ML9058E [ROHM]

ML9058E是进行位图显示的点阵图形液晶显示用LSI。在8位微处理器(以下简称“MPU”)的控制下,驱动点阵图形液晶显示面板。由于位图方式的液晶驱动所需的所有功能都已内置在1枚芯片中,因此使用ML9058E可以用更少的芯片数量来实现位图方式的点阵图形液晶显示系统。采用位图方式,显示用RAM的1位数据与显示面板1个点的亮灯和非亮灯相对应,因此可支持汉字显示等需要更高灵活性的显示。1枚芯片最大可构建65 ×132点的图形显示系统。而且,还可以通过使用2枚芯片来扩展显示。但是,使用行反转驱动时不能采用多芯片结构。ML9058E采用的是CMOS工艺。内置RAM,具有低功耗的特点,适用于电池驱动的便携设备的显示应用。ML9058E内置65路公共信号输出和132路段信号输出功能,可用1枚芯片实现65 × 132点的显示。;
ML9058E
型号: ML9058E
厂家: ROHM    ROHM
描述:

ML9058E是进行位图显示的点阵图形液晶显示用LSI。在8位微处理器(以下简称“MPU”)的控制下,驱动点阵图形液晶显示面板。由于位图方式的液晶驱动所需的所有功能都已内置在1枚芯片中,因此使用ML9058E可以用更少的芯片数量来实现位图方式的点阵图形液晶显示系统。采用位图方式,显示用RAM的1位数据与显示面板1个点的亮灯和非亮灯相对应,因此可支持汉字显示等需要更高灵活性的显示。1枚芯片最大可构建65 ×132点的图形显示系统。而且,还可以通过使用2枚芯片来扩展显示。但是,使用行反转驱动时不能采用多芯片结构。ML9058E采用的是CMOS工艺。内置RAM,具有低功耗的特点,适用于电池驱动的便携设备的显示应用。ML9058E内置65路公共信号输出和132路段信号输出功能,可用1枚芯片实现65 × 132点的显示。

电池 驱动 微处理器
文件: 总77页 (文件大小:446K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dear customer  
LAPIS Semiconductor Co., Ltd. ("LAPIS Semiconductor"), on the 1st day of October,  
2020, implemented the incorporation-type company split (shinsetsu-bunkatsu) in which  
LAPIS established a new company, LAPIS Technology Co., Ltd. (“LAPIS  
Technology”) and LAPIS Technology succeeded LAPIS Semiconductor’s LSI business.  
Therefore, all references to "LAPIS Semiconductor Co., Ltd.", "LAPIS Semiconductor"  
and/or "LAPIS" in this document shall be replaced with "LAPIS Technology Co., Ltd."  
Furthermore, there are no changes to the documents relating to our products other than  
the company name, the company trademark, logo, etc.  
Thank you for your understanding.  
LAPIS Technology Co., Ltd.  
October 1, 2020  
FEDL9058E-01  
Issue Date: April. 13, 2007  
LAPIS Semiconductor  
ML9058E  
132-Channel LCD Driver with Built-in RAM for LCD Dot Matrix Displays  
GENERAL DESCRIPTION  
The ML9058E is an LSI for dot matrix graphic LCD devices carrying out bit map display. This LSI can drive a dot  
matrix graphic LCD display panel under the control of an 8-bit microcomputer (hereinafter described MPU).  
Since all the functions necessary for driving a bit map type LCD device are incorporated in a single chip, using the  
ML9058E makes it possible to realize a bit map type dot matrix graphic LCD display system with only a few chips.  
Since the bit map method in which one bit of display RAM data turns ON or OFF one dot in the display panel, it is  
possible to carry out displays with a high degree of freedom such as Chinese character displays, etc. With one chip,  
it is possible to construct a graphic display system with a maximum of 65 132 dots. The display can be expanded  
further using two chips. However, the ML9058E is not used in a multiple chip configuration when a line reversal  
drive is set.  
The ML9058E is made using a CMOS process. Because it has a built-in RAM, low power consumption is one of  
its features, and is therefore suitable for displays in battery-operated portable equipment.  
The ML9058E has 65 common signal outputs and 132 segment signal outputs and one chip can drive a display of  
up to 65 132 dots.  
FEATURES  
Direct display of the RAM data using the bit map method  
Display RAM data “1” ... Dot is displayed  
Display RAM data “0” ... Dot is not displayed (during forward display)  
Display RAM capacity  
65 132 = 8580 bits  
LCD Drive circuits  
65 common outputs, 132 segment outputs  
MPU interface: Can select an 8-bit parallel or serial interface  
Built-in voltage multiplier circuit for the LCD drive power supply  
Built-in LCD drive voltage adjustment circuit  
Built-in LCD drive bias generator circuit  
Can select frame reversal drive or line reversal drive by command  
Built-in oscillator circuit (Internal RC oscillator/external clock input)  
A variety of commands  
Read/write of display data, display ON/OFF, forward/reverse display, all dots ON/all dots OFF, set page  
address, set display start address, etc.  
Power supply voltage  
Logic power supply: VDD-VSS = 3.7 V to 5.5 V  
Voltage multiplier reference voltage: VIN-VSS = 3.7 V to 5.5 V  
(2- to 4-time multiplier available)  
LCD Drive voltage: VBI-VSS = 6.0 to 18 V  
Package: Gold bump chip (Bump hardness: Low, DV)  
: Gold bump chip (Bump hardness: High, CV)  
This device is not resistant to radiation and light.  
1/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
BLOCK DIAGRAM  
VDD  
V1  
V2  
V3  
V4  
COMMON  
Drivers  
SEGMENT  
Drivers  
V5  
VSS  
Common Output state  
selection circuit  
Display data latch circuit  
VS1–  
VS2–  
VC3+  
VC4+  
VC5+  
FRS  
FR  
CL  
DOF  
Display data RAM  
VC6+  
VOUT  
M/S  
65 132  
VIN  
VR  
Column address circuit  
VRS  
IRS  
CLS  
TEST1  
Bus holder  
Command decoder  
MPU lnterface  
Status  
2/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
ABSOLUTE MAXIMUM RATINGS  
VSS = 0 V  
Parameter  
Power supply voltage  
Bias voltage  
Symbol  
VDD  
Condition  
Tj = 25°C  
Tj = 25°C  
Rated value  
–0.3 to +6.5  
–0.3 to +20  
Unit Applicable pins  
V
V
VDD  
VBI  
V1 to V5  
Voltage multiplier output  
voltage  
VOUT  
Tj = 25°C  
–0.3 to +20  
V
VOUT  
2-time multiplication  
3-time multiplication  
4-time multiplication  
Tj = 25°C  
–0.3 to +5.5  
–0.3 to +5.5  
–0.3 to +5.0  
–0.3 to VDD+0.3  
–55 to +125  
Voltage multiplier reference  
voltage  
VIN  
V
VIN  
Input voltage  
VI  
V
All inputs  
Storage temperature range  
TSTG  
Chip  
°C  
Tj:Chip surface temperature  
RECOMMENDED OPERATING CONDITIONS  
VSS = 0 V  
Unit Applicable pins  
Parameter  
Power supply voltage  
Bias voltage  
Symbol  
VDD  
Condition  
Rated value  
3.7 to 5.5  
6 to 18  
V
V
VDD  
VBI  
V1 to V5  
2-time multiplication  
3-time multiplication  
4-time multiplication  
3.7 to 5.5  
3.7 to 5.5  
3.7 to 4.5  
Voltage multiplier reference  
voltage  
VIN  
V
VIN  
Voltage multiplier output  
voltage  
VOUT  
TJOP  
External input  
6.0 to 18  
V
VOUT  
Operating temperature range  
–40 to +85  
°C  
Note 1: The electrical characteristics are influenced by COG trace resistance. This LSI always has to  
be evaluated before using.  
VOUT  
V1 to V5  
VIN  
VDD  
VCC  
GND  
VSS  
System (MPU)  
ML9058E  
Note 2: The voltages VDD, V1 to V5, and VOUT are values taking VSS = 0 V as the reference.  
Note 3: The highest bias potential is V1 and the lowest is VSS.  
Note 4: Always maintain the relationship V1 V2 V3 V4 V5 VSS among these voltages.  
3/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Note 5: When using an external power supply, follow the procedure for power application.  
When applying external power to the VOUT pin only, apply VOUT after VDD.  
When applying external power to the V1 pin only, apply V1 after VDD.  
When applying external power to the V1 pin to V5 pin, apply V1 to V5 after VDD.  
Note that the above (Note 4) must be satisfied including transient state at power application.  
Note 6: When using an external power supply, follow the procedure for power removal described  
below.  
When external power is in use for the VOUT pin only, remove VOUT after VDD.  
When external power is in use for the V1 pin only, remove V1 after VDD.  
When external power is in use for the V1 pin to V5 pin, remove V1 to V5 after VDD.  
Note that the above (Note 4) must be satisfied including transient state at power removal.  
4/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
ELECTRICAL CHARACTERISTICS  
DC Characteristics  
[VSS = 0 V, VDD = 3.7 to 5.5 V, Tj =–40 to +85°C]  
Applicable  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
pins  
“H” Input voltage  
“L” Input voltage  
“H” Input voltage  
“L” Input voltage  
Hysteresis width  
“H” output voltage  
“L” output voltage  
“H” Input current  
“L” Input current  
VIH  
VIL  
VIH  
VIL  
V  
VOH  
VOL  
IIH  
0.8 VDD  
0
1.0  
VDD  
0.2 VDD  
VDD  
V
*1  
0.8 VDD  
0
V
*2  
0.2 VDD  
1.55  
VDD = 4.5 to 5.5 V  
IOH = –0.5 mA  
IOL = 0.5 mA  
VI = VDD  
0.85  
0.8 VDD  
V
A  
*3  
0.2 VDD  
+1.0  
–1.0  
*4 *5  
*1, *2  
V1  
IIL  
VI = 0 V  
–3.0  
+3.0  
Tj=25°C  
Input capacitance  
CI  
8
12  
pF  
F=10kHz  
Tj = 25°C  
V1 = 12 V  
Tj = 25°C  
*6  
V1 output voltage  
temperature gradient  
Reference voltage  
V1 output voltage  
V1TC  
–0.03  
–0.05  
–0.08  
%/°C  
VREG  
V1  
2.925  
10.58  
3.00  
3.075  
11.12  
V
V
VRS  
V1  
10.85  
3-time  
multiplication *7  
13.0  
V
VOUT  
Voltage multiplier  
output voltage  
VOUT  
4-time  
multiplication *8  
15.9  
0.6  
V
V
VOUT  
VOUT - V1 voltage  
Vot1  
RON  
*9  
VOUT, V1  
SEG1 to 131,  
COMS0,  
COMS1,  
LCD driver ON  
resistance  
IO = 50 µA  
10  
k  
COM0 to 63  
18  
14  
22  
26  
31  
kHz  
kHz  
*10  
Internal  
oscillation  
fOSC  
Tj = 25°C  
Oscillator  
frequency  
External  
input  
fEXT  
18  
22  
26  
kHz  
CL*10  
*1:  
*2:  
*3:  
*4:  
*5:  
DB0 to DB5, DB7 (SI), FR, DOF Pins  
A0, CS1, CS2, CLS, M/S, C86, P/S, IRS,RD (E), WR (R/W), RES, CL, DB6 (SCL) Pins  
DB0 to DB7, FR, FRS, DOF, CL Pins  
A0, RD (E), WR (R/W), CS1, CS2, CLS, M/S, C86, P/S, RES, IRS Pins  
Applicable to the pins DB0 to DB5, DB6 (SCL), DB7 (SI), CL, FR, DOF in the high impedance  
state.  
*6:  
*7:  
Tj = 25°C, = 31, (1+Rb/Ra) = 4, VOUT = 13.5 V (External input), LCD drive output = no-load  
VIN = 4.8 V, voltage multiplier capacitor C1 = 2.6 to 4.0 F, voltage multiplier output load current  
I = 500 A. Only a voltage multiplier circuit operates, not activating the voltage adjustment circuit  
and V/F circuit, by command “2C”.  
5/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
*8:  
VIN = 4.5 V, voltage multiplier capacitor C1 = 2.6 to 4.0 F, voltage multiplier output load current  
I = 500 A. Only a voltage multiplier circuit operates, not activating the voltage adjustment circuit  
and V/F circuit, by command “2C”.  
*9:  
V1 load current I = 400 A. 8 V is externally input to VOUT.  
The voltage adjustment circuit and V/F circuit operate by command “2B”. LCD output = no load  
*10: See Table 1 for the relationship between the oscillator frequency and the frame frequency.  
Table 1. Relationship among the oscillator frequency (fOSC), external input frequency(fEXT  
)
display clock frequency (fLCDCK), and LCD frame frequency (fFR)  
Display clock frequency  
LCD frame frequency  
(fFR  
Parameter  
(fLCDCK  
fOSC/4  
fEXT/4  
)
)
When the internal oscillator is used  
fOSC/(4 65)  
fEXT/(465)  
ML9058E  
When the internal oscillator is not used  
6/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Operating current consumption value  
(1) During display operation, internal power supply OFF (The current flowing through VDD with V1 to V5  
externally applied when an external power supply is used, not including the current for the LCD drive)  
[VSS = 0 V, Tj = 25°C]  
Rated value  
Display mode  
All-white  
Symbol  
IDD  
Condition  
Unit  
Min  
Typ  
16  
12  
16  
12  
Max  
45  
VDD = 5 V, V1- VSS = 11 V, no load  
VDD = 3.7 V, V1- VSS = 8 V, no load  
VDD = 5 V, V1- VSS = 11 V, no load  
VDD = 3.7 V, V1- VSS = 8 V, no load  
A  
35  
45  
Checker pattern  
IDD  
A  
35  
(2) During display operation, internal power supply ON (Total of currents flowing through VDD and VIN)  
[VSS = 0 V, Tj = 25°C]  
Rated value  
Display  
mode  
Symbol  
Condition  
Unit  
Min  
Typ  
100  
Max  
Frame reversal,  
DD, VIN = 5 V, 3-time  
voltage multiplication  
V1 - VSS= 11 V, no load  
Frame reversal,  
V
170  
190  
170  
V
DD, VIN = 3.7 V, 4-time  
110  
100  
120  
130  
120  
All-white  
IDDIN  
A  
voltage multiplication  
V1 - VSS= 8 V, no load  
16-line reversal,  
VDD, VIN = 5 V, 3-time  
voltage multiplication  
V1 - VSS= 11 V, no load  
Frame reversal,  
V
DD, VIN = 5 V, 3-time  
205  
220  
205  
voltage multiplication  
V1 - VSS= 11 V, no load  
Frame reversal,  
V
DD, VIN = 3.7 V, 4-time  
Checker  
pattern  
IDDIN  
A  
voltage multiplication  
V1 - VSS= 8 V, no load  
16-line reversal,  
DD, VIN = 5 V, 3-time  
voltage multiplication  
V
V1 - VSS= 11 V, no load  
Power save mode current consumption  
[VSS = 0 V, Tj = 25°C]  
Rated value  
Parameter  
Symbol  
Condition  
Unit  
Min  
Typ  
0.3  
9
Max  
5
Sleep mode  
IDDS1  
IDDS2  
VDD = 3.7 V  
VDD = 3.7 V  
A  
Standby mode  
15  
7/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Parallel Interface Timing Characteristics  
System bus Write characteristics 1 (80-series MPU)  
VIH  
VIL  
VIH  
VIL  
A0  
tAW8  
tAH8  
CS1  
(CS2 = “H”)  
tCYC8  
tCCLW  
VIH  
VIH  
VIH  
WR  
VIL  
VIL  
tCCHW  
tDS8  
tDH8  
DB0 to DB7  
(Write)  
VIH  
VIL  
VIH  
VIL  
System bus Read characteristics 1 (80-series MPU)  
VIH  
VIL  
VIH  
VIL  
A0  
tAH8  
tAW8  
CS1  
(CS2 = “H”)  
tCYC8  
VIH  
tCCLR  
VIH  
VIH  
RD  
VIL  
VIL  
tCCHR  
tOH8  
tACC8  
VOH  
VOL  
VOH  
VOL  
DB0 to DB7  
(Read)  
8/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
[VDD = 4.5 to 5.5 V, Tj = –40 to +85°C]  
Rated value  
Parameter  
Symbol  
Condition  
Unit  
Min  
5
Max  
70  
50  
Address hold time  
tAH8  
tAW8  
Address setup time  
System cycle time  
5
tCYC8  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
tDS8  
166  
30  
70  
55  
55  
30  
10  
5
Control L pulse width (WR)  
Control L pulse width (RD)  
Control H pulse width (WR)  
Control H pulse width (RD)  
Data setup time  
ns  
Data hold time  
tDH8  
RD Access time  
tACC8  
tOH8  
CL = 100 pF  
Output disable time  
[VDD = 3.7 to 4.5 V, Tj = –40 to +85°C]  
Rated value  
Parameter  
Symbol  
Condition  
Unit  
Min  
5
Max  
Address hold time  
tAH8  
tAW8  
Address setup time  
System cycle time  
5
tCYC8  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
tDS8  
300  
60  
120  
60  
60  
40  
15  
Control L pulse width (WR)  
Control L pulse width (RD)  
Control H pulse width (WR)  
Control H pulse width (RD)  
Data setup time  
ns  
Data hold time  
tDH8  
RD Access time  
tACC8  
tOH8  
140  
100  
CL = 100 pF  
Output disable time  
10  
Note 1: The input signal rise and fall times are specified as 15ns or less.  
When using the system cycle time for fast speed, the specified values are (tr + tf) (tCYC8  
tCCLW – tCCHW) or (tr + tf) (tCYC8 – tCCLR – tCCHR).  
Note 2: All timings are specified taking the levels of 20% and 80% of VDD as the reference.  
Note 3: The values of tCCLW and tCCLR are specified during the overlapping period of CS1 at “L” (CS2 =  
“H”) and the “L” levels of WR and RD, respectively.  
9/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
System bus Write characteristics 2 (68-series MPU)  
VIH  
VIL  
VIH  
VIL  
A0  
tAH6  
tAW6  
R/W  
VIL  
VIL  
CS1  
(CS2 = “H”)  
tCYC6  
tEWHW  
E
VIH  
VIH  
VIL  
VIL  
VIL  
tEWLW  
tDS6  
tDH6  
DB0 to DB7  
(Write)  
VIH  
VIL  
VIH  
VIL  
System bus Read characteristics 2 (68-series MPU)  
VIH  
VIL  
VIH  
VIL  
A0  
VIH  
tAW6  
tAH6  
VIH  
R/W  
CS1  
(CS2 = “H”)  
tCYC6  
tEWHR  
E
VIH  
VIH  
VIL  
VIL  
VIL  
tEWLR  
tOH6  
tACC6  
VOH  
VOL  
VOH  
VOL  
DB0 to DB7  
(Read)  
10/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
[VDD = 4.5 to 5.5 V, Tj = –40 to +85°C]  
Rated value  
Parameter  
Symbol  
Condition  
Unit  
Min  
5
Max  
70  
50  
Address hold time  
Address setup time  
System cycle time  
Data setup time  
Data hold time  
tAH6  
tAW6  
tCYC6  
tDS6  
5
166  
30  
10  
tDH6  
ns  
Access time  
tACC6  
tOH6  
CL = 100 pF  
Output disable time  
10  
70  
30  
60  
60  
Read  
Write  
Read  
Write  
tEWHR  
tEWHW  
tEWLR  
tEWLW  
Enable H pulse width  
Enable L pulse width  
[VDD = 3.7 to 4.5 V, Tj = –40 to +85°C]  
Rated value  
Parameter  
Symbol  
Condition  
Unit  
Min  
5
Max  
Address hold time  
Address setup time  
System cycle time  
Data setup time  
Data hold time  
tAH6  
tAW6  
tCYC6  
tDS6  
5
300  
40  
15  
tDH6  
ns  
Access time  
tACC6  
tOH6  
140  
100  
CL = 100 pF  
Output disable time  
10  
120  
60  
60  
60  
Read  
Write  
Read  
Write  
tEWHR  
tEWHW  
tEWLR  
tEWLW  
Enable H pulse width  
Enable L pulse width  
Note 1: The input signal rise and fall times are specified as 15ns or less.  
When using the system cycle time for fast speed, the specified values are (tr + tf) (tCYC6  
tEWLW – tEWHW) or (tr + tf) (tCYC6 – tEWLR – tEWHR).  
Note 2: All timings are specified taking the levels of 20% and 80% of VDD as the reference.  
Note 3: The values of tEWLW and tEWLR are specified during the overlapping period of CS1 at “L” (CS2 =  
“H”) and the “H” level of E.  
11/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Serial Interface Timing Characteristics  
Serial interface  
tCSS  
tCSH  
CS1  
(CS2 = “1”)  
VIL  
VIL  
tSAH  
VIH  
VIL  
tSCYC  
VIH  
tSAS  
VIH  
VIL  
A0  
tSLW  
VIH  
VIH  
SCL  
VIL  
VIL  
VIL  
tf  
tSHW  
tr  
tSDH  
tSDS  
VIH  
VIL  
VIH  
VIL  
SI  
[VDD = 4.5 to 5.5 V, Tj = –40 to +85°C]  
Rated value  
Parameter  
Symbol  
Condition  
Unit  
Min  
200  
75  
Max  
Serial clock period  
tSCYC  
tSHW  
tSLW  
tSAS  
tSAH  
tSDS  
tSDH  
tCSS  
tCSH  
SCL “H” Pulse width  
SCL “L” Pulse width  
Address setup time  
Address hold time  
Data setup time  
Data hold time  
75  
50  
ns  
100  
50  
50  
CS setup time  
100  
100  
CS hold time  
Note 1: The input signal rise and fall times are specified as 15ns or less.  
Note 2: All timings are specified taking the levels of 20% and 80% of VDD as the reference.  
12/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
[VDD = 3.7 to 4.5 V, Tj = –40 to +85°C]  
Rated value  
Parameter  
Symbol  
Condition  
Unit  
Min  
250  
100  
100  
150  
150  
100  
100  
150  
150  
Max  
Serial clock period  
SCL “H” Pulse width  
SCL “L” Pulse width  
Address setup time  
Address hold time  
Data setup time  
Data hold time  
tSCYC  
tSHW  
tSLW  
tSAS  
tSAH  
tSDS  
tSDH  
tCSS  
tCSH  
ns  
CS setup time  
CS hold time  
Note 1: The input signal rise and fall times are specified as 15ns or less.  
Note 2: All timings are specified taking the levels of 20% and 80% of VDD as the reference.  
Display control output timing  
VOH  
CL(OUT)  
tDFR  
VIH  
VIL  
FR  
[VDD = 4.5 to 5.5 V, Tj = –40 to +85°C]  
Rated value  
Unit  
Parameter  
FR Delay time  
Symbol  
tDFR  
Condition  
Min  
Typ  
10  
Max  
40  
CL = 50 pF  
ns  
[VDD = 3.7 to 4.5 V, Tj = –40 to +85°C]  
Rated value  
Unit  
Parameter  
FR Delay time  
Symbol  
tDFR  
Condition  
Min  
Typ  
20  
Max  
80  
CL = 50 pF  
ns  
Note 1: All timings are specified taking the levels of 20% and 80% of VDD as the reference.  
Note 2: Valid only when the device operates in master mode.  
13/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Reset input timing  
tf  
tr  
tRW  
VIH  
VIH  
VIL  
VIL  
RES  
tR  
Internal state  
Being reset  
Reset complete  
[VDD = 4.5 to 5.5 V, Tj = –40 to +85°C]  
Rated value  
Unit  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
0.5  
Reset time  
tR  
µs  
Reset “L” pulse width  
tRW  
0.5  
[VDD = 3.7 to 4.5 V, Tj = –40 to +85°C]  
Rated value  
Unit  
Parameter  
Symbol  
Condition  
Min  
1
Typ  
Max  
1
Reset time  
tR  
µs  
Reset “L” pulse width  
tRW  
Note 1: The input signal rise and fall times (tr, tf) are specified as 15 ns or less.  
Note 2: All timings are specified taking the levels of 20% and 80% of VDD as the reference.  
14/76  
FEDL9058E-01  
LAPIS Semiconductor  
PIN DESCRIPTION  
Function Pin name  
ML9058E  
Number  
of pins  
I/O  
Description  
These are 8-bit bi-directional data bus pins that can be connected to  
8-bit standard MPU data bus pins. When a serial interface is selected  
(P/S = “L”):  
DB7: Serial data input pin (SI)  
DB0 to  
DB7  
8
I/O DB6: Serial clock input pin (SCL)  
In this case, DB0 to DB5 will be in the high impedance state. DB0 to  
DB7 will all be in the high impedance state when the chip select is in  
the inactive state.  
Fix the DB0 to DB5 pins at “H” or “L” level.  
Normally, the lowest bit of the MPU address bus is connected and  
used for distinguishing between data and commands.  
A0  
1
I
A0 = “H”: Indicates that DB0 to DB7 is display data.  
A1 = “L”: Indicates that DB0 to DB7 is control data.  
Initial setting is made by making RES = “L”. The reset operation is  
made during the active level of the RES signal.  
RES  
1
2
I
These are the chip select signals. The Chip Select of the LSI  
becomes active when CS1 is “L” and also CS2 is “H” and allows the  
input/output of data or commands.  
CS1  
I
I
CS2  
The active level of this signal is “L” when connected to an 80-series  
MPU. This pin is connected to the RD signal of the 80-series MPU,  
and the data bus of the ML9058E goes into the output state when this  
signal is “L”.  
MPU  
Interface  
RD  
1
The active level of this signal is “H” when connected to a 68-series  
MPU. This pin will be the Enable and clock input pin when connected  
to a 68-series MPU.  
(E)  
When a serial interface is selected (P/S = “L”), fix this pin at “H” or “L”  
level.  
The active level of this signal is “L” when connected to an 80-series  
MPU. This pin is connected to the WR signal of the 80-series MPU.  
The data on the data bus is latched into the ML9058E at the rising  
edge of the WR signal.  
WR  
When connected to a 68-series MPU, this pin becomes the input pin  
for the Read/Write control signal.  
1
1
I
I
(R/W)  
R/W = “H”: Read, R/W = “L”: Write  
When a serial interface is selected (P/S = “L”), fix this pin at “H” or “L”  
level.  
This is the pin for selecting the MPU interface type.  
C86 = “H”: 68-Series MPU interface.  
C86  
C86 = “L”: 80-Series MPU interface.  
15/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Number  
of pins  
Function Pin name  
I/O  
Description  
This is the pin for selecting parallel data input or serial data input.  
P/S = “H”: Parallel data input.  
P/S = “L”: Serial data input.  
The pins of the LSI have the following functions depending on the  
state of P/S input.  
MPU  
Interface  
P/S  
1
I
P/S  
“H”  
“L”  
Data/command  
Data  
DB0 to DB7  
SI (D7)  
Read/Write  
RD, WR  
Serial clock  
A0  
A0  
SCL(DB6)  
During serial data input, it is not possible to read the display data in  
the RAM  
This is the pin for selecting whether to enable or disable the internal  
oscillator circuit for the display clock.  
Oscillator  
CLS  
CLS = “H”: The internal oscillator circuit is enabled.  
1
I
circuit  
CLS = “L”: The internal oscillator circuit is disabled (External input).  
When CLS = “L”, the display clock is input at the pin CL.  
This is the pin for selecting whether master operation or slave  
operation is made towards the ML9058E. During slave operation,  
the synchronization with the LCD display system is achieved by  
inputting the timing signals necessary for LCD display.  
M/S = “H”: Master operation  
M/S = “L”: Slave operation  
Display  
The functions of the different circuits and pins will be as follows  
depending on the states of M/S and CLS signals.  
timing  
generator  
M/S  
1
I
circuit  
Oscillator  
circuit  
Power  
supply circuit  
Enabled  
M/  
S
CLS  
CL  
FR  
FRS  
DOF  
“H”  
“L”  
“H”  
“L”  
Enabled  
Disabled  
Output  
Input  
Input  
Input  
Output  
Output  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
“H”  
“L”  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Input  
Input  
16/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Number  
of pins  
Function Pin name  
I/O  
I/O  
Description  
This is the clock input/output pin.  
The function of this pin will be as follows depending on the states of  
M/S and CLS signals.  
M/S  
CLS  
“H”  
“L”  
CL  
Output  
Input  
Input  
Input  
“H”  
CL  
1
“H”  
“L”  
“L”  
When the ML9058E is used in the master/slave mode, the  
corresponding CL pin has to be connected.  
Display  
timing  
generator  
circuit  
FR  
This is the input/output pin for LCD display frame reversal signal.  
M/S = “H”: Output  
M/S = “L”: Input  
1
I/O  
When the ML9058E is used in the master/slave mode, the  
corresponding FR pin has to be connected.  
This is the blanking control pin for the LCD display.  
M/S = “H”: Output  
DOF  
1
1
I/O  
O
M/S = “L”: Input  
When the ML9058E is used in the master/slave mode, the  
corresponding DOF pin has to be connected.  
This is the output pin for static drive.  
FRS  
This pin is used in combination with the FR pin.  
This is the pin for selecting the resistor for adjusting the voltage V1.  
IRS = “H”: The internal resistor is used.  
IRS = “L”: The internal resistor is not used. The voltage V1 is  
adjusted using the external potential divider resistors connected to  
the pins VR. This pin is effective only in the master operation. This  
pin is tied to the “H” or the “L” level during slave operation.  
IRS  
1
I
Power  
supply  
circuit  
VDD  
12  
12  
These pins are tied to the MPU power supply pin VCC.  
VSS  
VIN  
These are the 0 V pins connected to the system ground (GND).  
These are the reference power supply pins of the voltage multiplier  
circuit for driving the LCD.  
5
17/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Number  
of pins  
Function Pin name  
I/O  
Description  
These are the test pins for the LCD power supply voltage adjustment  
circuit. Leave these pins open.  
VRS  
2
2
These are the output pins during voltage multiplication. Connect a  
VOUT  
I/O  
capacitor between these pins and VSS  
.
These are the multiple level power supply pins for the LCD power  
supply. The voltages specified for the LCD cells are applied to these  
pins after resistor network voltage division or after impedance  
transformation using operational amplifiers. The voltages are  
specified taking VSS as the reference, and the following relationship  
should be maintained among them.  
V1 V2 V3 V4 V5 VSS  
V1  
V2  
V3  
V4  
V5  
Master operation: When the power supply is ON, the following  
voltages are applied to V2 to V5 from the built-in power supply circuit.  
The selection of voltages is determined by the LCD bias set  
command.  
10  
I/O  
ML9058E  
V2  
V3  
V4  
V5  
8/9 V1  
7/9 V1  
2/9 V1  
1/9 V1  
6/7 V1  
5/7 V1  
2/7 V1  
1/7 V1  
Power  
supply  
circuit  
Voltage adjustment pins. Voltages between V1 and VSS are applied  
using a resistance voltage divider.  
These pins are effective only when the internal resistors for voltage  
V1 adjustment are not used (IRS = “L”).  
VR  
2
I
Do not use these pins when the internal resistors for voltage V1  
adjustment are used (IRS = “H”).  
These are the pins for connecting the negative side of the capacitors  
for voltage multiplication.  
VS1–  
VS2–  
VC3+  
3
3
3
O
O
O
Connect capacitors between these pins and VC3+, VC5+.  
These are the pins for connecting the negative side of the capacitors  
for voltage multiplication.  
Connect capacitors between these pins and VC4+, VC6+.  
These are the input pins for voltage multiplication.  
Apply the voltage equal to VIN to the pins or leave them open,  
depending on voltage multiplication values.  
These are the pins for connecting the positive side of the capacitors  
for voltage multiplication.  
VC4+  
3
O
Connect capacitors between VS2– and these pins.  
For 3-time voltage multiplication, the pins are configured as inputs for  
voltage multiplication.  
18/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Number  
of pins  
Function Pin name  
I/O  
O
Description  
These are the pins for connecting the positive side of the capacitors  
for voltage multiplication.  
Connect capacitors between VS1– and these pins.  
For 2-time voltage multiplication, the pins are configured as inputs  
for voltage multiplication.  
VC5+  
3
3
Power  
supply  
circuit  
These are the pins for connecting the positive side of the capacitors  
for voltage multiplication.  
VC6+  
O
Connect capacitors between VS2– and these pins.  
These are the LCD segment drive outputs.  
One of the levels among V1, V3, V4, and VSS is selected depending  
on the combination of the display RAM content and the FR signal  
Output voltage  
RAM Data  
FR  
Forward display Reverse display  
H
H
L
V1  
VSS  
V3  
V4  
V3  
V4  
V1  
VSS  
SEG0 to  
SEG131  
132  
O
H
L
H
L
L
Power save  
VSS  
LCD  
Drive  
output  
The output voltage is VSS when the Display OFF command is  
executed.  
These are the LCD common drive outputs.  
One of the levels among V1, V2, V5, and VSS is selected depending  
on the combination of the scan data and the FR signal.  
Scan data  
FR  
H
Output voltage  
H
VSS  
V1  
COM0 to  
COM63  
H
L
64  
O
L
H
V2  
L
L
V5  
Power save  
VSS  
The output voltage is VSS when the Display OFF command is  
executed.  
These are the common output pins only for indicators. Both pins  
output the same signal. Leave these pins open when they are not  
used. The same signal is output in both master and slave operation  
modes.  
COMS0  
COMS1  
2
O
These are the pins for testing the IC chip. Leave these pins open  
during normal use.  
Test pin  
TEST1  
1
O
DUMMY  
67  
11  
Leave this pin open.  
DUMMY-  
B
19/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
FUNCTIONAL DESCRIPTION  
MPU Interface  
MPU  
Read mode  
Pin RD = “L”  
Pin R/W = “H”  
Pin E = “H”  
Write mode  
80-Series  
Pin WR = “L”  
Pin R/W = “L”  
Pin E = “H”  
68-Series  
In the case of the 80-series MPU interface, a command is started by applying a low pulse to the RD pin or the WR  
pin.  
In the case of the 68-series MPU interface, a command is started by applying a high pulse to the E pin.  
Selection of interface type  
The ML9058E carries out data transfer using either the 8-bit bi-directional data bus (DB0 to DB7) or the serial data  
input line (SI). Either the 8-bit parallel data input or serial data input can be selected as shown in Table 2 by setting  
the P/S pin to the “H” or the “L” level.  
Table 2 Selection of interface type (parallel/serial)  
P/S  
CS1  
CS1  
CS1  
CS2  
CS2  
CS2  
A0  
A0  
A0  
RD  
RD  
WR  
WR  
C86  
C86  
D7  
D7  
SI  
D6  
D6  
DB0 to DB5  
H: Parallel input  
L: Serial input  
DB0 to DB5  
SCL  
A hyphen (—) indicates that the pin can be tied to the “H” or the “L” level.  
Parallel interface  
When the parallel interface is selected, (P/S = “H”), it is possible to connect this LSI directly to the MPU bus of  
either an 80-series MPU or a 68-series MPU as shown in Table 3. depending on whether the pin C86 is set to “H”  
or “L”.  
Table 3 Selection of MPU during parallel interface (80–/68–series)  
C86  
CS1  
CS1  
CS1  
CS2  
CS2  
CS2  
A0  
A0  
A0  
RD  
E
WR  
R/W  
WR  
DB0 to DB7  
DB0 to DB7  
DB0 to DB7  
H: 68-Series MPU bus  
L: 80-Series MPU bus  
RD  
The data bus signals are identified as shown in Table 4 below depending on the combination of the signals A0, RD  
(E), and WR (R/W) of Table 3.  
Table 4 Identification of data bus signals during parallel interface  
Common  
68-Series  
80-Series  
A0  
1
R/W  
RD  
0
WR  
1
Display data read  
Display data write  
Status read  
1
0
1
0
1
1
0
0
0
1
Control data write (command)  
0
1
0
20/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Serial Interface  
When the serial interface is selected (P/S = “L”), the serial data input (SI) and the serial clock input (SCL) can be  
accepted if the chip is in the active state (CS1 = “L” and CS2 = “H”). The serial interface consists of an 8-bit shift  
register and a 3-bit counter. The serial data is read in from the serial data input pin in the sequence DB7, DB6, ... ,  
DB0 at the rising edge of the serial clock input, and is converted into parallel data at the rising edge of the 8th serial  
clock pulse and processed further. The identification of whether the serial data is display data or command is  
judged based on the A0 input, and the data is treated as display data when A0 is “H” and as command when A0 is  
“L”. The A0 input is read in and identified at the rising edge of the (8 n) th serial clock pulse after the chip has  
become active. Fig. 1 shows the signal chart of the serial interface. (When the chip is not active, the shift register  
and the counter are reset to their initial states. No data read out is possible in the case of the serial interface. It is  
necessary to take sufficient care about wiring termination reflection and external noise in the case of the SCL  
signal. We recommend verification of operation in an actual unit.)  
CS1  
CS2  
DB7  
1
DB5  
3
DB7  
9
DB3  
DB6 DB5 DB4 DB2  
DB6  
2
DB4 DB3 DB2 DB1 DB0  
SI  
SCL  
A0  
4
5
6
7
8
10 11 12 13 14  
Fig. 1 Signal chart during serial interface  
Chip select  
The ML9058E has the two chip select pins CS1and CS2, and the MPU interface or the serial interface is enabled  
only when CS1 = “L” and CS2 = “H”. When the chip select signals are in the inactive state, the DB0 to DB7 lines  
will be in the high impedance state and the inputs A0, RD, and WR will not be effective. When the serial interface  
has been selected, the shift register and the counter are reset when the chip select signals are in the inactive state.  
Accessing the display data RAM and the internal registers  
Accessing the ML9058E from the MPU side requires merely that the cycle time (tCYC) be satisfied, and high speed  
data transfer without requiring any wait time is possible. Also, during the data transfer with the MPU, the  
ML9058E carries out a type of pipeline processing between LSIs via a bus holder associated with the internal data  
bus. For example, when the MPU writes data in the display data RAM, the data is temporarily stored in the bus  
holder, and is then written into the display data RAM before the next data read cycle. Further, when the MPU  
reads out data in the display data RAM, first a dummy data read cycle is carried out to temporarily store the data in  
the bus holder which is then placed on the system bus and is read out during the next read cycle. There is a  
restriction on the read sequence of the display data RAM, which is that the read instruction immediately after  
setting the address does not read out the data of that address, but that data is output as the data of the address  
specified during the second data read sequence, and hence care should be taken about this during reading.  
Therefore, always one dummy read is necessary immediately after setting the address or after a write cycle: (The  
status read cannot use dummy read cycles.) This relationship is shown in Figs 2(a) and 2(b).  
21/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Data write  
WR  
Dn  
Dn + 1  
Dn + 2  
Dn + 3  
Dn + 3  
DATA  
Latch  
Dn  
Dn + 1  
Dn + 2  
BUS Holder  
Write Signal  
Fig. 2(a) Write sequence of display data RAM  
Data read  
WR  
RD  
N
unknown  
Dn  
Dn + 1  
DATA  
Address  
Preset  
Read Signal  
Column  
Address  
Increment N + 1  
Dn  
Preset N  
unknown  
N + 2  
Dn + 1  
Dn + 2  
BUS Holder  
Data Read  
Dn  
Address Set  
N
Data Read  
Dn + 1  
Data Read  
(Dummy)  
Fig. 2(b) Read sequence of display data RAM  
Dn = Data  
N = Address data  
Busy flag  
The busy flag being “1” indicates that the ML9058E is carrying out reset operations, and hence no instruction other  
than a status read instruction is accepted during this period. The busy flag is output at pin DB7 when a status read  
instruction is executed.  
22/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Display Data RAM  
Display data RAM  
This is the RAM storing the dot data for display and has an organization of 65 (8 pages 8 bits +1) 132 bits. It  
is possible to access any required bit by specifying the page address and the column address. Since the display data  
DB7 to DB0 from the MPU corresponds to the LCD display in the direction of the common lines as shown in Fig.  
3, there are fewer restrictions during display data transfer when the ML9058E is used in a multiple chip  
configuration, thereby making it easily possible to realize a display with a high degree of freedom. Also, since the  
display data RAM read/write from the MPU side is carried out via an I/O buffer, it is done independent of the  
signal read operation for the LCD drive. Consequently, the display is not affected by flickering, etc., even when  
the display data RAM is accessed asynchronously during the LCD display operation.  
DB0  
DB1  
DB2  
DB3  
DB4  
0
1
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
  
0
0
0
0
0
COM0  
COM1  
COM2  
COM3  
COM4  
Display data RAM  
LCD Display  
Fig. 3 Relationship between display data RAM and LCD display  
Page address circuit  
The page address of the display data RAM is specified using the page address set command as shown in Fig. 4.  
Specify the page address again when accessing after changing the page. The page address 8 (DB3, DB2, DB1,  
DB0 1, 0, 0, 0) is the RAM area dedicated to the indicator, and only the display data DB0 is valid in this page.  
Column address circuit  
The column address of the display data RAM is specified using the column address set command as shown in Fig.  
4. Since the specified column address is incremented (by +1) every time a display data read/write command is  
issued, the MPU can access the display data continuously. Further, the incrementing of the column address is  
stopped at the column address of 83(H). Since the column address and the page address are independent of each  
other, it is necessary, for example, to specify separately the new page address and the new column address when  
changing from column 83(H) of page 0 to column 00(H) of page 1. Also, as is shown in Table 5, it is possible to  
reverse the correspondence relationship between the display data RAM column address and the segment output  
using the ADC command (the segment driver direction select command). This reduces the IC placement  
restrictions at the time of assembling LCD modules.  
Table 5 Correspondence relationship between the display data RAM column address  
and the segment output  
SEGMENT Output  
ADC  
SEG0  
0(H)  
SEG131  
83(H)  
0(H)  
DB0 = “0”  
DB0 = “1”  
  
  
Column Address  
Column Address  
83(H)  
23/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Line address circuit  
The line address circuit is used for specifying the line address corresponding to the common output when  
displaying the contents of the display data RAM as is shown in Fig. 4. Normally, the topmost line in the display is  
specified using the display start line address set command (COM0 output in the forward display state of the  
common output, and COM63 output in the reverse display state). The display area is 64 lines in the direction of  
increasing line address from the specified display start line address. When the indicator–dedicated common output  
pin (COMS) is selected, data in Line Address 40 H = page 8 and bit 0 is displayed irrespective of the display start  
line address. COMS selection is 65th in order.  
It is possible to carry out screen scrolling by dynamically changing the line address using the display start line  
address set command.  
Display data latch circuit  
The display data latch circuit is a latch for temporarily storing the data from the display data RAM before being  
output to the LCD drive circuits. Since the commands for selecting forward/reverse display and turning the  
display ON/OFF control the data in this latch, the data in the display data RAM will not be changed.  
Oscillator Circuit  
This is an RC oscillator that generates the display clock. The oscillator circuit is effective only when M/S = “H”  
and also CLS = “H”. The oscillations will be stopped when CLS = “L”, and the display clock has to be input to the  
CL pin.  
24/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
When the common  
output state is  
Line  
COM  
Page Address  
Data  
Address  
Output  
normal display  
DB0  
DB1  
DB2  
DB3  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
40H  
COM0  
COM1  
COM2  
COM3  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Page0  
Page1  
Page2  
Page3  
Page4  
Page5  
Page6  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
(Start)  
0
1
1
0
1
0
1
0
Page7  
Page8  
COMS  
The 40(H) is displayed  
irrespective of the  
display start line  
address.  
Fig. 4 Display data RAM address map  
25/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Display Timing Generator Circuit  
This circuit generates the timing signals for the line address circuit and the display data latch circuit from the  
display clock. The display data is latched in the display data latch circuit and is output to the segment drive output  
pins in synchronization with the display clock. This circuit generates the timing signals for the line address circuit  
and the display data latch circuit from the display clock. The display data is latched in the display data latch circuit  
and is output to the segment drive output pins in synchronization with the display clock. The read out of the  
display data to the LCD drive circuits is completely independent of the display data RAM access from the MPU.  
As a result, there is no bad influence such as flickering on the display even when the display data RAM is accessed  
asynchronously during the LCD display. Also, the internal common timing and LCD frame reversal (FR) signals  
are generated by this circuit from the display clock. The drive waveforms of the frame reversal drive method  
shown in Fig. 5(a) for the LCD drive circuits are generated by this circuit. The drive waveforms of the line reversal  
drive method shown in Fig. 5(b) are also generated by the command.  
48 49  
1
2
3
4
5
6
44 45 46 47 48 49  
1
2
3
4
5
6
LCDCK  
(display clock)  
FR  
V1  
V2  
COM0  
V5  
VSS  
V1  
V2  
COM1  
V5  
VSS  
RAM  
DATA  
V1  
V3  
V4  
VSS  
SEGn  
Fig. 5(a) Waveforms in the frame reversal drive method  
26/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
49  
48  
1
2
3
4
5
6
44 45 46 47 48 49  
1
2
3
4
5
6
LCDCK  
(display clock)  
FR  
V1  
V2  
COM0  
V5  
VSS  
V1  
V2  
COM1  
V5  
VSS  
RAM  
DATA  
V1  
V3  
V4  
VSS  
SEGn  
Fig. 5(b) Waveforms in the line reversal drive method  
When the ML9058E is used in a multiple chip configuration, it is necessary to supply the slave side display timing  
signals (FR, CL, and DOF) from the master side. However, when the line reversal drive is set, the ML9058E is not  
used in a multiple chip configuration.  
The statuses of the signals FR, CL, and DOF are shown in Table 6.  
Table 6 Display timing signals in master mode and slave mode  
Operating mode  
FR  
CL  
DOF  
Output  
Output  
Input  
Internal oscillator circuit enabled (CLS = H)  
Internal oscillator circuit disabled (CLS = L)  
Internal oscillator circuit disabled (CLS = H)  
Internal oscillator circuit disabled (CLS = L)  
Output  
Output  
Input  
Output  
Input  
Input  
Input  
Master mode (M/S = “H”)  
Slave mode (M/S = “L”)  
Input  
Input  
Note: During master mode, the oscillator circuit operates from the time the power is applied. The  
oscillator circuit can be stopped only in the sleep state.  
27/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Common Output State Selection Circuit (see Table 7)  
Since the common output scanning directions can be set using the common output state selection command in the  
ML9058E, it is possible to reduce the IC placement restrictions at the time of assembling LCD modules.  
Table 7 Common output state settings  
State  
Common Scanning direction  
COM0 COM63  
Forward Display  
Reverse Display  
COM63 COM0  
LCD Drive Circuit  
This LSI incorporates 181 sets of multiplexers for the ML9058E, that generate 4-level outputs for driving the LCD.  
These output the LCD drive voltage in accordance with the combination of the display data, common scanning  
signals, and the FR signal. Fig. 6 shows examples of the segment and common output waveforms in the frame  
reversal drive method.  
Static Indicator Circuit  
The FR pin is connected to one side of the LCD drive electrode of the static indicator and the FRS pin is connected  
to the other side.  
The static indicator display is controlled by a command only independently of other display control commands.  
The electrode of the static indicator should has a wiring pattern that is distant from the dynamic drive electrode.  
If the wiring pattern is placed too near to the dynamic drive electrode, the LCD and electrode may be degraded.  
28/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
COM0  
VDD  
VSS  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
FR  
V1  
V2  
V3  
V4  
V5  
COM0  
VSS  
COM8  
COM9  
V1  
V2  
V3  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM1  
COM2  
V4  
V5  
VSS  
V1  
V2  
V3  
V4  
V5  
VSS  
V1  
V2  
V3  
SEG0  
SEG1  
SEG2  
V4  
V5  
VSS  
V1  
V2  
V3  
V4  
V5  
VSS  
V1  
V2  
V3  
V4  
V5  
VSS  
V1  
V2  
V3  
V4  
V5  
0V  
-V5  
-V4  
COM0-SEG0  
-V3  
-V2  
-V1  
V1  
V2  
V3  
V4  
V5  
0V  
-V5  
-V4  
COM0-SEG1  
-V3  
-V2  
-V1  
Fig. 6 Output waveforms in the frame reversal drive method  
(FR waveform/common waveform/segment waveform/voltage difference  
between common and segment)  
29/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Power Supply Circuit  
This is the low power consumption type power supply circuit for generating the voltages necessary for driving  
LCD devices, and consists of voltage multiplier circuits, voltage adjustment circuits, and voltage follower circuits.  
In the power supply circuit, it is possible to control the ON/OFF of each of the circuits of the voltage multiplier,  
voltage adjustment circuits, and voltage follower circuits using the power control set command. As a result, it is  
also possible to use parts of the functions of both the external power supply and the internal power supply. Table  
8 shows the functions controlled by the 3-bit data of the power control set command and Table 9 shows a sample  
combination.  
Table 8 Details of functions controlled by the bits of the power control set command  
Control bit  
DB2  
Function controlled by the bit  
Voltage multiplier circuit control bit  
DB1  
Voltage adjustment circuit (V1 voltage adjustment circuit) control bit  
Voltage follower circuit (V/F circuit) control bit  
DB0  
Table 9 Sample combination for reference  
Circuit  
V
External  
voltage  
input  
Voltage  
multiplier  
pins *1  
State used  
DB2 DB1 DB0  
Voltage  
multiplier  
V/F  
Adjustment  
Only the internal power  
supply is used  
1
1
1
VIN  
Used  
Only V adjustment and  
V/F circuits are used  
0
0
0
1
0
0
1
1
0
  
VOUT  
V1  
OPEN  
OPEN  
OPEN  
Only V/F circuits are used  
Only the external power  
supply is used  
V1 to V5  
*1:  
The voltage multiplier pins are the pins VS1–, VS2–, VC3+, VC4+, VC5+, and VC6+.  
If combinations other than the above are used, normal operation is not guaranteed.  
30/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Voltage multiplier circuits  
The connections for 2- to 4-time voltage multiplier circuits are shown below.  
VIN  
VIN  
VIN  
VSS  
VSS  
VSS  
+
+
+
VOUT  
VC6+  
VC4+  
VOUT  
VC6+  
VC4+  
VOUT  
VC6+  
VC4+  
+
+
+
+
+
OPEN  
VS2–  
VC5+  
VC3+  
VS2–  
VC5+  
VC3+  
VS2–  
VC5+  
VC3+  
+
OPEN  
OPEN  
VS1–  
VS1–  
VS1–  
2-time voltage  
4-time voltage  
3-time voltage  
multiplier circuit  
multiplier circuit  
multiplier circuit  
Fig. 7 Connection examples for voltage multiplier circuits  
31/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
The voltage relationships in voltage multiplication are shown in Fig. 8.  
VOUT = 3 VIN  
VOUT = 4 VIN  
= 15.0 V  
= 18 V  
*1 VIN = 5.0 V  
VSS = 0 V  
*1 VIN = 4.5 V  
VSS = 0 V  
Voltage relationship in 3-time multiplication  
Voltage relationship in 4-time multiplication  
Fig. 8 Voltage relationships in voltage multiplication  
*1:  
The voltage range of VIN should be set from 6V to 18.33V so that the voltage at the pin VOUT does  
not exceed the voltage multiplier output voltage operating range.  
Voltage adjustment circuit  
The voltage multiplier output VOUT produces the LCD drive voltage V1 via the voltage adjustment circuit. Since  
the ML9058E incorporates a high accuracy constant voltage generator, a 64-level electronic potentiometer  
function, and also resistors for voltage V1 adjustment, it is possible to build a high accuracy voltage adjustment  
circuit with very few components. In addition, the ML9058E is available with the temperature gradients of a  
VREG - about –0.05%/°C.  
(a) When the internal resistors for voltage V1 adjustment are used  
It is possible to control the LCD power supply voltage V1 and adjust the intensity of LCD display using  
commands and without needing any external resistors, if the internal voltage V1 adjustment resistors and the  
electronic potentiometer function are used. The voltage V1 can be obtained by the following equation A-1 in  
the range of V1<VOUT.  
V1 = (1 + (Rb/Ra)) VEV = (1 + (Rb/Ra)) (1 – (/324)) VREG (Eqn. A-1)  
VEV (Constant voltage supply +  
electronic potentiometer)  
+
V1  
VRS  
(VREG)  
VR  
Internal Rb  
Internal Ra  
Fig. 9 V1 voltage adjustment circuit (equivalent circuit)  
32/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
VREG is a constant voltage generated inside the IC and VRS pin output voltage.  
Here, is the electronic potentiometer function which allows one level among 64 levels to be selected by merely  
setting the data in the 6-bit electronic potentiometer register. The values of set by the electronic potentiometer  
register are shown in Table 10.  
Table 10 Relationship between electronic potentiometer register and  
  
63  
62  
61  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
0
1
Rb/Ra is the voltage V1 adjustment internal resistor ratio and can be adjusted to one of 7 levels by the voltage V1  
adjustment internal resistor ratio set command. The reference values of the ratio (1 + Rb/Ra) according to the 3-bit  
data set in the voltage V1 adjustment internal resistor ratio setting register are listed in Table 11.  
Table 11 Voltage V1 adjustment internal resistor ratio setting register values and the ratio  
(1+Rb/Ra) (Nominal)  
Register  
(1 + Rb/Ra)  
DB2  
0
DB1  
0
DB0  
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
Note: Use V1 gain in the range from 3 to 6 times. Because this LSI has temperature gradient, V1  
voltage rises at lower temperatures. When using V1 gain of 6 times, adjust the built-in electronic  
potentiometer so that V1 voltage does not exceed 18 V.  
When V1 is set using the built-in resistance ratio, the accuracies are shown in Table 12.  
Table 12 Relation between V1 Output Voltage Accuracy and V1 Gain Using Built-in Resistor  
V1 gain  
Parameter  
Unit  
3 times  
2.5  
9
3.5 times  
4 times  
2.5  
12  
4.5 times  
5 times  
2.5  
15  
5.5 times  
6 times  
2.5  
18  
V1 output voltage accuracy  
V1 maximum output voltage  
2.5  
2.5  
2.5  
%
V
10.5  
13.5  
16.5  
Note: The V1 maximum output voltages in Table 12 are nominal values when Tj = 25°C, and electronic  
potentiometer = 0. The V1 output voltage accuracy in Table 12 are values when V1 load current  
I = 0 A, 20 V is externally input to VOUT, and display is turned OFF.  
33/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
(b) When external resistors are used (voltage V1 adjustment internal resistors are not used)  
It is also possible to set the LCD drive power supply voltage V1 without using the internal resistors for voltage V1  
adjustment but connecting external resistors (Ra' and Rb') between VSS & VR and between VR & V1. Even in this  
case, it is possible to control the LCD power supply voltage V1 and adjust the intensity of LCD display using  
commands if the electronic potentiometer function is used.  
The voltage V1 can be obtained by the following equation B-1 in the range of V1<VOUT by setting the external  
resistors Ra' and Rb' appropriately.  
V1 = (1 + (Rb'/Ra')) VEV = (1 + (Rb'/Ra')) (1 – (/324)) VREG (Eqn. B-1)  
External Rb'  
VR  
External Ra'  
+
VSS  
V1  
VEV (Constant voltage supply +  
electronic potentiometer)  
Fig. 10 V1 voltage adjustment circuit (equivalent circuit)  
Setting example: Setting V1 = 7 V at Tj = 25°C  
When the electronic potentiometer register value is set to the middle value of (DB5, DB4, DB3, DB2, DB1, DB0)  
= (1, 0, 0, 0, 0, 0), the value of will be 31 and that of VREG will be 3.0 V, and hence the equation B-1 becomes  
as follows:  
V1 = (1 + (Rb'/Ra')) (1 – (/324)) VREG  
7 = (1 + (Rb'/Ra')) (1 – (31/324)) 3.0 (Eqn. B-2)  
Further, if the current flowing through Ra' and Rb' is set as 5 µA, the value of Ra' + Rb' will be - Ra' + Rb' = 1.4  
M(Eqn. B-3)  
and hence,  
Rb'/Ra' = 1.58, Ra' = 543 k, Rb' = 857 k.  
In this case, the variability range of voltage V1 using the electronic potentiometer function will be as given in  
Table 13.  
Table 13 Example 1 of V1 variable-voltage range using electronic potentiometer function  
V1  
Min  
Typ  
Max  
Unit  
[V]  
Variable-voltage range  
6.24 (= 63)  
7.0 (= 31)  
7.74 (= 0)  
34/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
(c) When external resistors are used (voltage V1 adjustment internal resistors are not used) and a variable resistor  
is also used  
It is possible to set the LCD drive power supply voltage V1 using fine adjustment of Ra' and Rb' by adding a  
variable resistor to the case of using external resistors in the above case. Even in this case, it is possible to control  
the LCD power supply voltage V1 and adjust the intensity of LCD display using commands if the electronic  
potentiometer function is used.  
The voltage V1 can be obtained by the following equation C-1 in the range of V1<VOUT by setting the external  
resistors R1, R2 (variable resistor), and R3 appropriately and making fine adjustment of R2 (R2).  
V1 = (1 + (R3 + R2 R2)/(R1 + R2)) VEV  
= (1 + (R3 + R2 R2)/(R1 + R2)) (1 – (/324)) VREG (Eqn. C-1)  
External R3  
Rb'  
External R2  
VR  
+
R2  
V1  
Ra'  
External R1  
VEV (Constant voltage supply +  
electronic potentiometer)  
VSS  
Fig. 11 V1 voltage adjustment circuit (equivalent circuit)  
Setting example: Setting V1 in the range 5 V to 9 V using R2 at Tj = 25°C .  
When the electronic potentiometer register value is set to (DB5, DB4, DB3, DB2, DB1, DB0) = (1, 0, 0, 0, 0, 0),  
the value of will be 31 and that of VREG will be 3.0 V, and hence in order to make V1 = 9 V when R2 = 0, the  
equation C-1 becomes as follows:  
9 = (1 + (R3 + R2)/R1) (1 – (31/324)) (3.0) (Eqn. C-2)  
In order to make V1 = 5 V when R2 = R2,  
5 = (1 + R3/(R1+R2)) (1 – (31/324)) (3.0) (Eqn. C-3)  
Further, if the current flowing between VSS and V1 is set as 5 µA, the value of R1 + R2 + R3 becomes-  
R1 + R2 + R3 = 1.8 M(Eqn. C-4)  
and hence,  
R1 = 542 k, R2 = 436 k, R3 = 822 k.  
In this case, the variability range of voltage V1 using the electronic potentiometer function and the increment size  
will be as given in Table 13.  
Table 14 Example 2 of V1 variable-voltage range using electronic potentiometer function and  
variable resistor  
V1  
Min  
Typ  
Max  
Unit  
[V]  
Variable-voltage range  
4.45 (= 63)  
7.0 (= 31)  
9.96 (= 0)  
35/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
In Figures 10 and 11, the voltage VEV is obtained by the following equation by setting the electronic  
potentiometer between 0 and 63.  
VEV = (1 - (/324)) VREG  
= 0: VEV = (1 – (0/324)) 3.0 V = 3.0 V  
= 31: VEV = (1 – (31/324)) 3.0 V = 2.712 V  
= 63: VEV = (1 – (63/324)) 3.0 V = 2.416 V  
The increment size of the electronic potentiometer at VEV when VREG = 3.0 is :  
3.0 – 2.416  
=  
= 9.27 mV (Nominal)  
63  
When VREG = 3.069 V, = 0 : VEV = 3.069 V, = 63 : VEV = 2.472 V  
The increment size is :  
3.069 V – 2.472 V  
=  
= 9.476 mV  
63  
When VREG = 2.931 V, = 0 : VEV = 2.931 V, = 63 : VEV = 2.361 V  
The increment size is :  
2.931 V – 2.361 V  
=  
= 9.047 mV  
63  
36/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
* When using the voltage V1 adjustment internal resistors or the electronic potentiometer function, it is necessary  
to set at least the voltage adjustment circuit and the voltage follower circuits both in the operating state using the  
power control setting command. Also, when the voltage multiplier circuit is OFF, it is necessary to supply a  
voltage externally to the VOUT pin.  
* The pin VR is effective only when the voltage V1 adjustment internal resistors are not used (pin IRS = “L”).  
Leave this pin open when the voltage V1 adjustment internal resistors are being used (pin IRS = “H”).  
* Since the input impedance of the pin VR is high, it is necessary to take noise countermeasures such as using  
short wiring length or a shielded wire .  
* The supply current increases in proportion to the panel capacitance. When power consumption increases, the  
VOUT level may fall. The voltage (VOUT – V1) should be more than 3 V.  
LCD Drive voltage generator circuits  
The voltage V1 is divided using resistors inside the IC to generate the voltages V2, V3, V4, and V5 that are  
necessary for driving the LCD. In addition, these voltages V2, V3, V4, and V5 are impedance transformed using  
voltage follower circuits and fed to the LCD drive circuits. The bias ratio of 1/9 or 1/7 can be selected using the  
LCD bias setting command.  
At built-in power-on, and transition from power save state to display mode  
After built-in power-on, at the command "2F(H)" input, or on transition from power save state to display mode, the  
display does not operate for a maximum period of 300 ms until the built-in power is stabilized. This period of no  
display is not influenced by display ON/OFF command. Despite input of display ON command during this period,  
the display does not operate for this period. However, the command is valid. After the wait time is finished, the  
display operates. (During this period of no display, all commands are acceptable.)  
Command sequence for shutting off the internal power supply  
When shutting off the internal power supply, it is recommended to use the procedure given in Fig. 12 of switching  
OFF the power after putting the LSI in the power save state using the following command sequence.  
Procedure  
Description  
(Command, status)  
Display OFF  
  
Commands  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Step1  
  
1
0
1
0
1
1
1
0
Power save commands  
(multiple commands)  
Step2  
Display all ON  
1
0
1
0
0
1
0
1
  
  
End  
Internal power supply OFF  
Fig. 12 Command sequence for shutting off the internal power supply  
37/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Application circuits  
(Two V1 pins are described in the following examples for explanation, but they are the same.)  
(1) When the voltage multiplier circuit, voltage  
adjustment circuit, and V/F circuits are all used  
(2) When the voltage multiplier circuit, voltage  
adjustment circuit, and V/F circuits are all used  
When not using the internal voltage V1 adjustment resistors  
VIN = VDD 3-time voltage multiplication  
When using the internal voltage V1 adjustment resistors  
VIN = VDD 3-time voltage multiplication  
VDD  
VDD  
IRS  
IRS  
M/S  
M/S  
VIN  
VIN  
+
+
+
+
VC6+  
VC4+  
VC6+  
VC4+  
C1  
C1  
VS2–  
VS2–  
VC5+  
VC3+  
VC5+  
VC3+  
C1  
C1  
OPEN  
OPEN  
VS1–  
V1  
VR  
VS1–  
V1  
VR  
R1 R2 R3  
OPEN  
VSS  
VSS  
VSS  
VSS  
C1  
C1  
C2  
C2  
C2  
C2  
C1  
C1  
C2  
C2  
C2  
C2  
+
+
+
+
+
+
+
+
+
+
+
+
VOUT  
V1  
V2  
V3  
V4  
VOUT  
V1  
V2  
V3  
V4  
Rall=R1+R2+R3  
Rall: *3  
C1:*1  
C1: *1  
C2: *2  
V5  
V5  
C2: *2  
(3) When only the voltage adjustment circuit and V/F circuits  
are used  
(4) When only the voltage adjustment circuit and V/F circuits  
are used  
When not using the internal voltage V1 adjustment resistors When using the internal voltage V1 adjustment resistors  
VDD  
VDD  
IRS  
M/S  
IRS  
M/S  
VIN  
VIN  
VC6+  
VC4+  
OPEN  
OPEN  
VC6+  
VC4+  
OPEN  
OPEN  
VS2–  
OPEN  
VS2–  
OPEN  
VC5+  
VC3+  
VS1–  
OPEN  
OPEN  
OPEN  
VC5+  
VC3+  
VS1–  
OPEN  
OPEN  
OPEN  
R1 R2  
V1  
VR  
VSS  
R3  
V1  
VR  
VSS  
OPEN  
VSS  
VSS  
External  
VOUT  
External  
power supply  
+
+
+
+
C1  
C2  
C2  
C2  
VOUT  
power supply  
V1  
V2  
V3  
V4  
V5  
C1  
C2  
C2  
C2  
C2  
+
V1  
V2  
V3  
V4  
V5  
+
+
+
+
Rall=R1+R2+R3  
Rall: *3  
C1: *1  
C2: *2  
C2 +  
C1: *1  
C2: *2  
38/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
(5) When only the V/F circuits are used  
(6) When not using the internal power supply  
VDD  
VDD  
IRS  
M/S  
IRS  
VIN  
VC6+  
VC4+  
M/S  
VIN  
VC6+  
VC4+  
OPEN  
OPEN  
OPEN  
OPEN  
VS2–  
VS2–  
OPEN  
OPEN  
VC5+  
VC3+  
VS1–  
VC5+  
VC3+  
VS1–  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
V1  
VR  
VSS  
V1  
VR  
VSS  
OPEN  
OPEN  
OPEN  
OPEN  
VSS  
VSS  
VOUT  
VOUT  
V1  
External  
power  
supply  
V1  
V2  
V3  
V4  
V5  
C2  
C2  
C2  
C2  
+
+
+
+
External  
power  
supply  
V2  
V3  
V4  
V5  
C2: *2  
Note: When trace resistance external to COG-mounted chip does not exist,  
when C1 (*1) = 0.9 F to 5.7 F, C2 (*2) = 0.42 F to 1.2 F,  
use in the range Rall (*3) = 1 Mto 5 M.  
when C1 (*1) = 1.8 F to 5.7 F, C2 (*2) = 0.42 F to 1.2 F,  
use in the range Rall (*3) = 500 kto 1 M.  
Make sure that voltage multiplier output voltage, and V1 output voltage have enough margin  
before using this LSI.  
Initial setting  
Note: If electric charge remains in smoothing capacitor connected between the LCD driver voltage output pins (V1  
to V5) and the VSS pin, a malfunction might occur: the display screen gets dark for an instant when powered  
on.  
To avoid a malfunction at power-on, it is recommended to follow the flowchart in the “EXAMPLES OF  
SETTINGS FOR THE INSTRUCTIONS” section in page 54.  
39/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
LIST OF OPERATION  
DBn  
No  
1
Operation  
Comment  
7 6 5 4 3 2 1 0  
1 0 1 0 1 1 1 0  
1 0 1 0 1 1 1 1  
A0  
0
RD  
1
WR  
0
Display OFF  
Display ON  
LCD Display:  
OFF when DB0 = 0 ON when DB0 = 1  
0
1
0
The display starting line address in the  
display RAM is set.  
2
3
Display start line set 0 1 Address  
0
0
0
1
1
1
0
0
0
The page address in the display RAM is  
set.  
Page address set  
1 0 1 1 Address  
Column address set  
(upper bits)  
0 0 0 1 Address  
(upper)  
The upper 4 bits of the column address in  
the display RAM is set.  
4
Column address set  
(lower bits)  
0 0 0 0 Address  
(lower)  
The lower 4 bits of the column address in  
the display RAM is set.  
0
0
1
0
0
1
Status * * * *  
The status information is read out from the  
upper 4 bits.  
5
Status read  
6
7
Display data write  
Display data read  
Write data  
Read data  
1
1
1
0
0
1
Writes data to the display data RAM.  
Reads data from the display data RAM.  
Correspondence to the segment output for  
the display data RAM address  
Forward when DB0 = 0  
Reverse when DB0 = 1  
Forward 1 0 1 0 0 0 0 0  
Reverse 1 0 1 0 0 0 0 1  
0
0
1
1
0
0
8
ADC select  
Display  
Forward or reverse LCD display mode  
Forward when DB0 = 0  
Reverse when DB0 = 1  
Forward 1 0 1 0 0 1 1 0  
Reverse 1 0 1 0 0 1 1 1  
0
0
1
1
0
0
9
OFF(Normal  
1 0 1 0 0 1 0 0  
display)  
LCD  
0
1
0
LCD  
All-on display  
10  
Normal display when DB0 = 0  
All-on display when DB0 = 1  
ON  
1 0 1 0 0 1 0 1  
1 0 1 0 0 0 1 0  
1 0 1 0 0 0 1 1  
0
0
0
1
1
1
0
0
0
Sets the LCD drive voltage bias ratio.  
1/9 when DB0 = 0 and 1/7 when DB0 = 1  
11 LCD bias set  
Incrementing column address  
During a write: +1  
12 Read-modify-write  
1 1 1 0 0 0 0 0  
0
1
0
During a read: 0  
13 End  
1 1 1 0 1 1 1 0  
1 1 1 0 0 0 1 0  
0
0
1
1
0
0
Releases the read-modify-write state.  
Internal reset  
14 Reset  
Selects the common output scanning  
direction.  
Forward when DB3 = 0  
Reverse when DB3 = 1  
1 1 0 0 0 * * *  
1 1 0 0 1 * * *  
0
0
0
1
1
1
0
0
0
Common output  
state select  
15  
0 0 1 0 1  
Operating state  
0 0 1 0 0  
Resistance  
ratio setting  
Selects the operating state of the internal  
power supply. Set the lower 3 bits.  
16 Power control set  
Voltage V1  
17 adjustment internal  
Selects the internal resistor ratio.  
Set the lower 3 bits.  
0
1
0
resistance ratio set  
40/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
DBn  
No  
18  
Operation  
Comment  
7 6 5 4 3 2 1 0  
A0 RD WR  
Sets a 6-bit data in the  
electronic potentiometer  
register to adjust the V1  
output voltage.  
Electronic  
Potentiometer  
1 0 0 0 0 0 0 1  
0
0
1
1
0
0
mode set  
Electronic  
potentiometer  
Electronic  
* * Electronic  
(2-byte command)  
potentiometer  
register set  
potentiometer  
value  
OFF  
ON  
1 0 1 0 1 1 0 0  
1 0 1 0 1 1 0 1  
0
0
1
1
0
0
OFF when DB0 = 0  
ON when DB0 = 1  
Sets the blinking state.  
(2-byte command)  
Frame reversal when  
DB3 = 0.  
Static indicator  
19  
Static indicator register set  
LCD drive method set  
* * * * * * State  
1 1 0 1 0 * * *  
0
1
0
0
0
0
1
1
1
0
0
0
20  
1 1 0 1 1 * * *  
Line reversal when DB3 = 1  
1)  
Sets the number (2-byte  
command) of line reversal.  
Line reversal number set  
* * * Number of lines  
Compound command of  
Display OFF and Display  
all-on.  
21 Power save  
The “No Operation”  
command.  
22 NOP  
23 Test  
1 1 1 0 0 0 1 1  
1 1 1 1 * * * *  
0
0
1
1
0
0
The command for factory  
testing of the IC chip.  
*: Invalid data (input: Don’t care, output: Unknown)  
Note 1: When the line reversal drive is set, the ML9058E is not used in a multiple chip configuration.  
41/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
DESCRIPTIONS OF OPERATION  
Display ON/OFF (Write)  
This is the command for controlling the turning on or off the LCD panel. The LCD display is turned on when a “1”  
is written in bit DB0 and is turned off when a “0” is written in this bit.  
A0  
0
DB7  
1
DB6  
0
DB5  
1
DB4  
0
DB3  
1
DB2  
1
DB1  
1
DB0  
1
Display ON  
Display OFF  
0
1
0
1
0
1
1
1
0
Display Start Line Set (Write)  
This command specifies the display starting line address in the display data RAM.  
Normally, the topmost line in the display is specified using the display start line set command.  
It is possible to scroll the display screen by dynamically changing the address using the display start line set  
command.  
Line address  
A0  
0
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
0
1
2
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
62  
63  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
1
42/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Page Address Set (Write)  
This command specifies the page address which corresponds to the lower address when accessing the display data  
RAM from the MPU side.  
It is possible to access any required bit in the display data RAM by specifying the page address and the column  
address.  
Page address  
A0  
0
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
0
1
2
1
1
1
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
1
0
0
0
7
8
0
0
1
1
0
0
1
1
1
1
0
1
1
0
1
0
1
0
Note: Do not specify values that do not exist as an address.  
Column Address Set (Write)  
This command specifies the column address of the display data RAM. The column address is specified by  
successively writing the upper 4 bits and the lower 4 bits. Since the column address is automatically incremented  
(by + 1) every time the display data RAM is accessed, the MPU can read or write the display data continuously.  
The incrementing of the column address is stopped at the address 83(H).  
A0  
0
DB7  
0
DB6  
0
DB5  
0
DB4  
1
DB3  
a7  
DB2  
a6  
DB1  
a5  
DB0  
a4  
Upper bits  
Lower bits  
0
0
0
0
0
a3  
a2  
a1  
a0  
Column address  
a7  
0
a6  
a5  
a4  
0
a3  
0
a2  
a1  
a0  
0
0
1
2
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
130  
131  
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
Note: Do not specify values that do not exist as an address.  
43/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Status Read (Read)  
A0  
0
DB7  
DB6  
ADC  
DB5  
DB4  
DB3  
*
DB2  
*
DB1  
*
DB0  
*
BUSY  
ON/OFF  
RESET  
*: Invalid data  
BUSY  
When BUSY is '1', it indicates that the internal operations are being made or the LSI is  
being reset. Although no command is accepted until BUSY becomes '0', there is no  
need to check this bit if the cycle time can be satisfied.  
This bit indicates the relationship between the column address and the segment driver.  
0: Reverse (SEG131 SEG0); column address 0(H) 83(H)  
1: Forward (SEG0 SEG131); column address 0(H) 83(H)  
(Opposite to the polarity of the ADC command.)  
ADC  
This bit indicates the ON/OFF state of the display. (Opposite to the polarity of the  
display ON/OFF command.)  
ON/OFF  
RESET  
0: Display ON  
1: Display OFF  
This bit indicates that the LSI is being reset due to the RES signal or the reset  
command.  
0: Operating state  
1: Being reset  
Display Data Write (Write)  
This command writes an 8-bit data at the specified address of the display data RAM. Since the column address is  
automatically incremented (by +1) after writing the data, the MPU can write successive display data to the display  
data RAM.  
A0  
1
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
Write data  
Display Data Read (Read)  
This command read the 8-bit data from the specified address of the display data RAM. Since the column address is  
automatically incremented (by +1) after reading the data, the MPU can read successive display data from the  
display data RAM. Further, one dummy read operation is necessary immediately after setting the column data.  
The display data cannot be read out when the serial interface is being used.  
A0  
1
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
Read data  
44/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
ADC Select (Segment driver direction select) (Write)  
Using this command it is possible to reverse the relationship of correspondence between the column address of the  
display data RAM and the segment driver output. It is possible to reverse the sequence of the segment driver  
output pin by the command.  
A0  
0
DB7  
1
DB6  
0
DB5  
1
DB4  
0
DB3  
0
DB2  
0
DB1  
0
DB0  
0
Forward  
Reverse  
0
1
0
1
0
0
0
0
1
Forward/Reverse Display Mode (Write)  
It is possible to toggle the display on and off condition without changing the contents of the display data RAM. In  
this case, the contents of the display data RAM will be retained.  
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
RAM Data  
Display on when “H”  
Display on when “L”  
Forward  
Reverse  
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
1
LCD Display All-on ON/OFF (Write)  
Using this command, it is possible to forcibly turn ON all the dots in the display irrespective of the contents of the  
display data RAM. In this case, the contents of the display data RAM will be retained.  
This command is given priority over the Forward/reverse display mode command.  
A0  
0
DB7  
1
DB6  
0
DB5  
1
DB4  
0
DB3  
0
DB2  
1
DB1  
0
DB0  
0
All-on display OFF  
(Normal display)  
All-on display ON  
0
1
0
1
0
0
1
0
1
The power save mode will be entered into when the Display all-on ON command is executed in the display OFF  
condition.  
LCD Bias Set (Write)  
This command is used for selecting the bias ratio of the voltage necessary for driving the LCD device or panel.  
LCD bias  
1/9 bias  
1/7 bias  
A0  
0
DB7  
1
DB6  
0
DB5  
1
DB4  
0
DB3  
0
DB2  
0
DB1  
1
DB0  
0
0
1
0
1
0
0
0
1
1
45/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Read Modify Write (Write)  
This command is used in combination with the End command. When this command is issued once, the column  
address is not changed when the Display data read command is issued, but is incremented (by +1) only when the  
Display data write command is issued. This condition is maintained until the End command is issued. When the  
End command is issued, the column address is restored to the address that was effective at the time the  
Read-modify-write command was issued last. Using this function, it is possible to reduce the overhead on the  
MPU when repeatedly changing the data in special display area such as a blinking cursor.  
A0  
0
DB7  
1
DB6  
1
DB5  
1
DB4  
0
DB3  
0
DB2  
0
DB1  
0
DB0  
0
End (Write)  
This command releases the read-modify-write mode and restores the column address to the value at the beginning  
of the mode.  
A0  
0
DB7  
1
DB6  
1
DB5  
1
DB4  
0
DB3  
1
DB2  
1
DB1  
1
DB0  
0
Restored  
....  
N
N + 1 N + 2  
N + m  
N
N + 3  
Column address  
Read-modify-write mode set  
End  
Reset (Write)  
This command initializes the display start line number, column address, page address, common output state,  
voltage V1 adjustment internal resistor ratio, electronic potentiometer function, and the static indicator function,  
and also releases the read-modify-write mode or the test mode. This command does not affect the contents of the  
display data RAM.  
The reset operation is made after issuing the reset command.  
The initialization after switching on the power is carried out by the reset signal input to the RES pin.  
A0  
0
DB7  
1
DB6  
1
DB5  
1
DB4  
0
DB3  
0
DB2  
0
DB1  
1
DB0  
0
Common Output State Select (Write)  
This command is used for selecting the scanning direction of the common output pins.  
Scanning direction  
COM0 COM63  
COM63 COM0  
A0  
0
DB7  
1
DB6  
1
DB5  
0
DB4  
0
DB3  
0
DB2  
DB1  
DB0  
Forward  
Reverse  
*
*
*
*
*
*
0
1
1
0
0
1
*: Invalid data  
46/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Power Control Set (Write)  
This command set the functions of the power supply circuits.  
A0  
0
DB7  
0
DB6  
0
DB5  
1
DB4  
0
DB3  
1
DB2  
0
DB1  
DB0  
Voltage multiplier circuit: OFF  
Voltage multiplier circuit: ON  
Voltage adjustment circuit: OFF  
Voltage adjustment circuit: ON  
Voltage follower circuits: OFF  
Voltage follower circuits: ON  
0
0
0
1
0
1
1
0
0
0
1
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
1
0
1
0
0
0
1
0
1
Voltage V1 Adjustment Internal Resistor Ratio Set  
This command sets the ratios of the internal resistors for adjusting the voltage V1.  
Resistor ratio  
A0  
0
DB7  
0
DB6  
0
DB5  
1
DB4  
0
DB3  
0
DB2  
DB1  
DB0  
3.0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
3.5  
0
0
0
1
0
0
4.0  
0
0
0
1
0
0
4.5  
0
0
0
1
0
0
5.0  
0
0
0
1
0
0
5.5  
6.0  
0
0
0
1
0
0
0
0
0
1
0
0
Input inhibiting code  
0
0
0
1
0
0
Note: Because this LSI has temperature gradient, V1 rises at lower temperatures. When using V1 gain  
of 6 times, adjust the built-in electronic potentiometer so that V1 does not exceed 18 V.  
Electronic Potentiometer (2-byte command)  
This command is used for controlling the LCD drive voltage V1 output by the voltage adjustment circuit of the  
internal LCD power supply and for adjusting the intensity of the LCD display.  
This is a two-byte command consisting of the Electronic potentiometer mode set command and the Electronic  
potentiometer register set command, both of which should always be issued successively as a pair.  
Electronic potentiometer mode set (Write)  
When this command is issued, the electronic potentiometer register set command becomes effective.  
Once the electronic potentiometer mode is set, it is not possible to issue any command other than the Electronic  
potentiometer register set command. This condition is released after data has been set in the register using the  
Electronic potentiometer register set command.  
A0  
0
DB7  
1
DB6  
0
DB5  
0
DB4  
0
DB3  
0
DB2  
0
DB1  
0
DB0  
1
47/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Electronic potentiometer register set (Write)  
By setting a 6-bit data in the electronic potentiometer register using this command, it is possible to set the LCD  
drive voltage V1 to one of the 64 voltage levels.  
The electronic potentiometer mode is released after some data has been set in the electronic potentiometer register  
using this command.  
  
63  
62  
61  
60  
A0  
0
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
*
*
*
*
*
*
*
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
1
0
0
0
1
0
1
1
1
1
1
1
1
1
1
1
0
1
0
*
*
*: Invalid data  
Set the data (*, *, 1, 0, 0, 0, 0, 0) when not using the electronic potentiometer function.  
Sequence of setting the electronic potentiometer register:  
Electronic potentiometer mode set  
Electronic potentiometer register set  
The electronic potentiometer mode is released  
Static Indicator (2-byte command)  
This command is used for controlling the static drive type indicator display.  
Static indicator display is controlled only by this command and is independent of all other display control  
commands.  
Since the Static indicator ON command is a two-byte command used in combination with the static indictor  
register set command, these two commands should always be used together.  
(The Static indicator OFF command is a single byte command.)  
48/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Static indicator ON/OFF (Write)  
When the Static indicator ON command is issued, the Static indicator register set command becomes effective.  
Once the Static indicator ON command is issued, it is not possible to issue any command other than the Static  
indicator register set command. This condition is released only after some data is written into the register using the  
static indicator register set command.  
Static indicator  
A0  
0
DB7  
1
DB6  
0
DB5  
1
DB4  
0
DB3  
1
DB2  
1
DB1  
0
DB0  
0
OFF  
ON  
0
1
0
1
0
1
1
0
1
Static indicator register set (Write)  
This command is used to set data in the 2-bit static indicator register thereby setting the blinking state of the static  
indicator.  
Indicator  
A0  
0
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
OFF  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
0
1
1
0
1
0
1
ON(Blinking at about 1sec intervals)  
ON(Blinking at about 0.5sec intervals)  
ON(Continuously ON)  
0
0
0
*: Invalid data  
Sequence of setting the static indicator register:  
Static indicator ON  
Static indicator register set  
The static indicator mode is released  
49/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
LCD Drive Method Set (Write)  
This command sets the LCD drive method.  
Line reversal drive (2-byte command)/frame reversal drive select  
Line or frame reversal drive can be selected as the LCD drive method.  
When selecting line reversal drive, which is 2-byte command used with line reversal number set command, be sure  
to use both commands successively.  
Once line reversal drive is set, commands other than line reversal number set command cannot be used. This state  
is released after data is set to the register by line reversal number set command.  
The frame reversal set command is a single byte command.  
LCD drive method  
Frame reversal  
A0  
0
DB7  
1
DB6  
1
DB5  
0
DB4  
1
DB3  
0
DB2  
DB1  
DB0  
*
*
*
*
*
*
Line reversal  
0
1
1
0
1
1
*: Invalid data  
Line reversal number set (Write)  
The number of lines is set when the line reversal is set using the LCD drive method set command.  
Number of line reversal  
A0  
0
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
1
2
3
4
*
*
*
*
*
*
*
*
*
*
*
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
0
0
31  
32  
1
1
1
1
1
1
1
1
0
1
0
*
*
*
*: Invalid data  
LCD drive method set  
Number of line is set in case of line reversal  
Note 1: Because the number of line reversal depends on panel size and panel load capacitance, set  
the optimum number of lines at the time of ES evaluation.  
Note 2: When line reversal drive is used, a multiple chip configuration cannot be achieved.  
50/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Power Save (Compound command)  
The LSI goes into the power save state when the Display all-on ON command is issued when the LSI is in the  
display OFF state, and it is possible to greatly reduce the current consumption in this state. The power save state is  
of two types, namely, the sleep state and the standby state, and the LSI goes into the standby state when the static  
indicator has been made ON.  
The display data and the operating mode just before entering the power save mode are retained in both the sleep  
state and the standby state, and also the MPU can access the display data RAM and other registers in these states.  
The power save mode is released by issuing the Display all-on OFF command. (See the following figure.)  
Static indicator ON  
Static indicator OFF  
Sleep state  
Power save command issue (compound command)  
Standby state  
Power save OFF command  
Power save OFF command  
(Display all-on OFF command)  
(Display all-on OFF command)  
Standby state released  
Sleep state released  
51/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Sleep state  
In this state, all the operations of the LCD display system are stopped and it is possible to reduce the current  
consumption to a level near the idle state current consumption unless there are accesses from the MPU. The  
internal conditions in the sleep state are as follows:  
(1) The oscillator circuit and the LCD power supply are stopped.  
(2) All the LCD drive circuits are stopped and the segment and common driver outputs will be at the VSS level.  
Standby state  
All operations of the dynamic LCD display section are stopped, only the static display circuits for the indicators  
operate and hence the current consumption will be the minimum necessary for static drive. The internal conditions  
in the standby state are as follows:  
(1) The power supply circuit for LCD drive is stopped. The oscillator circuit will be operating.  
(2) The LCD drive circuits for dynamic display are stopped and the segment and common driver outputs will be at  
the VSS level. The static display section will be operating.  
Note: When using an external power supply, stop external power supply at power save start-up.  
For example, when providing each level of LCD drive voltage with external voltage divider, add a circuit  
for cutting off current flowing through the resistors of the voltage divider when initiating power save.  
The ML9058E has LCD display blanking control pin, DOF, which goes "L" at power save start-up. The  
external power supply can be stopped using DOF output.  
NOP (Write)  
This is a No Operation command.  
A0  
0
DB7  
1
DB6  
1
DB5  
1
DB4  
0
DB3  
0
DB2  
0
DB1  
1
DB0  
1
Test (Write)  
This is a command for testing the IC chip. Do not use this command. When the test command is issued by mistake,  
this state can be released by issuing a NOP command.  
A0  
0
DB7  
1
DB6  
1
DB5  
1
DB4  
1
DB3  
*
DB2  
*
DB1  
*
DB0  
*
*: Invalid data  
52/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Initialized Condition Using the RES pin  
This LSI goes into the initialized condition when the RES input goes to the “L” level. The initialized condition  
consists of the following conditions.  
(1) Display OFF  
(2) Forward display mode  
(3) ADC select: Incremented (ADC command DB0 = “L”)  
(4) Power control register: (DB2, DB1, DB0) = (0, 0, 0)  
(5) The registers and data in the serial interface are cleared.  
(6) LCD Power supply bias ratio: 1/9 bias  
(7) All display dots OFF  
(8) Read-modify-write: OFF  
(9) Static indicator: OFF  
Static indicator register: (DB1, DB0) = (0, 0)  
(10) Line 1 is set as the display start line.  
(11) The column address is set to address 0.  
(12) The page address is set to 0.  
(13) Common output state: Forward  
(14) Voltage V1 adjustment internal resistor ratio register: (DB2, DB1, DB0) = (1, 0, 0)  
(15) The electronic potentiometer register set mode is released.  
Electronic potentiometer register: (DB5, DB4, DB3, DB2, DB1, DB0) = (1, 0, 0 ,0, 0, 0)  
(16) The LCD drive method is set to the frame reversal drive.  
Line reversal number register: (DB4, DB3, DB2, DB1, DB0) = (1, 0, 0, 0, 0)  
On the other hand, when the reset command is used, only the conditions (8) to (15) above are set.  
As is shown in the “MPU Interface (example for reference)”, the RES pin is connected to the Reset pin of the MPU  
and the initialization of this LSI is made simultaneously with the resetting of the MPU. This LSI always has to be  
reset using the RES pin at the time the power is switched ON. Also, excessive current can flow through this LSI  
when the control signal from the MPU is in the high impedance state. It is necessary to take measures to ensure  
that the input pins of this LSI do not go into the high impedance state after the power has been switched ON. When  
the built-in LCD drive power supply circuit of the ML9058E is not used, it is necessary that RES = “L” when the  
external LCD drive power supply goes ON. During the period when RES = “L”, although the oscillator circuit is  
operating, the display timing generator would have stopped and the pins CL, FR, FRS, and DOF would have been  
tied to the “H” level. There is no effect on the pins DB0 to DB7.  
53/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
EXAMPLES OF SETTINGS FOR THE INSTRUCTIONS  
When Using the Internal Power Supply Immediately After Power-on  
VDD-VSS Power supply ON when the pin RES = “L”  
Power supply stabilization  
Release reset state (RES Pin = “H”)  
Initial settings state (default)  
*1  
Function setting using command input (user settings)  
*2  
*3  
*4  
*5  
LCD bias set  
ADC select  
Common output state select  
Line reversal/frame reversal drive select  
*(a)  
Function setting using command input (user settings)  
Setting voltage V1 adjustment internal resistor ratio  
*6  
Electronic potentiometer  
*7  
Function stabilization using command input (user settings)  
Power control set  
*8  
*(b)  
Wait for more than 300 ms  
Initial setting state complete  
*(a): Carry out power control set within 5ms after releasing the reset state.  
The 5ms duration changes depending on the panel characteristics and the value of the smoothing  
capacitor. We recommend verification of operation using an actual unit.  
*(b): When trace resistance in COG mounting does not exist, wait for over 300 ms.  
Since this value varies with trace resistance, V1, smoothing capacitors, or voltage multiplier  
capacitors in COG mounting, confirm operation on an actual circuit board when using this LSI.  
Notes: Sections to be referred to  
*1:  
*2:  
*3:  
*4:  
*5:  
*6:  
Functional description “Reset circuit”  
Description of operation “LCD bias set”  
Description of operation “ADC select”  
Description of operation “Common output state select”  
Description of operation “Line reversal/frame reversal drive select”  
Functional description “Power supply circuit”, Operation description “Voltage V1 adjustment  
internal resistor ratio set”  
*7:  
*8:  
Functional description “Power supply circuit”, Description of operation “Electronic  
potentiometer”  
Functional description “Power supply circuit”, Description of operation “Power control set”  
54/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
When Not Using the Internal Power Supply Immediately After Power-on  
VDD-VSS Power supply ON when the pin RES = “L”  
Power supply stabilization  
Release reset state (RES Pin = “H”)  
Initial settings state (default)  
*1  
*(a)  
Start power save mode (compound command) *9  
Function setting using command input (user settings)  
*2  
*3  
*4  
*5  
LCD bias set  
ADC select  
Common output state select  
Line reversal/frame reversal drive  
select  
Function setting using command input (user settings)  
Setting voltage V1 adjustment internal resistor ratio  
Electronic potentiometer  
*6  
*7  
*9  
Power save OFF  
*(b)  
Function setting using command input (user settings)  
Power control set  
*8  
*(c)  
Wait for more than 300 ms  
Initial setting state complete  
*(a): Enter the power save state within 5ms after releasing the reset state.  
*(b): Carry out power control set within 5ms after releasing the power save state.  
The 5ms duration in *(a) and *(b) changes depending on the panel characteristics and the value of  
the smoothing capacitor. We recommend verification of operation using an actual unit.  
*(c): When trace resistance in COG mounting does not exist, wait for over 300 ms.  
Since this value varies with trace resistance, V1, smoothing capacitors, or voltage multiplier  
capacitors in COG mounting, confirm operation on an actual circuit board when using this LSI.  
Notes: Sections to be referred to  
*1: Functional description “Reset circuit”  
*2: Description of operation “LCD bias set”  
*3: Description of operation “ADC select”  
*4: Description of operation “Common output state select”  
*5: Description of operation “Line reversal/frame reversal drive select”  
*6: Functional description “Power supply circuit”, Description of operation “Voltage V1 adjustment  
internal resistor ratio set”  
*7: Functional description “Power supply circuit”, Description of operation “Electronic  
potentiometer”  
*8: Functional description “Power supply circuit”, Description of operation “Power control set”  
*9: The power save state can be either the sleep state or the standby state.  
Description of operation “Power save (compound command)”  
55/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Data Display  
End of initial settings  
Function stabilization using command input (user settings)  
Display start line set  
*10  
Function stabilization using command input (user settings)  
Page address set *11  
Function stabilization using command input (user settings)  
Column address set *12  
Function stabilization using command input (user settings)  
Display data write  
*13  
No  
End of page write?  
Yes  
No  
End of display data write?  
Yes  
Function stabilization using command input (user settings)  
Display ON/OFF *14  
End of data display  
Notes: Sections to be referred to  
*10: Description of operation “Display start line set”  
*11: Description of operation “Page address set”  
*12: Description of operation “Column address set”  
*13: Description of operation “Display data write”  
*14: Description of operation “Display ON/OFF”  
56/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Power Supply OFF (*15)  
Any state  
Function stabilization using command input (user settings)  
Power save  
*16  
VDD-VSS Power supply OFF  
Notes: Sections to be referred to  
*15:  
The power supply of this LSI is switched OFF after switching OFF the internal power supply.  
Function description “Power supply circuit”  
If the power supply of this LSI is switched OFF when the internal power supply is still ON, since  
the state of supplying power to the built-in LCD drive circuits continues for a short duration, it  
may affect the display quality of the LCD panel. Always follow the power supply switching OFF  
sequence.  
*16:  
*17:  
Description of operation “Power save”  
After reset is input the power supply may off without obeying above sequence.  
Refresh  
Although the ML9058E holds operation state by commands, excessive external noise might change the internal  
state.  
On a chip-mounting and system level, it is necessary to take countermeasures against preventing noise from  
occurring. It is recommended to use the refresh sequence periodically to control sudden noise.  
- LCD bias set  
- ADC select  
- Display Forwar/Reverse  
- Set “LCD ALL-on display“ ON  
- Common output state select  
Set to the state in which all commands have been set.  
- LCD drive mode set  
- Static indecator register set  
- Voltage V1 adjustment internal  
resistance ratio set  
- Electronic potnetiometer  
- Power control set  
- Release the read-modify-write sate(END)  
(*18)  
- Set “NOP” operation  
Test mode release command  
(E3(H))  
- Display start line set  
- Page address set  
- Column address set  
- Display data write  
- Display ON  
Refresh RAM  
*18: Regardless of presence of setting of “Read-modify-write”commanfd, please carry out “END”  
command.  
57/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
MPU INTERFACE  
The ML9058E series ICs can be connected directly to the 80-series and 68-series MPUs.  
Further, by using the serial interface, it is possible to operate the LSI with a minimum number of signal lines.  
In addition, it is possible to expand the display area by using the ML9058E series LSIs in a multiple chip  
configuration. In this case, it is possible to select the individual LSI to be accessed using the chip select signals.  
80-Series MPU  
VCC  
VDD  
VDD  
A0  
A1 to A7  
IORQ  
A0  
C86  
CS1  
CS2  
Decoder  
DB0 to DB7  
RD  
DB0 to DB7  
RD  
WR  
WR  
RES  
RES  
S
P/  
VSS  
GND  
RESET  
VSS  
  
68-Series MPU  
VCC  
VDD  
VDD  
A0  
A0  
A1 to A15  
VMA  
C86  
CS1  
Decoder  
CS2  
DB0 to DB7  
E
DB0 to DB7  
E
W
W
R/  
R/  
RES  
RES  
S
P/  
VSS  
GND  
RESET  
VSS  
  
Serial interface  
VCC  
VDD  
VDD  
A0  
Port 3  
Port 4  
C86  
CS1  
CS2  
Port 5  
Can be tied to  
either level.  
Port1  
Port2  
RES  
SI  
SCL  
RES  
S
P/  
GND  
VSS  
RESET  
VSS  
58/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
PAD CONFIGURATION  
Pad Layout  
Chip Size : 9.164 2.982 mm  
308  
149  
309  
148  
105  
347  
1
104  
Pad Coordinates  
Pad No.  
Pad Name  
DUMMY  
DUMMY  
DUMMY  
DUMMY-B  
DUMMY-B  
DUMMY-B  
DUMMY-B  
DUMMY-B  
VSS  
X (µm)  
-4462.5  
-4377.5  
-4292.5  
-4207.5  
-4122.5  
-4037.5  
-3952.5  
-3867.5  
-3782.5  
-3697.5  
-3612.5  
-3527.5  
-3442.5  
-3357.5  
-3272.5  
-3187.5  
-3102.5  
-3017.5  
-2932.5  
-2847.5  
Y (µm)  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
Pad No.  
21  
Pad Name  
CS1  
CS2  
VDD  
X (µm)  
-2762.5  
-2677.5  
-2592.5  
-2507.5  
-2422.5  
-2337.5  
-2252.5  
-2167.5  
-2082.5  
-1997.5  
-1912.5  
-1827.5  
-1742.5  
-1657.5  
-1572.5  
-1487.5  
-1402.5  
-1317.5  
-1232.5  
-1147.5  
Y (µm)  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
1
2
22  
3
23  
4
24  
RES  
A0  
5
25  
6
26  
VSS  
7
27  
WR  
8
28  
RD  
9
29  
VDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DUMMY-B  
DUMMY-B  
DUMMY-B  
DUMMY-B  
DUMMY-B  
TEST1  
30  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DUMMY-B  
VDD  
31  
32  
33  
34  
35  
FRS  
36  
FR  
37  
CL  
38  
DOF  
39  
VSS  
40  
VDD  
Note: Leave DUMMY and DUMMY-B pads open.  
Do not run traces around. Run traces through DUMMY and DUMMY-B pads individually, not in  
common.  
59/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Pad No.  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
Pad Name  
X (µm)  
-1062.5  
-977.5  
-892.5  
-807.5  
-722.5  
-637.5  
-552.5  
-467.5  
-382.5  
-297.5  
-212.5  
-127.5  
-42.5  
Y (µm)  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
Pad No.  
81  
Pad Name  
V1  
X (µm)  
2337.5  
2422.5  
2507.5  
2592.5  
2677.5  
2762.5  
2847.5  
2932.5  
3017.5  
3102.5  
3187.5  
3272.5  
3357.5  
3442.5  
3527.5  
3612.5  
3697.5  
3782.5  
3867.5  
3952.5  
4037.5  
4122.5  
4207.5  
4292.5  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
Y (µm)  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1376.0  
-1049.9  
-997.9  
VDD  
VDD  
82  
V1  
VDD  
83  
V2  
VDD  
84  
V2  
VIN  
85  
V3  
VIN  
86  
V3  
VIN  
87  
V4  
VIN  
88  
V4  
VIN  
89  
V5  
VSS  
90  
V5  
VSS  
91  
VR  
VSS  
92  
VR  
VSS  
93  
VDD  
VSS  
42.5  
94  
M/S  
VSS  
127.5  
95  
CLS  
VSS  
212.5  
96  
VSS  
VOUT  
VOUT  
VC6+  
VC6+  
VC6+  
VC4+  
VC4+  
VC4+  
VS2-  
VS2-  
VS2-  
VS1-  
VS1-  
VS1-  
VC5+  
VC5+  
VC5+  
VC3+  
VC3+  
VC3+  
VSS  
297.5  
97  
C86  
382.5  
98  
P/S  
467.5  
99  
VDD  
552.5  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
DUMMY  
VSS  
637.5  
722.5  
IRS  
807.5  
VDD  
892.5  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
COM31  
COM30  
COM29  
COM28  
COM27  
COM26  
COM25  
COM24  
977.5  
1062.5  
1147.5  
1232.5  
1317.5  
1402.5  
1487.5  
1572.5  
1657.5  
1742.5  
1827.5  
1912.5  
1997.5  
2082.5  
2167.5  
2252.5  
-945.9  
-893.9  
-841.9  
-789.9  
-737.9  
-685.9  
-633.9  
-581.9  
-529.9  
-477.9  
-425.9  
VRS  
-373.9  
VRS  
-321.9  
VDD  
-269.9  
60/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Pad No.  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
Pad Name  
X (µm)  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4443.0  
4128.7  
4076.7  
4024.7  
3972.7  
3920.7  
3868.7  
3816.7  
3764.7  
3712.7  
3660.7  
3608.7  
3556.7  
Y (µm)  
-217.9  
-165.9  
-113.9  
-61.9  
Pad No.  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
Pad Name  
DUMMY  
DUMMY  
DUMMY  
SEG0  
X (µm)  
3504.7  
3452.7  
3400.7  
3348.7  
3296.7  
3244.7  
3192.7  
3140.7  
3088.7  
3036.7  
2984.7  
2932.7  
2880.7  
2828.7  
2776.7  
2724.7  
2672.7  
2620.7  
2568.7  
2516.7  
2464.7  
2412.7  
2360.7  
2308.7  
2256.7  
2204.7  
2152.7  
2100.7  
2048.7  
1996.7  
1944.7  
1892.7  
1840.7  
1788.7  
1736.7  
1684.7  
1632.7  
1580.7  
1528.7  
1476.7  
Y (µm)  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
COM23  
COM22  
COM21  
COM20  
COM19  
COM18  
COM17  
COM16  
COM15  
COM14  
COM13  
COM12  
COM11  
COM10  
COM9  
-9.9  
SEG1  
42.1  
SEG2  
94.1  
SEG3  
146.1  
198.1  
250.1  
302.1  
354.1  
406.1  
458.1  
510.1  
562.1  
614.1  
666.1  
718.1  
770.1  
822.1  
874.1  
926.1  
978.1  
1030.1  
1082.1  
1134.1  
1186.1  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
COM0  
COMS1  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
61/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Pad No.  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
Pad Name  
X (µm)  
1424.7  
1372.7  
1320.7  
1268.7  
1216.7  
1164.7  
1112.7  
1060.7  
1008.7  
956.7  
904.7  
852.7  
800.7  
748.7  
696.7  
644.7  
592.7  
540.7  
488.7  
436.7  
384.7  
332.7  
280.7  
228.7  
176.7  
124.7  
72.7  
Y (µm)  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
Pad No.  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
Pad Name  
SEG77  
SEG78  
SEG79  
SEG80  
SEG81  
SEG82  
SEG83  
SEG84  
SEG85  
SEG86  
SEG87  
SEG88  
SEG89  
SEG90  
SEG91  
SEG92  
SEG93  
SEG94  
SEG95  
SEG96  
SEG97  
SEG98  
SEG99  
SEG100  
SEG101  
SEG102  
SEG103  
SEG104  
SEG105  
SEG106  
SEG107  
SEG108  
SEG109  
SEG110  
SEG111  
SEG112  
SEG113  
SEG114  
SEG115  
SEG116  
X (µm)  
-655.3  
Y (µm)  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEG61  
SEG62  
SEG63  
SEG64  
SEG65  
SEG66  
SEG67  
SEG68  
SEG69  
SEG70  
SEG71  
SEG72  
SEG73  
SEG74  
SEG75  
SEG76  
-707.3  
-759.3  
-811.3  
-863.3  
-915.3  
-967.3  
-1019.3  
-1071.3  
-1123.3  
-1175.3  
-1227.3  
-1279.3  
-1331.3  
-1383.3  
-1435.3  
-1487.3  
-1539.3  
-1591.3  
-1643.3  
-1695.3  
-1747.3  
-1799.3  
-1851.3  
-1903.3  
-1955.3  
-2007.3  
-2059.3  
-2111.3  
-2163.3  
-2215.3  
-2267.3  
-2319.3  
-2371.3  
-2423.3  
-2475.3  
-2527.3  
-2579.3  
-2631.3  
-2683.3  
20.7  
-31.3  
-83.3  
-135.3  
-187.3  
-239.3  
-291.3  
-343.3  
-395.3  
-447.3  
-499.3  
-551.3  
-603.3  
62/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
Pad No.  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
Pad Name  
X (µm)  
-2735.3  
-2787.3  
-2839.3  
-2891.3  
-2943.3  
-2995.3  
-3047.3  
-3099.3  
-3151.3  
-3203.3  
-3255.3  
-3307.3  
-3359.3  
-3411.3  
-3463.3  
-3515.3  
-3567.3  
-3619.3  
-3671.3  
-3723.3  
-3775.3  
-3827.3  
-3879.3  
-3931.3  
-3983.3  
-4035.3  
-4087.3  
-4139.3  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
Y (µm)  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1352.5  
1186.1  
1134.1  
1082.1  
1030.1  
978.1  
Pad No.  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
Pad Name  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COMS0  
DUMMY  
DUMMY  
DUMMY  
X (µm)  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
-4443.0  
Y (µm)  
874.1  
822.1  
770.1  
718.1  
666.1  
614.1  
562.1  
510.1  
458.1  
406.1  
354.1  
302.1  
250.1  
198.1  
146.1  
94.1  
SEG117  
SEG118  
SEG119  
SEG120  
SEG121  
SEG122  
SEG123  
SEG124  
SEG125  
SEG126  
SEG127  
SEG128  
SEG129  
SEG130  
SEG131  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
COM32  
COM33  
COM34  
42.1  
-9.9  
-61.9  
-113.9  
-165.9  
-217.9  
-269.9  
-321.9  
-373.9  
-425.9  
-477.9  
-529.9  
-581.9  
-633.9  
-685.9  
-737.9  
-789.9  
926.1  
63/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
ML9058E ALIGNMENT MARK SPECIFICATION 1  
Alignment Mark Coordinates  
Y
B
E
A
           
X
(0,0)  
C
F
  
D
Alignment mark  
X(µm)  
–4270.3  
4259.7  
4455  
Y(µm)  
A
B
C
D
E
F
1364.5  
1364.5  
–1180.9  
–1180.9  
1368  
Coordinate point  
–4455  
–4458.5  
4458.5  
–1368  
Alignment Mark Construction Layer  
A,B,C,D: Metal Layer E,F:Bump Layer  
Alignment Mark Specification  
Coordinate point  
Symbol  
a
Parameter  
Mark  
A,B,C,D  
E,F  
Size(µm)  
34  
Alignment mark Width  
Alignment mark Size  
43  
A,B,C,D  
E,F  
100  
98  
b
c
A,B,C  
D
60  
Alignment mark-to-adjacent pad metal Distance (MIN.)  
Alignment mark-to-adjacent pad bump Distance (MIN.)  
106.6  
109.4  
77  
E
F
b
c
a
b
c
Bump  
a
Metal  
a
c
b
b
c
a
Bump  
Metal  
64/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
ML9058E GOLD BUMP SPECIFICATION  
Gold Bump Specification  
Symbo  
Parameter  
Min.  
Typ.  
Max.  
Unit  
l
A
B
C
D
Bump Pitch (Min.Section: Segment Section)  
Bump Size (Segment Section: Pitch Direction)  
Bump Size (Segment Section: Depth Direction)  
Bumo-to-Bump Distance  
52  
29  
32  
35  
m  
m  
m  
m  
114  
17  
117  
20  
120  
23  
(Segment Section: Pitch Direction)  
Bump Pitch (Min.Section: Input Section)  
Bump Size (Input Section: Pitch Direction)  
Bump Size (Input Section: Depth Direction)  
Bumo-to-Bump Distance  
E
F
85  
57  
67  
22  
60  
70  
25  
63  
73  
28  
m  
m  
m  
m  
G
H
(Input Section: Pitch Direction)  
I
Bump Size (Figure “L” alignment mark: Length)  
Bump Size (Figure “L” alignment mark: Width)  
Pad center to Bump center allowable error  
Bump Height  
95  
40  
12  
18  
50  
30  
98  
43  
15  
101  
46  
2
m  
m  
m  
m  
m  
m  
g
J
K
18  
3
L
Bumph Height Dispersion Inside Chip (Range)  
Bump Edge Height  
3
Shear Strength (g)  
110  
70  
Bump hardness: High (Hv: 25g load)  
Bump hardness: Low (Hv: 25g load)  
Hv  
Hv  
Chip Thickness: 625 15 m  
Chip Size: 9.164mm 2.982mm  
Top View and Cross Section View  
A
B
Figure “L”  
Alignment Mark  
Segment  
Section  
D
Cross Section View  
F
E
Input Section  
H
65/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
EXAMPLE OF VOLTAGE MULTIPLIER CONNECTION  
An example of the 3.5-time voltage multiplier connection is shown below, as a variation of the 4-time voltage  
multiplier.  
R
R
VIN  
VSS  
+
VOUT  
VC6+  
VC4+  
+
+
VS2–  
VC5+  
VC3+  
+
VS1–  
Example of voltage multiplier connection  
For the 3.5-time voltage multiplier, VIN should be in the voltage  
range shown below:  
4.8V VIN5.2V  
(VOUT = 3(VIN)+(VC3+) 18.33V)  
VC3+ should be in the range of (VIN)/22%.  
66/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
REFERENCE DATA  
VIN=4.8V  
R
R
R
VOUT  
VIN  
VSS  
+
C1  
C1  
R
I LOAD  
VC6+  
+
R
R
VC4+  
VS2  
R
R
VS1  
VC5+  
VC3+  
C1  
+
OPEN  
ML9058E Chip  
Equivalent circuit to 3-time voltage multiplier with trace resistances external to COG-mounted chip  
ML9058E voltage multiplier load characteristics  
- Load current dependency at 3-time multiplication  
15  
14  
13  
12  
11  
10  
9
R=0  
R=100Ω  
R=200Ω  
Evaluation  
Conditions  
Tj=90C  
Voltage multiplier  
Capacitor  
C1=1F  
VIN=4.8V,3-time  
multiplication  
8
Only a voltage  
multiplier circuit  
operates by power  
control set command  
“2C”  
7
6
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Load current ILoad [mA]  
67/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
REFERENCE DATA  
R
VIN=4.5V  
R
R
VOUT  
VIN  
VSS  
+
C1  
C1  
R
I LOAD  
VC6+  
+
+
C1  
R
R
VC4+  
VS2  
R
R
VS1  
VC5+  
VC3+  
C1  
+
R
ML9058E Chip  
Equivalent circuit to 4-time voltage multiplier with trace resistances external to COG-mounted chip  
ML9058E voltage multiplier load characteristics  
- Load current dependency at 4-time multiplication  
18  
Evaluation  
Conditions  
Tj=90C  
17  
16  
15  
14  
13  
12  
11  
10  
9
Voltage multiplier  
Capacitor  
C1=1F  
VIN=4.5V,4-time  
multiplication  
Only a voltage  
multiplier circuit  
operates by power  
control set command  
“2C”  
R=0  
R=100Ω  
R=200Ω  
8
7
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Load current ILoad [mA]  
68/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
REFERENCE DATA  
R
VIN=4.8V  
R
R
VOUT  
VIN  
VSS  
500  
+
500  
C1  
I LOAD  
R
VC6+  
+
+
C1  
R
R
VC4+  
C1  
C1  
VS2  
R
R
VS1  
VC5+  
+
R
VC3+  
VC3+=2.4V  
ML9058E Chip  
Equivalent circuit to 3.5-time voltage multiplier with trace resistances external to COG-mounted chip  
ML9058E voltage multiplier load characterisics  
-Load current dependency at 3.5-time multiplication  
17  
Evaluation  
Conditions  
16  
15  
14  
13  
12  
11  
10  
9
Tj=90°C  
Voltage Multiplier  
Capacitor  
C1=1μF  
VIN=4.8V  
3.5-time  
multiplication  
Only a voltage  
multiplier  
circuit operates  
by power control set  
command  
"2C"  
R=0  
R=100Ω  
R=200Ω  
8
7
6
5
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Load current ILoad [mA]  
69/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
EQUIVALENT CIRCUIT FOR EVALUATING POWER-UP STABILIZATION TIME IN COG MOUNTING  
VIN=5.0V  
C1  
C2  
200  
200  
200  
200  
R
VIN  
V1  
V2  
V3  
V4  
V5  
+
+
R
R
VSS  
C1  
C1  
VOUT  
+
+
R
C2  
VC6+  
+
Dummy  
VC4+  
C2  
R
R
+
VS2  
VS1  
VC5+  
VC3+  
C2  
200  
R
R
+
C1  
+
OPEN  
ML9058E  
Chip  
3-time voltage multiplier measuring circuit  
VIN=4.5V  
200  
200  
200  
200  
200  
C1  
R
V1  
VIN  
+
R
R
VSS  
C2  
C1  
V2  
V3  
V4  
VOUT  
+
C1  
+
R
C2  
VC6+  
+
+
+
Dummy  
VC4+  
R
R
C1  
C2  
+
+
VS2  
C2  
R
R
V5  
VS1  
C1  
VC5+  
+
R
VC3+  
ML9058E  
Chip  
4-time voltage multiplier measuring circuit  
70/76  
FEDL9058E-01  
LAPIS Semiconductor  
REFERENCE DATA  
ML9058E  
(The rise time until V1-V5 is stabilized when command “2F” is input after power-on in COG mounting.)  
3-time voltage multiplication  
Reference value of V1-V5 rise stabilization time in ML9058E COG mounting  
Conditions: VIN=5V, 3-time multiplication, V1=12V, trace resistance external to COG-mounted chip  
R=150, Tj=40C to +85C  
300  
Parameter, smoothing capacitor C2  
250  
C2=0.47μF  
C2=1.0μF  
200  
150  
100  
50  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Value of voltage multiplier capacitor C1 [F]  
4-time voltage multiplication  
Reference value of V1-V5 rise stabilization time in ML9058E COG mounting  
Conditions: VIN=4.5V, 4-time multiplication, V1=12V, trace resistance external to COG-mounted chip  
R=150, Tj=40C to +85C  
300  
250  
200  
150  
100  
50  
Parameter: smoothing capacitor C2  
C2=0.47μF  
C2=1.0μF  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Value of voltage multiplier capacitor C1 [F]  
71/76  
FEDL9058E-01  
LAPIS Semiconductor  
REFERENCE DATA  
ML9058E  
(The rise time until V1-V5 is stabilized when command “2F” is input after power-on in COG mounting.)  
3-time voltage multiplication  
Reference value of V1-V5 rise stabilization time in ML9058E COG mounting  
Conditions: VIN=5V, 3-time multiplication, Tj=40C to +85C  
Voltage multiplier capacitor C1=3.3F, smoothing capacitor C2=1F  
300  
Parameter: trace resistance external to COG-mounted chip  
250  
R=100Ω  
R=200Ω  
200  
150  
100  
50  
0
10  
10.5  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
V1 Voltage [V]  
4-time voltage multiplication  
Reference value of V1-V5 rise stabilization time in ML9058E COG mounting  
Conditions: VIN=4.5V ,4-time multiplication, Tj=40C to +85C  
Voltage multiplier capacitor C1=3.3F, smoothing capacitor C2=1F  
300  
250  
200  
150  
100  
50  
Parameter: trace resistance external to COG-mounted chip  
R=100  
R=200Ω  
0
10  
10.5  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
V1 Voltage [V]  
72/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
EQUVALENT CIRCUIT FOR EVALUATING POWER-UP STABILIZATION TIME IN COG MOUNTING  
R
C1  
R
VIN  
V1  
V2  
+
+
+
+
+
VIN=4.8V  
C1  
R
VSS  
C2  
C2  
C2  
C2  
R
R
VOUT  
  
C1  
+
R
VC6+  
R
R
R
+
+
V3  
V4  
V5  
R
R
C1  
VC4+  
VS2  
R
R
R
VS1  
C1  
VC5+  
+
VC3+  
ML9058E  
Chip  
3.5-time voltage multiplier measuring circuit  
73/76  
FEDL9058E-01  
LAPIS Semiconductor  
REFERENCE DATA  
ML9058E  
(The rise time until V1-V5 is stabilized when command “2F” is input after power-on in COG mounting.)  
3.5-time multiplication  
Reference value of V1-V5 rise stabilization time in ML9058E COG mounting  
Conditions: VDD=VIN=4.8V, 3.5-time multiplication, V1=12V, Tj=40°C to +85°C  
Trace resistance external to COG-mounted chip R=150,  
VC3+ is provided by dividing VIN using resistor R=500  
350  
Parameter: smoothing capacitor C2  
300  
250  
200  
150  
100  
50  
C2=0.47uF  
C2=1.0uF  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
C1[F]  
Reference value of V1-V5 rise stabilization time in ML9058E COG mounting  
Conditions: VDD=VIN=4.8V, 3.5-time multiplication, Tj=40°C to +85°C,  
Voltage multiplier capacitor C1=3.3F, smoothing capacitor C2=1F  
VC3+ is provided by dividing VIN using resistor R=500  
350  
300  
250  
200  
150  
100  
50  
Parameter: trace resistance external to COG-mounted chip  
R=100Ω  
R=200Ω  
0
10  
10.5  
11  
11.5  
12  
12.5  
13  
13.5  
14  
14.5  
15  
V1 Voltage [V]  
74/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
REVISION HISTORY  
Page  
Document No.  
Date  
April. 13, 2007  
Description  
Previous Current  
Edition  
Edition  
FEDL9058E-01  
Final edition 1  
75/76  
FEDL9058E-01  
LAPIS Semiconductor  
ML9058E  
NOTICE  
No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS  
Semiconductor Co., Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing LAPIS Semiconductor's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be  
obtained from LAPIS Semiconductor upon request.  
Examples of application circuits, circuit constants and any other information contained herein illustrate the  
standard usage and operations of the Products. The peripheral conditions must be taken into account when  
designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document. However, should  
you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor  
shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and examples of  
application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any  
license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties.  
LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such  
technical information.  
The Products specified in this document are intended to be used with general-use electronic equipment or  
devices (such as audio visual equipment, office-automation equipment, communication devices, electronic  
appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard against the  
possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such  
as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility  
whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the  
instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or system which  
requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat  
to human life or create a risk of human injury (such as a medical instrument, transportation equipment,  
aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS  
Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special  
purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales  
representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may be controlled  
under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit  
under the Law.  
Copyright 2007 - 2011 LAPIS Semiconductor Co., Ltd.  
.
76/76  

相关型号:

ML9059

132-Channel LCD Driver with Built-in RAM for LCD Dot Matrix Displays
OKI

ML9059E

132-Channel LCD Driver with Built-in RAM for LCD Dot Matrix Displays
ETC

ML9060

1/2 DUTY, 160-OUTPUT STATIC LCD DRIVER
OKI

ML9060DVWA

暂无描述
OKI

ML9077

Power-saving solar power supply control LSI
ETC

ML9078-001

LSI for power-saving solar power supply control
ETC

ML9090-01-

LCD Driver with Key Scanner and RAM
OKI

ML9090-02

LCD Driver with Key Scanner and RAM
OKI

ML9090-02GA

Liquid Crystal Driver, 98-Segment, PQFP128, 14 X 20 MM, 0.50 MM PITCH, PLASTIC, QFP-128
OKI

ML9090A

LCD Driver with Key Scanner and RAM
OKI

ML9090A-01GA

LCD Driver with Key Scanner and RAM
OKI

ML9090A-02GA

LCD Driver with Key Scanner and RAM
OKI