LMR934FJ-E2 [ROHM]

Input/Output Full Swing Low Power Operational Amplifiers;
LMR934FJ-E2
型号: LMR934FJ-E2
厂家: ROHM    ROHM
描述:

Input/Output Full Swing Low Power Operational Amplifiers

文件: 总63页 (文件大小:1605K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Operational Amplifiers  
Input/Output Full Swing  
Low Power Operational Amplifiers  
LMR981G LMR982FVM LMR931G LMR932xxx LMR934xxx  
Key Specifications  
Operating Supply Voltage (Single Supply):  
+1.8V to +5.0V  
General Description  
LMR981G/LMR982FVM/LMR931G/LMR932xxx/LMR934  
xxx are input/output full swing operational amplifiers.  
LMR981G/LMR982FVM have the shutdown function.  
They have the features of low operating supply voltage,  
low supply current and low input bias current. These are  
suitable for portable equipment and battery monitoring.  
Voltage Gain (VDD=5V, RL=600):  
Operating Temperature Range:  
101dB(Typ)  
-40°C to +85°C  
Turn on Time from Shutdown(VDD=1.8V):  
j19μs (Typ)  
Input Offset Voltage(TA=25°C):  
LMR981G(Single)  
4mV(Max)  
4mV(Max)  
Features  
LMR931G(Single)  
Low Operating Supply Voltage  
Input/Output Full Swing  
High Large Signal Voltage Gain  
Low Input Bias Current  
Low Supply Current  
LMR982FVM(Dual)  
LMR932xxx(Dual)  
LMR934xxx(Quad)  
5.5mV(Max)  
5.5mV(Max)  
5.5mV(Max)  
5nA (Typ)  
Input Bias Current:  
Low Input Offset Voltage  
Package  
SSOP5  
W(Typ) xD(Typ) xH(Max)  
2.90mm x 2.80mm x 1.25mm  
2.90mm x 2.80mm x 1.25mm  
2.90mm x 4.00mm x 0.90mm  
2.90mm x 4.00mm x 0.90mm  
3.00mm x 4.90mm x 1.10mm  
3.00mm x 6.40mm x 1.20mm  
3.00mm x 6.40mm x 1.35mm  
4.90mm x 6.00mm x 1.65mm  
5.00mm x 6.20mm x 1.71mm  
5.00mm x 6.40mm x 1.20mm  
5.00mm x 6.40mm x 1.35mm  
8.65mm x 6.00mm x 1.65mm  
8.70mm x 6.20mm x 1.71mm  
Applications  
SSOP6  
MSOP8  
Portable Equipment  
Low Voltage Application  
Active Filter  
Supply-Current Monitoring  
Battery Monitoring  
MSOP10  
TSSOP-B8J  
TSSOP-B8  
SSOP-B8  
SOP-J8  
SOP8  
TSSOP-B14J  
SSOP-B14  
SOP-J14  
SOP14  
Simplified Schematic  
VDD  
OUT  
Class AB  
Control  
+IN  
-IN  
SHDN  
VSS  
(LMR981G, LMR982FVM)  
Figure 1. Simplified Schematic (1 Channel Only)  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
1/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Pin Configuration  
LMR931G : SSOP5  
Pin No.  
Pin Name  
1
5
4
+IN  
VSS  
-IN  
VDD  
OUT  
1
2
3
4
5
+IN  
VSS  
-IN  
2
3
OUT  
VDD  
LMR981G : SSOP6  
Pin No.  
Pin Name  
1
6
5
4
+IN  
VSS  
-IN  
VDD  
1
2
3
4
5
6
+IN  
VSS  
-IN  
——————  
2
3
SHDN  
OUT  
——————  
OUT  
SHDN  
VDD  
LMR932F  
LMR932FJ  
LMR932FV  
: SOP8  
: SOP-J8  
: SSOP-B8  
LMR932FVT  
LMR932FVM  
LMR932FVJ  
: TSSOP-B8  
: MSOP8  
: TSSOP-B8J  
Pin No.  
Pin Name  
1
2
3
4
5
6
7
8
OUT1  
-IN1  
1
8
7
6
5
VDD  
OUT2  
-IN2  
OUT1  
-IN1  
CH1  
2
3
4
+IN1  
VSS  
+IN2  
-IN2  
+
-
CH2  
-
+IN1  
VSS  
+
+IN2  
OUT2  
VDD  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
2/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
LMR934F  
: SOP14  
LMR934FJ  
LMR934FV  
LMR934FVJ  
: SOP-J14  
: SSOP-B14  
: TSSOP-B14J  
Pin No.  
Pin Name  
OUT1  
-IN1  
1
2
OUT1  
1
2
3
14
OUT4  
3
+IN1  
VDD  
13  
12  
-IN1  
-IN4  
CH1  
- +  
CH4  
+ -  
4
5
+IN2  
-IN2  
+IN1  
+IN4  
6
4  
VDD  
11  
10  
VSS  
7
OUT2  
OUT3  
-IN3  
+IN3  
5
6
7
+IN2  
8
+ -  
CH3  
- +  
9
CH2  
-IN2  
9
8
-IN3  
10  
11  
12  
13  
14  
+IN3  
VSS  
OUT2  
OUT3  
+IN4  
-IN4  
OUT4  
LMR982FVM : MSOP10  
Pin No.  
Pin Name  
1
2
OUT1  
-IN1  
1
OUT1  
-IN1  
VDD  
OUT2  
-IN2  
10  
3
+IN1  
CH1  
2
3
9
8
4
VSS  
—————————  
CH2  
5
+IN1  
VSS  
SHDN_1  
—————————  
6
SHDN_2  
+IN2  
+IN2  
4
5
7
6
7
—————————  
—————————  
8
-IN2  
OUT2  
VDD  
SHDN_1  
SHDN_2  
9
10  
Package  
SOP-J8  
SSOP5  
SSOP6  
SOP8  
SSOP-B8  
TSSOP-B8  
MSOP8  
LMR931G  
LMR981G  
LMR932F  
LMR932FJ  
Package  
LMR932FV  
LMR932FVT  
LMR932FVM  
TSSOP-B8J  
MSOP10  
SOP14  
SOP-J14  
LMR934FJ  
SSOP-B14  
LMR934FV  
TSSOP-B14J  
LMR934FVJ  
-
-
LMR932FVJ  
LMR982FVM  
LMR934F  
Shutdown (LMR981G, LMR982FVM)  
Pin  
Input Condition  
VSS  
Shutdown Function  
ON  
——————  
SHDN  
VDD  
OFF  
Note: Please refer to Electrical Characteristics regarding the turn on and off voltage.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
3/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Ordering Information  
L M R  
9
x
x
x
x
x
-
x x  
Part Number  
LMR931G  
LMR981G  
Package  
Packaging and forming specification  
TR: Embossed tape and reel  
(SSOP5/SSOP6/MSOP8/MSOP10)  
E2: Embossed tape and reel  
G
G
F
: SSOP5  
: SSOP6  
: SOP8  
LMR932F  
LMR932FJ  
LMR932FV  
LMR932FVT  
LMR932FVM  
LMR932FVJ  
LMR982FVM  
LMR934F  
LMR934FJ  
LMR934FV  
LMR934FVJ  
FJ  
FV  
: SOP-J8  
(SOP8/SOP14/SOP-J8/SOP-J14  
SSOP-B8/SSOP-B14/TSSOP-B8/  
TSSOP-B8J/TSSOP-B14J)  
: SSOP-B8  
: TSSOP-B8  
: MSOP8  
: TSSOP-B8J  
: MSOP10  
: SOP14  
: SOP-J14  
: SSOP-B14  
: TSSOP-B14J  
FVT  
FVM  
FVJ  
FVM  
F
FJ  
FV  
FVJ  
Lineup  
Topr  
Package  
Operable Part Number  
SSOP5  
Reel of 3000  
LMR931G-TR  
LMR981G-TR  
LMR982FVM-TR  
LMR932F-E2  
SSOP6  
Reel of 3000  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
MSOP10  
SOP8  
SOP-J8  
SSOP-B8  
TSSOP-B8  
MSOP8  
LMR932FJ-E2  
LMR932FV-E2  
LMR932FVT-E2  
LMR932FVM-TR  
LMR932FVJ-E2  
LMR934F-E2  
-40°C to +85°C  
TSSOP-B8J  
SOP14  
SOP-J14  
LMR934FJ-E2  
LMR934FV-E2  
LMR934FVJ-E2  
SSOP-B14  
TSSOP-B14J  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
4/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Absolute Maximum Ratings (TA=25°C)  
Rating  
Parameter  
Supply Voltage  
Symbol  
Unit  
V
LMR981G LMR931G LMR932xxx LMR934xxx LMR982FVM  
+7  
VDD-VSS  
SSOP5  
-
0.67(Note 1,9)  
-
-
-
SSOP6  
0.67(Note 1,9)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SOP8  
-
-
-
-
-
-
-
-
-
-
-
0.68(Note 2,9)  
0.67(Note 1,9)  
0.62(Note 5,9)  
0.62(Note 5,9)  
0.58(Note 4,9)  
0.58(Note 4,9)  
-
-
SOP-J8  
SSOP-B8  
TSSOP-B8  
-
-
-
-
-
-
Power Dissipation  
PD MSOP8  
-
-
W
TSSOP-B8J  
MSOP10  
SOP14  
-
-
-
-
0.58(Note 4,9)  
-
0.56(Note 3,9)  
1.02(Note 8,9)  
0.87(Note 7,9)  
0.85(Note 6,9)  
-
-
-
-
SOP-J14  
SSOP-B14  
TSSOP-B14J  
VID  
-
-
-
Differential Input Voltage(Note 10)  
VDD to VSS  
V
V
Input Common-mode  
Voltage Range  
VICM  
(VSS-0.3) to (VDD+0.3)  
Input Current(Note 11)  
Operating Voltage  
II  
±10  
mA  
V
Vopr  
Topr  
Tstg  
+1.8 to +5.0  
- 40 to +85  
- 55 to +150  
Operating Temperature  
Storage Temperature  
°C  
°C  
Maximum  
Junction Temperature  
TJmax  
+150  
°C  
(Note 1) To use at temperature above TA=25°C reduce 5.4mW/°C.  
(Note 2) To use at temperature above TA=25°C reduce 5.5mW/°C.  
(Note 3) To use at temperature above TA=25°C reduce 4.5mW/°C.  
(Note 4) To use at temperature above TA=25°C reduce 4.7mW/°C.  
(Note 5) To use at temperature above TA=25°C reduce 5.0mW/°C.  
(Note 6) To use at temperature above TA=25°C reduce 6.8mW/°C.  
(Note 7) To use at temperature above TA=25°C reduce 7.0mW/°C.  
(Note 8) To use at temperature above TA=25°C reduce 8.2mW/°C.  
(Note 9) Mounted on a FR4 glass epoxy PCB 70mm×70mm×1.6mm (Copper foil area less than 3%).  
(Note 10) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VSS.  
(Note 11) An excessive input current will flow when input voltages of more than VDD+0.6V or less than VSS-0.6V are applied.  
The input current can be set to less than the rated current by adding a limiting resistor.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
5/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Electrical Characteristics:  
——————  
LMR981G, LMR931G (Unless otherwise specified VDD=+1.8V, VSS=0V, SHDN=VDD)  
Limit  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
4
6
25°C  
Full Range  
-
-
1
-
Input Offset Voltage (Note 12)  
Input Offset Voltage Drift  
Input Offset Current (Note 12)  
Input Bias Current (Note 12)  
VIO  
ΔVIO/ΔT  
IIO  
mV  
µV/°C  
nA  
VDD=1.8V to 5.0V  
25°C  
25°C  
25°C  
-
-
-
5.5  
5
-
-
-
-
30  
35  
IB  
5
nA  
25°C  
-
-
75  
-
180  
205  
Supply Current(Note 13)  
IDD  
μA  
AV=0dB, +IN=0.9V  
Full range  
——————  
Shutdown Current(Note 14)  
IDD_SD  
VOH  
VOL  
25°C  
25°C  
25°C  
-
0.15  
1
μA  
V
SHDN=0V  
1.65  
1.75  
-
-
-
1.72  
1.77  
77  
24  
96  
100  
-
-
-
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
105  
35  
-
-
VDD  
VDD-0.2  
mV  
dB  
AV  
25°C  
25°C  
80  
VSS  
Input Common-mode  
Voltage Range  
VICM  
V
VSS to VDD  
Full range VSS+0.2  
-
Common-mode Rejection Ratio CMRR  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
60  
75  
4
7
-
94  
85  
8
-
-
-
-
-
-
-
-
-
dB  
VICM=0.5V  
VDD=1.8V to 5.0V  
Power Supply Rejection Ratio  
Output Source Current (Note 15)  
Output Sink Current (Note 15)  
Slew Rate  
PSRR  
ISOURCE  
ISINK  
SR  
dB  
V
ICM =0.5V  
mA  
mA  
V/μs  
MHz  
MHz  
deg  
dB  
OUT=0V, Short Current  
OUT=1.8V Short Current  
CL=25pF  
9
0.35  
1.4  
1.4  
50  
7
CL=25pF, AV=40dB  
f=100kHz  
Gain Bandwidth  
GBW  
fT  
-
Unity Gain Frequency  
Phase Margin  
-
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
θ
-
Gain Margin  
GM  
-
-
-
6.5  
50  
-
-
μVrms AV=40dB, DIN-AUDIO  
Input Referred Noise Voltage  
VN  
25°C  
25°C  
nV/ Hz f=10kHz  
Total Harmonic Distortion  
+ Noise  
OUT=1VP-P, f=1kHz  
RL=600, AV=0dB  
THD+N  
-
0.023  
-
%
(Note 12) Absolute value.  
(Note 13) Full range: TA=-40°C to +85°C  
(Note 14) Only LMR981G have shutdown.  
(Note 15) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
LMR981G (Unless otherwise specified VDD=+1.8V, VSS=0V)  
Limit  
Typ  
Temperature  
Range  
Parameter  
Symbol  
tON  
Unit  
Conditions  
VICM = VDD/2  
Min  
-
Max  
-
Turn On Time From Shutdown  
Turn On Voltage High  
Turn On Voltage Low  
25°C  
19  
μs  
VSHDN_H  
VSHDN_L  
-
-
1.32  
0.72  
-
-
-
-
25°C  
V
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
6/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Electrical Characteristics - continued  
——————  
LMR981G, LMR931G (Unless otherwise specified VDD=+2.7V, VSS=0V, SHDN=VDD)  
Limit  
Typ  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Max  
25°C  
Full Range  
-
-
1
-
4
6
Input Offset Voltage (Note 16)  
Input Offset Voltage Drift  
Input Offset Current(Note 16)  
Input Bias Current (Note 16)  
VIO  
ΔVIO/ΔT  
IIO  
mV  
µV/°C  
nA  
VDD=1.8V to 5.0V  
25°C  
25°C  
25°C  
-
-
-
5.5  
5
-
-
-
-
30  
35  
IB  
5
nA  
25°C  
-
-
80  
-
190  
210  
Supply Current(Note 17)  
IDD  
μA  
AV=0dB, +IN=1.35V  
Full range  
Shutdown Current(Note 18)  
IDD_SD  
VOH  
VOL  
25°C  
25°C  
25°C  
-
0.061  
1
μA  
V
——————  
SHDN=0V  
2.55  
2.65  
-
-
-
2.62  
2.67  
83  
25  
98  
100  
-
-
-
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
110  
40  
-
-
mV  
dB  
AV  
25°C  
25°C  
92  
VSS  
VDD  
VDD-0.2  
Input Common-mode  
Voltage Range  
VICM  
V
VSS to VDD  
VICM=0.5V  
Full range VSS+0.2  
-
Common-mode Rejection Ratio CMRR  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
60  
75  
20  
18  
-
94  
85  
28  
28  
0.4  
1.4  
1.4  
50  
7
-
-
-
-
-
-
-
-
-
dB  
VDD=1.8V to 5.0V  
VICM=0.5V  
Power Supply Rejection Ratio  
Output Source Current (Note 19)  
Output Sink Current (Note 19)  
Slew Rate  
PSRR  
ISOURCE  
ISINK  
SR  
dB  
mA  
mA  
V/μs  
MHz  
MHz  
deg  
dB  
OUT=0V, Short Current  
OUT=2.7V Short Current  
CL=25pF  
CL=25pF, AV=40dB  
f=100kHz  
Gain Bandwidth  
GBW  
fT  
-
Unity Gain Frequency  
Phase Margin  
-
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
θ
-
Gain Margin  
GM  
-
-
-
6.5  
50  
-
-
μVrms AV=40dB, DIN-AUDIO  
Input Referred Noise Voltage  
VN  
25°C  
25°C  
nV/ Hz f=10kHz  
Total Harmonic Distortion  
+ Noise  
OUT=1VP-P, f=1kHz  
RL=600, AV=0dB  
THD+N  
-
0.022  
-
%
(Note 16) Absolute value.  
(Note 17) Full range: TA=-40°C to +85°C  
(Note 18) Only LMR981G have shutdown.  
(Note 19) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
LMR981G (Unless otherwise specified VDD=+2.7V, VSS=0V)  
Limit  
Typ  
Temperature  
Range  
Parameter  
Symbol  
tON  
Unit  
Conditions  
VICM= VDD/2  
Min  
-
Max  
-
Turn On Time From Shutdown  
Turn On Voltage High  
Turn On Voltage Low  
25°C  
12.5  
1.63  
1.35  
μs  
VSHDN_H  
VSHDN_L  
-
-
-
-
-
-
25°C  
V
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
7/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Electrical Characteristics - continued  
——————  
LMR981G, LMR931G (Unless otherwise specified VDD=+5.0V, VSS=0V, SHDN=VDD)  
Limit  
Typ  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Max  
25°C  
Full Range  
-
-
1
-
4
6
Input Offset Voltage (Note 20)  
Input Offset Voltage Drift  
Input Offset Current(Note 20)  
Input Bias Current (Note 20)  
VIO  
ΔVIO/ΔT  
IIO  
mV  
µV/°C  
nA  
VDD=1.8V to 5.0V  
25°C  
25°C  
25°C  
-
-
-
5.5  
5
-
-
-
-
30  
35  
IB  
5
nA  
25°C  
-
-
85  
-
200  
230  
Supply Current(Note 21)  
IDD  
μA  
AV=0dB, +IN=2.5V  
Full range  
——————  
Shutdown Current(Note 22)  
IDD_SD  
VOH  
VOL  
25°C  
25°C  
25°C  
-
0.2  
1
μA  
V
SHDN=0V  
4.85  
4.94  
-
-
-
4.89  
4.96  
120  
37  
101  
105  
-
-
-
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
160  
65  
-
-
VDD  
VDD-0.2  
mV  
dB  
AV  
25°C  
25°C  
94  
VSS  
Input Common-mode  
Voltage Range  
VICM  
V
VSS to VDD  
VICM=0.5V  
Full range VSS+0.2  
-
Common-mode Rejection Ratio CMRR  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
60  
75  
80  
58  
-
94  
85  
-
-
-
-
-
-
-
-
-
dB  
VDD=1.8V to 5.0V  
VICM=0.5V  
Power Supply Rejection Ratio  
Output Source Current (Note 23)  
Output Sink Current (Note 23)  
Slew Rate  
PSRR  
ISOURCE  
ISINK  
SR  
dB  
90  
mA  
mA  
V/μs  
MHz  
MHz  
deg  
dB  
OUT=0V, Short Current  
OUT=5V Short Current  
CL=25pF  
80  
0.42  
1.5  
1.5  
50  
CL=25pF, AV=40dB  
f=100kHz  
Gain Bandwidth  
GBW  
fT  
-
Unity Gain Frequency  
Phase Margin  
-
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
θ
-
Gain Margin  
GM  
-
7
-
-
6.5  
50  
-
-
μVrms Av=40dB, DIN-AUDIO  
Input Referred Noise Voltage  
VN  
25°C  
25°C  
nV/ Hz f=10kHz  
Total Harmonic Distortion  
+ Noise  
OUT=1VP-P, f=1kHz  
RL=600, AV=0dB  
THD+N  
-
0.022  
-
%
(Note 20) Absolute value  
(Note 21) Full range: TA=-40°C to +85°C  
(Note 22) Only LMR981G have shutdown.  
(Note 23) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
LMR981G (Unless otherwise specified VDD=+5.0V, VSS=0V)  
Limit  
Typ  
Temperature  
Range  
Parameter  
Symbol  
tON  
Unit  
Conditions  
VICM= VDD/2  
Min  
-
Max  
-
Turn On Time From Shutdown  
Turn On Voltage High  
Turn On Voltage Low  
25°C  
8.4  
μs  
VSHDN_H  
VSHDN_L  
-
-
2.98  
2.70  
-
-
-
-
25°C  
V
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
8/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Electrical Characteristics - continued  
——————  
LMR982FVM, LMR932xxx (Unless otherwise specified VDD=+1.8V, VSS=0V, SHDN=VDD *LMR982FVM only)  
Limit  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
5.5  
7.5  
25°C  
Full Range  
-
-
1
-
Input Offset Voltage (Note 24)  
Input Offset Voltage Drift  
Input Offset Current(Note 24)  
Input Bias Current (Note 24)  
VIO  
ΔVIO/ΔT  
IIO  
mV  
µV/°C  
nA  
VDD=1.8V to 5.0V  
25°C  
25°C  
25°C  
-
-
-
5.5  
5
-
-
-
-
30  
35  
IB  
5
nA  
25°C  
-
-
135  
-
290  
410  
Supply Current(Note 25)  
IDD  
μA  
AV=0dB, +IN=0.9V  
Full range  
——————  
Shutdown Current(Note 26)  
IDD_SD  
VOH  
VOL  
25°C  
25°C  
25°C  
-
0.15  
1
μA  
V
SHDN=0V  
1.65  
1.75  
-
-
-
1.72  
1.77  
77  
24  
94  
100  
-
-
-
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
105  
35  
-
-
VDD  
VDD-0.2  
mV  
dB  
AV  
25°C  
25°C  
80  
VSS  
Input Common-mode  
Voltage Range  
VICM  
V
VSS to VDD  
Full range VSS+0.2  
-
Common-mode Rejection Ratio CMRR  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
60  
75  
4
7
-
94  
85  
8
-
-
-
-
-
-
-
-
-
dB  
VICM=0.5V  
VDD=1.8V to 5.0V  
Power Supply Rejection Ratio  
Output Source Current (Note 27)  
Output Sink Current (Note 27)  
Slew Rate  
PSRR  
ISOURCE  
ISINK  
SR  
dB  
V
ICM=0.5V  
mA  
mA  
V/μs  
MHz  
MHz  
deg  
dB  
OUT=0V, Short Current  
OUT=1.8V  
Short Current  
9
0.35  
1.4  
1.4  
50  
7
CL=25pF  
CL=25pF, AV=40dB  
f=100kHz  
Gain Bandwidth  
GBW  
fT  
-
Unity Gain Frequency  
Phase Margin  
-
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
θ
-
Gain Margin  
GM  
-
-
-
6.5  
50  
-
-
μVrms AV=40dB, DIN-AUDIO  
Input Referred Noise Voltage  
VN  
25°C  
nV/ Hz f=10kHz  
Total Harmonic Distortion  
+ Noise  
OUT=1VP-P, f=1kHz  
RL=600, AV=0dB  
THD+N  
CS  
25°C  
25°C  
-
-
0.023  
110  
-
-
%
Channel Separation  
dB  
AV=40dB, OUT=1Vrms  
(Note 24) Absolute value.  
(Note 25) Full range: TA=-40°C to +85°C  
(Note 26) Only LMR982FVM have shutdown.  
(Note 27) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
LMR982FVM (Unless otherwise specified VDD=+1.8V, VSS=0V)  
Limit  
Typ  
Temperature  
Range  
Parameter  
Symbol  
tON  
Unit  
Conditions  
VICM= VDD/2  
Min  
-
Max  
-
Turn On Time From Shutdown  
Turn On Voltage High  
Turn On Voltage Low  
25°C  
19  
μs  
VSHDN_H  
VSHDN_L  
-
-
1.32  
0.72  
-
-
-
-
25°C  
V
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
9/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Electrical Characteristics - continued  
——————  
LMR982FVM, LMR932xxx (Unless otherwise specified VDD=+2.7V, VSS=0V, SHDN=VDD)  
Limit  
Typ  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Max  
25°C  
Full Range  
-
-
1
-
5.5  
7.5  
Input Offset Voltage (Note 28)  
Input Offset Voltage Drift  
Input Offset Current(Note 28)  
Input Bias Current (Note 28)  
VIO  
ΔVIO/ΔT  
IIO  
mV  
µV/°C  
nA  
VDD=1.8V to 5.0V  
25°C  
25°C  
25°C  
-
-
-
5.5  
5
-
-
-
-
30  
35  
IB  
5
nA  
25°C  
-
-
135  
-
300  
420  
Supply Current(Note 29)  
IDD  
μA  
AV=0dB, +IN=1.35V  
Full range  
Shutdown Current(Note 30)  
IDD_SD  
VOH  
VOL  
25°C  
25°C  
25°C  
-
0.061  
1
μA  
V
——————  
SHDN=0V  
2.55  
2.65  
-
-
-
2.62  
2.67  
83  
25  
98  
100  
-
-
-
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
110  
40  
-
-
mV  
dB  
AV  
25°C  
25°C  
92  
VSS  
VDD  
VDD-0.2  
Input Common-mode  
Voltage Range  
VICM  
V
VSS to VDD  
VICM=0.5V  
Full range VSS+0.2  
-
Common-mode Rejection Ratio CMRR  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
60  
75  
20  
18  
-
94  
85  
28  
28  
0.4  
1.4  
1.4  
50  
7
-
-
-
-
-
-
-
-
-
dB  
VDD=1.8V to 5.0V  
VICM=0.5V  
Power Supply Rejection Ratio  
Output Source Current (Note 31)  
Output Sink Current (Note 31)  
Slew Rate  
PSRR  
ISOURCE  
ISINK  
SR  
dB  
mA  
mA  
V/μs  
MHz  
MHz  
deg  
dB  
OUT=0V, Short Current  
OUT=2.7V  
Short Current  
CL=25pF  
CL=25pF, AV=40dB  
f=100kHz  
Gain Bandwidth  
GBW  
fT  
-
Unity Gain Frequency  
Phase Margin  
-
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
θ
-
Gain Margin  
GM  
-
-
-
6.5  
50  
-
-
μVrms AV=40dB, DIN-AUDIO  
Input Referred Noise Voltage  
VN  
25°C  
nV/ Hz f=10kHz  
Total Harmonic Distortion  
+ Noise  
OUT=1VP-P, f=1kHz  
RL=600, AV=0dB  
THD+N  
CS  
25°C  
25°C  
-
-
0.022  
110  
-
-
%
Channel Separation  
dB  
AV=40dB, OUT=1Vrms  
(Note 28) Absolute value.  
(Note 29) Full range: TA=-40°C to +85°C  
(Note 30) Only LMR982FVM have shutdown.  
(Note 31) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
LMR982FVM (Unless otherwise specified VDD=+2.7V, VSS=0V)  
Limit  
Typ  
Temperature  
Range  
Parameter  
Symbol  
tON  
Unit  
Conditions  
VICM= VDD/2  
Min  
-
Max  
-
Turn On Time From Shutdown  
Turn On Voltage High  
25°C  
12.5  
μs  
VSHDN_H  
-
-
1.63  
-
-
-
-
25°C  
V
Turn On Voltage Low  
VSHDN_L  
1.35  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
10/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Electrical Characteristics - continued  
——————  
LMR982FVM, LMR932xxx (Unless otherwise specified VDD=+5.0V, VSS=0V, SHDN=VDD)  
Limit  
Typ  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Max  
25°C  
Full Range  
-
-
1
-
5.5  
7.5  
Input Offset Voltage (Note 32)  
Input Offset Voltage Drift  
Input Offset Current(Note 32)  
Input Bias Current (Note 32)  
VIO  
ΔVIO/ΔT  
IIO  
mV  
µV/°C  
nA  
VDD=1.8V to 5.0V  
25°C  
25°C  
25°C  
-
-
-
5.5  
5
-
-
-
-
30  
35  
IB  
5
nA  
25°C  
-
-
140  
-
300  
460  
Supply Current(Note 33)  
IDD  
μA  
AV=0dB, +IN=2.5V  
Full range  
——————  
Shutdown Current(Note 34)  
IDD_SD  
VOH  
VOL  
25°C  
25°C  
25°C  
-
0.2  
1
μA  
V
SHDN=0V  
4.85  
4.94  
-
-
-
4.89  
4.96  
120  
37  
101  
105  
-
-
-
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
160  
65  
-
-
VDD  
VDD-0.2  
mV  
dB  
AV  
25°C  
25°C  
94  
VSS  
Input Common-mode  
Voltage Range  
VICM  
V
VSS to VDD  
VICM=0.5V  
Full range VSS+0.2  
-
Common-mode Rejection Ratio CMRR  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
60  
75  
80  
58  
-
94  
85  
-
-
-
-
-
-
-
-
-
dB  
VDD=1.8V to 5.0V  
VICM=0.5V  
Power Supply Rejection Ratio  
Output Source Current (Note 35)  
Output Sink Current (Note 35)  
Slew Rate  
PSRR  
ISOURCE  
ISINK  
SR  
dB  
90  
mA  
mA  
V/μs  
MHz  
MHz  
deg  
dB  
OUT=0V, Short Current  
OUT=5V  
Short Current  
80  
0.42  
1.5  
1.5  
50  
CL=25pF  
CL=25pF, AV=40dB  
f=100kHz  
Gain Bandwidth  
GBW  
fT  
-
Unity Gain Frequency  
Phase Margin  
-
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
θ
-
Gain Margin  
GM  
-
7
-
-
6.5  
50  
-
-
μVrms AV=40dB, DIN-AUDIO  
Input Referred Noise Voltage  
VN  
25°C  
nV/ Hz f=10kHz  
Total Harmonic Distortion  
+ Noise  
OUT=1VP-P, f=1kHz  
RL=600, AV=0dB  
THD+N  
CS  
25°C  
25°C  
-
-
0.022  
110  
-
-
%
Channel Separation  
dB  
AV=40dB, OUT=1Vrms  
(Note 32) Absolute value  
(Note 33) Full range: TA=-40°C to +85°C  
(Note 34) Only LMR982FVM have shutdown.  
(Note 35) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
LMR982FVM (Unless otherwise specified VDD=+5.0V, VSS=0V)  
Limit  
Typ  
Temperature  
Range  
Parameter  
Symbol  
tON  
Unit  
Conditions  
VICM= VDD/2  
Min  
-
Max  
-
Turn On Time From Shutdown  
Turn On Voltage High  
Turn On Voltage Low  
25°C  
8.4  
μs  
VSHDN_H  
VSHDN_L  
-
-
2.98  
2.70  
-
-
-
-
25°C  
V
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
11/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Electrical Characteristics - continued  
LMR934xxx (Unless otherwise specified VDD=+1.8V, VSS=0V)  
Limits  
Typ  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Condition  
Min  
Max  
25°C  
Full Range  
-
-
1
-
5.5  
7.5  
Input Offset Voltage (Note 36)  
Input Offset Voltage Drift  
Input Offset Current(Note 36)  
Input Bias Current (Note 36)  
VIO  
ΔVIO/ΔT  
IIO  
mV  
µV/°C  
nA  
VDD=1.8V to 5.0V  
25°C  
25°C  
25°C  
-
-
-
5.5  
5
-
-
-
-
30  
35  
IB  
5
nA  
25°C  
-
-
280  
-
550  
820  
Supply Current(Note 37)  
IDD  
μA  
AV=0dB, +IN=0.9V  
Full range  
1.65  
1.75  
-
-
-
1.72  
1.77  
77  
24  
96  
100  
-
-
-
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
VOH  
VOL  
AV  
25°C  
25°C  
V
mV  
dB  
105  
35  
-
-
VDD  
VDD-0.2  
25°C  
25°C  
80  
VSS  
Input Common-mode  
Voltage Range  
VICM  
V
VSS to VDD  
VICM=0.5V  
Full range VSS+0.2  
-
Common-mode Rejection Ratio CMRR  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
60  
75  
4
7
-
94  
85  
8
-
-
-
-
-
-
-
-
-
dB  
VDD=1.8V to 5.0V  
VICM=0.5V  
Power Supply Rejection Ratio  
Output Source Current (Note 38)  
Output Sink Current (Note 38)  
Slew Rate  
PSRR  
ISOURCE  
ISINK  
SR  
dB  
mA  
mA  
V/μs  
MHz  
MHz  
deg  
dB  
OUT=0V, Short Current  
OUT=1.8V  
Short Current  
9
0.35  
1.4  
1.4  
50  
7
CL=25pF  
CL=25pF, AV=40dB  
f=100kHz  
Gain Bandwidth  
GBW  
fT  
-
Unity Gain Frequency  
Phase Margin  
-
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
θ
-
Gain Margin  
GM  
-
-
-
6.5  
50  
-
-
μVrms AV=40dB, DIN-AUDIO  
Input Referred Noise Voltage  
VN  
25°C  
nV/ Hz f=10kHz  
Total Harmonic Distortion  
+ Noise  
OUT=1VP-P, f=1kHz  
RL=600, AV=0dB  
THD+N  
CS  
25°C  
25°C  
-
-
0.023  
110  
-
-
%
Channel Separation  
dB  
AV=40dB, OUT=1Vrms  
(Note 36) Absolute value.  
(Note 37) Full range: TA=-40°C to +85°C  
(Note 38) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
12/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Electrical Characteristics - continued  
LMR934xxx (Unless otherwise specified VDD=+2.7V, VSS=0V)  
Limit  
Typ  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Max  
25°C  
Full Range  
-
-
1
-
5.5  
7.5  
Input Offset Voltage (Note 39)  
Input Offset Voltage Drift  
Input Offset Current(Note 39)  
Input Bias Current (Note 39)  
VIO  
ΔVIO/ΔT  
IIO  
mV  
µV/°C  
nA  
VDD=1.8V to 5.0V  
25°C  
25°C  
25°C  
-
-
-
5.5  
5
-
-
-
-
30  
35  
IB  
5
nA  
25°C  
-
-
250  
-
600  
840  
Supply Current(Note 40)  
IDD  
μA  
AV=0dB,+IN=1.35V  
Full range  
2.55  
2.65  
-
-
-
2.62  
2.67  
83  
25  
98  
100  
-
-
-
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
VOH  
VOL  
AV  
25°C  
25°C  
V
mV  
dB  
110  
40  
-
-
25°C  
25°C  
92  
VSS  
VDD  
VDD-0.2  
Input Common-mode  
Voltage Range  
VICM  
V
VSS to VDD  
VICM=0.5V  
Full range VSS+0.2  
-
Common-mode Rejection Ratio CMRR  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
60  
75  
20  
18  
-
94  
85  
28  
28  
0.4  
1.4  
1.4  
50  
7
-
-
-
-
-
-
-
-
-
dB  
VDD=1.8V to 5.0V  
VICM=0.5V  
Power Supply Rejection Ratio  
Output Source Current (Note 41)  
Output Sink Current (Note 41)  
Slew Rate  
PSRR  
ISOURCE  
ISINK  
SR  
dB  
mA  
mA  
V/μs  
MHz  
MHz  
deg  
dB  
OUT=0V, Short Current  
OUT=2.7V  
Short Current  
CL=25pF  
CL=25pF, AV=40dB  
f=100kHz  
Gain Bandwidth  
GBW  
fT  
-
Unity Gain Frequency  
Phase Margin  
-
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
θ
-
Gain Margin  
GM  
-
-
-
6.5  
50  
-
-
μVrms AV=40dB, DIN-AUDIO  
Input Referred Noise Voltage  
VN  
25°C  
nV/ Hz f=10kHz  
Total Harmonic Distortion  
+ Noise  
OUT=1VP-P, f=1kHz  
RL=600, AV=0dB  
THD+N  
CS  
25°C  
25°C  
-
-
0.022  
110  
-
-
%
Channel Separation  
dB  
AV=40dB, OUT=1Vrms  
(Note 39) Absolute value.  
(Note 40) Full range: TA=-40°C to +85°C  
(Note 41) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
13/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Electrical Characteristics - continued  
LMR934xxx (Unless otherwise specified VDD=+5.0V, VSS=0V)  
Limit  
Typ  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Max  
25°C  
Full Range  
-
-
1
-
5.5  
7.5  
Input Offset Voltage (Note 42)  
Input Offset Voltage Drift  
Input Offset Current(Note 42)  
Input Bias Current (Note 42)  
VIO  
ΔVIO/ΔT  
IIO  
mV  
µV/°C  
nA  
VDD=1.8V to 5.0V  
25°C  
25°C  
25°C  
-
-
-
5.5  
5
-
-
-
-
30  
35  
IB  
5
nA  
25°C  
-
-
290  
-
600  
920  
Supply Current(Note 43)  
IDD  
μA  
AV=0dB, +IN=2.5V  
Full range  
4.85  
4.94  
-
-
-
4.89  
4.96  
120  
37  
101  
105  
-
-
-
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
RL=600, VRL=VDD/2  
RL=2k, VRL=VDD/2  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
VOH  
VOL  
AV  
25°C  
25°C  
V
mV  
dB  
160  
65  
-
-
VDD  
VDD-0.2  
25°C  
25°C  
94  
VSS  
Input Common-mode  
Voltage Range  
VICM  
V
VSS to VDD  
VICM=0.5V  
Full range VSS+0.2  
-
Common-mode Rejection Ratio CMRR  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
60  
75  
80  
58  
-
94  
85  
-
-
-
-
-
-
-
-
-
dB  
VDD=1.8V to 5.0V  
VICM=0.5V  
Power Supply Rejection Ratio  
Output Source Current (Note 44)  
Output Sink Current (Note 44)  
Slew Rate  
PSRR  
ISOURCE  
ISINK  
SR  
dB  
90  
mA  
mA  
V/μs  
MHz  
MHz  
deg  
dB  
OUT=0V, Short Current  
OUT=5V  
Short Current  
80  
0.42  
1.5  
1.5  
50  
CL=25pF  
CL=25pF, AV=40dB  
f=100kHz  
Gain Bandwidth  
GBW  
fT  
-
Unity Gain Frequency  
Phase Margin  
-
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
CL=25pF, AV=40dB  
θ
-
Gain Margin  
GM  
-
7
-
-
6.5  
50  
-
-
μVrms AV=40dB, DIN-AUDIO  
Input Referred Noise Voltage  
VN  
25°C  
nV/ Hz f=10kHz  
Total Harmonic Distortion  
+ Noise  
OUT=1VP-P, f=1kHz  
RL=600, AV=0dB  
THD+N  
CS  
25°C  
25°C  
-
-
0.022  
110  
-
-
%
Channel Separation  
dB  
AV=40dB, OUT=1Vrms  
(Note 42) Absolute value  
(Note 43) Full range: TA=-40°C to +85°C  
(Note 44) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
14/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Description of Electrical Characteristics  
Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also  
shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s document or  
general document.  
1. Absolute maximum ratings  
Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
(1) Supply Voltage (VDD/VSS)  
Indicates the maximum voltage that can be applied between the positive power supply terminal and negative power  
supply terminal without deterioration or destruction of characteristics of internal circuit.  
(2) Differential Input Voltage (VID)  
Indicates the maximum voltage that can be applied between non-inverting and inverting terminals without damaging  
the IC.  
(3) Input Common-mode Voltage Range (VICM  
)
Indicates the maximum voltage that can be applied to the non-inverting and inverting terminals without deterioration  
or destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure  
normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics.  
(4) Power dissipation (PD)  
Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25℃  
(normal temperature). As for package product, PD is determined by the temperature that can be permitted by the IC in  
the package (maximum junction temperature) and the thermal resistance of the package.  
2. Electrical characteristics  
(1) Input Offset Voltage (VIO)  
Indicates the voltage difference between non-inverting terminal and inverting terminals. It can be translated into the  
input voltage difference required for setting the output voltage at 0 V.  
(2) Input Offset Voltage Drift (VIO /T)  
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.  
(3) Input Offset Current (IIO)  
Indicates the difference of input bias current between the non-inverting and inverting terminals.  
(4) Input Bias Current (IB)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias currents at  
the non-inverting and inverting terminals.  
(5) Supply Current (IDD  
Indicates the current that flows within the IC under specified no-load conditions.  
(6) Maximum Output Voltage (High) / Maximum Output Voltage (Low) (VOH/VOL  
)
)
Indicates the voltage range of the output under specified load condition. It is typically divided into maximum output  
voltage High and low. Maximum output voltage high indicates the upper limit of output voltage. Maximum output  
voltage low indicates the lower limit.  
(7) Large Signal Voltage Gain (AV)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal  
and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.  
Av = (Output voltage) / (Differential Input voltage)  
(8) Input Common-mode Voltage Range (VICM  
)
Indicates the input voltage range where IC normally operates.  
(9) Common-mode Rejection Ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when the input common mode voltage is changed. It is  
normally the fluctuation of DC.  
CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation)  
(10) Power Supply Rejection Ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed.  
It is normally the fluctuation of DC.  
PSRR= (Change of power supply voltage)/(Input offset fluctuation)  
(11) Output Source Current / Output Sink Current (Isource / Isink  
)
The maximum current that can be output from the IC under specific output conditions. The output source current  
indicates the current flowing out from the IC, and the output sink current indicates the current flowing into the IC.  
(12) Channel Separation (CS)  
Indicates the fluctuation in the output voltage of the driven channel with reference to the change of output voltage of  
the channel which is not driven.  
(13) Slew Rate (SR)  
Indicates the ratio of the change in output voltage with time when a step input signal is applied.  
(14) Gain Bandwidth (GBW)  
The product of the open-loop voltage gain and the frequency at which the voltage gain decreases 6dB/octave.  
(15) Unity Gain Frequency (fT)  
Indicates a frequency where the voltage gain of operational amplifier is 1.  
(16) Phase Margin (θ)  
Indicates the margin of phase from 180 degree phase lag at unity gain frequency.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
15/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
(17) Gain Margin (GM)  
Indicates the difference between 0dB and the gain where operational amplifier has 180 degree phase delay.  
(18) Total Harmonic Distortion+Noise (THD+N)  
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage  
of driven channel.  
(19) Input Referred Noise Voltage (VN)  
Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in  
series with input terminal.  
(20) Turn on Time from Shutdown (tON  
Indicates the time from applying the voltage to shutdown terminal until the IC is active.  
(21) Turn on Voltage / Turn off Voltage (VSHDN_H/ VSHDN_L  
)
)
The IC is active if the shutdown terminal is applied more than Turn On Voltage (VSHDN_H).  
The IC is shutdown if the shutdown terminal is applied less than Turn Off Voltage (VSHDN_L).  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
16/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves  
LMR981G, LMR931G  
120  
110  
100  
90  
0.8  
0.6  
0.4  
0.2  
0.0  
85℃  
25℃  
LMR981G  
LMR931G  
80  
70  
-40℃  
60  
50  
40  
85  
0
25  
50  
75  
100  
125  
150  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 2.  
Figure 3.  
Supply Current vs Supply Voltage  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
120  
110  
100  
90  
6
5
4
3
2
1
0
25℃  
5.0V  
85℃  
-40℃  
80  
1.8V  
2.7V  
70  
60  
50  
40  
-50 -25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 4.  
Figure 5.  
Supply Current vs Ambient Temperature  
Maximum Output Voltage (High) vs Supply Voltage  
(RL=2k)  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
17/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) – continued  
LMR981G, LMR931G  
6
5
4
3
2
1
0
30  
25  
20  
15  
10  
5
85℃  
5.0V  
25℃  
2.7V  
1.8V  
-40℃  
0
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 6.  
Figure 7.  
Maximum Output Voltage (High) vs Ambient Temperature  
Maximum Output Voltage (Low) vs Supply Voltage  
(RL=2k)  
(RL=2k)  
30  
40  
35  
30  
25  
20  
15  
10  
5
5.0V  
25℃  
25  
20  
15  
10  
5
-40℃  
1.8V  
85℃  
2.7V  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 8.  
Figure 9.  
Maximum Output Voltage (Low) vs Ambient Temperature  
Output Source Current vs Output Voltage  
(VDD=2.7V)  
(RL=2k)  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
18/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) – continued  
LMR981G, LMR931G  
120  
100  
80  
60  
40  
20  
0
60  
50  
40  
30  
20  
10  
0
5.0V  
-40℃  
25℃  
2.7V  
1.8V  
85℃  
-50  
-25  
0
25  
50  
75  
100 125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 11.  
Figure 10.  
Output Sink Current vs Output Voltage  
(VDD=2.7V)  
Output Source Current vs Ambient Temperature  
(OUT=VSS)  
120  
100  
80  
60  
40  
20  
0
4.0  
3.0  
2.0  
5.0V  
-40℃  
25℃  
1.0  
0.0  
85℃  
-1.0  
-2.0  
-3.0  
-4.0  
2.7V  
1.8V  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 13.  
Figure 12.  
Input Offset Voltage vs Supply Voltage  
Output Sink Current vs Ambient Temperature  
(OUT=VDD)  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
19/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) - continued  
LMR981G, LMR931G  
4.0  
3.0  
4.0  
3.0  
2.0  
2.0  
25℃  
-40℃  
5.0V  
1.0  
1.0  
0.0  
0.0  
2.7V  
1.8V  
85℃  
-1.0  
-2.0  
-3.0  
-4.0  
-1.0  
-2.0  
-3.0  
-4.0  
-50  
-25  
0
25  
50  
75  
100 125  
-1  
0
1
2
3
4
Ambient Temperature [°C]  
Input Voltage [V]  
Figure 14.  
Figure 15.  
Input Offset Voltage vs Ambient Temperature  
Input Offset Voltage vs Input Voltage  
(VDD=2.7V)  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
2.7V  
85℃  
1.8V  
5.0V  
-40℃  
25℃  
60  
60  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 16.  
Figure 17.  
Large Signal Voltage Gain vs Supply Voltage  
Large Signal Voltage Gain vs Ambient Temperature  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
20/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) - continued  
LMR981G, LMR931G  
120  
110  
100  
90  
120  
110  
100  
90  
5.0V  
1.8V  
2.7V  
-40℃  
25℃  
85℃  
80  
80  
70  
70  
60  
60  
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 19.  
Figure 18.  
Common Mode Rejection Ratio vs Ambient Temperature  
Common Mode Rejection Ratio vs Supply Voltage  
(VDD=2.7V)  
120  
110  
100  
90  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
2.7V  
5.0V  
1.8V  
80  
70  
60  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 21.  
Figure 20.  
Slew Rate L-H – Ambient Temperature  
Power Supply Rejection Ratio vs Ambient Temperature  
(VDD=1.8V to 5.0V)  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
21/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) - continued  
LMR981G, LMR931G  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
100  
80  
60  
40  
20  
0
200  
Phase  
150  
100  
50  
5.0V  
1.8V  
2.7V  
Gain  
0
102  
103  
104  
105  
106  
107  
108  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Frequency [Hz]  
Figure 23.  
Voltage GainPhase vs Frequency  
Figure 22.  
Slew Rate H-L vs Ambient Temperature  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
22/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) - continued  
LMR981G  
1.8  
1.6  
1.4  
1.2  
1
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
VSHDN_L  
VSHDN_H  
VSHDN_L  
VSHDN_H  
0
0.5  
1
1.5  
2
0
1
2
3
Shutdown Voltage [V]  
Shutdown Voltage [V]  
Figure 24.  
Figure 25.  
Turn On/Off Voltage – Supply Voltage  
(VDD=1.8V, AV=0dB, IN=0.9V)  
Turn On/Off Voltage – Supply Voltage  
(VDD=2.7V, AV=0dB, IN=1.35V)  
4
3
2
1
0
VSHDN_L  
VSHDN_H  
0
1
2
3
4
5
6
Shutdown Voltage [V]  
Figure 26.  
Turn On/Off Voltage vs Supply Voltage  
(VDD=5V, AV=0dB, IN=2.5V)  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
23/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves  
LMR982FVM, LMR932xxx  
240  
220  
200  
180  
160  
140  
120  
100  
80  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
LMR932F  
LMR932FJ  
LMR932FV  
LMR932FVT  
85℃  
25℃  
LMR982FVM  
LMR932FVM  
LMR932FVJ  
-40℃  
85  
0
25  
50  
75  
100  
125  
150  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 27.  
Figure 28.  
Supply Current vs Supply Voltage  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
240  
220  
200  
180  
160  
140  
120  
100  
80  
6
5
4
3
2
1
0
25℃  
85℃  
-40℃  
5.0V  
1.8V  
2.7V  
-50 -25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 29.  
Figure 30.  
Supply Current vs Ambient Temperature  
Maximum Output Voltage (High) vs Supply Voltage  
(RL=2k)  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
24/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) – continued  
LMR982FVM, LMR932xxx  
6
5
4
3
2
1
0
30  
25  
20  
15  
10  
5
85℃  
5.0V  
25℃  
2.7V  
1.8V  
-40℃  
0
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 31.  
Figure 32.  
Maximum Output Voltage (High) vs Ambient Temperature  
Maximum Output Voltage (Low) vs Supply Voltage  
(RL=2k)  
(RL=2k)  
30  
40  
35  
30  
25  
20  
15  
10  
5
5.0V  
-40℃  
25℃  
25  
20  
15  
10  
5
1.8V  
85℃  
2.7V  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 33.  
Figure 34.  
Maximum Output Voltage (Low) vs Ambient Temperature  
Output Source Current vs Output Voltage  
(VDD=2.7V)  
(RL=2k)  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
25/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) – continued  
LMR982FVM, LMR932xxx  
140  
120  
100  
80  
60  
50  
40  
30  
20  
10  
0
5.0V  
-40℃  
25℃  
60  
2.7V  
1.8V  
85℃  
40  
20  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 36.  
Figure 35.  
Output Sink Current vs Output Voltage  
(VDD=2.7V)  
Output Source Current vs Ambient Temperature  
(OUT=VSS)  
120  
100  
80  
60  
40  
20  
0
4.0  
3.0  
2.0  
1.0  
-40℃  
25℃  
5.0V  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
2.7V  
1.8V  
85℃  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 38.  
Figure 37.  
Input Offset Voltage vs Supply Voltage  
Output Sink Current vs Ambient Temperature  
(OUT=VDD)  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
26/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) - continued  
LMR982FVM, LMR932xxx  
4.0  
3.0  
4.0  
3.0  
2.0  
2.0  
1.0  
1.0  
-40℃  
25℃  
5.0V  
0.0  
0.0  
2.7V  
1.8V  
-1.0  
-2.0  
-3.0  
-4.0  
-1.0  
-2.0  
-3.0  
-4.0  
85℃  
-50  
-25  
0
25  
50  
75  
100  
125  
-1  
0
1
2
3
4
Ambient Temperature [°C]  
Input Voltage [V]  
Figure 39.  
Figure 40.  
Input Offset Voltage vs Ambient Temperature  
Input Offset Voltage vs Input Voltage  
(VDD=2.7V)  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
85℃  
2.7V  
5.0V  
1.8V  
-40℃  
25℃  
60  
60  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
125  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 41.  
Figure 42.  
Large Signal Voltage Gain vs Supply Voltage  
Large Signal Voltage Gain vs Ambient Temperature  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
27/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) - continued  
LMR982FVM, LMR932xxx  
120  
110  
100  
90  
120  
110  
100  
90  
5.0V  
1.8V  
25℃  
2.7V  
85℃  
-40℃  
80  
80  
70  
70  
60  
60  
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 44.  
Figure 43.  
Common Mode Rejection Ratio vs Ambient Temperature  
Common Mode Rejection Ratio vs Supply Voltage  
(VDD=2.7V)  
120  
110  
100  
90  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
2.7V  
5.0V  
1.8V  
80  
70  
60  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 46.  
Figure 45.  
Slew Rate L-H – Ambient Temperature  
Power Supply Rejection Ratio vs Ambient Temperature  
(VDD=1.8V to 5.0V)  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
28/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) - continued  
LMR982FVM, LMR932xxx  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
100  
80  
60  
40  
20  
0
200  
Phase  
150  
100  
50  
5.0V  
Gain  
2.7V  
1.8V  
0
102  
103  
104  
105  
106  
107  
108  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Frequency [Hz]  
Figure 48.  
Voltage GainPhase vs Frequency  
Figure 47.  
Slew Rate H-L vs Ambient Temperature  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
29/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) - continued  
LMR982FVM  
1.8  
1.6  
1.4  
1.2  
1
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
VSHDN_H  
VSHDN_L  
VSHDN_L  
VSHDN_H  
0
0.5  
1
1.5  
2
0
1
2
3
Shutdown Voltage [V]  
Shutdown Voltage [V]  
Figure 49.  
Figure 50.  
Turn On/Off Voltage – Supply Voltage  
(VDD=1.8V, AV=0dB, IN=0.9V)  
Turn On/Off Voltage – Supply Voltage  
(VDD=2.7V, AV=0dB, IN=1.35V)  
4
3
2
1
0
VSHDN_L  
VSHDN_H  
0
1
2
3
4
5
6
Shutdown Voltage [V]  
Figure 51.  
Turn On/Off Voltage vs Supply Voltage  
(VDD=5V, AV=0dB, IN=2.5V)  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
30/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves  
LMR934xxx  
1.5  
400  
350  
300  
250  
200  
150  
100  
1.2  
0.9  
85℃  
LMR934FJ  
LMR934FV  
25℃  
LMR934FVJ  
0.6  
0.3  
0.0  
-40℃  
LMR934F  
85  
0
25  
50  
75  
100  
125  
150  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 52.  
Figure 53.  
Supply Current vs Supply Voltage  
Power Dissipation vs Ambient Temperature  
(Derating Curve)  
400  
350  
300  
250  
200  
150  
100  
6
5
4
3
2
1
0
25℃  
5.0V  
85℃  
-40℃  
1.8V  
2.7V  
-50 -25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 54.  
Figure 55.  
Supply Current vs Ambient Temperature  
Maximum Output Voltage (High) vs Supply Voltage  
(RL=2k)  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
31/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) – continued  
LMR934xxx  
6
5
4
3
2
1
0
30  
25  
20  
15  
10  
5
85℃  
5.0V  
25℃  
2.7V  
1.8V  
-40℃  
0
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 56.  
Figure 57.  
Maximum Output Voltage (High) vs Ambient Temperature  
Maximum Output Voltage (Low) vs Supply Voltage  
(RL=2k)  
(RL=2k)  
30  
40  
35  
30  
25  
20  
15  
10  
5
5.0V  
25  
20  
15  
10  
5
-40℃  
25℃  
1.8V  
2.7V  
85℃  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 58.  
Figure 59.  
Maximum Output Voltage (Low) vs Ambient Temperature  
Output Source Current vs Output Voltage  
(VDD=2.7V)  
(RL=2k)  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
32/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) – continued  
LMR934xxx  
140  
120  
100  
80  
60  
50  
40  
30  
20  
10  
0
5.0V  
-40℃  
25℃  
60  
2.7V  
1.8V  
85℃  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100 125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Ambient Temperature [°C]  
Output Voltage [V]  
Figure 61.  
Figure 60.  
Output Sink Current vs Output Voltage  
(VDD=2.7V)  
Output Source Current vs Ambient Temperature  
(OUT=VSS)  
120  
100  
80  
60  
40  
20  
0
4.0  
3.0  
2.0  
-40℃  
25℃  
85℃  
1.0  
5.0V  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
2.7V  
1.8V  
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 63.  
Figure 62.  
Input Offset Voltage vs Supply Voltage  
Output Sink Current vs Ambient Temperature  
(OUT=VDD)  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
33/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) - continued  
LMR934xxx  
4.0  
3.0  
4.0  
3.0  
2.0  
2.0  
-40℃  
25℃  
5.0V  
1.0  
1.0  
1.8V  
0.0  
0.0  
2.7V  
85℃  
-1.0  
-2.0  
-3.0  
-4.0  
-1.0  
-2.0  
-3.0  
-4.0  
-50  
-25  
0
25  
50  
75  
100 125  
-1  
0
1
2
3
4
Ambient Temperature [°C]  
Input Voltage [V]  
Figure 64.  
Figure 65.  
Input Offset Voltage vs Ambient Temperature  
Input Offset Voltage vs Input Voltage  
(VDD=2.7V)  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
85℃  
5.0V  
-40℃  
25℃  
2.7V  
1.8V  
60  
60  
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 66.  
Figure 67.  
Large Signal Voltage Gain vs Supply Voltage  
Large Signal Voltage Gain vs Ambient Temperature  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
34/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) - continued  
LMR934xxx  
120  
110  
100  
90  
120  
110  
100  
90  
5.0V  
2.7V  
85℃  
25℃  
1.8V  
-40℃  
80  
80  
70  
70  
60  
60  
-50  
-25  
0
25  
50  
75  
100 125  
1
2
3
4
5
6
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 69.  
Figure 68.  
Common Mode Rejection Ratio vs Ambient Temperature  
Common Mode Rejection Ratio vs Supply Voltage  
(VDD=2.7V)  
120  
110  
100  
90  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
2.7V  
5.0V  
1.8V  
80  
70  
60  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Figure 71.  
Figure 70.  
Slew Rate L-H – Ambient Temperature  
Power Supply Rejection Ratio vs Ambient Temperature  
(VDD=1.8V to 5.0V)  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
35/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Typical Performance Curves (Reference data) - continued  
LMR934xxx  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
100  
80  
60  
40  
20  
0
200  
Phase  
150  
100  
50  
5.0V  
Gain  
2.7V  
1.8V  
0
102  
103  
104  
105  
106  
107  
108  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature [°C]  
Frequency [Hz]  
Figure 73.  
Voltage GainPhase vs Frequency  
Figure 72.  
Slew Rate H-L vs Ambient Temperature  
(Note )The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
©2013 ROHM Co., Ltd. All rights reserved.  
36/59  
TSZ2211115001  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Application Information  
NULL method condition for Test circuit1  
VDD, VSS, EK, VICM Unit:V  
Parameter  
Calculation  
VF  
S1  
S2  
S3  
VDD VSS  
EK  
VICM  
3
Input Offset Voltage  
VF1  
VF2  
VF3  
VF4  
VF5  
ON  
ON  
OFF  
3
0
-1.5  
-0.5  
-2.5  
1
Large Signal Voltage Gain  
ON  
ON  
ON  
3
0
1.5  
2
0
3
Common-mode Rejection Ratio  
(Input Common-mode Voltage Range)  
ON  
ON  
ON  
ON  
OFF  
OFF  
3
0
0
-1.5  
-1.2  
3
4
VF6  
VF7  
1.8  
5.0  
Power Supply Rejection Ratio  
0
Calculation-  
|VF1|  
1 + RF/RS  
VIO  
=
[V]  
1. Input Offset Voltage (VIO)  
EK × (1+RF/RS)  
Av = 20Log  
[dB]  
2. Large Signal Voltage Gain (AV)  
|VF2 - VF3|  
VICM × (1+RF/RS)  
3. Common-mode Rejection Ratio (CMRR)  
4. Power Supply Rejection Ratio (PSRR)  
CMRR = 20Log  
PSRR = 20Log  
[dB]  
|VF4 - VF5|  
VCC × (1+ RF/RS)  
[dB]  
|VF6 - VF7|  
0.1µF  
RF=50kΩ  
0.1µF  
500kΩ  
SW1  
VDD  
DUT  
VSS  
EK  
15V  
RS=50Ω  
RI=10kΩ  
VO  
500kΩ  
0.1µF  
0.1µF  
NULL  
-15V  
SW3  
RL  
RI=10kΩ  
1000pF  
RS=50Ω  
50kΩ  
VF  
VICM  
VRL  
Figure 74. Test Circuit 1  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
37/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Switch Condition for Test Circuit 2  
SW No.  
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 SW11 SW12  
Supply Current  
OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF  
OFF ON OFF OFF ON OFF OFF ON OFF OFF ON OFF  
OFF ON OFF OFF ON OFF OFF OFF OFF ON OFF OFF  
OFF OFF ON OFF OFF OFF ON OFF ON OFF OFF ON  
ON OFF OFF ON ON OFF OFF OFF ON OFF OFF ON  
Maximum Output Voltage RL=10kΩ  
Output Current  
Slew Rate  
Unity Gain Frequency  
SW3  
R2 100k  
SW4  
VDD=3V  
SW1  
SW2  
SW8 SW9  
SW10 SW11 SW12  
SW5  
SW6  
SW7  
R1  
1kΩ  
VSS  
RL  
CL  
IN-  
IN+  
VO  
VRL  
Figure 75. Test Circuit2  
Output Voltage  
Input Voltage  
V
/ Δ t  
SR =  
Δ
1.8 V  
90%  
1 8 V  
.
ΔV  
1.8 V P-P  
10%  
0 V  
0 V  
t
t
Δ t  
Input Wave  
Output Wave  
Figure 76. Slew Rate Input Output Wave  
R2=100kΩ  
R2=100kΩ  
VDD  
VDD  
R1=1kΩ  
R1=1kΩ  
OUT1  
OUT2  
R1//R2  
=1Vrms  
R1//R2  
VSS  
VSS  
IN  
100×OUT1  
OUT2  
CS=20Log  
Figure 77. Test Circuit 3 (Channel Separation)  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
38/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Application Example  
Voltage Follower  
Voltage gain is 0dB.  
VDD  
This circuit controls output voltage (OUT) equal input  
voltage (IN), and keeps OUT with stable because of high  
input impedance and low output impedance.  
OUT is shown next expression.  
OUT  
OUT=IN  
IN  
VSS  
Figure 78. Voltage Follower  
Inverting Amplifier  
R2  
For inverting amplifier, IN is amplified by voltagegain  
decided R1 and R2, and phase reversed voltage is  
output. OUT is shown next expression.  
OUT=-(R2/R1)IN  
VDD  
Input impedance is R1.  
R1  
IN  
OUT  
VSS  
Figure 79. Inverting Amplifier Circuit  
Non-inverting amplifier  
R1  
R2  
For non-inverting amplifier, IN is amplified by voltage  
gain decided R1 and R2, and phase is same with IN.  
OUT is shown next expression.  
VDD  
OUT=(1+R2/R1)IN  
This circuit performs high input impedance because  
Input impedance is operational amplifier’s input  
Impedance.  
OUT  
IN  
VSS  
Figure 80. Non-inverting Amplifier Circuit  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
39/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Power Dissipation  
Power dissipation (total loss) indicates the power that the IC can consume at TA=25°C (normal temperature). As the IC  
consumes power, it heats up, causing its temperature to be higher than the ambient temperature. The allowable  
temperature that the IC can accept is limited. This depends on the circuit configuration, manufacturing process, and  
consumable power.  
Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the  
thermal resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the  
maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold  
resin or lead frame of the package. Thermal resistance, represented by the symbol θJA°C/W, indicates this heat dissipation  
capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance.  
Figure 81(a) shows the model of the thermal resistance of a package. The equation below shows how to compute for the  
Thermal resistance (θJA), given the ambient temperature (TA), maximum junction temperature (TJmax), and power dissipation  
(PD).  
θJA  
= (TJmaxTA) / PD °C/W  
The derating curve in Figure 81(b) indicates the power that the IC can consume with reference to ambient temperature.  
Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by Thermal  
resistance (θJA), which depends on the chip size, power consumption, package, ambient temperature, package condition,  
wind velocity, etc. This may also vary even when the same of package is used. Thermal reduction curve indicates a  
reference value measured at a specified condition. Figure 81(c) to (e) shows an example of the derating curve for  
LMR981G, LMR931G, LMR982FVM, LMR932xxx and LMR934xxx.  
Power Dissipation of LSI [W]  
PD(max)  
P2  
θ
JA
=(T
Jmax
-T
A
)/ P
D
°C/W  
Ambient Temperature TA [ °C ]  
θJA2 < θJA1  
θJA2  
θJA2  
P1  
TJ’max TJmax  
θJA1  
θJA1  
0
25  
50  
75  
100  
125  
150  
Chip Surface Temperature TJ [ °C ]  
Ambient Temperature TA [ °C ]  
(b) Derating Curve  
(a) Thermal Resistance  
0.8  
0.6  
0.4  
0.2  
0.0  
LMR931G  
LMR981G (Note 45)  
85  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature [°C]  
(c) LMR931G, LMR981G  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
40/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
LMR934FJ (Note 52)  
LMR934FV (Note 51)  
LMR932F (Note 46)  
LMR932FJ (Note 45)  
LMR932FV (Note 49)  
LMR932FVT (Note 49)  
LMR934FVJ (Note 50)  
LMR982FVM (Note 47)  
LMR932FVM (Note 47)  
LMR932FVJ (Note 47)  
LMR934F (Note 48)  
85  
85  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
(e)LMR934xxx  
(d)LMR932xxx, LMR982FVM  
Figure 81. Thermal Resistance and Derating Curve  
(Note 45)  
5.4  
(Note 46)  
5.5  
(Note 47)  
4.7  
(Note 48)  
4.5  
(Note 49)  
5.0  
(Note 50)  
6.8  
(Note 51)  
7.0  
(Note 52)  
8.2  
Unit  
mW/°C  
When using the unit above TA=25°C, subtract the value above per Celsius degree. Permissible dissipation is the value  
when FR4 glass epoxy board 70mm×70mm×1.6mm (copper foil area less than 3%) is mounted  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
41/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the PD stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum  
rating, increase the board size and copper area to prevent exceeding the PD rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to Figure 82):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
42/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Operational Notes – continued  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Figure 82. Example of Mhic IC Scture  
12. Unused Circuits  
When there are unused op-amps, it is recommended that they are  
VDD  
VSS  
connected as in Figure 84, setting the non-inverting input terminal to a  
potential within the in-phase input voltage range (VICM).  
Keep this potential  
in VICM  
VICM  
13. Input Voltage  
Applying VSS+0.3V to the input terminal is possible without causing  
deterioration of the electrical characteristics or destruction, regardless  
of the supply voltage. However, this does not ensure normal circuit  
operation. Please note that the circuit operates normally only when the  
input voltage is within the common mode input voltage range of the  
electric characteristics.  
Figure 83. Example of Application  
Circuit for Unused Op-Amp  
14. Power Supply(single/dual)  
The operational amplifiers operate when the voltage supplied is  
between VDD and VSS. Therefore, the single supply operational  
amplifiers can be used as dual supply operational amplifiers as well.  
15. Output Capacitor  
If a large capacitor is connected between the output pin and VSS pin, current from the charged capacitor will flow into  
the output pin and may destroy the IC when the VDD pin is shorted to ground or pulled down to 0V. Use a capacitor  
smaller than 0.1µF between output pin and VSS pin.  
16. Oscillation by Output Capacitor  
Please pay attention to the oscillation by output capacitor and in designing an application of negative feedback loop  
circuit with these ICs.  
17. Latch up  
Be careful of input voltage that exceed the VDD and VSS. When CMOS device have sometimes occur latch up and  
protect the IC from abnormaly noise.  
18. Decupling Capacitor  
Insert the decupling capacitance between VDD and VSS, for stable operation of operational amplifier.  
19. Shutdown Terminal  
The shutdown terminal can’t be left unconnected. In case shutdown operation is not needed, the shutdown pin should  
be connected to VDD when the IC is used. Leaving the shutdown pin floating will result in an undefined operation  
mode, either shutdown or active, or even oscillating between the two modes.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
43/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP5  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
44/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Physical Dimension Tape and Reel Information – continued  
Package Name  
SSOP6  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1pin  
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
Reel  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
45/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Physical Dimension Tape and Reel Information – continued  
Package Name  
MSOP8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1pin  
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
Reel  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
46/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Physical Dimension Tape and Reel Information – continued  
Package Name  
MSOP10  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
47/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Physical Dimension Tape and Reel Information – continued  
Package Name  
TSSOP-B8J  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
48/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Physical Dimension Tape and Reel Information – continued  
Package Name  
TSSOP-B8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
49/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Physical Dimension Tape and Reel Information – continued  
Package Name  
SSOP-B8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
50/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Physical Dimension Tape and Reel Information – continued  
Package Name  
SOP-J8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
51/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Physical Dimension Tape and Reel Information – continued  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT : mm)  
PKG : SOP8  
Drawing No. : EX112-5001-1  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
52/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Physical Dimension Tape and Reel Information – continued  
Package Name  
TSSOP-B14J  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
53/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Physical Dimension Tape and Reel Information – continued  
Package Name  
SSOP-B14  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
54/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Physical Dimension Tape and Reel Information – continued  
Package Name  
SOP14  
(Max 9.05 (include.BURR))  
(UNIT : mm)  
PKG : SOP14  
Drawing No. : EX113-5001  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
55/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Physical Dimension Tape and Reel Information – continued  
Package Name  
SOP-J14  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
56/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Marking Diagram  
SSOP5(TOP VIEW)  
SSOP6(TOP VIEW)  
Part Number Marking  
Part Number Marking  
1PIN MARK  
LOT Number  
LOT Number  
MSOP10(TOP VIEW)  
MSOP8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
TSSOP-B8J(TOP VIEW)  
TSSOP-B8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
SSOP-B8(TOP VIEW)  
SOP-J8(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
57/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
SOP8(TOP VIEW)  
TSSOP-B14J (TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
SSOP-B14(TOP VIEW)  
Part Number Marking  
SOP14(TOP VIEW)  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
SOP-J14(TOP VIEW)  
Part Number Marking  
LOT Number  
1PIN MARK  
Product Name  
Package Type  
Marking  
LMR981  
LMR931  
G
G
SSOP6  
SSOP5  
BE  
L4  
F
SOP8  
R932  
R932  
R932  
R932  
R932  
R932  
R982  
R934  
R934  
R934  
R934  
FJ  
FV  
SOP-J8  
SSOP-B8  
TSSOP-B8  
MSOP8  
LMR932  
FVT  
FVM  
FVJ  
FVM  
F
TSSOP-B8J  
MSOP10  
SOP14  
LMR982  
LMR934  
FJ  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
FV  
FVJ  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
58/59  
Datasheet  
LMR981G LMR931G LMR982FVM LMR932xxx LMR934xxx  
Land Pattern Data  
All dimensions in mm  
Land length  
Land pitch  
e
Land space  
MIE  
Land width  
b2  
PKG  
≧ℓ 2  
SSOP5  
SSOP6  
SOP8  
0.95  
2.4  
1.0  
0.6  
1.27  
0.50  
1.27  
4.60  
2.62  
3.90  
1.10  
0.99  
1.35  
0.76  
0.25  
0.76  
SOP14  
MSOP10  
SOP-J8  
SOP-J14  
SSOP-B8  
TSSOP-B8  
SSOP-B14  
0.65  
4.60  
1.20  
0.35  
MSOP8  
0.65  
0.65  
2.62  
3.20  
0.99  
1.15  
0.35  
0.35  
TSSOP-B8J  
TSSOP-B14J  
SOP8, SOP-J8, SOP14, SOP-J14, SSOP-B8,  
SSOP-B14, MSOP8, MSOP10, TSSOP-B8,  
TSSOP-B8J, TSSOP-B14J  
SSOP6  
SSOP5  
e
e
e
e
MIE  
b2  
b2  
ℓ2  
Revision History  
Date  
Revision  
Changes  
28.Dec.2012  
25.Jan.2013  
17.Jun.2013  
30.Sep.2013  
20.Feb.2014  
001  
002  
003  
004  
005  
New Release  
LMR982FVM inserted.  
Marking Diagram SSOP6 1PIN MARK added.  
Added LMR932xxx and LMR934xxx  
Correction of description gap of calculation(Page.37)  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR0G200570-1-2  
20.Feb.2014.Rev.005  
59/59  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
Datasheet  
Buy  
LMR931G - Web Page  
Distribution Inventory  
Part Number  
Package  
Unit Quantity  
LMR931G  
SSOP5  
3000  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
3000  
Taping  
inquiry  
Yes  

相关型号:

LMR934FV

LMR934FV是输入/输出全振幅运算放大器。具有低电压工作、低消耗电流的特点,是适用于便携式设备、电池监视用途的运算放大器。
ROHM

LMR934FV-E2

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMR934FVJ

LMR934FVJ是输入/输出全振幅运算放大器。具有低电压工作、低消耗电流的特点,是适用于便携式设备、电池监视用途的运算放大器。
ROHM

LMR934FVJ-E2

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMR981G

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMR981G-E2

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMR981G-TR

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMR982FVM

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMR982FVM-E2

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMR982FVM-TR

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMRMG02MCC

10mm ROUND LED LAMP
SUNLED

LMRMG59MCC

T-1 3/4 (5mm) BI-COLOR INDICATOR LAMP
SUNLED