K4S161622D-TL55 [SAMSUNG]

Synchronous DRAM, 1MX16, 5ns, CMOS, PDSO50, 0.400 X 0.825 INCH, 0.80 MM PITCH, TSOP2-50;
K4S161622D-TL55
型号: K4S161622D-TL55
厂家: SAMSUNG    SAMSUNG
描述:

Synchronous DRAM, 1MX16, 5ns, CMOS, PDSO50, 0.400 X 0.825 INCH, 0.80 MM PITCH, TSOP2-50

时钟 动态存储器 光电二极管 内存集成电路
文件: 总43页 (文件大小:1125K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
K4S161622D  
CMOS SDRAM  
1M x 16 SDRAM  
512K x 16bit x 2 Banks  
Synchronous DRAM  
LVTTL  
Revision 1.5  
September 2000  
Samsung Electronics reserves the right to change products or specification without notice.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Revision History  
Revision 1.5 (September 22, 2000)  
• Removed -8.7ns@CL2 in K4S161622D-70.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
512K x 16Bit x 2 Banks Synchronous DRAM  
FEATURES  
GENERAL DESCRIPTION  
• 3.3V power supply  
The K4S161622D is 16,777,216 bits synchronous high data  
rate Dynamic RAM organized as 2 x 524,288 words by 16 bits,  
fabricated with SAMSUNG¢s high performance CMOS technol-  
ogy. Synchronous design allows precise cycle control with the  
use of system clock I/O transactions are possible on every clock  
cycle. Range of operating frequencies, programmable burst  
length and programmable latencies allow the same device to be  
useful for a variety of high bandwidth, high performance mem-  
ory system applications.  
• LVTTL compatible with multiplexed address  
• Dual banks operation  
• MRS cycle with address key programs  
-. CAS Latency ( 2 & 3)  
-. Burst Length (1, 2, 4, 8 & full page)  
-. Burst Type (Sequential & Interleave)  
• All inputs are sampled at the positive going edge of the system  
clock  
• Burst Read Single-bit Write operation  
• DQM for masking  
ORDERING INFORMATION  
• Auto & self refresh  
Part NO.  
MAX Freq.  
183MHz  
166MHz  
143MHz  
125MHz  
100MHz  
Interface Package  
• 15.6us refresh duty cycle (2K/32ms)  
K4S161622D-TC/L55  
K4S161622D-TC/L60  
K4S161622D-TC/L70  
K4S161622D-TC/L80  
K4S161622D-TC/L10  
50  
LVTTL  
TSOP(II)  
FUNCTIONAL BLOCK DIAGRAM  
LWE  
Data Input Register  
LDQM  
Bank Select  
512K x 16  
512K x 16  
DQi  
CLK  
ADD  
Column Decoder  
Latency & Burst Length  
LCKE  
Programming Register  
LWCBR  
LRAS  
LCBR  
LWE  
LCAS  
LDQM  
Timing Register  
CLK  
CKE  
CS  
RAS  
CAS  
WE  
L(U)DQM  
Samsung Electronics reserves the right to  
change products or specification without  
notice.  
*
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
PIN CONFIGURATION (TOP VIEW)  
VDD  
DQ0  
DQ1  
VSSQ  
DQ2  
DQ3  
VDDQ  
DQ4  
DQ5  
VSSQ  
1
2
3
4
5
6
7
8
50  
VSS  
49 DQ15  
48 DQ14  
47  
46 DQ13  
45 DQ12  
44  
43 DQ11  
42 DQ10  
41  
VSSQ  
VDDQ  
9
10  
VSSQ  
DQ6 11  
DQ7 12  
40 DQ9  
39 DQ8  
VDDQ  
13  
LDQM 14  
WE 15  
38  
VDDQ  
37 N.C/RFU  
36 UDQM  
35 CLK  
34 CKE  
33 N.C  
32 A9  
CAS 16  
RAS 17  
CS 18  
BA  
19  
A10/AP 20  
31 A8  
A0  
A1  
A2  
A3  
VDD  
21  
22  
23  
24  
25  
30 A7  
29 A6  
28 A5  
27 A4  
50PIN TSOP (II)  
(400mil x 825mil)  
(0.8 mm PIN PITCH)  
26  
VSS  
PIN FUNCTION DESCRIPTION  
Pin  
Name  
System Clock  
Input Function  
CLK  
CS  
Active on the positive going edge to sample all inputs.  
Disables or enables device operation by masking or enabling all inputs except  
CLK, CKE and L(U)DQM  
Chip Select  
Masks system clock to freeze operation from the next clock cycle.  
CKE should be enabled at least one cycle prior to new command.  
Disable input buffers for power down in standby.  
CKE  
Clock Enable  
Row / column addresses are multiplexed on the same pins.  
Row address : RA0 ~ RA10, column address : CA0 ~ CA7  
A0 ~ A10/AP Address  
Selects bank to be activated during row address latch time.  
Selects bank for read/write during column address latch time.  
BA  
Bank Select Address  
Latches row addresses on the positive going edge of the CLK with RAS low.  
Enables row access & precharge.  
RAS  
Row Address Strobe  
Column Address Strobe  
Write Enable  
Latches column addresses on the positive going edge of the CLK with CAS low.  
Enables column access.  
CAS  
Enables write operation and row precharge.  
Latches data in starting from CAS, WE active.  
WE  
Makes data output Hi-Z, tSHZ after the clock and masks the output.  
Blocks data input when L(U)DQM active.  
L(U)DQM  
Data Input/Output Mask  
DQ0 ~ 15  
VDD/VSS  
Data Input/Output  
Data inputs/outputs are multiplexed on the same pins.  
Power and ground for the input buffers and the core logic.  
Power Supply/Ground  
Isolated power supply and ground for the output buffers to provide improved noise  
immunity.  
VDDQ/VSSQ  
N.C/RFU  
Data Output Power/Ground  
No Connection/  
Reserved for Future Use  
This pin is recommended to be left No Connection on the device.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Voltage on any pin relative to Vss  
Voltage on VDD supply relative to Vss  
Storage temperature  
Symbol  
VIN, VOUT  
VDD, VDDQ  
TSTG  
Value  
-1.0 ~ 4.6  
-1.0 ~ 4.6  
-55 ~ +150  
1
Unit  
V
V
°C  
W
Power dissipation  
PD  
Short circuit current  
IOS  
50  
mA  
Note :  
Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.  
Functional operation should be restricted to recommended operating condition.  
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.  
DC OPERATING CONDITIONS  
Recommended operating conditions (Voltage referenced to VSS = 0V, TA = 0 to 70°C)  
Parameter  
Supply voltage  
Symbol  
VDD, VDDQ  
VIH  
Min  
3.0  
2.0  
-0.3  
2.4  
-
Typ  
Max  
Unit  
V
Note  
3.3  
3.6  
4
Input logic high votlage  
Input logic low voltage  
Output logic high voltage  
Output logic low voltage  
Input leakage current  
3.0  
VDDQ+0.3  
V
1
VIL  
0
-
0.8  
-
V
2
VOH  
V
IOH = -2mA  
IOL = 2mA  
3
VOL  
-
0.4  
10  
V
ILI  
-10  
-
uA  
Note :  
:
1. VIH (max) = 5.6V AC. The overshoot voltage duration is £ 3ns.  
2. VIL (min) = -2.0V AC. The undershoot voltage duration is £ 3ns.  
3. Any input 0V £ VIN £ VDDQ.  
Input leakage currents include HI-Z output leakage for all bi-directional buffers with Tri-State outputs.  
4. The VDD condition of K4S161622D-55/60 is 3.135V~3.6V.  
CAPACITANCE (VDD = 3.3V, TA = 23°C, f = 1MHz, VREF =1.4V ± 200 mV)  
Pin  
Symbol  
CCLK  
CIN  
Min  
2
Max  
Unit  
pF  
Clock  
RAS, CAS, WE, CS, CKE, L(U)DQM  
Address  
4
4
4
5
2
pF  
CADD  
COUT  
2
pF  
DQ0 ~ DQ15  
3
pF  
DECOUPLING CAPACITANCE GUIDE LINE  
Recommended decoupling capacitance added to power line at board.  
Parameter  
Symbol  
CDC1  
Value  
Unit  
uF  
Decoupling Capacitance between VDD and VSS  
Decoupling Capacitance between VDDQ and VSSQ  
0.1 + 0.01  
0.1 + 0.01  
CDC2  
uF  
Note :  
1. VDD and VDDQ pins are separated each other.  
All VDD pins are connected in chip. All VDDQ pins are connected in chip.  
2. VSS and VSSQ pins are separated each other  
All VSS pins are connected in chip. All VSSQ pins are connected in chip.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
DC CHARACTERISTICS  
(Recommended operating condition unless otherwise noted, TA = 0 to 70°C)  
Version  
-55 -60 -70 -80 -10  
CAS  
Latency  
Parameter  
Symbol  
Test Condition  
Unit Note  
Burst Length =1  
tRC³ tRC(min)  
Io = 0 mA  
3
2
120 115 105 95  
85  
80  
Operating Current  
(One Bank Active)  
ICC1  
mA  
mA  
2
-
-
95  
95  
ICC2P  
CKE£VIL(max), tCC = 15ns  
2
2
Precharge Standby Cur-  
rent in power-down mode  
ICC2PS  
CKE & CLK£VIL(max), tCC = ¥  
CKE³ VIH(min), CS³ VIH(min), tCC = 15ns  
Input signals are changed one time during 30ns  
ICC2N  
15  
5
Precharge Standby Current  
in non power-down mode  
mA  
mA  
CKE³ VIH(min), CLK£VIL(max), tCC = ¥  
Input signals are stable  
ICC2NS  
ICC3P  
CKE£VIL(max), tCC = 15ns  
3
3
Active Standby Current  
in power-down mode  
ICC3PS  
CKE & CLK£VIL(max), tCC = ¥  
CKE³ VIH(min), CS³ VIH(min), tCC = 15ns  
Input signals are changed one time during 30ns  
ICC3N  
25  
15  
mA  
mA  
Active Standby Current  
in non power-down mode  
(One Bank Active)  
CKE³ VIH(min), CLK£VIL(max), tCC = ¥  
Input signals are stable  
ICC3NS  
3
2
155 150 140 130 115  
115 115 100  
Io = 0 mA  
Page Burst 2Banks Activated  
tCCD = 2CLKs  
Operating Current  
(Burst Mode)  
ICC4  
mA  
mA  
2
3
-
-
3
2
105 100 90  
90  
90  
80  
80  
Refresh Current  
ICC5  
ICC6  
tRC³ tRC(min)  
CKE£0.2V  
-
-
90  
1
mA  
uA  
4
5
Self Refresh Current  
250  
Note :  
1. Unless otherwise notes, Input level is CMOS(VIH/VIL=VDDQ/VSSQ) in LVTTL.  
2. Measured with outputs open. Addresses are changed only one time during tcc(min).  
3. Refresh period is 32ms. Addresses are changed only one time during tcc(min).  
4. K4S161622D-TC**  
5. K4S161622D-TL**  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
*2  
AC OPERATING TEST CONDITIONS (VDD = 3.3V±0.3V , TA = 0 to 70°C)  
Parameter  
Input levels (Vih/Vil)  
Value  
2.4 / 0.4  
1.4  
Unit  
V
Input timing measurement reference level  
Input rise and fall time  
V
tr / tf = 1 / 1  
1.4  
ns  
V
Output timing measurement reference level  
Output load condition  
See Fig. 2  
3.3V  
Vtt=1.4V  
1200W  
50W  
VOH (DC) = 2.4V, IOH = -2mA  
VOL (DC) = 0.4V, IOL = 2mA  
Output  
Output  
Z0=50W  
*2  
*1  
50pF  
50pF  
870W  
(Fig. 1) DC Output Load Circuit  
(Fig. 2) AC Output Load Circuit  
Note :  
1. The DC/AC Test Output Load of K4S161622D-55/60/70 is 30pF.  
2. The VDD condition of K4S161622D-55/60 is 3.135V~3.6V.  
OPERATING AC PARAMETER  
(AC operating conditions unless otherwise noted)  
Version  
-70  
Parameter  
Symbol  
Unit  
Note  
-55  
-60  
-80  
-10  
CAS Latency  
CLK cycle time  
CL  
3
2
-
3
6
2
-
3
7
2
3
8
2
3
2
CLK  
ns  
tCC(min)  
tRRD(min)  
tRCD(min)  
tRP(min)  
tRAS(min)  
tRAS(max)  
5.5  
10  
10 10 12  
Row active to row active delay  
RAS to CAS delay  
2
CLK  
CLK  
CLK  
CLK  
us  
1
1
1
1
3
3
7
-
-
-
3
3
7
-
-
-
3
3
7
2
2
5
3
3
6
2
2
5
2
2
5
2
2
4
Row precharge time  
Row active time  
Row cycle time  
100  
10  
tRC(min)  
10  
-
10  
-
7
9
7
7
6
CLK  
1
Last data in to row precharge  
Last data in to new col.address delay  
Last data in to burst stop  
tRDL(min)  
tCDL(min)  
tBDL(min)  
tCCD(min)  
tMRS(min)  
1
1
1
1
2
2
1
CLK  
CLK  
CLK  
CLK  
CLK  
2, 5  
2
2
Col. address to col. address delay  
Mode Register Set cycle time  
CAS Latency=3  
CAS Latency=2  
Number of valid output data  
ea  
4
Notes :  
1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then  
rounding off to the next higher integer. Refer to the following clock unit based AC conversion table  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Version  
-70  
7
Parameter  
Symbol  
Unit  
-55  
5.5  
-60  
6
-80  
8
-10  
CLK cycle time  
tCC(min)  
10  
20  
20  
20  
48  
ns  
ns  
ns  
ns  
ns  
us  
ns  
Row active to row active delay  
RAS to CAS delay  
tRRD(min)  
tRCD(min)  
tRP(min)  
11  
12  
18  
18  
42  
14  
16  
20  
20  
48  
16.5  
16.5  
38.5  
20  
Row precharge time  
20  
tRAS(min)  
tRAS(max)  
tRC(min)  
49  
Row active time  
Row cycle time  
100  
69  
55  
60  
70  
70  
2. Minimum delay is required to complete write.  
3. All parts allow every cycle column address change.  
4. In case of row precharge interrupt, auto precharge and read burst stop.  
5. Also, supported tRDL=2CLK for - 55/60 part which is distinguished by bucket code "J".  
From the next generation, tRDL will be only 2CLK for every clock frequency.  
AC CHARACTERISTICS (AC operating conditions unless otherwise noted)  
-55  
-60  
-70  
-80  
-10  
Parameter  
Symbol  
tCC  
Unit Note  
Min Max Min Max Min Max Min Max Min Max  
CAS Latency=3  
5.5  
6
7
10  
-
8
10  
-
10  
12  
-
CLK cycle time  
1000  
1000  
1000  
1000  
1000 ns  
1
CAS Latency=2  
CAS Latency=3  
CAS Latency=2  
-
-
-
-
5
-
5.5  
5.5  
6
6
6
-
6
8
-
CLK to valid  
output delay  
tSAC  
ns  
1, 2  
-
-
-
-
-
-
-
Output data  
tOH  
tCH  
2
2
-
-
2.5  
2.5  
-
2.5  
-
2.5  
2.5  
ns  
ns  
2
3
CAS Latency=3  
CAS Latency=2  
CAS Latency=3  
CAS Latency=2  
CAS Latency=3  
CAS Latency=2  
CLK high pulse width  
-
-
-
-
-
-
3
3
-
-
-
3
3
2
-
-
-
3.5  
3.5  
2.5  
-
-
-
2
2.5  
-
CLK low pulse width  
Input setup time  
tCL  
tSS  
ns  
ns  
3
3
1.5  
-
1.5  
-
1.75  
2
1
1
-
Input hold time  
tSH  
1
1
-
-
-
1
1
-
-
-
-
-
1
1
-
-
-
1
1
-
-
-
ns  
ns  
3
2
CLK to output in Low-Z  
tSLZ  
CAS Latency=3  
CAS Latency=2  
5
-
5.5  
-
5.5  
6
6
6
6
8
CLK to output  
in Hi-Z  
tSHZ  
ns  
-
-
-
-
-
Note :  
1. Parameters depend on programmed CAS latency.  
2. If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.  
3. Assumed input rise and fall time (tr & tf)=1ns.  
If tr & tf is longer than 1ns, transient time compensation should be considered,  
i.e., [(tr + tf)/2-1]ns should be added to the parameter.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
SIMPLIFIED TRUTH TABLE  
CKEn-1  
CKEn  
CS  
RAS  
CAS  
WE  
DQM  
BA  
A10/AP  
A9~ A0  
Note  
1, 2  
3
COMMAND  
Register  
Refresh  
Mode Register Set  
Auto Refresh  
H
X
H
L
L
L
L
L
X
OP CODE  
H
L
L
L
L
H
X
X
X
X
Entry  
3
Self  
Refresh  
L
H
L
H
X
L
H
X
H
H
X
H
3
Exit  
H
3
Bank Active & Row Addr.  
H
H
X
X
X
X
V
V
Row Address  
Column  
Address  
(A0~A7)  
Read &  
Auto Precharge Disable  
Auto Precharge Enable  
Auto Precharge Disable  
Auto Precharge Enable  
L
4
4, 5  
4
L
L
H
H
L
L
H
L
Column Address  
H
Column  
Address  
(A0~A7)  
Write &  
L
H
X
X
V
Column Address  
H
4, 5  
6
Burst Stop  
Precharge  
H
H
X
X
L
L
H
L
H
H
L
L
X
X
X
Bank Selection  
Both Banks  
V
X
L
X
H
H
L
X
V
X
X
H
X
V
X
X
H
X
V
X
V
X
X
H
X
V
Entry  
H
L
X
Clock Suspend or  
Active Power Down  
X
Exit  
L
H
L
X
H
L
X
X
Entry  
H
Precharge Power Down Mode  
X
H
L
X
V
X
Exit  
L
H
X
X
DQM  
H
H
V
X
X
X
7
H
L
X
H
X
H
X
H
No Operation Command  
(V=Valid, X=Don¢t Care, H=Logic High, L=Logic Low)  
Note :  
1. OP Code : Operand Code  
A0 ~ A10/AP, BA : Program keys. (@MRS)  
2. MRS can be issued only at both banks precharge state.  
A new command can be issued after 2 clock cycle of MRS.  
3. Auto refresh functions are as same as CBR refresh of DRAM.  
The automatical precharge without row precharge command is meant by "Auto".  
Auto/self refresh can be issued only at both banks precharge state.  
4. BA : Bank select address.  
If "Low" at read, write, row active and precharge, bank A is selected.  
If "High" at read, write, row active and precharge, bank B is selected.  
If A10/AP is "High" at row precharge, BA is ignored and both banks are selected.  
5. During burst read or write with auto precharge, new read/write command can not be issued.  
Another bank read/write command can be issued after the end of burst.  
New row active of the assoiated bank can be issued at tRP after the end of burst.  
6. Burst stop command is valid at every burst length.  
7. DQM sampled at positive going edge of a CLK masks the data-in at the very CLK (Write DQM latency is 0),  
but makes Hi-Z state the data-out of 2 CLK cycles after. (Read DQM latency is 2)  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
MODE REGISTER FIELD TABLE TO PROGRAM MODES  
Register Programmed with MRS  
BA  
A10/AP  
RFU  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Address  
Function  
RFU  
W.B.L  
TM  
CAS Latency  
BT  
Burst Length  
Test Mode  
CAS Latency  
Burst Type  
Burst Length  
A8  
0
A7  
0
Type  
A6  
A5  
0
A4  
0
Latency  
Reserved  
-
A3  
0
Type  
A2  
A1 A0  
BT = 0  
BT = 1  
0
0
0
0
1
1
1
1
1
Sequential  
Interleave  
1
Mode Register Set  
Reserved  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
0
1
2
2
0
1
1
0
4
2
4
1
0
Reserved  
1
1
8
3
8
1
1
Reserved  
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Full Page  
Write Burst Length  
Length  
0
1
A9  
0
1
0
Burst  
1
1
1
Single Bit  
Full Page Length : x4 (1024), x8 (512), x16 (256)  
POWER UP SEQUENCE  
SDRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.  
1. Apply power and start clock. Must maintain CKE= "H", DQM= "H" and the other pins are NOP condition at the inputs.  
2. Maintain stable power, stable clock and NOP input condition for a minimum of 200us.  
3. Issue precharge commands for all banks of the devices.  
4. Issue 2 or more auto-refresh commands.  
5. Issue a mode register set command to initialize the mode register.  
cf.) Sequence of 4 & 5 is regardless of the order.  
The device is now ready for normal operation.  
Note : 1. If A9 is high during MRS cycle, "Burst Read Single Bit Write" function will be enabled.  
2. RFU (Reserved for future use) should stay "0" during MRS cycle.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
BURST SEQUENCE (BURST LENGTH = 4)  
Initial Address  
Sequential  
Interleave  
A1  
A0  
0
0
0
1
2
3
1
2
3
0
2
3
0
1
3
0
1
2
0
1
2
3
1
0
3
2
2
3
0
1
3
2
1
0
0
1
1
0
1
1
BURST SEQUENCE (BURST LENGTH = 8)  
Initial Address  
Sequential  
Interleave  
A2  
A1  
A0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
6
7
0
1
2
3
4
5
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
1
0
3
2
5
4
7
6
2
3
0
1
6
7
4
5
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
4
5
2
3
0
1
7
6
5
4
3
2
1
0
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
DEVICE OPERATIONS  
CLOCK (CLK)  
ADDRESS INPUTS (A0 ~ A10/AP)  
: In case x 4  
The clock input is used as the reference for all SDRAM opera-  
tions. All operations are synchronized to the positive going edge  
of the clock. The clock transitions must be monotonic between  
VIL and VIH. During operation with CKE high all inputs are  
assumed to be in a valid state (low or high) for the duration of  
set-up and hold time around positive edge of the clock in order  
to function well Q perform and ICC specifications.  
The 21 address bits are required to decode the 2,097,152 word  
locations are multiplexed into 11 address input pins (A0 ~ A10/  
AP). The 11 bit row addresses are latched along with RAS and  
BA during bank activate command. The 10 bit column  
addresses are latched along with CAS, WE and BA during read  
or write command.  
CLOCK ENABLE (CKE)  
: In case x 8  
The clock enable(CKE) gates the clock onto SDRAM. If CKE  
goes low synchronously with clock (set-up and hold time are the  
same as other inputs), the internal clock is suspended from the  
next clock cycle and the state of output and burst address is fro-  
zen as long as the CKE remains low. All other inputs are ignored  
from the next clock cycle after CKE goes low. When all banks  
are in the idle state and CKE goes low synchronously with clock,  
the SDRAM enters the power down mode from the next clock  
cycle. The SDRAM remains in the power down mode ignoring  
the other inputs as long as CKE remains low. The power down  
exit is synchronous as the internal clock is suspended. When  
CKE goes high at least "1CLK + tSS" before the high going edge  
of the clock, then the SDRAM becomes active from the same  
clock edge accepting all the input commands.  
The 20 address bits are required to decode the 1,048,576 word  
locations are multiplexed into 11 address input pins (A0 ~ A10/  
AP). The 11 bit row addresses are latched along with RAS and  
BA during bank activate command. The 9 bit column addresses  
are latched along with CAS, WE and BA during read or write  
command.  
: In case x 16  
The 19 address bits are required to decode the 524,288 word  
locations are multiplexed into 11 address input pins (A0 ~ A10/  
AP). The 11 bit row addresses are latched along with RAS and  
BA during bank activate command. The 8 bit column addresses  
are latched along with CAS, WE and BA during read or write  
command.  
BANK ADDRESS (BA)  
: In case x 4  
NOP and DEVICE DESELECT  
When RAS, CAS and WE are high, the SDRAM performs no  
operation (NOP). NOP does not initiate any new operation, but  
is needed to complete operations which require more than sin-  
gle clock cycle like bank activate, burst read, auto refresh, etc.  
The device deselect is also a NOP and is entered by asserting  
CS high. CS high disables the command decoder so that RAS,  
CAS, WE and all the address inputs are ignored.  
This SDRAM is organized as two independent banks of  
2,097,152 words x 4 bits memory arrays. The BA input is latched  
at the time of assertion of RAS and CAS to select the bank to be  
used for the operation. The bank select BA is latched at bank  
active, read, write, mode register set and precharge operations.  
: In case x 8  
POWER-UP  
This SDRAM is organized as two independent banks of  
1,048,576 words x 8 bits memory arrays. The BA input is latched  
at the time of assertion of RAS and CAS to select the bank to be  
used for the operation. The bank select BA is latched at bank  
active, read, write, mode register set and precharge operations.  
SDRAMs must be powered up and initialized in a pre-  
defined manner to prevent undefined operations.  
1. Apply power and start clock. Must maintain CKE= "H", DQM=  
"H" and the other pins are NOP condition at the inputs.  
2. Maintain stable power, stable clock and NOP input condition  
: In case x 16  
for a minimum of 200us.  
This SDRAM is organized as two independent banks of 524,288  
words x 16 bits memory arrays. The BA input is latched at the  
time of assertion of RAS and CAS to select the bank to be used  
for the operation. The bank select BA is latched at bank active,  
read, write, mode register set and precharge operations.  
3. Issue precharge commands for both banks of the devices.  
4. Issue 2 or more auto-refresh commands.  
5. Issue a mode register set command to initialize the mode reg-  
ister.  
cf.) Sequence of 4 & 5 is regardless of the order.  
The device is now ready for normal operation.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
DEVICE OPERATIONS (Continued)  
active to initiate sensing and restoring the complete row of  
dynamic cells is determined by tRAS(min). Every SDRAM bank  
activate command must satisfy tRAS(min) specification before a  
precharge command to that active bank can be asserted. The  
maximum time any bank can be in the active state is determined  
by tRAS(max). The number of cycles for both tRAS(min) and  
tRAS(max) can be calculated similar to tRCD specification.  
MODE REGISTER SET (MRS)  
The mode register stores the data for controlling the various  
operating modes of SDRAM. It programs the CAS latency, burst  
type, burst length, test mode and various vendor specific options  
to make SDRAM useful for variety of different applications. The  
default value of the mode register is not defined, therefore the  
mode register must be written after power up to operate the  
SDRAM. The mode register is written by asserting low on CS,  
RAS, CAS and WE (The SDRAM should be in active mode with  
CKE already high prior to writing the mode register). The state of  
address pins A0 ~ A10/AP and BA in the same cycle as CS,  
RAS, CAS and WE going low is the data written in the mode  
register. Two clock cycles is required to complete the write in the  
mode register. The mode register contents can be changed  
using the same command and clock cycle requirements during  
operation as long as all banks are in the idle state. The mode  
register is divided into various fields depending on the fields of  
functions. The burst length field uses A0 ~ A2, burst type uses  
A3, CAS latency (read latency from column address) uses A4 ~  
A6, vendor specific options or test mode use A7 ~ A8, A10/AP  
and BA. The write burst length is programmed using A9. A7 ~ A8,  
A10/AP, BA must be set to low for normal SDRAM operation.  
Refer to the table for specific codes for various burst length,  
burst type and CAS latencies.  
BURST READ  
The burst read command is used to access burst of data on con-  
secutive clock cycles from an active row in an active bank. The  
burst read command is issued by asserting low on CS and CAS  
with WE being high on the positive edge of the clock. The bank  
must be active for at least tRCD(min) before the burst read com-  
mand is issued. The first output appears in CAS latency number  
of clock cycles after the issue of burst read command. The burst  
length, burst sequence and latency from the burst read com-  
mand is determined by the mode register which is already pro-  
grammed. The burst read can be initiated on any column  
address of the active row. The address wraps around if the initial  
address does not start from a boundary such that number of out-  
puts from each I/O are equal to the burst length programmed in  
the mode register. The output goes into high-impedance at the  
end of the burst, unless a new burst read was initiated to keep  
the data output gapless. The burst read can be terminated by  
issuing another burst read or burst write in the same bank or the  
other active bank or a precharge command to the same bank.  
The burst stop command is valid at every page burst length.  
BANK ACTIVATE  
The bank activate command is used to select a random row in  
an idle bank. By asserting low on RAS and CS with desired row  
and bank address, a row access is initiated. The read or write  
operation can occur after a time delay of tRCD(min) from the time  
of bank activation. tRCD is an internal timing parameter of  
SDRAM, therefore it is dependent on operating clock frequency.  
The minimum number of clock cycles required between bank  
activate and read or write command should be calculated by  
dividing tRCD(min) with cycle time of the clock and then rounding  
off the result to the next higher integer. The SDRAM has two  
internal banks in the same chip and shares part of the internal  
circuitry to reduce chip area, therefore it restricts the activation  
of two banks simultaneously. Also the noise generated during  
sensing of each bank of SDRAM is high, requiring some time for  
power supplies to recover before the other bank can be sensed  
reliably. tRRD(min) specifies the minimum time required between  
activating different bank. The number of clock cycles required  
between different bank activation must be calculated similar to  
tRCD specification. The minimum time required for the bank to be  
BURST WRITE  
The burst write command is similar to burst read command and  
is used to write data into the SDRAM on consecutive clock  
cycles in adjacent addresses depending on burst length and  
burst sequence. By asserting low on CS, CAS and WE with valid  
column address, a write burst is initiated. The data inputs are  
provided for the initial address in the same clock cycle as the  
burst write command. The input buffer is deselected at the end  
of the burst length, even though the internal writing can be com-  
pleted yet. The writing can be completed by issuing a burst read  
and DQM for blocking data inputs or burst write in the same or  
another active bank. The burst stop command is valid at every  
burst length. The write burst can also be terminated by using  
DQM for blocking data and procreating the bank tRDL after the  
last data input to be written into the active row. See DQM  
OPERATION also.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
DEVICE OPERATIONS (Continued)  
AUTO REFRESH  
DQM OPERATION  
The DQM is used to mask input and output operations. It works  
similar to OE during read operation and inhibits writing during  
write operation. The read latency is two cycles from DQM and  
zero cycle for write, which means DQM masking occurs two  
cycles later in read cycle and occurs in the same cycle during  
write cycle. DQM operation is synchronous with the clock. The  
DQM signal is important during burst interruptions of write with  
read or precharge in the SDRAM. Due to asynchronous nature  
of the internal write, the DQM operation is critical to avoid  
unwanted or incomplete writes when the complete burst write is  
not required. Please refer to DQM timing diagram also.  
The storage cells of SDRAM need to be refreshed every 32ms  
to maintain data. An auto refresh cycle accomplishes refresh of  
a single row of storage cells. The internal counter increments  
automatically on every auto refresh cycle to refresh all the rows.  
An auto refresh command is issued by asserting low on CS,  
RAS and CAS with high on CKE and WE. The auto refresh com-  
mand can only be asserted with both banks being in idle state  
and the device is not in power down mode (CKE is high in the  
previous cycle). The time required to complete the auto refresh  
operation is specified by tRFC(min). The minimum number of  
clock cycles required can be calculated by driving tRFC with  
clock cycle time and them rounding up to the next higher integer.  
The auto refresh command must be followed by NOP's until the  
auto refresh operation is completed. Both banks will be in the  
idle state at the end of auto refresh operation. The auto refresh  
is the preferred refresh mode when the SDRAM is being used  
for normal data transactions. The auto refresh cycle can be per-  
formed once in 15.6us or a burst of 2048 auto refresh cycles  
once in 32ms.  
PRECHARGE  
The precharge operation is performed on an active bank by  
asserting low on CS, RAS, WE and A10/AP with valid BA of the  
bank to be precharged. The precharge command can be  
asserted anytime after tRAS(min) is satisfied from the bank active  
command in the desired bank. tRP is defined as the minimum  
number of clock cycles required to complete row precharge is  
calculated by dividing tRP with clock cycle time and rounding up  
to the next higher integer. Care should be taken to make sure  
that burst write is completed or DQM is used to inhibit writing  
before precharge command is asserted. The maximum time any  
bank can be active is specified by tRAS(max). Therefore, each  
bank activate command. At the end of precharge, the bank  
enters the idle state and is ready to be activated again. Entry to  
Power down, Auto refresh, Self refresh and Mode register set  
etc. is possible only when both banks are in idle state.  
SELF REFRESH  
The self refresh is another refresh mode available in the  
SDRAM. The self refresh is the preferred refresh mode for data  
retention and low power operation of SDRAM. In self refresh  
mode, the SDRAM disables the internal clock and all the input  
buffers except CKE. The refresh addressing and timing are  
internally generated to reduce power consumption.  
The self refresh mode is entered from both banks idle state by  
asserting low on CS, RAS, CAS and CKE with high on WE.  
Once the self refresh mode is entered, only CKE state being low  
matters, all the other inputs including the clock are ignored in  
order to remain in the self refresh mode.  
AUTO PRECHARGE  
The precharge operation can also be performed by using auto  
precharge. The SDRAM internally generates the timing to satisfy  
tRAS(min) and "tRP" for the programmed burst length and CAS  
latency. The auto precharge command is issued at the same  
time as burst read or burst write by asserting high on A10/AP. If  
burst read or burst write by asserting high on A10/AP, the bank is  
left active until a new command is asserted. Once auto  
precahrge command is given, no new commands are possible to  
that particular bank until the bank achieves idle state.  
The self refresh is exited by restarting the external clock and  
then asserting high on CKE. This must be followed by NOP's for  
a minimum time of tRFC before the SDRAM reaches idle state to  
begin normal operation. If the system uses burst auto refresh  
during normal operation, it is recommended to use burst 2048  
auto refresh cycles immediately after exiting in self refresh  
mode.  
BOTH BANKS PRECHARGE  
Both banks can be precharged at the same time by using pre-  
charge all command. Asserting low on CS, RAS, and WE with  
high on A10/AP after both banks have satisfied tRAS(min)  
requirement, performs precharge on both banks. At the end of  
tRP after performing precharge to all the banks, both banks are  
in idle state.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
BASIC FEATURE AND FUNCTION DESCRIPTIONS  
1. CLOCK Suspend  
1) Clock Suspended During Write (BL=4)  
2) Clock Suspended During Read (BL=4)  
CLK  
CMD  
CKE  
WR  
RD  
Masked by CKE  
Masked by CKE  
Internal  
CKE  
Q1  
DQ(CL2)  
DQ(CL3)  
D0  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
Q0  
Q2  
Q1  
Q3  
Q2  
Q3  
Q0  
Not Written  
SuspendedDout  
2. DQM Operation  
1) Write Mask (BL=4)  
2) Read Mask (BL=4)  
CLK  
WR  
RD  
CMD  
DQM  
Masked by DQM  
Masked by DQM  
Hi-Z  
Hi-Z  
DQ(CL2)  
DQ(CL3)  
D0  
D0  
D1  
D1  
D3  
D3  
Q0  
Q2  
Q1  
Q3  
Q2  
Q3  
DQM to Data-in Mask = 0  
DQM to Data-out Mask = 2  
3) DQM with Clock Suspended (Full Page Read) Note 2  
CLK  
CMD  
RD  
CKE  
DQM  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQ(CL2)  
DQ(CL3)  
Q6  
Q5  
Q0  
Q2  
Q1  
Q4  
Q3  
Q7  
Q6  
Q8  
Q7  
*Note : 1. CKE to CLK disable/enable = 1CLK.  
2. DQM makes data out Hi-Z after 2CLKs which should masked by CKE " L"  
3. DQM masks both data-in and data-out.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
3. CAS Interrupt (I)  
Note 1  
1) Read interrupted by Read (BL=4)  
CLK  
CMD  
ADD  
RD RD  
A
B
DQ(CL2)  
DQ(CL3)  
QA0 QB0 QB1 QB2 QB3  
QA0 QB0 QB1 QB2 QB3  
tCCD  
Note 2  
2) Write interrupted by Write (BL=2)  
CLK  
3) Write interrupted by Read (BL=2)  
WR RD  
WR WR  
CMD  
tCCD  
Note 2  
tCCD  
Note 2  
A
B
A
B
ADD  
DQ  
DQ(CL2)  
DQ(CL3)  
DA0  
DA0  
QB0 QB1  
QB0 QB1  
DA0 DB0 DB1  
tCDL  
Note 3  
tCDL  
Note 3  
*Note : 1. By " Interrupt", It is meant to stop burst read/write by external command before the end of burst.  
By "CAS Interrupt", to stop burst read/write by CAS access ; read and write.  
2. tCCD : CAS to CAS delay. (=1CLK)  
3. tCDL : Last data in to new column address delay. (=1CLK)  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
4. CAS Interrupt (II) : Read Interrupted by Write & DQM  
(a) CL=2, BL=4  
CLK  
i) CMD  
DQM  
DQ  
ii) CMD  
RD WR  
D0  
D1  
D2  
D3  
D2  
RD  
WR  
DQM  
DQ  
Hi-Z  
D0  
D1  
D3  
RD  
WR  
iii) CMD  
DQM  
DQ  
Hi-Z  
D0  
D1  
D2  
D1  
D3  
D2  
RD  
WR  
iv) CMD  
DQM  
DQ  
Hi-Z  
Q0  
D0  
D3  
Note 1  
(b) CL=3, BL=4  
CLK  
i) CMD  
RD WR  
DQM  
DQ  
D0  
D1  
D2  
D3  
D2  
ii) CMD  
RD  
WR  
DQM  
DQ  
D0  
D1  
D3  
D2  
RD  
RD  
WR  
iii) CMD  
DQM  
DQ  
D0  
D1  
D3  
WR  
iii) CMD  
DQM  
DQ  
Hi-Z  
D0  
D1  
D2  
D1  
D3  
D2  
RD  
WR  
iv) CMD  
DQM  
DQ  
Hi-Z  
D0  
D3  
Q0  
Note 1  
*Note : 1. To prevent bus contention, there should be at least one gap between data in and data out.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
5. Write Interrupted by Precharge & DQM  
CLK  
Note 3  
Note 2  
WR  
D0  
PRE  
D3  
CMD  
DQM  
DQ  
D1  
D2  
Masked by DQM  
*Note : 2. To inhibit invalid write, DQM should be issued.  
3. This precharge command and burst write command should be of the same bank, otherwise it is not precharge  
interrupt but only the other bank precharge of dual banks operation.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
6. Precharge  
1) Normal Write (BL=4)  
CLK  
WR  
D0  
PRE  
CMD  
DQ  
D1  
D2  
D3  
tRDL  
Note 2  
2) Normal Read (BL=4)  
CLK  
CMD  
RD  
PRE  
1
DQ(CL2)  
DQ(CL3)  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
Note 2  
Q3  
2
7. Auto Precharge  
1) Normal Write (BL=4)  
CLK  
WR  
D0  
CMD  
DQ  
D1  
D2  
D3  
Note 3  
Auto Precharge Starts  
2) Normal Read (BL=4)  
CLK  
CMD  
RD  
DQ(CL2)  
DQ(CL3)  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
Q3  
Note 3  
Auto Precharge Starts  
*Note : 1. tRDL : Last data in to row precharge delay  
2. Number of valid output data after row precharge : 0, 1, 2 for CAS Latency =1, 2, 3 respectively.  
3. The row active command of the precharge bank can be issued after tRP from this point.  
The new read/write command of the other activated bank can be issued from this point.  
At burst read/write with auto precharge, CAS interrupt of the same/other bank is illegal.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
8. Burst Stop & Interrupted by Precharge  
1) Normal Write (BL=4)  
CLK  
2) Write Burst Stop (BL=8)  
CLK  
WR  
STOP  
CMD  
DQM  
WR  
PRE  
D3  
CMD  
DQM  
DQ  
DQ  
D0  
D1  
D2  
D0  
D1  
D2  
D3  
D4  
D5  
tRDL Note 1  
tBDL Note 2  
3) Read Interrupted by Precharge (BL=4)  
CLK  
4) Read Burst Stop (BL=4)  
CLK  
CMD  
DQ(CL2)  
DQ(CL3)  
RD  
PRE  
Q0  
CMD  
RD  
STOP  
Q0  
1
1
Q1  
Q0  
DQ(CL2)  
DQ(CL3)  
Q1  
Q0  
Note 3  
Note 3  
2
2
Q1  
Q1  
9. MRS  
1) Mode Register Set  
CLK  
Note 4  
CMD  
PRE  
MRS  
ACT  
tRP  
tMRS = 2CLK  
*Note : 1. tRDL : 1 CLK  
2. tBDL : 1 CLK ; Last data in to burst stop delay.  
Read or write burst stop command is valid at every burst length.  
3. Number of valid output data after row precharge or burst stop : 1, 2 for CAS latency= 2, 3 respectiviely.  
4. PRE : Both banks precharge if necessary.  
MRS can be issued only at both banks precharge state.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
10. Clock Suspend Exit & Power Down Exit  
1) Clock Suspend (=Active Power Down) Exit  
CLK  
2) Power Down (=Precharge Power Down)  
CLK  
CKE  
CKE  
tSS  
tSS  
Internal  
Note 1  
Internal  
CLK  
Note 2  
CLK  
CMD  
CMD  
ACT  
NOP  
RD  
11. Auto Refresh & Self Refresh  
Note 3  
1) Auto Refresh & Self Refresh  
CLK  
¡ó  
¡ó  
Note 4  
Note 5  
CMD  
CKE  
PRE  
AR  
CMD  
¡ó  
¡ó  
tRP  
tRFC  
Note 6  
2) Self Refresh  
CLK  
¡ó  
¡ó  
Note 4  
CMD  
CKE  
PRE  
SR  
CMD  
¡ó  
tRP  
tRFC  
*Note : 1. Active power down : one or both banks active state.  
2. Precharge power down : both banks precharge state.  
3. The auto refresh is the same as CBR refresh of conventional DRAM.  
No precharge commands are required after auto refresh command.  
During tRFC from auto refresh command, any other command can not be accepted.  
4. Before executing auto/self refresh command, both banks must be idle state.  
5. MRS, Bank Active, Auto/Self Refresh, Power Down Mode Entry.  
6. During self refresh mode, refresh interval and refresh operation are perfomed internally.  
After self refresh entry, self refresh mode is kept while CKE is low.  
During self refresh mode, all inputs expect CKE will be don't cared, and outputs will be in Hi-Z state.  
For the time interval of tRFC from self refresh exit command, any other command can not be accepted. Before/After self refresh mode, burst  
auto refresh cycle (2048 cycles) is recommended.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
12. About Burst Type Control  
At MRS A3 = "0". See the BURST SEQUENCE TABLE. (BL=4,8)  
BL=1, 2, 4, 8 and full page.At Full page wrap-around.  
Sequential Counting  
Basic  
MODE  
At MRS A3 = "1". See the BURST SEQUENCE TABLE. (BL=4,8)  
BL=4, 8. At BL=1, 2 Interleave Counting = Sequential Counting  
Interleave Counting  
Every cycle Read/Write Command with random column address can realize  
Random Column Access.  
That is similar to Extended Data Out (EDO) Operation of conventional DRAM.  
Random  
MODE  
Random column Access  
tCCD = 1 CLK  
13. About Burst Length Control  
At MRS A2,1,0 = "000".  
At auto precharge, tRAS should not be violated.  
1
At MRS A2,1,0 = "001".  
At auto precharge, tRAS should not be violated.  
2
Basic  
MODE  
4
At MRS A2,1,0 = "010".  
At MRS A2,1,0 = "011".  
8
At MRS A2,1,0 = "111".  
Full Page  
Wrap around mode(Infinite burst length)should be stopped by burst stop,  
RAS interrupt or CAS interrupt.  
At MRS A9 = "1".  
Read burst=1,2,4,8,full page Write burst=1  
At auto precharge of write, tRAS should not be violate  
Special  
BRSW  
MODE  
tBDL= 1, Valid DQ after burst stop is 1, 2 for CAS latency 2, 3 respectively  
Using burst stop command, any burst length control is possible.  
Random  
Burst Stop  
MODE  
Before the end of burst, Row precharge command of the same bank stops read/write  
burst with Row precharge.  
RAS Interrupt  
tRDL= 1 with DQM, valid DQ after burst stop is 1, 2 for CAS latency 2, 3 respectively.  
During read/write burst with auto precharge, RAS interrupt can not be issued.  
(Interrupted by Precharge)  
Interrupt  
MODE  
Before the end of burst, new read/write stops read/write burst and starts new  
read/write burst.  
CAS Interrupt  
During read/write burst with auto precharge, CAS interrupt can not be issued.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
FUNCTION TRUTH TABLE (TABLE 1)  
Current  
State  
CS  
RAS  
CAS  
WE  
BA  
ADDR  
ACTION  
Note  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
L
L
L
L
H
L
L
L
L
L
X
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
X
NOP  
NOP  
X
ILLEGAL  
2
2
X
H
L
BA  
BA  
BA  
X
CA, A10/AP ILLEGAL  
IDLE  
H
H
L
RA  
Row (& Bank) Active ; Latch RA  
L
A10/AP  
NOP  
4
5
5
L
H
L
X
Auto Refresh or Self Refresh  
L
L
OP code  
X
OP code  
Mode Register Access  
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
NOP  
X
NOP  
X
ILLEGAL  
2
Row  
Active  
H
L
BA  
BA  
BA  
BA  
X
CA, A10/AP Begin Read ; latch CA ; determine AP  
CA, A10/AP Begin Write ; latch CA ; determine AP  
L
H
H
L
H
L
RA  
ILLEGAL  
2
L
A10/AP  
Precharge  
L
X
X
H
L
X
X
X
X
ILLEGAL  
X
H
H
H
H
L
X
H
H
L
X
NOP (Continue Burst to End --> Row Active)  
NOP (Continue Burst to End --> Row Active)  
Term burst --> Row active  
X
X
H
L
BA  
BA  
BA  
BA  
X
CA, A10/AP Term burst, New Read, Determine AP  
CA, A10/AP Term burst, New Write, Determine AP  
Read  
L
3
2
H
H
L
H
L
RA  
ILLEGAL  
L
A10/AP  
Term burst, Precharge timing for Reads  
ILLEGAL  
L
X
X
H
L
X
X
X
X
X
H
H
H
H
L
X
H
H
L
X
NOP (Continue Burst to End --> Row Active)  
NOP (Continue Burst to End --> Row Active)  
Term burst --> Row active  
X
X
H
L
BA  
BA  
BA  
BA  
X
CA, A10/AP Term burst, New read, Determine AP  
CA, A10/AP Term burst, New Write, Determine AP  
3
3
2
3
Write  
L
H
H
L
H
L
RA  
ILLEGAL  
L
A10/AP  
Term burst, precharge timing for Writes  
ILLEGAL  
L
X
X
H
L
X
X
X
X
X
H
H
H
L
X
H
H
L
X
NOP (Continue Burst to End --> Precharge)  
NOP (Continue Burst to End --> Precharge)  
ILLEGAL  
X
Read with  
Auto  
Precharge  
X
X
X
X
X
H
L
BA  
BA  
X
CA, A10/AP ILLEGAL  
H
L
RA, RA10  
ILLEGAL  
2
2
L
X
X
X
X
ILLEGAL  
X
H
H
H
L
X
H
H
L
X
NOP (Continue Burst to End --> Precharge)  
NOP (Continue Burst to End --> Precharge)  
ILLEGAL  
X
Write with  
Auto  
Precharge  
X
X
X
X
X
H
L
BA  
BA  
X
CA, A10/AP ILLEGAL  
H
L
RA, RA10  
ILLEGAL  
L
X
X
ILLEGAL  
X
H
H
H
L
X
H
H
L
X
NOP --> Idle after tRP  
NOP --> Idle after tRP  
ILLEGAL  
X
X
Pre-  
charging  
X
X
2
2
2
4
X
H
L
BA  
BA  
BA  
CA  
RA  
A10/AP  
ILLEGAL  
H
H
ILLEGAL  
L
NOP --> Idle after tRPL  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
FUNCTION TRUTH TABLE (TABLE 1)  
Current  
State  
CS  
RAS  
CAS  
WE  
BA  
ADDR  
ACTION  
Note  
L
H
L
L
L
L
L
L
H
L
L
L
L
H
L
L
L
L
L
X
H
H
H
L
L
X
H
H
L
X
X
H
L
X
X
X
ILLEGAL  
X
NOP --> Row Active after tRCD  
NOP --> Row Active after tRCD  
ILLEGAL  
X
X
Row  
Activating  
X
X
2
2
2
2
X
H
L
BA  
BA  
BA  
X
CA  
ILLEGAL  
H
H
L
RA  
ILLEGAL  
L
A10/AP  
ILLEGAL  
L
X
X
X
X
X
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
ILLEGAL  
X
H
H
L
X
H
L
X
NOP --> Idle after tRFC  
NOP --> Idle after tRFC  
ILLEGAL  
X
Refreshing  
X
H
L
X
ILLEGAL  
L
X
ILLEGAL  
X
H
H
H
L
X
H
H
L
X
NOP --> Idle after 2 clocks  
NOP --> Idle after 2 clocks  
ILLEGAL  
X
Mode  
Register  
Accessing  
X
X
X
X
ILLEGAL  
X
X
ILLEGAL  
Abbreviations : RA = Row Address  
NOP = No Operation Command  
BA = Bank Address  
CA = Column Address  
AP = Auto Precharge  
*Note : 1. All entries assume the CKE was active (High) during the precharge clock and the current clock cycle.  
2. Illegal to bank in specified state ; Function may be Iegal in the bank indicated by BA, depending on the  
state of that bank.  
3. Must satisfy bus contention, bus turn around, and/or write recovery requirements.  
4. NOP to bank precharging or in idle state. May precharge bank indicated by BA (and A10/AP).  
5. Illegal if any bank is not idle.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
FUNCTION TRUTH TABLE (TABLE 2)  
CKE  
n
Current  
State  
CKE  
(n-1)  
CS  
RAS  
CAS  
WE  
ADDR  
ACTION  
Note  
H
L
X
H
H
H
H
H
L
X
H
L
X
X
H
H
H
L
X
X
H
H
L
X
X
H
L
X
INVALID  
X
Exit Self Refresh --> Idle after tRFC (ABI)  
Exit Self Refresh --> Idle after tRFC (ABI)  
ILLEGAL  
6
6
L
X
Self  
Refresh  
L
L
X
L
L
X
X
X
X
X
H
L
X
ILLEGAL  
L
L
X
X
X
X
H
H
L
X
ILLEGAL  
L
X
X
H
L
X
X
X
H
H
H
L
X
NOP (Maintain Self Refresh)  
INVALID  
H
L
X
H
H
H
H
H
L
X
X
Exit Power Down --> ABI  
Exit Power Down --> ABI  
ILLEGAL  
All  
Banks  
Precharge  
Power  
L
X
7
7
L
L
X
L
L
X
X
X
X
X
H
L
X
ILLEGAL  
Down  
L
L
X
X
X
X
H
H
L
X
ILLEGAL  
L
X
X
H
L
X
X
X
H
H
H
L
X
NOP (Maintain Low Power Mode)  
Refer to Table 1  
H
H
H
H
H
H
H
H
L
H
L
X
X
Enter Power Down  
Enter Power Down  
ILLEGAL  
L
X
8
8
L
L
X
All  
Banks  
Idle  
L
L
X
H
H
L
X
ILLEGAL  
L
L
H
L
RA  
Row (& Bank) Active  
Enter Self Refresh  
Mode Register Access  
NOP  
L
L
L
X
8
L
L
L
L
OP Code  
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
H
L
H
L
Refer to Operations in Table 1  
Begin Clock Suspend next cycle  
Exit Clock Suspend next cycle  
Maintain Clcok Suspend  
Any State  
other than  
Listed  
9
9
H
L
above  
L
Abbreviations : ABI = All Banks Idle, RA = Row Address  
*Note : 6. CKE low to high transition is asynchronous.  
7. CKE low to high transition is asynchronous if restarts internal clock.  
A minimum setup time 1CLK + tSS must be satisfied before any command other than exit.  
8. Power down and self refresh can be entered only from the both banks idle state.  
9. Must be a legal command.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Single Bit Read-Write-Read Cycle(Same Page) @CAS Latency=3, Burst Length=1  
tCH  
1
2
3
4
5
6
10  
0
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
tCL  
tCC  
HIGH  
CKE  
CS  
tRAS  
tRC  
*Note 1  
tSH  
tRP  
tRCD  
tSS  
tSH  
tSS  
RAS  
CAS  
tCCD  
tSH  
tSS  
tSS  
tSH  
Ra  
Ca  
Cb  
tSH  
Cc  
Rb  
ADDR  
BA  
tSS  
*Note 2  
*Note 2,3  
*Note 2,3  
*Note 2,3 *Note 4  
*Note 2  
BS  
BS  
BS  
BS  
BS  
BS  
*Note 3  
*Note 3  
*Note 3 *Note 4  
Ra  
A10/AP  
DQ  
Rb  
tRAC  
tSH  
tSAC  
tSLZ  
Qa  
tOH  
Db  
Qc  
tSS  
tSH  
WE  
tSS  
tSS  
tSH  
DQM  
Row Active  
Read  
Write  
Read  
Row Active  
Precharge  
: Don't care  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
*Note : 1. All inputs expect CKE & DQM can be don ¡Ç t care when CS is high at the CLK high going edge.  
2. Bank active & read/write are controlled by BA.  
BA  
0
Active & Read/Write  
Bank A  
1
Bank B  
3. Enable and disable auto precharge function are controlled by A10/AP in read/write command.  
A10/AP BA  
Operation  
0
Disable auto precharge, leave bank A active at end of burst.  
Disable auto precharge, leave bank B active at end of burst.  
Enable auto precharge, precharge bank A at end of burst.  
Enable auto precharge, precharge bank B at end of burst.  
0
1
0
1
1
4. A10/AP and BA control bank precharge when precharge command is asserted.  
A10/AP BA  
Precharge  
Bank A  
0
0
1
0
1
Bank B  
X
Both Banks  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Power Up Sequence  
1
2
3
4
5
6
10  
0
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
High level is necessary  
CKE  
CS  
tRC  
tRP  
tRC  
RAS  
CAS  
Key  
RAa  
ADDR  
BA  
RAa  
A10/AP  
High-Z  
DQ  
WE  
DQM  
High level is necessary  
Precharge  
(All Banks)  
Auto Refresh  
Auto Refresh  
Mode Register Set  
Row Active  
(A-Bank)  
: Don't care  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Read & Write Cycle at Same Bank @Burst Length=4  
1
2
3
4
5
6
10  
0
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
*Note 1  
tRC  
CS  
tRCD  
RAS  
CAS  
ADDR  
BA  
*Note 2  
Ra  
Ca0  
Rb  
Cb0  
Ra  
Rb  
A10/AP  
tOH  
Qa0 Qa1 Qa2 Qa3  
Db0 Db1 Db2 Db3  
CL=2  
DQ  
tRAC  
tRDL  
tRDL  
*Note 4  
tSAC  
tSHZ  
*Note 3  
tOH  
Qa0 Qa1 Qa2 Qa3  
CL=3  
Db0 Db1 Db2 Db3  
tRAC  
*Note 3  
tSAC  
*Note 4  
tSHZ  
WE  
DQM  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Precharge  
(A-Bank)  
: Don't care  
*Note : 1. Minimum row cycle times is required to complete internal DRAM operation.  
2. Row precharge can interrupt burst on any cycle. [CAS Latency - 1] number of valid output data  
is available after Row precharge. Last valid output will be Hi-Z(tSHZ) after the clcok.  
3. Access time from Row active command. tCC *(tRCD + CAS latency - 1) + tSAC  
4. Ouput will be Hi-Z after the end of burst. (1, 2, 4, 8 & Full page bit burst wrap-around).  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Page Read & Write Cycle at Same Bank @Burst Length=4  
1
2
3
4
5
6
10  
0
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
tRCD  
RAS  
CAS  
*Note 2  
Ra  
Ca0  
Cb0  
Cc0  
Cd0  
ADDR  
BA  
Ra  
A10/AP  
tRDL  
Qa0 Qa1 Qb0 Qb1 Qb2  
Qa0 Qa1 Qb0 Qb1  
Dc0 Dc1 Dd0 Dd1  
DQ CL=2  
CL=3  
Dc0 Dc1 Dd0 Dd1  
tCDL  
WE  
*Note 1  
*Note 3  
DQM  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Read  
(A-Bank)  
Write  
(A-Bank)  
Write  
(A-Bank)  
Precharge  
(A-Bank)  
: Don't care  
*Note : 1. To write data before burst read ends, DQM should be asserted three cycle prior to write  
command to avoid bus contention.  
2. Row precharge will interrupt writing. Last data input, tRDL before Row precharge, will be written.  
3. DQM should mask invalid input data on precharge command cycle when asserting precharge  
before end of burst. Input data after Row precharge cycle will be masked internally.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Page Read Cycle at Different Bank @Burst Length=4  
1
2
3
4
5
6
10  
0
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
*Note 1  
CS  
RAS  
CAS  
*Note 2  
RAa  
CAa RBb  
CBb  
CAc  
CBd  
CAe  
ADDR  
BA  
RAa  
RBb  
A10/AP  
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1  
DQ CL=2  
CL=3  
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1  
WE  
DQM  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Read  
(B-Bank)  
Read  
(A-Bank)  
Read  
(B-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Read  
(A-Bank)  
: Don't care  
*Note : 1. CS can be don't cared when RAS, CAS and WE are high at the clock high going dege.  
2. To interrupt a burst read by row precharge, both the read and the precharge banks must be the same.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Page Write Cycle at Different Bank @Burst Length=4  
1
2
3
4
5
6
10  
0
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
RAS  
*Note 2  
CAS  
ADDR  
BA  
RAa  
CAa RBb  
CBb  
CAc  
CBd  
RAa  
RBb  
A10/AP  
DQ  
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3 DAc0 DAc1 DBd0 DBd1  
tCDL  
tRDL  
WE  
*Note 1  
DQM  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Write  
(B-Bank)  
Write  
(A-Bank)  
Precharge  
(Both Banks)  
Write  
(A-Bank)  
Write  
(B-Bank)  
: Don't care  
*Note : 1. To interrupt burst write by Row precharge, DQM should be asserted to mask invalid input data.  
2. To interrupt burst write by Row precharge, both the write and the precharge banks must be the same.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Read & Write Cycle at Different Bank @Burst Length=4  
1
2
3
4
5
6
10  
0
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
RAS  
CAS  
ADDR  
BA  
RAa  
CAa  
RBb  
RBb  
CBb RAc  
CAc  
RAa  
RAc  
A10/AP  
*Note 1  
tCDL  
DBb0 DBb1 DBb2 DBb3  
QAc0 QAc1 QAc2  
QAc0 QAc1  
QAa0 QAa1 QAa2 QAa3  
DQ CL=2  
CL=3  
QAa0 QAa1 QAa2 QAa3  
DBb0 DBb1 DBb2 DBb3  
WE  
DQM  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Write  
(B-Bank)  
Read  
(A-Bank)  
Row Active  
(B-Bank)  
Row Active  
(A-Bank)  
: Don't care  
*Note : 1. tCDL should be met to complete write.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Read & Write Cycle with Auto Precharge I @Burst Length=4  
1
2
3
4
5
6
10  
0
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
RAS  
CAS  
ADDR  
BA  
Ra  
Rb  
Ca  
Cb  
Ra  
Ca  
A10/AP  
Ra  
Rb  
Ra  
Qb3  
Da0  
Da0  
Da1  
Da1  
Qa0  
Qa1  
Qb0  
Qb1  
Qb0  
Qb2  
DQ CL=2  
Qa0  
Qa1  
Qb1 Qb2  
Qb3  
CL=3  
WE  
DQM  
Read without Auto  
precharge(B-Bank)  
Auto Precharge  
Start Point  
Read with  
Auto Pre  
charge  
Write with  
Auto Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Row Active  
(A-Bank)  
Precharge  
(B-Bank)  
(A-Bank)  
(A-Bank)*  
Row Active  
(B-Bank)  
: Don't care  
*Note:  
* When Read(Write) command with auto precharge is issued at A-Bank after A and B Bank activation.  
- if Read(Write) command without auto precharge is issued at B-Bank before A Bank auto precharge starts, A Bank  
auto precharge will start at B Bank read command input point .  
- any command can not be issued at A Bank during tRP after A Bank auto precharge starts.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Read & Write Cycle with Auto Precharge II @Burst Length=4  
1
2
3
4
5
6
10  
0
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
RAS  
CAS  
ADDR  
BA  
Ra  
Ca  
Rb  
Cb  
A10/AP  
Ra  
Rb  
Qa0  
Qa1  
Qa2  
Qa3  
Qa2  
Qb0  
Qb1  
Qb2  
Qb3  
DQ CL=2  
Qa0  
Qa1  
Qa3  
Qb0  
Qb1  
Qb2  
Qb3  
CL=3  
WE  
DQM  
*
Read with  
Auto Precharge  
(A-Bank)  
Auto Precharge  
Start Point  
(A-Bank)  
Row Active  
(A-Bank)  
Read with  
Auto Precharge  
(B-Bank)  
Auto Precharge  
Start Point  
(B-Bank)  
Row Active  
(B-Bank)  
: Don't care  
*Note :  
*
Any command to A-bank is not allowed in this period.  
tRP is determined from at auto precharge start point  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Clock Suspension & DQM Operation Cycle @CAS Latency=2, Burst Length=4  
1
2
3
4
5
6
10  
0
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
CS  
RAS  
CAS  
ADDR  
Ra  
Ca  
Cb  
Cc  
BA  
A10/AP  
DQ  
Ra  
Qb0 Qb1  
tSHZ  
Dc0  
Dc2  
Qa0 Qa1  
Qa2  
Qa3  
tSHZ  
WE  
*Note 1  
DQM  
Row Active  
Read  
Clock  
Suspension  
Read  
Write  
DQM  
Write  
DQM  
Read DQM  
Write  
Clock  
Suspension  
: Don't care  
*Note : 1. DQM is needed to prevent bus contention.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Read Interrupted by Precharge Command & Read Burst Stop Cycle @Burst Length=Full page  
1
2
3
4
5
6
10  
0
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
RAS  
CAS  
RAa  
CAa  
CAb  
ADDR  
BA  
A10/AP  
RAa  
1
1
QAa0 QAa1 QAa2 QAa3 QAa4  
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5  
DQ CL=2  
CL=3  
*Note 2  
2
2
QAa0 QAa1 QAa2 QAa3 QAa4  
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5  
WE  
DQM  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Burst Stop  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
: Don't care  
*Note : 1. At full page mode, burst is wrap-around at the end of burst. So auto precharge is impossible.  
2. About the valid DQs after burst stop, it is same as the case of RAS interrupt.  
Both cases are illustrated above timing diagram. See the label 0. 1, 2 on them.  
But at burst write, Burst stop and RAS interrupt should be compared carefully.  
Refer the timing diagram of "Full page write burst stop cycle".  
3. Burst stop is valid at every burst length.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Write Interrupted by Precharge Command & Write Burst Stop Cycle @ Burst Length=Full page  
1
2
3
4
5
6
10  
0
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
HIGH  
CS  
RAS  
CAS  
RAa  
CAa  
CAb  
ADDR  
BA  
A10/AP  
DQ  
RAa  
tBDL  
tRDL  
*Note 2  
DAa0 DAa1 DAa2 DAa3 DAa4  
DAb0 DAb1 DAb2 DAb3 DAb4 DAb5  
WE  
DQM  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Burst Stop  
Write  
(A-Bank)  
Precharge  
(A-Bank)  
: Don't care  
*Note : 1. At full page mode, burst is wrap-around at the end of burst. So auto precharge is impossible.  
2. Data-in at the cycle of interrupted by precharge can not be written into the corresponding  
memory cell. It is defined by AC parameter of tRDL.  
DQM at write interrupted by precharge command is needed to prevent invalid write.  
DQM should mask invalid input data on precharge command cycle when asserting precharge  
before end of burst. Input data after Row precharge cycle will be masked internally.  
3. Burst stop is valid at every burst length.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Burst Read Single bit Write Cycle @Burst Length=2  
1
2
3
4
5
6
10  
0
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
*Note 1  
HIGH  
CS  
RAS  
*Note 2  
CAS  
RAa  
CAa RBb CAb  
RAc  
CBc  
CAd  
ADDR  
BA  
RAa  
RBb  
RAc  
A10/AP  
DAa0  
QAb0 QAb1  
DBc0  
DBc0  
QAd0 QAd1  
DQ CL=2  
DAa0  
QAb0 QAb1  
QAd0 QAd1  
CL=3  
WE  
DQM  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Write  
(A-Bank)  
Write with  
Auto Precharge  
(B-Bank)  
Read with  
Auto Precharge  
(A-Bank)  
: Don't care  
*Note : 1. BRSW modes is enabled by setting A9 "High" at MRS (Mode Register Set).  
At the BRSW Mode, the burst length at write is fixed to "1" regaredless of programmed burst length.  
2. When BRSW write command with auto precharge is executed, keep it in mind that tRAS should not be violated.  
Auto precharge is executed at the burst-end cycle, so in the case of BRSW write command,  
the next cycle starts the precharge.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Active/Precharge Power Down Mode @CAS Latency=2, Burst Length=4  
1
2
3
4
5
6
10  
0
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
tSS  
tSS  
*Note 1  
*Note 2  
tSS  
*Note 2  
*Note 3  
CS  
RAS  
CAS  
Ra  
Ca  
ADDR  
BA  
Ra  
A10/AP  
DQ  
tSHZ  
Qa0  
Qa2  
Qa1  
WE  
DQM  
Precharge  
Power-down  
Entry  
Row Active  
Read  
Precharge  
Active  
Power-down  
Exit  
Precharge  
Active  
Power-down  
Entry  
Power-down  
Exit  
: Don't care  
*Note : 1. Both banks should be in idle state prior to entering precharge power down mode.  
2. CKE should be set high at least 1CLK + tss prior to Row active command.  
3. Can not violate minimum refresh specification. (32ms)  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Self Refresh Entry & Exit Cycle  
1
2
3
4
5
6
10  
0
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
CKE  
*Note 4  
*Note 2  
tRCmin  
*Note 6  
*Note 1  
*Note 3  
tSS  
*Note 5  
CS  
RAS  
CAS  
*Note 7  
ADDR  
BA  
A10/AP  
DQ  
Hi-Z  
Hi-Z  
WE  
DQM  
Self Refresh Entry  
Self Refresh Exit  
Auto Refresh  
: Don't care  
*Note : TO ENTER SELF REFRESH MODE  
1. CS, RAS & CAS with CKE should be low at the same clcok cycle.  
2. After 1 clock cycle, all the inputs including the system clock can be don't care except for CKE.  
3. The device remains in self refresh mode as long as CKE stays "Low".  
cf.) Once the device enters self refresh mode, minimum tRAS is required before exit from self refresh.  
TO EXIT SELF REFRESH MODE  
4. System colck restart and be stable before returning CKE high.  
5. CS starts from high.  
6. Minimum tRC is required after CKE going high to complete self refresh exit.  
7. 2K cycle of burst auto refresh is required before self refresh entry and after self refresh exit if the system uses burst refresh.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
Mode Register Set Cycle  
Auto Refresh Cycle  
0
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
0
CLOCK  
CKE  
HIGH  
HIGH  
CS  
*Note 2  
tRC  
RAS  
CAS  
*Note 1  
*Note 3  
ADDR  
DQ  
Key  
Ra  
Hi-Z  
Hi-Z  
WE  
DQM  
MRS  
New  
Auto Refresh  
New Command  
Command  
: Don't care  
* Both banks precharge should be completed before Mode Register Set cycle and auto refresh cycle.  
MODE REGISTER SET CYCLE  
*Note : 1. CS, RAS, CAS, & WE activation at the same clock cycle with address key will set internal mode register.  
2. Minimum 2 clock cycles should be met before new RAS activation.  
3. Please refer to Mode Register Set table.  
Rev 1.5 Sep. '00  
K4S161622D  
CMOS SDRAM  
PACKAGE DIMENSIONS  
50-TSOP2-400CF  
Unit : Millimeters  
0~8°  
0.25 TYP  
#50  
#26  
#25  
#1  
+0.075  
-0.035  
0.125  
20.95  
± 0.10  
1.20MAX  
± 0.10  
1.00  
0.10MAX  
0.075MAX  
[
]
0.80TYP  
[0.80±0.08]  
0.05MIN  
(0.875)  
0.30 +0.10  
0.35 +0.10  
-0.05  
-0.05  
Rev 1.5 Sep. '00  

相关型号:

K4S161622D-TL60

Synchronous DRAM, 1MX16, 5.5ns, CMOS, PDSO50, 0.400 X 0.825 INCH, 0.80 MM PITCH, TSOP2-50
SAMSUNG

K4S161622D-TL80

Synchronous DRAM, 1MX16, 6ns, CMOS, PDSO50, 0.400 X 0.825 INCH, 0.80 MM PITCH, TSOP2-50
SAMSUNG

K4S161622E

1M x 16 SDRAM
SAMSUNG

K4S161622E-TC10

1M x 16 SDRAM
SAMSUNG

K4S161622E-TC10T

暂无描述
SAMSUNG

K4S161622E-TC55

1M x 16 SDRAM
SAMSUNG

K4S161622E-TC60

1M x 16 SDRAM
SAMSUNG

K4S161622E-TC60T

Synchronous DRAM, 1MX16, 5.5ns, CMOS, PDSO50
SAMSUNG

K4S161622E-TC70

1M x 16 SDRAM
SAMSUNG

K4S161622E-TC70T

Synchronous DRAM, 1MX16, 5.5ns, CMOS, PDSO50
SAMSUNG

K4S161622E-TC80

1M x 16 SDRAM
SAMSUNG

K4S161622E-TC80T

Synchronous DRAM, 1MX16, 6ns, CMOS, PDSO50
SAMSUNG