MMST2907AT146 [ROHM]

Small Signal Bipolar Transistor, 0.6A I(C), 60V V(BR)CEO, 1-Element, PNP, Silicon, SC-59, SMT3, 3 PIN;
MMST2907AT146
型号: MMST2907AT146
厂家: ROHM    ROHM
描述:

Small Signal Bipolar Transistor, 0.6A I(C), 60V V(BR)CEO, 1-Element, PNP, Silicon, SC-59, SMT3, 3 PIN

开关 光电二极管 晶体管
文件: 总5页 (文件大小:107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UMT2907A / SST2907A / MMST2907A  
Transistors  
PNP Medium Power Transistor  
(Switching)  
UMT2907A / SST2907A / MMST2907A  
zFeatures  
1) BVCEO< -60V (IC=-10mA)  
2) Complements the UMT2222A / SST2222A /  
MMST2222A.  
zDimensions (Unit : mm)  
UMT2907A  
zPackage, marking and packaging specifications  
(1) Emitter  
(2) Base  
(3) Collector  
ROHM : UMT3  
EIAJ : SC-70  
Part No.  
Packaging type  
Marking  
UMT2907A SST2907A MMST2907A  
UMT3  
R2F  
SST3  
R2F  
SMT3  
R2F  
Code  
T106  
T116  
T146  
SST2907A  
Basic ordering unit  
(pieces)  
3000  
3000  
3000  
zAbsolute maximum ratings (Ta=25°C)  
(1) Emitter  
(2) Base  
(3) Collector  
Parameter  
Collector-base voltage  
Collector-emitter voltage  
Emitter-base voltage  
Collector current  
Symbol  
Limits  
60  
60  
5  
Unit  
V
VCBO  
VCEO  
VEBO  
ROHM : SST3  
MMST2907A  
V
V
I
C
0.6  
A
UMT2907A,  
SST2907A,  
0.2  
W
Collector power  
dissipation  
PC  
MMST2907A  
SST2907A  
0.35  
150  
W
°C  
°C  
Junction temperature  
Storage temperature  
Tj  
Tstg  
55 to +150  
Mounted on a 7x5x0.6mm ceramic substrate.  
(1) Emitter  
(2) Base  
(3) Collector  
ROHM : SMT3  
EIAJ : SC-59  
zElectrical characteristics (Ta=25°C)  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Conditions  
Collector-base breakdown voltage  
Collector-emitter breakdown voltage  
Emitter-base breakdown voltage  
BVCBO  
BVCEO  
BVEBO  
60  
60  
5  
V
V
V
I
I
I
C
= 10µA  
= 10mA  
C
E
= 10µA  
CB= 50V  
CB= 30V  
EB= 3V  
I
CBO  
CES  
EBO  
100  
100  
100  
0.4  
1.6  
1.3  
2.6  
V
V
V
Collector cutoff current  
nA  
nA  
V
I
Emitter cutoff current  
I
I
I
I
I
C/I  
C/I  
C/I  
C
/I  
B
B
B
B
= 150mA/ 15mA  
= 500mA/ 50mA  
= 150mA/ 15mA  
= 500mA/ 50mA  
Collector-emitter saturation voltage  
V
CE(sat)  
BE(sat)  
Base-emitter saturation voltage  
DC current transfer ratio  
V
V
75  
100  
100  
100  
50  
200  
V
V
V
V
V
CE= 10V, I  
CE= 10V, I  
CE= 10V, I  
CE= 10V, I  
CE= 10V, I  
CE= 20V, IE=50mA, f=100MHz  
CB= 10V, f=100kHz  
EB= 2V, f=100kHz  
CC= 30V, VBE(OFF)= 1.5V, I  
CC= 30V, VBE(OFF)= 1.5V, I  
CC= 30V, VBE(OFF)= 1.5V, I  
CC= 30V, I  
CC= 30V , I  
CC= 30V, I  
C
C
C
C
C
= 0.1mA  
= 1mA  
= 10mA  
= 150mA  
= 500mA  
hFE  
300  
8
Transition frequency  
Collector output capacitance  
Emitter input capacitance  
Turn-on time  
f
T
MHz  
pF  
pF  
ns  
V
V
V
V
V
V
V
V
V
Cob  
Cib  
ton  
td  
30  
50  
10  
40  
100  
80  
30  
C
C
C
= 150mA, IB1= 15mA  
= 150mA, IB1= 15mA  
=150mA, IB1= 15mA  
Delay time  
ns  
Rise time  
tr  
ns  
Turn-off time  
toff  
tstg  
tf  
ns  
C= 150mA, IB1=IB2= 15mA  
Storage time  
ns  
C
= 150mA, IB1=IB2= 15mA  
Fall time  
ns  
C= 150mA, IB1=IB2= 15mA  
Rev.B  
1/4  
UMT2907A / SST2907A / MMST2907A  
Transistors  
zElectrical characteristic curves  
100  
1.8  
600  
Ta=25˚C  
Ta=25˚C  
IC / IB=10  
1.6  
1.4  
500  
1.2  
1.0  
0.8  
0.6  
0.4  
400  
300  
50  
200  
100  
0.2  
0
1 =0µA  
B
0
0
5
10  
1.0  
10  
100  
1000  
COLLECTOR-EMITTER VOLTAGE : VCE (V)  
COLLECTOR CURRENT : I  
C
(mA)  
Fig.1 Grounded emitter output  
characteristics  
Fig.2 Base-emitter saturation  
voltage vs. collector current  
1000  
100  
10  
Ta=25˚C  
VCE=10V  
1V  
0.1  
1.0  
10  
COLLECTOR CURRENT : I  
100  
1000  
C
(mA)  
Fig.3 DC current gain vs. collector current ( I )  
1000  
100  
10  
V
CE=10V  
Ta=125˚C  
Ta=25˚C  
Ta=55˚C  
0.1  
1.0  
10  
100  
1000  
COLLECTOR CURRENT : IC (mA)  
Fig.4 DC current gain vs. collector current ( II )  
Rev.B  
2/4  
UMT2907A / SST2907A / MMST2907A  
Transistors  
1000  
Ta=25˚C  
/ I =10  
Ta=25˚C  
CE=10V  
f=1kHz  
I
C
B
V
0.3  
0.2  
100  
0.1  
0
10  
0.1  
1.0  
10  
100  
1000  
1.0  
10  
100  
1000  
COLLECTOR CURRENT : I (mA)  
C
COLLECTOR CURRENT : IC (mA)  
Fig.6 Collector-emitter saturation  
voltage vs. collector current  
Fig.5 AC current gain vs. collector current  
1000  
100  
10  
1.8  
1.6  
1.4  
1.2  
Ta=25˚C  
Ta=25˚C  
CE=10V  
Ta=25˚C  
V
V
CE=10V  
100MHz  
200MHz  
300MHz  
250MHz  
1.0  
0.8  
0.6  
0.4  
100  
1
0.2  
0
200MHz  
10  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
1.0  
10  
100  
1000  
COLLECTOR CURRENT : I  
C
(mA)  
COLLECTOR CURRENT : I  
C
(mA)  
COLLECTOR CURRENT : IC (mA)  
Fig.8 Gain bandwidth product  
vs. collector current  
Fig.9 Gain bandwidth product  
Fig.7 Grounded emitter propagation  
characteristics  
1000  
500  
100  
100  
Ta=25˚C  
f=1MHz  
Ta=25˚C  
IC / IB=10  
Ta=25˚C  
CC=30V  
/ I =10  
V
I
C
B
Cib  
VCC=30V  
Cob  
100  
10  
10V  
10  
5
10  
1
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
COLLECTOR CURRENT : I  
C
(mA)  
COLLECTOR CURRENT : I (mA)  
C
REVERSE BIAS VOLTAGE (V)  
Fig.11 Turn-on time vs.collector  
current  
Fig.12 Rise time vs. collector  
current  
Fig.10 Input/output capacitance  
vs. voltage  
Rev.B  
3/4  
UMT2907A / SST2907A / MMST2907A  
Transistors  
1000  
1000  
Ta=25˚C  
CC=30V  
=10IB1=10IB2  
Ta=25˚C  
V
V
CC=30V  
I
C
I
C=10IB1=10IB2  
100  
100  
10  
10  
1
10  
100  
1000  
1
10  
100  
1000  
COLLECTOR CURRENT : I  
C
(mA)  
COLLECTOR CURRENT : I  
C
(mA)  
Fig.13 Storage time vs. collector  
current  
Fig.14 Fall time vs. collector  
current  
Rev.B  
4/4  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level  
of reliability and the malfunction of which would directly endanger human life (such as medical  
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers  
and other safety devices), please be sure to consult with our sales representative in advance.  
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance  
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow  
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in  
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM  
cannot be held responsible for any damages arising from the use of the products under conditions out of the  
range of the specifications or due to non-compliance with the NOTES specified in this catalog.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUPOPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2007 ROHM CO.,LTD.  
21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev2.0  

相关型号:

MMST2907AT147

Small Signal Bipolar Transistor, 0.6A I(C), 60V V(BR)CEO, 1-Element, PNP, Silicon,
ROHM

MMST2907AT246

Small Signal Bipolar Transistor, 0.8A I(C), 40V V(BR)CEO, 1-Element, PNP, Silicon,
ROHM

MMST2907AT247

Small Signal Bipolar Transistor, 0.6A I(C), 60V V(BR)CEO, 1-Element, PNP, Silicon, MINIMOLD, SMT, SC-59, 3 PIN
ROHM

MMST2907A_1

PNP SMALL SIGNAL SURFACE MOUNT TRANSISTOR
DIODES

MMST2907A_11

PNP Small Signal Transistors
MCC

MMST2907A_15

PNP TRANSISTOR
WINNERJOIN

MMST2907A_2

PNP SMALL SIGNAL SURFACE MOUNT TRANSISTOR
DIODES

MMST2907T146

Small Signal Bipolar Transistor, 0.6A I(C), 40V V(BR)CEO, 1-Element, PNP, Silicon, MINIMOLD, SMT, SC-59, 3 PIN
ROHM

MMST2907T147

Small Signal Bipolar Transistor, 0.6A I(C), 40V V(BR)CEO, 1-Element, PNP, Silicon, MINIMOLD, SMT, SC-59, 3 PIN
ROHM

MMST3904

NPN SMALL SIGNAL SURFACE MOUNT TRANSISTOR
TRSYS

MMST3904

NPN SMALL SIGNAL SURFACE MOUNT TRANSISTOR
DIODES

MMST3904

NPN General Purpose Transistor
ROHM