ML62Q2502 (新产品) [ROHM]

ML62Q2500系列是内置16bit CPU nX-U16/100、并集成了程序存储器(Flash存储器)、数据存储器(RAM)、Date Flash(擦除单位128Byte,写入单位1Byte)、乘除法运算器、CRC运算器、时钟发生电路、定时器、通用端口、UART、同步串行端口、I2C总线(主/从)、电压电平检测功能(VLS)、高速逐次比较型12位A/D转换器、安全功能(IEC60730/60335 Class B)等丰富外围功能的高性能CMOS 16bit 微控制器。16Bit CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q2500系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的Flash存储器写入。;
ML62Q2502 (新产品)
型号: ML62Q2502 (新产品)
厂家: ROHM    ROHM
描述:

ML62Q2500系列是内置16bit CPU nX-U16/100、并集成了程序存储器(Flash存储器)、数据存储器(RAM)、Date Flash(擦除单位128Byte,写入单位1Byte)、乘除法运算器、CRC运算器、时钟发生电路、定时器、通用端口、UART、同步串行端口、I2C总线(主/从)、电压电平检测功能(VLS)、高速逐次比较型12位A/D转换器、安全功能(IEC60730/60335 Class B)等丰富外围功能的高性能CMOS 16bit 微控制器。16Bit CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q2500系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的Flash存储器写入。

时钟 生产线 控制器 微控制器 存储 转换器
文件: 总40页 (文件大小:1754K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEDL62Q2500-03  
Issue Date: Feb 2, 2023  
ML62Q2500 Group  
16-bit micro controller  
GENERAL DESCRIPTION  
ML62Q2500 Group is a high performance CMOS 16-bit microcontroller equipped with an 16-bit CPU  
nX-U16/100 and integrated with program memory(Flash memory), data memory(RAM), data Flash (Erase  
unit:128byte, Write unit:1byte) and rich peripheral functions such as the multiplier/divider, CRC generator, Clock  
generator, Timer, General Purpose Ports, UART, Synchronous serial port, I2C bus interface unit(Master, Slave),  
Voltage Level Supervisor(VLS), Successive approximation type 12bit A/D converter, Safety function  
(IEC60730/60335 Class B) and so on.  
The CPU nX-U16/100 is capable of efficient instruction execution in 1-instruction 1-clock mode by pipeline  
architecture parallel processing.  
The built-in on-chip debug function enables debugging and programming the software. Also, ISP (In-System  
Programming) function supports the Flash programming in production line.  
The ML62Q2500 Group has products as show in the Table1 with multiple package and memory size  
combinations.  
Table 1 Product List  
32pin  
TQFP32  
WQFN32  
40pin  
WQFN40  
48pin  
TQFP48  
WQFN48  
Program  
memory  
Data memory  
(RAM)  
Data  
Flash  
128Kbyte  
64Kbyte  
ML62Q2504  
ML62Q2502  
ML62Q2524  
ML62Q2522  
ML62Q2534  
ML62Q2532  
8Kbyte  
4Kbyte  
Please see the last 2 pages “Notes for product usage” and “Notes” in this document on use with this product.  
1 / 40  
FEDL62Q2500-03  
ML62Q2500 Group  
FEATURES  
CPU  
– 16-bit RISC CPU : nX-U16/100 (A35 core)  
– Instruction system : 16-bit length instructions  
– Instruction set  
: Transfer, arithmetic operations, comparison, logic operations, multiplication/division,  
bit manipulations, bit logic operations, jump, conditional jump, call return stack  
manipulations, arithmetic shift, and so on  
– Built-in On-chip debug function (connect to the Lapis Technolofy on-chip debug emulator)  
– Minimum instruction execution time : 1 count of system clock  
Approximately 30.5 μs/62.5ns/41.6ns (at 32.768 kHz/16 MHz/24MHz system clock)  
Coprocessor for multiplication and division  
– Signed or Unsigned is selectable  
Parameter  
Multiplication  
Division  
Expression  
16bit × 16bit  
32bit ÷ 16bit  
32bit ÷ 32bit  
Operation time [cycle]  
4
8
16  
Multiply-accumulate  
(non-saturating, non-saturating)  
16bit × 16bit + 32bit  
4
Operating voltage and temperature  
– Operating voltage  
: VDD = 1.8 to 5.5 V  
– Operating temperature : -40 °C to +105 °C  
Flash memory  
Parameter  
Erase/Write count  
Write unit  
Program memory area  
Data Flash memory area  
10,000 cycles  
100 cycles  
32bit(4byte)  
8bit(1byte)  
Erase unit  
Erase/Write temperature  
16Kbyte/1Kbyte  
0 °C to +40 °C  
all area/128byte  
-40 °C to +85 °C  
– Background Operation (CPU can work while erasing and rewriting to the Data Flash memory area.)  
– The built-in on-chip debug function and ISP (In-System Programming) function enable Flash  
programming  
This product uses Super Flash® technology licensed from Silicon Storage Technology, Inc.  
Super Flash® is a registered trademark of Silicon Storage Technology, Inc.  
Data RAM area  
– Rewrite unit: 8bit/16bit (1byte/2byte)  
– Parity check function is available (interrupt or reset is generatable at Parity error)  
Clock generation circuit  
– Low-speed clock (LSCLK)  
Internal low-speed RC oscillation (RC32K)  
External low-speed clock input (EXT32K)  
: Approximately 32.768 kHz  
: Approximately 32.768 kHz  
External low-speed crystal oscillation (XT32K) : Approximately 32.768 kHz,  
4 selectable crystal oscillation mode  
(Tough, Normal, Low power mode, and Ultra low  
power mode)  
– High-speed clock (HSCLK)  
PLL oscillation: 3 selectable oscillation frequency (24MHz ,16MHz and 1MHz) by code option  
– Watch Dog Timer (WDT): built-in independent clock for WDT (RC1K: Approximately 1.024kHz)  
– High-speed time base clock (HTBCLK)  
Generates a clock with a period of 2 to 8 times that of HSCLK as a peripheral clock.  
Reset  
– System Resets by reset input pin, Power-On Reset, voltage level supervisor (VLS), WDT overflow, WDT  
invalid clear, RAM parity error, and PC error (unused ROM area access (instruction access) )  
– Software reset by BRK instruction (reset CPU only)  
– Reset the peripherals individually/collectively by software  
2/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Power management  
– Optimal power management with various standby modes  
– STOP/STOP-D mode(All clocks are stopped), HALT-D mode(clocks for System and part of the  
periferal block are stopped), HALT/HALT-H mode(clocks for System are stopped)  
– HALT-D mode is suitable for long term standby, HALT-H mode is suitable for short term Intermittent  
operation standby  
– Indivisual clock input controll to the peripheral blocks by software  
– High-speed clock frequency(HSCLK) is configurable (1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 of PLL clock, Max  
7steps)  
– Clock gear: High-speed system clock frequency is changeable dynamically  
(1/1, 1/2, 1/4, 1/8, 1/16, 1/32 of HSCLK, Max 6steps)  
Interrupt controller  
– Non-maskable interrupt source : 1 (Internal sources: WDT)  
– Maskable interrupt sources  
– Four step interrupt levels  
– External interrupt ports  
: 34 (included the external interrupt 8 sources)  
: 8 (selectable from max.24 pins) with sampling filter  
and edge(rise, fall, both) selection.  
General-purpose ports (GPIO)  
– I/O port : Max. 40 (Including pins for shared functions)  
– Input port: Max. 3 (Including one pin for shared on-chip debug and two pins for shared low speed crystal  
oscillation)  
– Carrier frequency output function (for IR communication)  
Watchdog timer (WDT) : 1 channel  
– Overflow period  
: 8selectable (7.815.631.362.512550020008000[ms])  
– Selectable window function (enable or disable): configurable clear enable period (50% or 75% of overflow  
period) with invalid clear. When disable, Interrupts the first overflow and resets the second overflow.  
When enable, reset occurs for the first overflow.  
– Selectable WDT operation : select Enable or Disable by code option  
– Selectable operation in HALT/HALT-H mode and HALT-D mode(Continue counting/Stop counting)  
– Readable WDT counter: WDT counter monitor function  
Low-speed Time base counter(LTBC) : 2 channels  
– Generate 8 frequency (1286432168421[Hz]) internal pulse signals by dividing the Low-speed  
clock (LSCLK)  
– 4 interrupts are generatable from 8 different frequencys internal pulse signals  
– One of internal pulse signals selected to interrupt can be output from general purpose port (TBCO)  
Functional timer : 2 channels  
– Various modes (Continuous, One shot, capture, PWM with the same period and different duties, and  
complementary PWM output with the dead time)  
– Event trigger (external terminal, 16bit timer, functional timer, LTBC, RC1K)  
– Selectable counter clock from various sources (divided by 1 to 8 of LSCLK, HSCLK, HTBCLK, external  
clock)  
16-bit General timers : 6 channels  
– Timer output (toggled by overflow)  
– Selectable counter clock from various sources (divided by 1 to 8 of LSCLK, HSCLK, HTBCLK, LTBC,  
RC1K, and external clock)  
– Timer X is shared with waiting for the stability of low-speed crystal oscillation  
Synchronous Serial Port : 2 channels (with FIFO: 1channel, without FIFO: 1channel)  
– FIFO: 4steps for each transmitting and receiving  
– Selectable from Master and Slave  
– Selectable from LSB first or MSB first  
– Selectable 8-bit length or 16-bit length  
3/40  
FEDL62Q2500-03  
ML62Q2500 Group  
UART (Full-duplex communication mode): 3 channels  
– Selectable from 5 to 8bit length, parity or no parity, odd parity or even parity, 1 stop bit or 2 stop bits,  
Positive logic or Negative logic, LSB first or MSB first  
– Sampling filter for receiving data and start bit  
– Built-in baud rate generator (HSCLK@16MHz: 4800bps to 920kbps, LSCLK: up to 2400bps)  
I2C bus : 2 channels  
– Select from Master mode or Slave mode: 1channel. Master mode only: 1channel  
– Standard mode (100 kbps), fast mode (400 kbps) and 1Mbps mode(1Mbps)  
– 7bit address format  
– Master mode: Handshake (Clock synchronization), 10bit slave address format is supported  
– Slave mode: Clock stretch function,  
Successive approximation type 12bit A/D converter (SA-ADC) : input 14 channels  
Conversion time: Min. 1.375μs / ch (When the VDD is higher than 2.7V and the conversion clock is 16MHz)  
– Reference voltages are selectable from VDD pin input voltage or External reference voltage (VREF pin)  
– dedicated result register for each channel  
– Continuous conversion, Trigger start, Interrupt determining by upper limit or lower limit threshold of  
conversion result  
Voltage Level Supervisor (VLS) : 1 channel  
– Threshold voltage: 15 selectable (from 1.85V to 4.00V)  
– Functional Voltage level detection reset (VLS reset) or Functional Voltage level detection interrupt (VLS0  
interrupt) is generatable  
– Equipped with single mode / with sampling filter / low consumption operation  
CRC (Cyclic Redundancy Check) generator  
– Generation equation: X16+X12+X5+1  
– Selectable from LSB first or MSB first  
– Built-in Automatic program memory CRC calculation mode in HALT mode  
Safety Function  
– Automatic switching to the internal low-speed RC oscillation in case the low-speed crystal oscillation  
stopped  
– RAM/SFR guard  
– Automatic program memory CRC calculation  
– RAM parity error detection  
– ROM unused area access reset (instruction access)  
– Clock mutual monitoring, WDT counter monitoring  
– SA-ADC test  
– Communication loop back test (UART, Synchronous serial port, I2C bus(master))  
– GPIO test  
Shipping package  
Body size (including lead)  
[mm × mm]  
Pin pitch  
[mm]  
Package  
Product name  
32 pin plastic TQFP  
48 pin plastic TQFP  
32 pin plastic WQFN  
40 pin plastic WQFN  
48 pin plastic WQFN  
7.0 × 7.0 (9.0 × 9.0)  
7.0 × 7.0 (9.0 × 9.0)  
5.0 × 5.0 ( - )  
6.0 × 6.0 ( - )  
7.0 × 7.0 ( - )  
0.80  
ML62Q2502/2504-xxxTB  
ML62Q2532/2534-xxxTB  
ML62Q2502/2504-xxxGD  
ML62Q2522/2524-xxxGD  
ML62Q2532/2534-xxxGD  
0.50  
0.50  
0.50  
0.50  
xxx: ROM code number, (NNN: ROM code is blank)  
4/40  
FEDL62Q2500-03  
ML62Q2500 Group  
How To Read The Part Number  
ML 62 Q 25 3 4 – xxx TB  
Package Type  
GD  
TB  
: WQFN  
: TQFP  
ROM Code Number  
NNN : Blank  
XXX  
: Custom Code Number  
Program Memory Size  
2
4
: 64KB  
: 128KB  
Pin Count  
0
2
3
: 32  
: 40  
: 48  
Group Name  
25  
: 2500 Group  
Program Memory Type  
Q
: Flash Memory  
CPU Type  
62  
: 16bit CPU nX-U16/100  
LAPIS Technology Logic Product  
Figure 1 Part Number  
5/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Main Function List  
Table 2 Main Function List  
Interrupt Timer  
Pin  
Communication Analog  
Part number  
ML62Q2502  
ML62Q2504  
ML62Q2522  
ML62Q2524  
ML62Q2532  
ML62Q2534  
32  
40  
48  
24 16  
32 19  
40 24  
3
1
1
3
8
1
26  
6
2
4
1
2
1
1
3
1
1
14  
1
*1: Shared with pins for crystal oscillation and debug input.  
6/40  
FEDL62Q2500-03  
ML62Q2500 Group  
BLOCK DIAGRAM  
CPUnX-U16/100)  
ECSR13  
DSR/CSR  
PC  
EPSW13  
ELR13  
LR  
Multiplier/Divider  
(Coprocessor)  
GREG  
0 15  
PSW  
EA  
Timing  
Controller  
ALU  
SP  
Program  
Memory  
FLASH)  
BUS  
Controller  
Instruction  
Decoder  
Instruction  
Register  
TEST1_N  
TEST0  
On-Chip ICE /  
ISP  
INT  
SCKF0  
SDIF0  
SDOF0  
SSNF0  
VDD  
VSS  
RAM  
Power  
Circuit  
SSIO  
Unit  
SCLK0  
SIN0  
Data FLASH  
VDDL  
SOUT0  
FLASH  
Controller  
Reset  
Function  
RESET_N  
INT  
RXD0  
TXD0  
RXD1  
TXD1  
RXD2  
TXD2  
UART  
Unit  
Interrupt  
INT  
Clock  
Generation  
Circuit  
LCKO  
HCKO  
INT  
INT  
WDT  
VLS  
INT  
SDAU0  
SCLU0  
Low-speed  
RC  
Oscillation  
I2C Bus  
Unit  
SDAM0  
SCLM0  
RC1K  
Oscillation  
INT  
INT  
CRC  
Generator  
16-bit  
Timer  
TMOn  
Low-speed  
Crystal  
Oscillation  
XT0  
XT1  
Functional  
Timer  
FTOn  
FTOnN  
INT  
INT  
INT  
Safety  
Function  
Low Speed  
Time Base  
Counter  
INT  
TBCO  
VREF  
AINn  
SA-ADC  
P02~P73  
*1  
GPIO  
(External Interrupt)  
P00  
PI0,PI1 *2  
EXI0-7  
*1 : Not available as the input port when connecting to the on-chip debug emulator.  
*2 : Not available as the input port when connecting to the crystal resonator.  
Figure 2 Block Diagram  
7/40  
FEDL62Q2500-03  
ML62Q2500 Group  
PIN CONFIGURATION  
36 35 34 33 32 31 30 29 28 27 26 25  
VREF FTO0 RXD0 SCLK0 EXI4 P30  
AIN8 FTO0N TXD0 SOUT0 EXI5 P31  
AIN9 FTO1 RXD1 SIN0 EXI6 P32  
AIN10 FTO1N TXD1 EXI7 P33  
EXI0 P34  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P13 SSNF0 FTO1N TMOX AIN13  
P12 EXI7 SDIF0 FTO1 TMO4  
P11 EXI6 SDOF0 TXD2 FTO0N TMO3 LCKO *  
P10 EXI5 SCKF0 RXD2 FTO0 TMO2 HCKO  
P07 EXI4 TXD1 HCKO *  
P06 EXI3 SIN0 RXD1 TMO4  
P05 EXI2 SOUT0 TXD0 TMO3  
P04 EXI1 SCLK0 RXD0 TMO2  
P57 FTO1N  
ML62Q253x  
EXI1 P35  
TQFP48  
(Top View)  
EXI2 P36  
EXI3 P37  
AIN11 TMO2 FTO0 SCLU0 P70  
AIN12 LCKO TMO3 FTO0N SDAU0 P71  
TMO4 FTO1 SCLM0 RXD2 EXI0 P72  
* TBCO TMOX FTO1N SDAM0 TXD2 EXI3 P73  
P56 FTO1  
P55 FTO0N  
P54 FTO0  
1
2
3
4
5
6
7
8
9
10 11 12  
*: Supported Carrier frequency output  
Fig.3-1 48 pin TQFP  
8/40  
FEDL62Q2500-03  
ML62Q2500 Group  
36 35 34 33 32 31 30 29 28 27 26 25  
VREF FTO0 RXD0 SCLK0 EXI4 P30 37  
AIN8 FTO0N TXD0 SOUT0 EXI5 P31 38  
AIN9 FTO1 RXD1 SIN0 EXI6 P32 39  
AIN10 FTO1N TXD1 EXI7 P33 40  
EXI0 P34 41  
24 P13 SSNF0 FTO1N TMOX AIN13  
23 P12 EXI7 SDIF0 FTO1 TMO4  
22 P11 EXI6 SDOF0 TXD2 FTO0N TMO3 LCKO *  
21 P10 EXI5 SCKF0 RXD2 FTO0 TMO2 HCKO  
20 P07 EXI4 TXD1 HCKO *  
19 P06 EXI3 SIN0 RXD1 TMO4  
18 P05 EXI2 SOUT0 TXD0 TMO3  
17 P04 EXI1 SCLK0 RXD0 TMO2  
16 P57 FTO1N  
ML62Q253x  
EXI1 P35 42  
WQFN48  
(Top View)  
EXI2 P36 43  
EXI3 P37 44  
AIN11 TMO2 FTO0 SCLU0 P70 45  
AIN12 LCKO TMO3 FTO0N SDAU0 P71 46  
TMO4 FTO1 SCLM0 RXD2 EXI0 P72 47  
* TBCO TMOX FTO1N SDAM0 TXD2 EXI3 P73 48  
15 P56 FTO1  
14 P55 FTO0N  
13 P54 FTO0  
1
2
3
4
5
6
7
8
9
10 11 12  
DIE PAD = NC  
*:SupportedCarrierfrequency output  
Fig.3-2 48 pin WQFN  
9/40  
FEDL62Q2500-03  
ML62Q2500 Group  
30 29 28 27 26 25 24 23 22 21  
AIN8 FTO0N TXD0 SOUT0 EXI5 P31 31  
AIN9 FTO1 RXD1 SIN0 EXI6 P32 32  
AIN10 FTO1N TXD1 EXI7 P33 33  
EXI0 P34 34  
20 P13 SSNF0 FTO1N TMOX AIN13  
19 P12 EXI7 SDIF0 FTO1 TMO4  
18 P11 EXI6 SDOF0 TXD2 FTO0N TMO3 LCKO *  
17 P10 EXI5 SCKF0 RXD2 FTO0 TMO2 HCKO  
16 P07 EXI4 TXD1 HCKO *  
ML62Q252x  
EXI1 P35 35  
WQFN40  
(Top View)  
EXI2 P36 36  
15 P06 EXI3 SIN0 RXD1 TMO4  
14 P05 EXI2 SOUT0 TXD0 TMO3  
13 P04 EXI1 SCLK0 RXD0 TMO2  
12 P55 FTO0N  
AIN11 TMO2 FTO0 SCLU0 P70 37  
AIN12 LCKO TMO3 FTO0N SDAU0 P71 38  
TMO4 FTO1 SCLM0 RXD2 EXI0 P72 39  
* TBCO TMOX FTO1N SDAM0 TXD2 EXI3 P73 40  
11 P54 FTO0  
1
2
3
4
5
6
7
8
9
10  
DIE PAD = NC  
*: Supported Carrier frequency output  
Fig.3-3 40 pin WQFN  
10/40  
FEDL62Q2500-03  
ML62Q2500 Group  
24 23 22 21 20 19 18 17  
VREF FTO0 RXD0 SCLK0 EXI4 P30  
AIN8 FTO0N TXD0 SOUT0 EXI5 P31  
AIN9 FTO1 RXD1 SIN0 EXI6 P32  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
P13 SSNF0 FTO1N TMOX AIN13  
P12 EXI7 SDIF0 FTO1 TMO4  
P11 EXI6 SDOF0 TXD2 FTO0N TMO3 LCKO *  
P10 EXI5 SCKF0 RXD2 FTO0 TMO2 HCKO  
P07 EXI4 TXD1 HCKO *  
ML62Q250x  
AIN10 FTO1N TXD1 EXI7 P33  
TQFP32  
(Top View)  
AIN11 TMO2 FTO0 SCLU0 P70  
AIN12 LCKO TMO3 FTO0N SDAU0 P71  
TMO4 FTO1 SCLM0 RXD2 EXI0 P72  
* TBCO TMOX FTO1N SDAM0 TXD2 EXI3 P73  
P06 EXI3 SIN0 RXD1 TMO4  
P05 EXI2 SOUT0 TXD0 TMO3  
P04 EXI1 SCLK0 RXD0 TMO2  
1
2
3
4
5
6
7
8
*: Supported Carrier frequency output  
Fig.3-4 32 pin TQFP  
11/40  
FEDL62Q2500-03  
ML62Q2500 Group  
24 23 22 21 20 19 18 17  
VREF FTO0 RXD0 SCLK0 EXI4 P30 25  
AIN8 FTO0N TXD0 SOUT0 EXI5 P31 26  
AIN9 FTO1 RXD1 SIN0 EXI6 P32 27  
16 P13 SSNF0 FTO1N TMOX AIN13  
15 P12 EXI7 SDIF0 FTO1 TMO4  
14 P11 EXI6 SDOF0 TXD2 FTO0N TMO3 LCKO *  
13 P10 EXI5 SCKF0 RXD2 FTO0 TMO2 HCKO  
12 P07 EXI4 TXD1 HCKO *  
ML62Q250x  
AIN10 FTO1N TXD1 EXI7 P33 28  
WQFN32  
AIN11 TMO2 FTO0 SCLU0 P70 29  
(Top View)  
AIN12 LCKO TMO3 FTO0N SDAU0 P71 30  
TMO4 FTO1 SCLM0 RXD2 EXI0 P72 31  
* TBCO TMOX FTO1N SDAM0 TXD2 EXI3 P73 32  
11 P06 EXI3 SIN0 RXD1 TMO4  
10 P05 EXI2 SOUT0 TXD0 TMO3  
9
P04 EXI1 SCLK0 RXD0 TMO2  
1
2
3
4
5
6
7
8
DIE PAD = NC  
*: Supported Carrier frequency output  
Fig.3-5 32 pin WQFN  
12/40  
FEDL62Q2500-03  
ML62Q2500 Group  
PIN LIST  
Table 3 Pin List  
1st func. 1st func. 2nd func. 3rd func. 4th func. 5th func. 6th func. 7th func.  
Pin No.  
Career  
frequency  
output  
Pin name  
CLKOUT/  
LTBC**  
GPI/EXI  
ADC  
SSIO*/** UART  
I2C*  
FTM**  
Timer  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
XT0  
XT1  
PI0/EXI1  
PI1  
EXI0  
EXI1  
EXI2  
EXI3  
EXI4  
EXI5  
EXI6  
EXI7  
RXD1  
TXD1  
VDD  
VSS  
VDDL  
RESET_N  
TEST1_N  
P00/TEST0  
P02  
9
10 10  
13 17  
P03  
P04  
P05  
P06  
P07  
P10  
P11  
P12  
P13  
P17  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
P52  
P53  
P54  
P55  
P56  
P57  
LCKO  
SCLK0-0 RXD0  
SOUT0-0 TXD0  
SIN0-0  
TMO2  
TMO3  
TMO4  
TMO2  
TMO3  
TMO4  
TMOX  
10 14 18  
11 15 19  
12 16 20  
13 17 21  
14 18 22  
15 19 23  
16 20 24  
RXD1  
TXD1  
HCKO  
HCKO  
LCKO  
TBCO  
TBCO  
LCKO  
TBCO  
SCKF0-0 RXD2  
SDOF0-0 TXD2  
SDIF0-0  
FTO0  
FTO0N  
FTO1  
FTO1N  
AIN13 SSNF0-0  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
11  
12  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
VREF  
AIN8  
AIN9  
AIN10  
AIN11  
AIN12  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
DIE  
25  
26  
27  
28  
29  
30  
31  
32  
33  
37  
38  
39  
40  
41  
42  
43  
44  
11  
12  
13  
14  
15  
16  
34  
35  
36  
45  
46  
47  
48  
DIE  
SCKF0-1 RXD0  
SDOF0-1 TXD0  
FTO0  
FTO0N  
SDIF0-1  
SSNF0-1  
SCLK0-1  
SOUT0-1  
SIN0-1  
SCLK0-2 RXD0  
SOUT0-2 TXD0  
SIN0-2  
SCLM0-0 FTO1  
SDAM0-0 FTO1N  
SCLU0-0  
SDAU0-0  
EXI2  
EXI4  
EXI5  
EXI6  
EXI7  
EXI0  
EXI1  
EXI2  
EXI3  
EXI4  
EXI5  
EXI6  
EXI7  
FTO0  
FTO0N  
FTO1  
FTO1N  
RXD1  
TXD1  
RXD0  
TXD0  
FTO0  
FTO0N  
FTO1  
FTO1N  
P60  
P61  
P62  
P70  
P71  
P72  
P73  
NC  
TMO2  
TMO3  
TMO4  
TMO2  
TMO3  
TMO4  
TMOX  
37  
38  
39  
40  
DIE  
SCLU0-1 FTO0  
SDAU0-1 FTO0N  
EXI0  
EXI3  
RXD2 SCLM0-1 FTO1  
TXD2 SDAM0-1 FTO1N  
*: The SSIO and I2C use with a combination of the same suffix pins.  
**: Assign each function; SCLK0/SCKF0/FTOn/FTOnN/HCKO, to only one LSI pin each.  
13/40  
FEDL62Q2500-03  
ML62Q2500 Group  
PIN DESCRIPTION  
“I/O” Field in the below table define the pin type (“-“ : power supply pin, “I” : Input pin, “O” : Out put pin, “I/O” bi-directional pin)  
Table 4 Pin Description  
Functional pin  
Function  
Power  
LSI pin name I/O  
Description  
name  
Negative power supply pin (-)  
Define the potential of this terminal as VSS  
Positive power supply pin (+).  
Connect a capacitor CV (more than 1µF) between this pin and  
VSS. Define the potential of this terminal as VDD.  
Power supply for internal logic (internal regulator’s output).  
Connect a capacitor CL (1μF) between this pin and VSS.  
Input/output for testing  
VSS  
VDD  
VDDL  
P00/  
TEST0  
This pin which is shared with P00 is used as on-chip debug  
interface and ISP function and is initialized as pull-up input  
mode by the system reset.  
TEST0  
TEST1_N  
RESET_N  
PI0, PI1  
I/O  
Debug  
ISP  
Input for testing  
TEST1_N  
RESET_N  
XT0, XT1  
I
I
I
This pin is used as on-chip debug interface and ISP function and  
is initialized as pull-up input mode by the system reset.  
Reset input.  
Applying “L” level shifts the MCU in system reset mode.  
Applying “H” level shifts the CPU in program running mode.  
No pull-up resistor is installed.  
Reset  
General purpose input.  
- High-impedance (initial value)  
- Input without Pull-up  
General input port  
(GPI)  
General purpose input.  
- Input with Pull-up (initial value)  
- Input without Pull-up  
Not available as general inputs when using the on-chip debug  
interface or ISP function.  
P00/  
TEST0  
P00  
I
P02 ~ P07  
P10 ~ P17  
P20 ~ P27  
P30 ~ P37  
P52 ~ P57  
P60 ~ P62  
P70 ~ P73  
P02 ~ P07  
P10 ~ P17  
P20 ~ P27  
P30 ~ P37  
P52 ~ P57  
P60 ~ P62  
P70 ~ P73  
General purpose input/output  
- High-impedance (initial value)  
- Input with Pull-up  
- Input without Pull-up  
- CMOS output  
General port  
(GPIO)  
I/O  
- N channel (N-ch) open drain output  
Connect to the Low speed crystal resonator  
Connect 32.768kHz crystal resonator and connect capacitors  
between the pin and VSS. When inputting a square wave,  
Connect to XT1 pin  
XT0  
XT1  
XT0  
XT1  
I
Clock Input  
I/O  
HCKO  
LCKO  
TBCO  
P07 P10  
P03 P11 P71  
P17 P27 P73  
P07 P11  
P21 P73  
High-speed clock output.  
Low-speed clock output.  
Low-speed time base counter output.  
Clock Output  
(7th func.)  
O
O
Career frequency  
output  
Career frequency output  
EXI0  
EXI1  
EXI2  
EXI3  
EXI4  
EXI5  
EXI6  
EXI7  
P00 P72 P34  
External Maskable Interrupt 0 Input  
External Maskable Interrupt 1 Input  
External Maskable Interrupt 2 Input  
External Maskable Interrupt 3 Input  
External Maskable Interrupt 4 Input  
External Maskable Interrupt 5 Input  
External Maskable Interrupt 6 Input  
External Maskable Interrupt 7 Input  
P04 XT0 P35  
P05 P27 P36  
P06 P73 P37  
P07 P30 P52  
P10 P31 P53  
P11 P32 P60  
P12 P33 P61  
External Interrupt  
(1st func.)  
I
P04 P10  
P60 P70  
TMO2  
TMO3  
TMO4  
TMOX  
16bit General Timer 2 output  
16bit General Timer 3 output  
16bit General Timer 4 output  
16bit General Timer X output  
P05 P11  
P61 P71  
16bit General  
Timer  
O
P06 P12  
P62 P72  
(6th func.)  
P13 P73  
14/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Functional pin  
name  
Function  
LSI pin name I/O  
Description  
Functional Timer0 P output  
P10 P20 P30  
P54 P70  
P11 P21 P31  
FTO0  
FTO0N  
FTO1  
Functional Timer0 N output  
Functional Timer1 P output  
Functional Timer1 N output  
P55 P71  
P12 P22 P32  
Functional Timer  
(5th func.)  
O
P56 P72  
P13 P23 P33  
P57 P73  
FTO1N  
SCLU0  
SDAU0  
SCLM0  
SDAM0  
P24 P70  
I2C Unit0 Clock input/output  
I2C Unit0 Data input/output  
I2C Master0 Clock input/output  
I2C Master0 Data input/output  
I2C Bus  
P25 P71  
I/O  
(4th func.)  
P22 P72  
P23 P73  
P04 P20  
I
RXD0  
TXD0  
RXD1  
TXD1  
RXD2  
TXD2  
UART0 received data input  
P30 P52  
P05 P21  
P31 P53  
O
UART0 transmission data output  
UART1 received data input  
P02 P06  
P32  
I
UART  
(3rd func.)  
P03 P07  
P33  
O
UART1 transmission data output  
UART2 received data input  
P10 P72  
P11 P73  
I
O
UART2 transmission data output  
SCKF0  
SDIF0  
SDOF0  
SSNF0  
SCLK1  
SIN1  
P10 P20  
P12 P22  
P11 P21  
P13 P23  
I/O  
I
Synchronous serial0 (with FIFO) clock input/output  
Synchronous serial0 (with FIFO) data input  
Synchronous serial0 (with FIFO) data output  
Synchronous serial0 (with FIFO) slave select input/output  
Synchronous serial0 clock input/output  
Synchronous serial0 data input  
O
Synchronous  
Serial Port  
(2nd func.)  
I/O  
P04 P24 P30 I/O  
P06 P26 P32  
P05 P25 P31  
I
SOUT1  
O
Synchronous serial0 data output  
SA-ADC external reference voltage input  
Define the potential of reference voltage for SA-ADC as VREF  
VREF  
P30  
I
Successive  
approximation  
type A/D converter  
(SA-ADC)  
P13  
P27-P20  
P33-P31  
P71-P70  
AIN0~AIN13  
I
SA-ADC channel 0 to 13 analog input  
(1st func.)  
15/40  
FEDL62Q2500-03  
ML62Q2500 Group  
TERMINATION OF UNUSED PINS  
Table 5 shows the processing of unused pins.  
Table 5 Termination of unused pins  
pin termination  
Pin  
NC  
Open  
RESET_N  
TEST1_N  
P00/TEST0  
XT0, XT1  
Connect to VDD  
Connect to VDD  
Open the pin with the initial condition of pulled-up input mode  
P02 ~ P07  
P10 ~ P17  
P20 ~ P27  
P30 ~ P37  
P52 ~ P57  
P60 ~ P62  
P70 ~ P73  
Open the pins with the initial condition of Hi-impedance mode.  
[Note]  
Terminate unused input pins according to the table 5 in order to avoid unexpected through-current in the  
pins.  
16/40  
FEDL62Q2500-03  
ML62Q2500 Group  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings  
(VSS = 0V)  
Parameter  
Power supply voltage 1  
Power supply voltage 2  
Input voltage  
Symbol  
VDD  
Condition  
Ta = +25°C  
Ta = +25°C  
Ta = +25°C  
Ta = +25°C  
Rating  
Unit  
V
-0.3 to +6.5  
-0.3 to +2.0  
-0.3 to VDD+0.3*1  
-0.3 to VDD+0.3*1  
-40*2  
VDDL  
VIN  
V
V
Output voltage1  
VOUT1  
V
1pin  
Total  
1pin  
Total  
“H” level output current  
“L” level output current  
IOUTH  
IOUTL  
mA  
mA  
Ta = +25°C  
Ta = +25°C  
Ta = +25°C  
-180*2  
+40  
+180  
Power dissipation  
PD  
1
W
Storage temperature  
TSTG  
-55 to +150*3  
°C  
*1: 6.5V or lower  
*2: The current flowing out the LSI through the pin is described in the negative number.  
The applicable maximum current is the absolute value.  
For example, -1mA means the maximum current 1mA flows out the LSI through the pin.  
*3: Please observe a storage conditions shown in the document “Board Mounting (soldering)” about the storage conditions until  
implementation.  
[Note]  
Stresses above the absolute maximum ratings listed in the above table may cause permanent damage to  
the device.  
These are stress ratings only and functional operation of the device at these conditions is not implied.  
Recommended Operating Conditions  
(VSS = 0V)  
Unit  
Parameter  
Symbol  
Ta  
Condition  
Range  
Operating temperature (Ambient)  
Operating temperature (Chip-Junction)  
Operating voltage 1  
-40 to +105  
-40 to +115  
1.8 to 5.5  
30k to 25M  
1.0 ±30%  
°C  
°C  
V
Tj  
VDD  
fOP  
VDD = 1.8 to 5.5V  
Operating frequency (CPU)  
VDDL pin external capacitance  
Hz  
μF  
CL  
17/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Thermal characteristics  
The maximum chip-junction temperature, Tjmax, may be calculated using the following equation.  
ꢁ ꢂꢃꢄ  
= ꢀ  
+ ꢆ ꢂꢃꢄ × ꢇ  
ꢃ ꢂꢃꢄ ꢁꢃ  
ꢃ ꢂꢃꢄ  
: maximum ambient temperature  
ꢆ ꢂꢃꢄ LSI maximum power dissipation  
: Package junction to ambient thermal resistance  
ꢁꢃ  
Design a Mounting board by considering heat radiation such as power dissipation and ambient temperature to  
satisfy the recommended conditions.  
The following table shows the each package’s thermal resistance for thermal design reference estimated by  
simulation based on the PCB (printed circuit board) conditions define as a below.  
Value  
Parameter  
Symbol  
Package type  
Unit  
L1  
L2  
WQFN32  
TQFP32  
WQFN40  
WQFN48  
TQFP48  
50.6  
67.6  
32.8  
31.1  
60.2  
43.5  
61.8  
28.9  
27.4  
56.9  
Thermal  
resistance  
θja  
°C/W  
PCB conditions:  
PCB name  
PCB size (L / W / T)  
Number of layer  
Wiring density  
L1  
L2  
Unit  
mm  
layer  
114.3 / 76.2 / 1.6  
1
114.3 / 76.2 / 1.6  
2
60% (top layer)  
60% (top and bottom layer)  
Wind condition  
No wind (0m/s)  
18/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Current Consumption  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Condition  
Max.  
Parameter  
Min.  
Typ.*2  
Operating mode  
circuit state *1  
Tj  
+95oC  
Tj≤  
+115oC  
IDD0  
IDD1  
STOP-D  
STOP  
All clocks are stopped.  
All clocks are stopped.  
0.33  
0.4  
25  
30  
55  
70  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
mA  
RC32K is oscillating.  
XT32K/PLL are stopped.  
IDD2-0R  
IDD2-0X  
IDD2-1R  
IDD3  
HALT-D  
HALT-D  
HALT  
0.6  
28  
60  
XT32K is oscillating with  
LP mode, without  
noise-filter.  
RC32K/PLL are stopped.  
1.0  
30  
65  
RC32K is oscillating.  
XT32K/PLL are stopped.  
0.9  
30  
70  
1
CPU running in  
wait-mode  
SYSCLK=32.768kHz  
RC32K is oscillating.  
XT32K/PLL are stopped.  
10  
45  
75  
PLL is oscillating as  
PLL1M mode.  
HSCLK = 1MHz  
IDD4-H1  
IDD4-H16  
IDD5-H16  
IDD5-H24  
0.22  
0.32  
2.4  
0.33  
0.48  
3.24  
4.4  
0.35  
0.5  
3.3  
4.5  
CPU running in  
wait-mode  
SYSCLK=1MHz  
PLL is oscillating as  
PLL16M mode.  
HSCLK = 1MHz  
CPU running in  
wait-mode  
SYSCLK=16MHz  
PLL is oscillating as  
PLL16M mode.  
HSCLK = 16MHz  
CPU running in  
wait-mode  
PLL is oscillating as  
PLL24M mode.  
3.5  
SYSCLK=24MHz  
HSCLK = 24MHz  
*1: LTBC0 and WDT is operating except IDD0/1, and all clocks peripheral circuits are stopped by block control. LSCLK1  
is stopped. The code option VLMD is "1".  
*2: On the condition of VDD=3.0V, Ta=+25°C  
19/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Low speed Crystal Oscillation  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Parameter  
Crystal oscillation frequency *1 *2  
Symbol  
fXTL  
Condition  
Min.  
Typ.  
32.768  
Max.  
Unit  
kHz  
s
Crystal oscillation start time  
TXTL  
2
*1: The oscillation frequency is determined by the oscillation circuit, crystal resonator and the external capacitance (CGL/CDL). As  
those parameters changes depending the crystal resonator, it requires evaluation on the actual PCB circuit for matching. Ask  
crystal resonator makers for matching and confirm the oscillation characteristics.  
*2: The quality of oscillation characteristics might be lost, depending on material of PCB, condition of wiring capacitance or  
parasitic capacitance on the external circuits. Note for designing the external circuit.  
- Make the wires on the external circuit as short as possible.  
- Place the crystal resonator and oscillation circuit as close to the MCU as possible and make the wires between the external  
capacitance and crystal resonator as short as possible.  
- Ensure no signal line flowing big current runs near the oscillation circuit.  
- Ensure no signal line runs under and near the oscillation circuit.  
- Make ground of external capacitance the same as MCU ground VSS pin and connect them to the ground that has low  
variation of current and voltage.  
- The quality of oscillation characteristics might be lost depending on operating environment due to moisture absorption of  
PCB and condensation of PCB surface, recommended to have measures such as covering the oscillation circuit with  
resin.  
Low speed Crystal Oscillation external circuit example  
XT0  
XT1  
VSS  
Crystal resonator  
(32.768kHz)  
CGL  
CDL  
External Clock Input  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Parameter  
Symbol  
fEXCK  
Condition  
Min.  
Typ.  
Max.  
Unit  
Typ.  
-1.0%  
Typ.  
+1.0%  
Input Frequency  
32.768  
kHz  
Input pulse width  
tEXCKW  
14.5  
μs  
20/40  
FEDL62Q2500-03  
ML62Q2500 Group  
On-chip Oscillator  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Measuring  
circuit  
Parameter  
Symbol  
fRCL1  
Condition  
Min.  
Typ.  
Max.  
Unit  
Typ.  
-1.5%  
Typ.  
+1.5%  
Ta= -40 to +85°C  
except HALT-D mode  
Typ.  
-2.0%  
Typ.  
+2.0%  
Ta= -40 to +105°C  
except HALT-D mode  
RC32K frequency  
32.768  
kHz  
Typ.  
-10%  
Typ.  
+10%  
fRCL2  
HALT-D mode  
Typ.  
-1.5%  
Typ.  
+1.5%  
Ta= -40 to +85°C  
24.002560  
16.007168  
0.999424  
with RC32K  
PLL oscillation frequency  
PLL oscillation start time  
fPLL1  
MHz  
ms  
Typ.  
-2.0%  
Typ.  
+2.0%  
Ta= -40 to +105°C  
with RC32K  
1
2
wake-up from HALT-H  
VLMD=0  
no temperature variation  
between before/after  
HALT-H  
TPLL  
300  
μs  
Typ.  
-15%  
Typ.  
+15%  
Ta= -20 to +85°C  
Ta= -40 to +105°C  
RC1K frequency  
(for WDT)  
fRC1K  
1.024  
kHz  
Typ.  
-25%  
Typ.  
+25%  
*: The frequency is the factory default specification. It may vary depending on the board mounting.  
21/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Input / Output pin 1  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Measur  
Parameter  
Symbol  
VOH1  
Condition  
Min.  
Typ.  
Max.  
Unit  
ing  
circuit  
IOH1=-10mA  
VDD4.5V  
IOH1=-1mA  
VDD1.8V  
IOL1=+10mA  
VDD4.5V  
IOL1=+1mA  
VDD1.8V  
VDD  
-1.5  
VDD  
-0.5  
Output voltage1  
“H”/“L” level  
(all input/output port)  
1.5  
0.5  
VOL1  
IOL2=+15mA  
VDD4.5V  
0.7  
0.5  
0.4  
0.4  
V
2
IOL2=+8mA  
VDD3.0V  
Output voltage2  
“L” level  
(all input/output port  
except P00/TEST0)  
When N-ch open  
drain output mode  
is selected  
VOL2  
IOL2=+3mA  
VDD2.0V  
IOL2=+2mA  
VDD1.8V  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Measuri  
ng circuit  
Parameter  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
IIH1  
IIL1  
VIH1=VDD  
VIL1=VSS  
1
Input current1  
(RESET_N)  
-1*1  
μA  
kΩ  
μA  
kΩ  
IIL2  
VIL2=VSS (pull-up mode) *2  
VIL2=VSS (pull-up mode) *2  
VIH2=VDD (High impedance mode)  
VIL2=VSS (High impedance mode)  
VIL1=VSS (pull-up mode) *2  
VIL1= VSS (pull-up mode) *2  
VIH1=VDD (High impedance mode)  
VIL1=VSS (High impedance mode)  
VIH1=VDD  
-1500*1 -300*1  
-20*1  
80  
1
V/IIL2  
IIH2Z  
IIL2Z  
IIL3  
3.7  
10  
Input current2  
(P00/TEST0)  
-1*1  
-250*1  
22  
4
-30*1  
100  
-2*1  
800  
1
Input current3  
(all input port except  
RESET_N, TEST1N,  
P00/TEST0,  
V/IIL3  
IIH3Z  
IIL3Z  
IIH4  
input/output port)  
-1*1  
μA  
1
Input current4  
(PI0, PI1)  
IIL4  
VIL1=VSS  
-1*1  
0.7  
×VDD  
VIH1  
VIL1  
VDD  
Input voltage1  
(all input port,  
input/output port)  
V
5
0.3  
×VDD  
0
Pin capacitance  
(all input port,  
input/output port)  
f = 10kHz  
Ta = 25oC  
CPIN  
10  
pF  
*1: The current flowing out the LSI through the pin is described in the negative number. The applicable maximum current is the  
absolute value. For example, -1mA means the maximum current 1mA flows out the LSI through the pin.  
*2: Measurement conditions: Typ: VDD = 3.0V, Max: VDD = 1.8V, Min: VDD = 5.5V  
22/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Input / Output pin 2  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Measu  
ring  
circuit  
Symb  
ol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
mA  
μA  
VDD4.5V  
VDD1.8V  
VDD4.5V  
VDD1.8V  
VDD4.5V  
VDD1.8V  
VDD4.5V  
VDD1.8V  
VDD4.5V  
VDD3.0V  
VDD2.0V  
VDD1.8V  
VDD4.5V  
VDD3.0V  
VDD2.0V  
VDD1.8V  
VDD4.5V  
VDD1.8V  
-10*3*5  
-1*3*5  
-90*5  
-20*5  
-180*5  
-40*5  
“H” level output  
current1 *6  
IOH1  
IOH3  
IOL1  
IOL2  
1pin  
Total of group A or B **  
(duty 50%)  
“H” level output total  
current1 *1*4  
All pin total  
(duty 50%)  
10*3  
1*3  
15*3  
8*3  
3*3  
2*3  
90  
“L” level output  
current1 *6  
1pin  
(CMOS output mode)  
1pin  
(N-ch open drain output  
mode)  
“L” level output  
current2 *6  
3
Total of group A or B **  
(N-ch open drain output  
mode, duty50%)  
40  
15  
“L” level output total  
current *2*4  
IOL3  
10  
All pin total  
180  
20  
(N-ch open drain output  
mode, duty50%)  
IOOH  
IOOL  
VOH=VDD (High impedance mode)  
VOL=VSS (High impedance mode)  
+1  
Output leak  
(all input/output port)  
-1*5  
** : Group A is “P02 to P07, P10 to P17 and P52 to P57”, group B is “P20 to P27, P30 to P37, P60 to P62 and P70 to P73”.  
*1: Sink-out current from VDD to the output pin, which can guarantee the device operation.  
*2: Sink-in current from the output pin to VSS, which can guarantee the device operation.  
*3: Do not exceed total current.  
*4: The total current is on the condition of Duty≤50% (same applies to IOH1).  
When the duty 50% the total current is calculated by following formula.  
Total current = IOL3 x 50/n (When the duty is n%)  
<For an example> When IOL3=100mA and n=80%,  
Total current = IOL3 x 50/80 = 62.5mA  
Current allowed per 1pin is independent of the duty and specified as IOL1 and IOL2.  
Do not apply current larger than Absolute Maximum Ratings.  
*5: The current flowing out the LSI through the pin is described in the negative number. The applicable maximum current is the  
absolute value.  
For example, -1mA means the maximum current 1mA flows out the LSI through the pin.  
*6: These values are satisfied with VOH1, VOL1 and VOL2.  
23/40  
FEDL62Q2500-03  
ML62Q2500 Group  
I2C Bus Interface  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Condition / Rating  
Parameter  
Symbol  
Standard Mode  
Fast Mode  
Typ.  
1Mbps Mode  
Unit  
Min.  
Typ.  
Max.  
Min.  
1.8  
Max.  
5.5  
Min.  
Typ.  
Max.  
Operating Voltage  
VDD  
fSCL  
tHD:STA  
tLOW  
1.8  
0
5.5  
100  
2.7  
0
5.5  
1000  
V
kHz  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
SCL clock frequency  
0
400  
SCL hold time  
(start/restart condition)  
4.0  
4.7  
4.0  
4.7  
0
0.6  
1.3  
0.6  
0.6  
0
0.26  
0.5  
0.26  
0.26  
0
SCL “L” level time  
SCL “H” level time  
tHIGH  
SCL setup time  
(restart condition)  
tSU:STA  
tHD:DAT  
tSU:DAT  
tSU:STO  
tBUF  
SDA hold time  
SDA setup time  
0.25  
4.0  
4.7  
0.1  
0.6  
1.3  
0.1  
0.26  
0.5  
SDA setup time  
(stop condition)  
Bus-free time  
When using the I2C as the master, configure the I2C master 0 mode register(I2M0MOD) and I2C bus 0 mode register  
(master side, I2U0MOD) so that meet these specifications.  
Start  
Re-start  
Stop  
Condition  
Condition  
Condition  
SDAU0  
SDAM0  
0.7×VDD  
0.3×VDD  
SCLU0  
SCLM0  
0.7×VDD  
0.3×VDD  
tHD:STA  
tLOW tHIGH  
tSU:STA tHD:STA  
tSU:DAT tHD:DAT tSU:STO tBUF  
24/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Synchronous Serial Port  
Slave mode  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Parameter  
Symbol  
tSCYC  
tSW  
Condition  
Min.  
1*1  
Typ.  
Max.  
Unit  
μs  
μs  
ns  
SCLK input cycle  
SCLK input pulse width  
tSCYC x 0.4  
VDD2.4V  
VDD1.8V  
80  
50  
100  
200  
SOUT output delay time  
tSD  
ns  
SIN input setup time  
SIN input hold time  
tSS  
tSH  
ns  
ns  
*1: Need input cycles of SYSCLK x 4 or longer  
Master mode  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Parameter  
Symbol  
tSCYC  
tSW  
Condition  
Min.  
Typ.  
SCLK*2  
SCLK*2  
Max.  
Unit  
VDD2.4V  
250  
ns  
SCLK output cycle  
SCLK output pulse width  
SOUT output delay time  
VDD1.8V  
500  
tSCYC×0.4  
tSCYC×0.6  
100  
160  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCYC×0.5  
VDD2.4V  
VDD1.8V  
VDD2.4V  
VDD1.8V  
VDD2.4V  
VDD1.8V  
tSD  
120  
SIN input setup time  
SIN input hold time  
tSS  
180  
80  
tSH  
100  
*2: Clock cycle selected by bit12 to 8(S0CK4 to 0) of the serial port 0 mode register (SIO0MOD)  
tSCYC  
tSW  
tSW  
0.7×VDD  
0.3×VDD  
SCLK  
SOUT  
SIN  
tSD  
tSD  
0.7×VDD  
0.3×VDD  
tSS  
tSH  
0.7×VDD  
0.3×VDD  
25/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Synchronous Serial Port with FIFO  
Slave mode  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Parameter  
Symbol  
tSCYC  
tSW  
Condition  
Min.  
1*1  
Typ.  
Max.  
Unit  
μs  
μs  
ns  
SCKF input cycle  
SCKF input pulse width  
tSCYC x 0.4  
VDD2.4V  
VDD1.8V  
80  
50  
100  
200  
SDOF output delay time  
tSD  
ns  
SDIF input setup time  
SDIF input hold time  
tSS  
tSH  
ns  
ns  
*1: Need input cycles of SYSCLK x 4 or longer  
Master mode  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Parameter  
Symbol  
tSCYC  
tSW  
Condition  
Min.  
Typ.  
SCLK*2  
SCLK*2  
Max.  
Unit  
VDD2.4V  
250  
ns  
SCKF output cycle  
SCKF output pulse width  
SDOF output delay time  
VDD1.8V  
500  
tSCYC×0.4  
tSCYC×0.6  
100  
160  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCYC×0.5  
VDD2.4V  
VDD1.8V  
VDD2.4V  
VDD1.8V  
VDD2.4V  
VDD1.8V  
tSD  
120  
SDIF input setup time  
SDIF input hold time  
tSS  
180  
80  
tSH  
100  
*2: Clock cycle selected by bit9 to 0(SF0BR9 to 0) of the SIOF0 baud rate register (SF0BRR)  
tSCYC  
tSW  
tSW  
0.7×VDD  
0.3×VDD  
SCKF  
SDOF  
SDIF  
tSD  
tSD  
0.7×VDD  
0.3×VDD  
tSS  
tSH  
0.7×VDD  
0.3×VDD  
26/40  
FEDL62Q2500-03  
ML62Q2500 Group  
ISP interface  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Parameter  
Symbol  
tTCYC  
tTW  
Condition  
Min.  
Typ.  
Max.  
660  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
TEST1_N clock input cycle  
TEST1_N input pulse width  
400  
tTCYC x 0.4  
VDD2.7V  
VDD1.8V  
80  
50  
80  
TEST0 output delay time  
tTD  
200  
TEST0 input setup time  
TEST0 input hold time  
tTS  
tTH  
tTCYC  
tTW  
tTW  
0.7×VDD  
0.3×VDD  
TEST1_N  
tTD  
tTD  
TEST0  
(output)  
0.7×VDD  
0.3×VDD  
tTS  
tTH  
0.7×VDD  
0.3×VDD  
TEST0  
(input)  
EXl0~7 Timer Clock Input  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Parameter  
Symbol  
fEXI  
Condition  
Min.  
Typ.  
Max.  
3
Unit  
MHz  
ns  
Input Frequency  
Input pulse width  
tWEXI  
135  
27/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Reset  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Measuring  
circuit  
Parameter  
Symbol  
PRST  
Condition  
Min.  
10  
Typ.  
Max.  
Unit  
Reset pulse width*1  
μs  
1
RESET_N  
VIH1  
VIL1  
VIL1  
PRST  
[Note]  
RESET_N input shorter pulse than the Reset pulse width (PRST) valid time should be avoided.  
The shorter pulse input may cause unexpected behavior.  
Slope of Power supply and Power On Reset  
(VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Measuring  
circuit  
Parameter  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Power on rising slope  
Power on falling slope  
SVR  
SVF  
60  
2
V/ms  
V/ms  
V
VPORR  
VPORF  
At Power up (rising)  
At Power down (falling)  
1.50  
1.35  
1.63  
1.60  
1.80  
1.75  
1
Power on reset detection voltage  
V
Power on reset minimum pulse  
width  
PPOR  
500  
13  
μs  
CPU operation start time  
(from the release of reset to the  
CPU starts to run)  
tCPUI  
21  
35  
ms  
At Power supply voltage level change  
SVR  
At Power supply restart  
SVF  
SVF  
SVR  
SVR  
VDD  
1.8V  
VPORR  
VPORF  
0V  
PPOR  
tCPUI  
At power on  
At Power off  
[Note]  
If a pulse shorter than the Power on reset minimum pulse width is asserted to VDD, it may cause the MCU  
malfunction. Apply prevent measurement such as bypass capacitors or external reset input, and so on.  
Set VDD to 1.8V or higher before starting CPU operation.  
28/40  
FEDL62Q2500-03  
ML62Q2500 Group  
VLS  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Falling  
VVLSF  
Rising  
VVLSR  
Condition  
VLS0LV*1  
Measuring  
circuit  
Parameter  
Symbol  
Unit  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
0H  
1H  
2H  
3H  
4H  
5H  
6H  
7H  
8H  
9H  
AH  
BH  
CH  
DH  
EH  
3.83  
3.53  
2.92  
2.84  
2.72  
2.65  
2.55  
2.43  
2.35  
2.25  
2.15  
2.07  
1.96  
1.87  
1.77  
3.99  
3.68  
3.05  
2.96  
2.84  
2.76  
2.66  
2.54  
2.45  
2.35  
2.24  
2.16  
2.05  
1.95  
1.85  
4.15  
3.83  
3.18  
3.08  
2.96  
2.87  
2.77  
2.65  
2.55  
2.45  
2.33  
2.25  
2.14  
2.03  
1.93  
3.84  
3.55  
2.94  
2.85  
2.74  
2.66  
2.56  
2.45  
2.36  
2.27  
2.16  
2.08  
1.98  
1.89  
1.78  
4.05  
3.74  
3.10  
3.01  
2.89  
2.80  
2.70  
2.58  
2.49  
2.39  
2.28  
2.19  
2.09  
1.99  
1.88  
4.26  
3.93  
3.26  
3.17  
3.04  
2.94  
2.84  
2.71  
2.62  
2.51  
2.40  
2.30  
2.20  
2.09  
1.98  
VLS threshold  
voltage  
VVLSR  
VVLSF  
V
1
*1: Bit3~Bit0 of voltage level detection circuit 0 level register (VLS0LV).  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Measuring  
circuit  
Parameter  
Symbol  
IVLS  
Condition  
Min.  
Typ.  
10  
Max.  
Unit  
nA  
VLS current  
consumption  
1
29/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Successive Approximation Type A/D Converter  
(VDD=2.1 to 5.5V, VSS =0V, Ta=-40 to +105°C, unless otherwise specified)  
Parameter  
Resolution  
Symbol  
nAD  
Condition  
Min.  
Typ.  
Max.  
Unit  
12  
bit  
nominal value, VDD 2.7V, VREF 2.7V  
nominal value, VDD 2.4V, VREF 2.4V  
nominal value, VDD 2.1V, VREF 2.1V  
32.768  
32.768  
32.768  
1.375  
16000  
8000  
1000  
kHz  
kHz  
Conversion clock  
fADCLK  
kHz  
μs  
f
ADCLK = 16MHz  
Conversion time  
tCONV  
fADCLK = 32.768kHz  
VDD VREF  
518.799  
μs  
V
A/D reference voltage  
Overall error  
VREF  
2.1  
-6  
VDD  
+6  
4.5V VREF 5.5V  
LSB  
fADCLK = 16MHz  
2.7V VREF  
2.4V VREF  
2.1V VREF  
2.7V VREF  
2.4V ≤ VREF  
2.1V VREF  
-4  
+4  
Integral non-linearity  
error  
INLAD  
DNLAD  
ZSE  
fADCLK = 8MHz  
fADCLK = 1MHz  
fADCLK = 16MHz  
fADCLK = 8MHz  
fADCLK = 1MHz  
-7  
+7  
-8  
+8  
-3  
+3  
Differential  
non-linearity error  
-5  
+5  
-7  
+7  
LSB  
fADCLK = 16MHz  
-8  
+8  
Zero-scale error  
Full-scale error  
fADCLK = 8MHz  
fADCLK = 1MHz  
fADCLK = 16MHz  
fADCLK = 8MHz  
fADCLK = 1MHz  
-8  
+8  
-10  
-8  
+10  
+8  
FSE  
-8  
+8  
-10  
+10  
VDD  
VDDL  
1.0μF  
A
RI 1kΩ  
0.1μF  
-
1.0μF  
AINx  
+
Analog input  
VSS  
The current flows during the ADC sampling as it takes charging. Make the output impedance of the analog  
signal source 1kΩ or smaller. Also, putting 0.1µF capacitor on the ADC input pin is recommended to reduce the  
noise.  
30/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Flash Memory  
(VSS= 0V)  
Unit  
Parameter  
Symbol  
TOP  
Condition  
Data flash memory, At write/erase  
Flash ROM, At write/erase  
At write/erase  
Range  
-40 to +85  
0 to +40  
+1.8 to +5.5  
10000  
100  
Operating temperature  
Operating voltage  
°C  
V
VDD  
CEPD  
CEPP  
Data Flash  
Maximum rewrite count  
times  
Program Flash  
Program Flash  
Block erasing  
16K  
Byte  
Data Flash  
all area  
1K  
Erasing unit  
Program Flash  
Sector erasing  
Byte  
ms  
Data Flash  
128  
Block erasing /  
Sector erasing  
Erasing time (Max.)  
Writing unit  
50  
Program Flash  
Data Flash  
4
Byte  
1
Program Flash  
80  
40  
15  
Writing time (Max.)  
μs  
Data Flash  
Data retention period  
YDR  
rewriting count 100 times  
years  
31/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Measuring circuit  
Measuring circuit 1  
VDD  
VDDL  
CL  
XT0 XT1  
Crystal resonator  
VSS  
CV : 1.0μF  
CL : 1.0μF  
CDL : 12pF  
CGL : 12pF  
(32.768kHz)  
A
CV  
CGL  
CDL  
Measuring circuit 2  
VIH  
Measuring circuit 3  
VIH  
(*2)  
(*2)  
V
(*1)  
A
(*1)  
VIL  
VIL  
VDD VDDL VSS  
VDD  
VSS  
VDDL  
Measuring circuit 4  
(*2)  
Measuring circuit 5  
VIH  
A
(*1)  
VDD  
VSS  
VDDL  
VIL  
VDD  
VSS  
VDDL  
(*1) Input logic circuit to determine the specified measuring conditions  
(*2) Measured connecting specified pins  
32/40  
FEDL62Q2500-03  
ML62Q2500 Group  
PACKAGE DIMENSIONS  
48pin TQFP Package  
(Unit: mm)  
Notes for Mounting the Surface Mount Type Package  
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.  
Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin  
number, package code and desired mounting conditions (reflow method, temperature and times).  
33/40  
FEDL62Q2500-03  
ML62Q2500 Group  
32pin TQFP Package  
(Unit: mm)  
Notes for Mounting the Surface Mount Type Package  
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.  
Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin  
number, package code and desired mounting conditions (reflow method, temperature and times).  
34/40  
FEDL62Q2500-03  
ML62Q2500 Group  
48pin WQFN Package  
(Unit: mm)  
Notes for Mounting the Surface Mount Type Package  
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.  
Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin  
number, package code and desired mounting conditions (reflow method, temperature and times).  
Note for the package with exposed die pad  
The die pad is exposed on the bottom of WQFN package. Make the die pad electrically open when soldering onto the PCB.  
35/40  
FEDL62Q2500-03  
ML62Q2500 Group  
40pin WQFN Package  
(Unit: mm)  
Notes for Mounting the Surface Mount Type Package  
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.  
Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin  
number, package code and desired mounting conditions (reflow method, temperature and times).  
Note for the package with exposed die pad  
The die pad is exposed on the bottom of WQFN package. Make the die pad electrically open when soldering onto the PCB.  
36/40  
FEDL62Q2500-03  
ML62Q2500 Group  
32pin WQFN Package  
(Unit: mm)  
Notes for Mounting the Surface Mount Type Package  
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.  
Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin  
number, package code and desired mounting conditions (reflow method, temperature and times).  
Note for the package with exposed die pad  
The die pad is exposed on the bottom of WQFN package. Make the die pad electrically open when soldering onto the PCB.  
37/40  
FEDL62Q2500-03  
ML62Q2500 Group  
REVISION HISTORY  
Page  
Previous  
Edition  
Document  
No.  
Date  
Description  
Current  
Edition  
FEDL62Q2500-01  
FEDL62Q2500-02  
Oct. 20, 2022  
Nov.9, 2022  
-
-
-
1st Edition  
Corrected typo, corrected appearance  
-
19  
19  
Corrected typo, HSCLK condition of IDD4-H16  
FEDL62Q2500-03  
Feb.2, 2023  
New addition of Tj+95oC specification of IDD3, IDD4-H1,  
IDD4-H16, IDD5-H16 and IDD5-H24  
19  
19  
38/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Notes for product usage  
Notes on this page are applicable to the all LAPIS Technology microcontroller products.  
For individual notes on each LAPIS Technology microcontroller product, refer to [Note]  
in the chapters of each user's manual.  
The individual notes of each user’s manual take priority over those contents in this page if they are different.  
1. HANDLING OF UNUSED INPUT PINS  
Fix the unused input pins to the power pin or GND to prevent to cause the device performing wrong operation or  
increasing the current consumption due to noise, etc. If the handlings for the unused pins are described in the chapters,  
follow the instruction.  
2. STATE AT POWER ON  
At the power on, the data in the internal registers and output of the ports are undefined until the power supply voltage  
reaches to the recommended operating condition and "L" level is input to the reset pin.  
On LAPIS Technology microcontroller products that have the power on reset function, the data in the internal registers  
and output of the ports are undefined until the power on reset is generated.  
Be careful to design the application system does not work incorrectly due to the undefined data of internal registers and  
output of the ports.  
3. ACCESS TO UNUSED MEMORY  
If reading from unused address area or writing to unused address area of the memory, the operations are not guaranteed.  
4. CHARACTERISTICS DIFFERENCE BETWEEN THE PRODUCT  
Electrical characteristics, noise tolerance, noise radiation amount, and the other characteristics are different from each  
microcontroller product.  
When replacing from other product to LAPIS Technology microcontroller products, please evaluate enough the  
apparatus/system which implemented LAPIS Technology microcontroller products.  
5. USE ENVIRONMENT  
When using LAPIS Technology microcontroller products in a high humidity environment and an environment where dew  
condensation, take moisture-proof measures.  
39/40  
FEDL62Q2500-03  
ML62Q2500 Group  
Notes  
1) The information contained herein is subject to change without notice.  
2) When using LAPIS Technology Products, refer to the latest product information (data sheets, user’s manuals, application  
notes, etc.), and ensure that usage conditions (absolute maximum ratings, recommended operating conditions, etc.) are within  
the ranges specified. LAPIS Technology disclaims any and all liability for any malfunctions, failure or accident arising out of  
or in connection with the use of LAPIS Technology Products outside of such usage conditions specified ranges, or without  
observing precautions. Even if it is used within such usage conditions specified ranges, semiconductors can break down and  
malfunction due to various factors. Therefore, in order to prevent personal injury, fire or the other damage from break down  
or malfunction of LAPIS Technology Products, please take safety at your own risk measures such as complying with the  
derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures.  
You are responsible for evaluating the safety of the final products or systems manufactured by you.  
3) Descriptions of circuits, software and other related information in this document are provided only to illustrate the standard  
operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other  
use of the circuits, software, and information in the design of your product or system. And the peripheral conditions must be  
taken into account when designing circuits for mass production. LAPIS Technology disclaims any and all liability for any  
losses and damages incurred by you or third parties arising from the use of these circuits, software, and other related  
information.  
4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Technology  
or any third party with respect to LAPIS Technology Products or the information contained in this document (including but  
not limited to, the Product data, drawings, charts, programs, algorithms, and application examplesetc.). Therefore LAPIS  
Technology shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising  
out of the use of such technical information.  
5) The Products are intended for use in general electronic equipment (AV/OA devices, communication, consumer systems,  
gaming/entertainment sets, etc.) as well as the applications indicated in this document. For use of our Products in applications  
requiring a high degree of reliability (as exemplified below), please be sure to contact a LAPIS Technology representative  
and must obtain written agreement: transportation equipment (cars, ships, trains, etc.), primary communication equipment,  
traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems,  
etc. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising by  
using the Product for purposes not intended by us. Do not use our Products in applications requiring extremely high reliability,  
such as aerospace equipment, nuclear power control systems, and submarine repeaters, etc.  
6) The Products specified in this document are not designed to be radiation tolerant.  
7) LAPIS Technology has used reasonable care to ensure the accuracy of the information contained in this document. However,  
LAPIS Technology does not warrant that such information is error-free and LAPIS Technology shall have no responsibility  
for any damages arising from any inaccuracy or misprint of such information.  
8) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive.  
LAPIS Technology shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws  
or regulations.  
9) When providing our Products and technologies contained in this document to other countries, you must abide by the  
procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export  
Administration Regulations and the Foreign Exchange and Foreign Trade Act..  
10) Please contact a ROHM sales office if you have any questions regarding the information contained in this document or  
LAPIS Technology's Products.  
11) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Technology.  
(Note) “LAPIS Technology” as used in this document means LAPIS Technology Co., Ltd.  
Copyright 2023 LAPIS Technology Co., Ltd.  
2-4-8 Shinyokohama, Kouhoku-ku,Yokohama 222-8575, Japan  
https://www.lapis-tech.com/en/  
40/40  

相关型号:

ML62Q2504 (新产品)

ML62Q2500系列是内置16bit CPU nX-U16/100、并集成了程序存储器(Flash存储器)、数据存储器(RAM)、Date Flash(擦除单位128Byte,写入单位1Byte)、乘除法运算器、CRC运算器、时钟发生电路、定时器、通用端口、UART、同步串行端口、I2C总线(主/从)、电压电平检测功能(VLS)、高速逐次比较型12位A/D转换器、安全功能(IEC60730/60335 Class B)等丰富外围功能的高性能CMOS 16bit 微控制器。16Bit CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q2500系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的Flash存储器写入。
ROHM

ML62Q2522 (新产品)

ML62Q2500系列是内置16bit CPU nX-U16/100、并集成了程序存储器(Flash存储器)、数据存储器(RAM)、Date Flash(擦除单位128Byte,写入单位1Byte)、乘除法运算器、CRC运算器、时钟发生电路、定时器、通用端口、UART、同步串行端口、I2C总线(主/从)、电压电平检测功能(VLS)、高速逐次比较型12位A/D转换器、安全功能(IEC60730/60335 Class B)等丰富外围功能的高性能CMOS 16bit 微控制器。16Bit CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q2500系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的Flash存储器写入。
ROHM

ML62Q2524 (新产品)

ML62Q2500系列是内置16bit CPU nX-U16/100、并集成了程序存储器(Flash存储器)、数据存储器(RAM)、Date Flash(擦除单位128Byte,写入单位1Byte)、乘除法运算器、CRC运算器、时钟发生电路、定时器、通用端口、UART、同步串行端口、I2C总线(主/从)、电压电平检测功能(VLS)、高速逐次比较型12位A/D转换器、安全功能(IEC60730/60335 Class B)等丰富外围功能的高性能CMOS 16bit 微控制器。16Bit CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q2500系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的Flash存储器写入。
ROHM

ML62Q2532 (新产品)

ML62Q2500系列是内置16bit CPU nX-U16/100、并集成了程序存储器(Flash存储器)、数据存储器(RAM)、Date Flash(擦除单位128Byte,写入单位1Byte)、乘除法运算器、CRC运算器、时钟发生电路、定时器、通用端口、UART、同步串行端口、I2C总线(主/从)、电压电平检测功能(VLS)、高速逐次比较型12位A/D转换器、安全功能(IEC60730/60335 Class B)等丰富外围功能的高性能CMOS 16bit 微控制器。16Bit CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q2500系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的Flash存储器写入。
ROHM

ML62Q2534 (新产品)

ML62Q2500系列是内置16bit CPU nX-U16/100、并集成了程序存储器(Flash存储器)、数据存储器(RAM)、Date Flash(擦除单位128Byte,写入单位1Byte)、乘除法运算器、CRC运算器、时钟发生电路、定时器、通用端口、UART、同步串行端口、I2C总线(主/从)、电压电平检测功能(VLS)、高速逐次比较型12位A/D转换器、安全功能(IEC60730/60335 Class B)等丰富外围功能的高性能CMOS 16bit 微控制器。16Bit CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q2500系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的Flash存储器写入。
ROHM

ML62Q2745 (新产品)

ML62Q2700系列是内置16bit CPU nX-U16/100、并集成了程序存储器(Flash存储器)、数据存储器(RAM)、Date Flash(擦除单位128Byte,写入单位1Byte)、乘除法运算器、CRC运算器、时钟发生电路、定时器、通用端口、UART、同步串行端口、I2C总线(主/从)、电压电平检测功能(VLS)、高速逐次比较型12位A/D转换器、语音播放功能、安全功能(IEC60730/60335 Class B)、语音输出功能等丰富外围功能的高性能CMOS 16bit 微控制器。16Bit CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q2700系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的Flash存储器写入。
ROHM

ML62Q2746 (新产品)

ML62Q2700系列是内置16bit CPU nX-U16/100、并集成了程序存储器(Flash存储器)、数据存储器(RAM)、Date Flash(擦除单位128Byte,写入单位1Byte)、乘除法运算器、CRC运算器、时钟发生电路、定时器、通用端口、UART、同步串行端口、I2C总线(主/从)、电压电平检测功能(VLS)、高速逐次比较型12位A/D转换器、语音播放功能、安全功能(IEC60730/60335 Class B)、语音输出功能等丰富外围功能的高性能CMOS 16bit 微控制器。16Bit CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q2700系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的Flash存储器写入。
ROHM

ML62Q2747 (新产品)

ML62Q2700系列是内置16bit CPU nX-U16/100、并集成了程序存储器(Flash存储器)、数据存储器(RAM)、Date Flash(擦除单位128Byte,写入单位1Byte)、乘除法运算器、CRC运算器、时钟发生电路、定时器、通用端口、UART、同步串行端口、I2C总线(主/从)、电压电平检测功能(VLS)、高速逐次比较型12位A/D转换器、语音播放功能、安全功能(IEC60730/60335 Class B)、语音输出功能等丰富外围功能的高性能CMOS 16bit 微控制器。16Bit CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q2700系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的Flash存储器写入。
ROHM

ML63

DC-DC Converter
MINILOGIC

ML630PTA102MLF

General Purpose Inductor,
COILCRAFT

ML630PTA102MLH

General Purpose Inductor, 1uH, 20%, 1 Element, Ferrite-Core, SMD, 7674, CHIP, 7674, ROHS COMPLIANT
COILCRAFT

ML630PTA102MLN

General Purpose Inductor, 1uH, 20%, 1 Element, Ferrite-Core, SMD, 7674, CHIP, 7674, ROHS COMPLIANT
COILCRAFT