-
-
-
-
-
79  
12  
7
-1  
-10  
-
-
33  
12  
-2  
-19  
-42  
-
-
-
24  
19  
11  
2
-10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
17  
-6  
-35  
-77  
-140  
-
-
-
-
-
38  
26  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
67  
0
-
-
-
-
-
-
67  
0
-5  
-
-
-
24  
10  
-7  
-30  
-59  
-
DQ  
Slew  
rate  
31  
23  
14  
2
-24  
-
22  
5
-18  
-47  
-89  
-
-
35  
26  
14  
-12  
-52  
6
-
-
V/ns  
-23  
-65  
-128  
38  
12  
-28  
-11  
-53  
-116  
-
-
-
-
-
-
-
-40  
For all input signals the total tDS (setup time) and tDH(hold time) required is calculated by adding the datasheet tDS(base) and tDH(base) value to the  
delta tDS and delta tDH derating value respectively. Example: tDS(total setup time)= tDS(base) + delta tDS.  
21 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
tDS1, tDH1 Derating Values for DDR2-400, DDR2-533(All units in ‘ps’; the note applies to the entire table)  
DQS Single-ended Slew Rate  
0.9 V/ns 0.8 V/ns 0.7 V/ns  
2.0 V/ns  
1.5 V/ns  
1.0 V/ns  
0.6 V/ns  
0.5 V/ns  
0.4 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
1
188  
1
188  
1
167  
125  
42  
31  
-
1
146  
125  
83  
69  
-
1
125  
83  
0
1
63  
42  
0
1
-
1
-
1
-
1
-
1
-
1
-
1
-
-
1
-
1
-
1
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
146  
167  
81  
-2  
-13  
-27  
-45  
-
43  
1
-
-
-
-
-
-
-
-
63  
-
125  
-7  
-18  
-32  
-50  
-74  
-
-13  
-27  
-44  
-67  
-96  
-
-
-
-
-
-
DQ  
Slew  
rate  
-
-
-
-
-
-
-11  
-25  
-
-14  
-31  
-
-13  
-30  
-53  
-
-29  
-43  
-61  
-85  
-45  
-62  
-85  
-
-
-
-
-
-60  
-78  
-86  
-
-
-
-
-
-109 -108 -152  
V/ns  
-
-
-
-
-
-114 -102 -138 -138 -181 -183 -246  
-
-
-
-
-
-
-
-128 -156 -145 -180 -175 -223 -226 -288  
-210 -243 -240 -286 -291 -351  
-
-
-
-
-
-
-
-
-
-
-
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value to the  
tDS and tDH derating value respectively. Example: tDS (total setup time) = tDS(base) + tDS.  
22 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
18. tIS and tIH (input setup and hold) derating.  
tIS, tIH Derating Values for DDR2-400, DDR2-533  
CK, CK Differential Slew Rate  
2.0 V/ns  
1.5 V/ns  
1.0 V/ns  
Units  
Notes  
tIS  
tIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
tIS  
+217  
+209  
+197  
+180  
+155  
+113  
+30  
tIH  
+124  
+119  
+113  
+105  
+75  
+51  
+30  
+16  
-1  
tIS  
+247  
+239  
+227  
+210  
+185  
+143  
+60  
tIH  
+154  
+149  
+143  
+135  
+105  
+81  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
+187  
+179  
+167  
+150  
+125  
+83  
0
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+60  
-11  
-14  
+19  
+49  
+46  
Command/  
AddressSlew  
rate(V/ns)  
-25  
-31  
+5  
+35  
+29  
-43  
-54  
-13  
-24  
+17  
+6  
-67  
-83  
-37  
-53  
-7  
-23  
-110  
-175  
-285  
-350  
-525  
-800  
-125  
-188  
-292  
-375  
-500  
-708  
-80  
-95  
-50  
-65  
-145  
-255  
-320  
-495  
-770  
-158  
-262  
-345  
-470  
-678  
-115  
-225  
-290  
-465  
-740  
-128  
-232  
-315  
-440  
-648  
tIS and tIH Derating Values for DDR2-667, DDR2-800  
CK, CK Differential Slew Rate  
2.0 V/ns  
1.5 V/ns  
1.0 V/ns  
Units  
Notes  
tIS  
+150  
+143  
+133  
+120  
+100  
+67  
0
tIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
tIS  
+180  
+173  
+163  
+150  
+130  
+97  
+30  
+25  
+17  
+8  
tIH  
+124  
+119  
+113  
+105  
+75  
tIS  
+210  
+203  
+193  
+180  
+160  
+127  
+60  
tIH  
+154  
+149  
+143  
+135  
+105  
+81  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+51  
+30  
+60  
-5  
-14  
+16  
+55  
+46  
Command/  
AddressSlew  
rate(V/ns)  
-13  
-31  
-1  
+47  
+29  
-22  
-54  
-24  
+38  
+6  
-34  
-83  
-4  
-53  
+26  
-23  
-60  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
-30  
-95  
0
-65  
-100  
-168  
-200  
-325  
-517  
-1000  
-70  
-158  
-262  
-345  
-470  
-678  
-1095  
-40  
-128  
-232  
-315  
-440  
-648  
-1065  
-138  
-170  
-295  
-487  
-970  
-108  
-140  
-265  
-457  
-940  
For all input signals the total tIS (setup time) and tIH(hold time) required is calculated by adding the datasheet tIS(base) and tIH(base) value to the delta  
tIS and delta tIH derating value respectively. Example: tIS(total setup time)= tIS(base) + delta tIS.  
23 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
19. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance  
(bus turnaround) will degrade accordingly.  
20. MIN ( tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater  
than the minimum specification limits for tCL and tCH). For example, tCL and tCH are = 50% of the period, less the half period jitter ( tJIT(HP)) of the  
clock source, and less the half period jitter due to crosstalk ( tJIT(crosstalk)) into the clock traces.  
21. tQH = tHP – tQHS, where:  
tHP = minimum half clock period for any given cycle and is defined by clock high or clock low ( tCH, tCL).  
tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits; and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are, separately,  
due to data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers.  
22. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate  
mismatch between DQS / DQS and associated DQ in any given cycle.  
23. tDAL = WR + RU{tRP(ns)/tCK(ns)}, where RU stands for round up.  
WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer.  
tCK refers to the application clock period.  
Example: For DDR533 at tCK = 3.75ns with tWR programmed to 4 clocks.  
tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.  
24. The clock frequency is allowed to change during self–refresh mode or precharge power-down mode. In case of clock frequency change during pre-  
charge power-down, a specific procedure is required as described in DDR2 device operation  
25. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on.  
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.  
26. ODT turn off time min is when the device starts to turn off ODT resistance.  
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.  
27. tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which  
specifies when the device output is no longer driving (tHZ), or begins driving (tLZ). Following figure shows a method to calculate the point when  
device is no longer driving (tHZ), or begins driving (tLZ) by measuring the signal at two different voltages. The actual voltage measurement points are  
not critical as long as the calculation is consistent.  
28. tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST),  
or begins driving (tRPRE). Following figure shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving  
(tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consis-  
tent.  
These notes are referenced in the “Timing parameters by speed grade” tables for DDR2-400/533/667 and DDR2-800.  
VTT + 2x mV  
VTT + x mV  
VOH + x mV  
VOH + 2x mV  
tLZ  
tHZ  
tRPRE begin point  
tRPST end point  
VTT - x mV  
VTT - 2x mV  
VOL + 2x mV  
VOL + x mV  
T1  
T2  
T2  
T1  
tHZ,tRPST end point = 2*T1-T2  
tLZ,tRPRE begin point = 2*T1-T2  
<Test method for tLZ, tHZ, tRPRE and tRPST>  
24 of 29  
Rev. 1.0 March 2007  
K4T1G084QD  
K4T1G164QD  
DDR2 SDRAM  
29. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the VIH(ac) level to the differen-  
tial data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL(ac) level to the differential data strobe crosspoint for a falling  
signal applied to the device under test.  
30. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the VIH(dc) level to the differen-  
tial data strobe crosspoint for a rising signal and VIL(dc) to the differential data strobe crosspoint for a falling signal applied to the device under test.  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(ac) min  
VIH(dc) min  
VREF(dc)  
VIL(dc) max  
VIL(ac) max  
VSS  
< Differential Input waveform timing >  
31. Input waveform timing is referenced from the input signal crossing at the VIH(ac) level for a rising signal and VIL(ac) for a falling signal applied to the  
device under test.  
32. Input waveform timing is referenced from the input signal crossing at the VIL(dc) level for a rising signal and VIH(dc) for a falling signal applied to the  
device under test.  
CK  
CK  
tIH  
tIH  
tIS  
tIS  
V
V
V
V
V
V
V
DDQ  
min  
min  
IH(ac)  
IH(dc)  
REF(dc)  
max  
max  
IL(dc)  
IL(ac)  
SS  
33. tWTR is at lease two clocks (2 * tCK) independent of operation frequency.  
34. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(ac) level to the  
single-ended data strobe crossing VIH/L(dc) at the start of its transition for a rising signal, and from the input signal crossing at the VIL(ac) level to the  
single-ended data strobe crossing VIH/L(dc) at the start of its transition for a falling signal applied to the device under test. The DQS signal must be  
monotonic between Vil(dc)max and Vih(dc)min.  
35. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(dc) level to the  
single-ended data strobe crossing VIH/L(ac) at the end of its transition for a rising signal, and from the input signal crossing at the VIL(dc) level to the  
single-ended data strobe crossing VIH/L(ac) at the end of its transition for a falling signal applied to the device under test. The DQS signal must be  
monotonic between Vil(dc)max and Vih(dc)min.  
36. tCKEmin of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire  
time it takes to achieve the 3 clocks of registeration. Thus, after any cKE transition, CKE may not transitioin from its valid level during the time period  
of tIS + 2*tCK + tIH.  
25 of 29  
Rev. 1.0 March 2007  

相关型号:

K4T1G164QD-ZLD50

DDR DRAM, 64MX16, 0.5ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
SAMSUNG

K4T1G164QD-ZLD5T

DDR DRAM, 64MX16, 0.5ns, CMOS, PBGA84
SAMSUNG

K4T1G164QD-ZLE60

DDR DRAM, 64MX16, 0.45ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
SAMSUNG

K4T1G164QD-ZLE7

DDR DRAM, 64MX16, 0.4ns, CMOS, PBGA84
SAMSUNG

K4T1G164QD-ZLE70

DDR DRAM, 64MX16, 0.4ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
SAMSUNG

K4T1G164QD-ZLF7

DDR DRAM, 64MX16, 0.4ns, CMOS, PBGA84
SAMSUNG

K4T1G164QD-ZLF70

DDR DRAM, 64MX16, 0.4ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
SAMSUNG

K4T1G164QD-ZLF7T

DDR DRAM, 64MX16, 0.4ns, CMOS, PBGA84
SAMSUNG

K4T1G164QE

Consumer Memory
SAMSUNG

K4T1G164QE-HCE6

DDR DRAM, 64MX16, 0.45ns, CMOS, PBGA84, HALOGEN FREE AND ROHS COMPLIANT, FBGA-84
SAMSUNG

K4T1G164QE-HCE7

DDR DRAM, 64MX16, 0.4ns, CMOS, PBGA84, HALOGEN FREE AND ROHS COMPLIANT, FBGA-84
SAMSUNG

K4T1G164QE-HCE7000

1Gb E-die DDR2 SDRAM 60FBGA/84FBGA with Lead-Free & Halogen-Free (RoHS compliant)
SAMSUNG