LMR824FVJ [ROHM]

LMR824FVJ是输出全振幅运算放大器。具有低电压工作、低消耗电流、高电压增益、高转换速率的特点,是适用于移动设备、低电压工作设备、有源滤波器等的运算放大器。;
LMR824FVJ
型号: LMR824FVJ
厂家: ROHM    ROHM
描述:

LMR824FVJ是输出全振幅运算放大器。具有低电压工作、低消耗电流、高电压增益、高转换速率的特点,是适用于移动设备、低电压工作设备、有源滤波器等的运算放大器。

放大器 运算放大器 有源滤波器
文件: 总21页 (文件大小:449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Operational Amplifiers  
Low Power Ground Sense  
Operational Amplifiers  
LMR821G  
Key Specifications  
General Description  
Low Operating Supply Voltage (single supply):  
Ground Sense Low Voltage Op-Amp integrates single  
Op-Amp on a single chip. Especially, these series are  
operable with low voltage and low supply current.  
+2.5V to +5.0V  
High voltage gain (RL=600):  
Wide Temperature Range:  
High Slew Rate:  
Low Input Offset Voltage:  
Low Input Bias Current:  
105dB (Typ.)  
-40°C to +85°C  
2.0V/μs (Typ.)  
3.5mV (Max.)  
30nA (Typ.)  
Features  
Low operating supply voltage  
Input Ground Sense, Output Full Swing  
High large signal voltage gain  
High Slew Rate  
Package  
W(Typ.) xD(Typ.) xH(Max.)  
2.90mm x 2.80mm x 1.25mm  
Low supply current  
SSOP5  
Low input offset voltage  
Applications  
Customer electronics  
Buffer  
Active filter  
Mobile equipment  
Simplified Schematic  
VDD  
+IN  
-IN  
OUT  
class  
AB control  
VSS  
Figure 1. Simplified Schematic (1 channel only)  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
1/18  
Datasheet  
LMR821G  
Pin Configuration  
LMR821G (SSOP5)  
Pin No.  
Pin Name  
+IN  
VSS  
-IN  
1
2
3
5 VDD  
1
2
3
4
5
+IN  
VSS  
-IN  
+
-
OUT  
VDD  
4
OUT  
Package  
SSOP5  
LMR821G  
Ordering Information  
L M R  
8
2
1 G  
-
T R  
Part Number  
LMR821  
Package  
G:SSOP5  
Packaging and forming specification  
TR: Embossed tape and reel  
(SSOP5)  
Line-up  
Topr  
Package  
Reel of 3000  
Operable Part Number  
LMR821G-TR  
-40°C to +85°C  
SSOP5  
Absolute Maximum Ratings(Ta=25°C)  
Parameter  
Symbol  
Ratings  
Unit  
Supply Voltage  
VDD-VSS  
+7  
675*1*2  
V
mW  
V
Power dissipation  
Differential Input Voltage*3  
Pd  
SSOP5  
Vid  
VDD to VSS  
Input Common-mode  
Voltage Range  
Vicm  
(VSS - 0.3) to (VDD + 0.3)  
V
Operable with low voltage  
Operating Temperature  
Storage Temperature  
Vopr  
Topr  
Tstg  
+2.5 to +5.0  
- 40 to +85  
- 55 to +150  
V
°C  
°C  
Maximum  
Junction Temperature  
Tjmax  
+150  
°C  
Note: Absolute maximum rating item indicates the condition which must not be exceeded.  
Application of voltage in excess of absolute maximum rating or use out absolute maximum rated  
temperature environment may cause deterioration of characteristics.  
*1  
*2  
*3  
To use at temperature above Ta25°C reduce 5.4mW/°C.  
Mounted on a FR4 glass epoxy PCB(70mm×70mm×1.6mm).  
The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VSS.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
2/18  
Datasheet  
LMR821G  
Electrical Characteristics:  
LMR821G (Unless otherwise specified VDD=+2.7V, VSS=0V)  
Limits  
Typ.  
Temperature  
Parameter  
Symbol  
Unit  
Condition  
Range  
Min.  
Max.  
25°C  
Full Range  
-
-
1
-
3.5  
4
Input Offset Voltage *4*5  
Input Offset Voltage Drift  
Input Offset Current*4  
Input Bias Current *4  
Vio  
ΔVio/ΔT  
Iio  
mV  
μV/°C  
nA  
VDD=2.5V to 5.0V  
25°C  
25°C  
25°C  
-
-
-
1
-
-
-
-
0.5  
30  
30  
90  
Ib  
nA  
25°C  
-
-
220  
-
300  
500  
Supply Current*5  
IDD  
μA  
Av=0dB, VIN=1.35V  
Full range  
2.50  
2.60  
-
-
-
2.58  
2.66  
130  
80  
100  
100  
-
RL=600to VDD/2  
RL=2kto VDD/2  
RL=600to VDD/2  
RL=2kto VDD/2  
RL=600to VDD/2  
RL=2kto VDD/2  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
VOH  
VOL  
25°C  
25°C  
V
-
200  
120  
-
mV  
Av  
25°C  
25°C  
25°C  
dB  
V
95  
-
Input Common-mode  
Voltage Range  
Vicm  
VSS  
70  
-
VDD-0.9  
-
VSS to VDD  
VCM=0.5V  
Common-mode Rejection Ratio CMRR  
85  
dB  
VDD=2.7V to 5.0V  
VCM=1V  
PSRR  
Isource  
Isink  
SR  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
75  
12  
12  
-
85  
16  
-
-
-
-
-
-
-
-
dB  
mA  
Power supply reject-ratio  
Output Source Current *6  
Output Sink Current *6  
Slew Rate  
OUT=0V, short current  
OUT=2.7V, short current  
CL=25pF  
26  
mA  
1.5  
4.5  
45  
V/μs  
MHz  
Deg  
dB  
CL=25pF, Av=40dB  
f=1MHz  
Gain Bandwidth  
GBW  
θ
-
Phase Margin  
-
CL=25pF, Av=40dB  
CL=25pF, Av=40dB  
Gain Margin  
GM  
-
4.5  
45  
Input Referred Noise Voltage  
Vn  
-
nV/ Hz f=1kHz  
OUT=2.2VP-P, f=1kHz  
Total Harmonic Distortion  
+ Noise  
THD+N  
25°C  
-
0.01  
-
%
RL=10kΩ  
Av=0dB, DIN-AUDIO  
*4  
*5  
*6  
Absolute value.  
Full range: Ta=-40°C to +85°C  
Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
LMR821G (Unless otherwise specified VDD=+2.5V, VSS=0V)  
Limits  
Typ.  
Temperature  
Parameter  
Symbol  
Unit  
Condition  
Range  
Min.  
Max.  
25°C  
Full Range  
-
1
-
2.37  
2.46  
130  
80  
3.5  
4
-
Input Offset Voltage *7  
Vio  
mV  
V
VDD=2.5V to 5.0V  
-
2.30  
2.40  
-
RL=600to VDD/2  
RL=2kto VDD/2  
RL=600to VDD/2  
RL=2kto VDD/2  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
VOH  
VOL  
25°C  
25°C  
-
200  
120  
mV  
-
*7  
Absolute value.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
3/18  
Datasheet  
LMR821G  
LMR821G (Unless otherwise specified VDD=+5.0V, VSS=0V)  
Limits  
Typ.  
Temperature  
Parameter  
Symbol  
Unit  
Condition  
Range  
Min.  
Max.  
25°C  
Full Range  
-
-
1
-
3.5  
4
Input Offset Voltage *8*9  
Input Offset Voltage Drift  
Input Offset Current*8  
Vio  
ΔVio/ΔT  
Iio  
mV  
μV/°C  
nA  
VDD=2.5V to 5.0V  
25°C  
25°C  
25°C  
-
-
-
1
-
-
0.5  
40  
30  
-
Input Bias Current *8  
Ib  
100  
nA  
-
25°C  
Full range  
-
-
300  
-
400  
600  
Supply Current*9  
IDD  
μA  
Av=0dB, VIN=2.5V  
4.75  
4.85  
-
-
-
4.84  
4.90  
170  
100  
105  
105  
-
RL=600to VDD/2  
RL=2kto VDD/2  
RL=600to VDD/2  
RL=2kto VDD/2  
RL=600to VDD/2  
RL=2kto VDD/2  
Maximum Output Voltage(High)  
Maximum Output Voltage(Low)  
Large Signal Voltage Gain  
VOH  
VOL  
Av  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
V
-
250  
150  
-
mV  
dB  
95  
-
Input Common-mode  
Voltage Range  
Vicm  
VSS  
-
VDD-0.9  
V
VSS to VDD  
VCM=0.5V  
Common-mode Rejection Ratio CMRR  
72  
75  
20  
20  
-
90  
85  
45  
40  
2.0  
5
-
-
-
-
-
-
-
-
-
dB  
VDD=2.7V to 5.0V  
VCM=1V  
PSRR  
Isource  
Isink  
SR  
dB  
Power supply reject-ratio  
Output Source Current *10  
Output Sink Current *10  
Slew Rate  
mA  
mA  
V/μs  
MHz  
Deg  
dB  
OUT=0V, short current  
OUT=5V, short current  
CL=25pF  
CL=25pF, Av=40dB  
f=1MHz  
Gain Bandwidth  
GBW  
θ
-
Phase Margin  
-
45  
4.5  
42  
CL=25pF, Av=40dB  
CL=25pF, Av=40dB  
Gain Margin  
GM  
-
Input Referred Noise Voltage  
Vn  
-
nV/ Hz f=1kHz  
OUT=4.1VP-P, f=1kHz  
Total Harmonic Distortion  
+ Noise  
THD+N  
25°C  
-
0.01  
-
%
RL=10kΩ  
Av=0dB, DIN-AUDIO  
*8  
*9  
Absolute value  
Full range: Ta=-40°C to +85°C  
*10 Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
4/18  
Datasheet  
LMR821G  
Description of electrical characteristics  
Described here are the terms of electric characteristics used in this datasheet. Items and symbols used are also shown.  
Note that item name and symbol and their meaning may differ from those on another manufacture’s document or general  
document.  
1. Absolute maximum ratings  
Absolute maximum rating item indicates the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
1.1 Power supply voltage (VDD/VSS)  
Indicates the maximum voltage that can be applied between the positive power supply terminal and negative power  
supply terminal without deterioration or destruction of characteristics of internal circuit.  
1.2 Differential input voltage (Vid)  
Indicates the maximum voltage that can be applied between non-inverting terminal and inverting terminal without  
deterioration and destruction of characteristics of IC.  
1.3 Input common-mode voltage range (Vicm)  
Indicates the maximum voltage that can be applied to non-inverting terminal and inverting terminal without  
deterioration or destruction of characteristics. Input common-mode voltage range of the maximum ratings not assures  
normal operation of IC. When normal Operation of IC is desired, the input common-mode voltage of characteristics  
item must be followed.  
1.4 Power dissipation (Pd)  
Indicates the power that can be consumed by specified mounted board at the ambient temperature 25(normal temperature).  
As for package product, Pd is determined by the temperature that can be permitted by IC chip in the package  
(maximum junction temperature) and thermal resistance of the package.  
2.Electrical characteristics item  
2.1 Input offset voltage (Vio)  
Indicates the voltage difference between non-inverting terminal and inverting terminal. It can be translated into the  
input voltage difference required for setting the output voltage at 0 V.  
2.2 Input offset voltage drift (Vio/T)  
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.  
2.3 Input offset current (Iio)  
Indicates the difference of input bias current between non-inverting terminal and inverting terminal.  
2.4 Input bias current (Ib)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias current at  
non-inverting terminal and input bias current at inverting terminal.  
2.5 Circuit current (IDD)  
Indicates the IC current that flows under specified conditions and no-load steady status.  
2.6 Maximum Output Voltage(High) / Maximum Output Voltage(Low) (VOH/VOL)  
Indicates the voltage range that can be output by the IC under specified load condition. It is typically divided into  
maximum output voltage High and low. Maximum output voltage high indicates the upper limit of output voltage.  
Maximum output voltage low indicates the lower limit.  
2.7 Output source current/ output sink current (Isource/Isink)  
The maximum current that can be output under specific output conditions, it is divided into output source current and  
output sink current. The output source current indicates the current flowing out of the IC, and the output sink current  
the current flowing into the IC.  
2.8 Large signal voltage gain (Av)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal  
and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.  
Av = (Output voltage fluctuation) / (Input offset fluctuation)  
2.9 Input common-mode voltage range (Vicm)  
Indicates the input voltage range where IC operates normally.  
2.10 Common-mode rejection ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when in-phase input voltage is changed. It is normally the  
fluctuation of DC.  
CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation)  
2.11 Power supply rejection ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed. It is normally the fluctuation of  
DC. PSRR= (Change of power supply voltage)/(Input offset fluctuation)  
2.12 Slew rate (SR)  
Indicates the time fluctuation ratio of voltage output when step input signal is applied.  
2.13 Gain Band Width (GBW)  
Indicates to multiply by the frequency and the gain where the voltage gain decreases 6dB/octave.  
2.14 Phase Margin (θ)  
Indicates the margin of phase from 180 degree phase lag at unity gain frequency.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
5/18  
Datasheet  
LMR821G  
2.15 Gain Margin (GM)  
Indicates the difference between 0dB and the gain where operational amplifier has 180 degree phase delay.  
2.16 Total harmonic distortion + Noise (THD+N)  
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage  
of driven channel.  
2.17 Input referred noise voltage (Vn)  
Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in  
series with input terminal.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
6/18  
Datasheet  
LMR821G  
Typical Performance Curves  
LMR821G  
400  
350  
300  
250  
200  
800  
600  
400  
200  
0
LMR821G  
85℃  
25℃  
-40℃  
85  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
25  
50  
75  
100  
SUPPLYVOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 3.  
Supply Current – Supply Voltage  
Figure 2.  
Derating curve  
400  
350  
300  
250  
200  
6
5
4
3
2
85℃  
5.0V  
25℃  
-40℃  
2.7V  
-50  
-25  
0
25  
50  
75  
100  
2
3
4
5
6
AMBIENT TEMPERATURE [  
]
SUPPLYVOLTAGE [V]  
Figure 5.  
Figure 4.  
Output Voltage High – Supply Voltage  
Supply Current – Ambient Temperature  
(RL=2k)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
©2013 ROHM Co., Ltd. All rights reserved.  
7/18  
TSZ2211115001  
Datasheet  
LMR821G  
Typical Performance Curves (Reference data) – Continued  
LMR821G  
6
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
85℃  
5.0V  
4
3
25℃  
2.7V  
-40℃  
2
1
0
-50  
-25  
0
25  
50  
75  
100  
2
3
4
5
6
SUPPLYVOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 6.  
Figure 7.  
Output Voltage High – Ambient Temperature  
Output Voltage Low – Supply Voltage  
(RL=2k)  
(RL=2k)  
100  
30  
25  
20  
15  
10  
5
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.0V  
25℃  
-40℃  
2.7V  
85℃  
0
-50 -25  
0
25  
50  
75 100  
0
1
2
3
AMBIENT TEMPERATURE [  
]
OUTPUT VOLTAGE [V]  
Figure 8.  
Figure 9.  
Output Voltage Low –Ambient Temperature  
Output Source Current – Output Voltage  
(VDD=2.7V)  
(RL=2k)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
©2013 ROHM Co., Ltd. All rights reserved.  
8/18  
TSZ2211115001  
Datasheet  
LMR821G  
Typical Performance Curves (Reference data) – Continued  
LMR821G  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
-40℃  
80  
25℃  
5.0V  
70  
60  
50  
40  
85℃  
2.7V  
30  
20  
10  
0
0
0.0  
1.0  
2.0  
3.0  
-50  
-25  
0
25  
50  
75  
100  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [  
Figure 10.  
]
Figure 11.  
Output Source Current –Ambient Temperature  
Output Sink Current – Output Voltage  
(VDD=2.7V)  
4
3
2
1
0
100  
90  
80  
70  
60  
85℃  
5.0V  
50  
40  
30  
-1  
-2  
-3  
-4  
-40℃  
25℃  
20  
2.7V  
10  
0
2
3
4
5
6
-50 -25  
0
25  
50  
75 100  
SUPPLYVOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 12.  
Figure 13.  
Input Offset Voltage – Supply Voltage  
Output Sink Current – Ambient Temperature  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
©2013 ROHM Co., Ltd. All rights reserved.  
9/18  
TSZ2211115001  
Datasheet  
LMR821G  
Typical Performance Curves (Reference data) - Continued  
LMR821G  
4
3
2
4
3
2
25℃  
85℃  
1
1
5.0V  
0
0
2.7V  
-1  
-1  
-2  
-3  
-4  
-40℃  
-2  
-3  
-4  
-50  
-25  
0
25  
50  
75  
100  
-1  
0
1
2
3
INPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 14.  
Figure 15.  
Input Offset Voltage – Ambient Temperature  
Input Offset Voltage – Input Voltage  
(VDD=2.7V)  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
85℃  
5.0V  
-40℃  
25℃  
2.7V  
80  
80  
2
3
4
5
6
-50 -25  
0
25  
50  
75 100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 16.  
Figure 17.  
Large Signal Voltage Gain – Supply Voltage  
Large Signal Voltage Gain – Ambient Temperature  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
©2013 ROHM Co., Ltd. All rights reserved.  
10/18  
TSZ2211115001  
Datasheet  
LMR821G  
Typical Performance Curves (Reference data) – Continued  
LMR821G  
140  
130  
120  
110  
100  
90  
140  
130  
120  
5.0V  
-40℃  
110  
2.7V  
100  
25℃  
85℃  
90  
80  
80  
-50  
-25  
0
25  
50  
75  
100  
2
3
4
5
6
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 18.  
Figure 19.  
Common Mode Rejection Ratio – Supply Voltage  
(VDD=2.7V)  
Common Mode Rejection Ratio – Ambient Temperature  
3.0  
2.5  
2.0  
140  
130  
120  
110  
100  
90  
2.7V  
5.0V  
1.5  
1.0  
0.5  
0.0  
80  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
Figure 20.  
Figure 21.  
Power Supply Rejection Ratio – Ambient Temperature  
(VDD=2.7V~5.0V)  
Slew Rate L-H – Ambient Temperature  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
©2013 ROHM Co., Ltd. All rights reserved.  
11/18  
TSZ2211115001  
Datasheet  
LMR821G  
Typical Performance Curves (Reference data) - Continued  
LMR821G  
3.0  
2.5  
100  
80  
60  
40  
20  
0
200  
Phase  
150  
100  
50  
2.0  
5.0V  
2.7V  
1.5  
Gain  
1.0  
0.5  
0.0  
0
103  
104  
105  
106  
107  
108  
-50  
-25  
0
25  
50  
75  
100  
FREQUENCY [Hz]  
AMBIENT TEMPERATURE [  
]
Figure 22.  
Slew Rate H-L – Ambient Temperature  
Figure 23.  
Voltage Gain, Phase – Frequency  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
©2013 ROHM Co., Ltd. All rights reserved.  
12/18  
TSZ2211115001  
Datasheet  
LMR821G  
Application Information  
NULL method condition for Test Circuit 1  
VDD, VSS, EK, Vicm Unit:V  
Parameter  
Calculation  
VF  
S1  
S2  
S3  
VDD VSS  
EK  
-1.5  
-0.5  
-2.5  
Vicm  
3
Input Offset Voltage  
VF1  
VF2  
VF3  
VF4  
VF5  
ON  
ON  
OFF  
3
0
1
Large Signal Voltage Gain  
ON  
ON  
ON  
3
0
1.5  
2
0
3
Common-mode Rejection Ratio  
(Input Common-mode Voltage Range)  
ON  
ON  
ON  
ON  
OFF  
OFF  
3
0
0
-1.5  
-1.2  
3
4
VF6  
VF7  
2.5  
5.0  
Power Supply Rejection Ratio  
0
Calculation-  
|VF1|  
Vio  
Av  
[V]  
=
1. Input Offset Voltage (Vio)  
1+RF/RS  
2 × (1+RF/RS)  
|VF2-VF3|  
2. Large Signal Voltage Gain(Av)  
[dB]  
= 20Log  
3. Common-mode Rejection Ratio (CMRR)  
4. Power Supply Rejection Ratio (PSRR)  
3 × (1+RF/RS)  
|VF4 - VF5|  
CMRR 20Log  
[dB]  
=
3.2 × (1+ RF/RS)  
|VF6 - VF7|  
PSRR  
[dB]  
= 20Log  
0.1µF  
RF=50kΩ  
0.01µF  
500kΩ  
SW1  
VDD  
DUT  
EK  
15V  
Vo  
RS=50Ω  
Ri=10kΩ  
500kΩ  
0.1µF  
0.1µF  
NULL  
SW3  
1000pF  
Ri=10kΩ  
RS=50Ω  
50kΩ  
VF  
RL  
Vicm  
VRL  
-15V  
VSS  
Figure 24. Test circuit1  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
13/18  
Datasheet  
LMR821G  
Switch Condition for Test Circuit 2  
SW No.  
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 SW11 SW12  
Supply Current  
OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF  
OFF ON OFF OFF ON OFF OFF ON OFF OFF ON OFF  
OFF ON OFF OFF ON OFF OFF OFF OFF ON OFF OFF  
OFF OFF ON OFF OFF OFF ON OFF ON OFF OFF ON  
ON OFF OFF ON ON OFF OFF OFF ON OFF OFF ON  
Maximum Output Voltage RL=10kΩ  
Output Current  
Slew Rate  
Unity gain Frequency  
SW3  
SW4  
R2 100kΩ  
VDD=3V  
SW1  
R1  
SW2  
SW8 SW9  
SW10 SW11 SW12  
SW6  
SW7  
1kΩ  
VSS  
RL  
CL  
VIN-  
VIN+  
Vo  
Figure 25. Test circuit2  
Input voltage  
VH  
VL  
t
Input wave  
Output voltage  
VH  
SR=ΔV/Δt  
90%  
ΔV  
10%  
VL  
Δt  
t
Output wave  
Figure 26. Slew rate input output wave  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
14/18  
Datasheet  
LMR821G  
Examples of circuit  
Voltage follower  
Voltage gain is 0dB.  
This circuit controls output voltage (OUT) equal input  
voltage (IN), and keeps OUT with stable because of high  
input impedance and low output impedance.  
OUT is shown next expression.  
VDD  
OUT=IN  
OUT  
IN  
VSS  
Figure 27. Voltage follower  
Inverting amplifier  
For inverting amplifier, Vi(b) Derating curve voltage gain  
decided R1 and R2, and phase reversed voltage is  
output.  
OUT is shown next expression.  
OUT=-(R2/R1)IN  
Input impedance is R1.  
IN  
OUT  
Figure 28. Inverting amplifier circuit  
Non-inverting amplifier  
For non-inverting amplifier, IN is amplified by voltage  
gain decided R1 and R2, and phase is same with IN.  
OUT is shown next expression.  
R1  
R2  
OUT=(1 + R2/R1)IN  
VDD  
This circuit performes high input impedance because  
Input impedance is operational amplifier’s input  
Impedance.  
OUT  
IN  
VSS  
Figure 29. Non-inverting amplifier circuit  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
15/18  
Datasheet  
LMR821G  
Power Dissipation  
Power dissipation (total loss) indicates the power that can be consumed by IC at Ta=25(normal temperature).IC is heated  
when it consumed power, and the temperature of IC ship becomes higher than ambient temperature. The temperature that  
can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited.  
Power dissipation is determined by the temperature allowed in IC chip (maximum junction temperature) and thermal  
resistance of package (heat dissipation capability). The maximum junction temperature is typically equal to the maximum  
value in the storage package (heat dissipation capability). The maximum junction temperature is typically equal to the  
maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin  
or lead frame of the package. The parameter which indicates this heat dissipation capability (hardness of heat release) is  
called thermal resistance, represented by the symbol θja/W. The temperature of IC inside the package can be estimated  
by this thermal resistance.  
Figure 30. (a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient temperature Ta,  
maximum junction temperature Tjmax, and power dissipation Pd can be calculated by the equation below:  
θja = (TjmaxTa) / Pd /W  
・・・・・ ()  
Derating curve in Figure 30. (b) indicates power that can be consumed by IC with reference to ambient temperature. Power  
that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient is determined by thermal  
resistance θja. Thermal resistance θja depends on chip size, power consumption, package, ambient temperature, package  
condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value  
measured at a specified condition. Figure 31. show a derating curve for an example of LMR821  
.
[W]  
n of LSI  
Power dissipa  
tio  
Pd (max)  
θja=(Tjmax-Ta)/Pd /W  
P2  
θja2 < θja1  
Ta[  
]
Ambient temperature  
Package face temperature  
θ' ja2  
P1  
θ ja2  
Tj ' (max) Tj (max)  
θ' ja1  
θ ja1  
75  
Tj[  
]
Chip surface temperature  
0
25  
50  
100  
125  
150  
Ambient temperature Ta [  
]
(a) Thermal resistance  
(b) Derating curve  
Figure 30. Thermal resistance and derating  
800  
LMR821G  
600  
400  
200  
0
0
25  
50  
75  
100  
125  
AMBIENT TEMPERATURE [  
]
5.4  
mW/℃  
When using the unit above Ta=25, subtract the value above per degree. Permissible dissipation is the value  
when FR4 glass epoxy board 70mm×70mm×1.6mm (cooper foil area below 3%) is mounted  
Figure 31. Derating Curve  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
16/18  
Datasheet  
LMR821G  
VDD  
Operational Notes  
1) Unused circuits  
+
-
When there are unused circuits it is recommended that they are connected  
as in Figure 32., setting the non-inverting input terminal to a potential within  
input common-mode voltage range (Vicm).  
Connect  
to Vicm  
Vicm  
VSS  
2) Applied voltage to the input terminal  
For normal circuit operation of voltage comparator, please input voltage for its  
input terminal within input common mode voltage VDD + 0.3V. Then, regardless of  
power supply voltage, VSS-0.3V can be applied to input terminals without  
deterioration or destruction of its characteristics.  
Figure 32. The example of  
application circuit for unused  
op-amp  
3) Power supply (single / dual)  
The op-amp operates when the specified voltage supplied is between VDD  
and VSS. Therefore, the single supply op-amp can be used as dual supply  
op-amp as well.  
4) Power dissipation Pd  
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to a rise in  
chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation  
(Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating  
curves for more information.  
5) Short-circuit between pins and erroneous mounting  
Incorrect mounting may damage the IC. In addition, the presence of foreign particles between the outputs, the output and  
the power supply, or the output and GND may result in IC destruction.  
6) Operation in a strong electromagnetic field  
Operation in a strong electromagnetic field may cause malfunctions.  
7) IC handling  
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical  
characteristics due to piezo resistance effects.  
8) Board inspection  
Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every  
process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the  
power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly  
process as well as during transportation and storage.  
9) The IC destruction caused by capacitive load  
The transistors in circuits may be damaged when VDD terminal and VSS terminal is shorted with the charged output  
terminal capacitor.When IC is used as a operational amplifier or as an application circuit, where oscillation is not activated  
by an output capacitor, the output capacitor must be kept below 0.1μF in order to prevent the damage mentioned above.  
10) Latch up  
Be careful of input voltage that exceed the VDD and VSS. When CMOS device have sometimes occur latch up operation.  
And protect the IC from abnormaly noise  
11) Decupling capacitor  
Insert the decupling capacitance between VDD and VSS, for stable operation of operational amplifier.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
17/18  
Datasheet  
LMR821G  
Physical Dimensions Tape and Reel Information  
SSOP5  
<Tape and Reel information>  
°
°
+
4  
2.9 0.2  
6
°
4
Tape  
Embossed carrier tape  
3000pcs  
5
4
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
1pin  
+0.05  
0.13  
0.03  
S
+0.05  
0.04  
0.42  
0.1  
0.95  
S
Direction of feed  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
Marking Diagram  
SSOP5(TOP VIEW)  
LOT Number  
Part Number Marking  
Product Name  
LMR821  
Package Type  
SSOP5  
Marking  
L3  
G
Land Pattern  
SSOP5  
0.95  
0.95  
0.6  
Unitmm  
Land Length  
Land Pitch  
e
Land Space  
MIE  
Land Width  
b2  
PKG  
≧ℓ 2  
SSOP5  
0.95  
2.4  
1.0  
0.6  
Revision History  
Date  
Revision  
001  
Changes  
2013.1.18  
New Release  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200490-1-2  
18.JAN.2013 Rev.001  
18/18  
Daattaasshheeeett  
Notice  
General Precaution  
1) Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2) All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
Precaution on using ROHM Products  
1) Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment, transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
2) ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3) Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4) The Products are not subject to radiation-proof design.  
5) Please verify and confirm characteristics of the final or mounted products in using the Products.  
6) In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse) is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7) De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8) Confirm that operation temperature is within the specified range described in the product specification.  
9) ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Notice - Rev.004  
© 2013 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precaution for Mounting / Circuit board design  
1) When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2) In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Precautions Regarding Application Examples and External Circuits  
1) If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2) You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1) Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2) Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3) Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4) Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1) All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Notice - Rev.004  
© 2013 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Other Precaution  
1) The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
2) This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
3) The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
4) In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
5) The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - Rev.004  
© 2013 ROHM Co., Ltd. All rights reserved.  

相关型号:

LMR824FVJ-E2

Operational Amplifier, 4 Func, 5000uV Offset-Max, PDSO14, 5 X 6.40 MM, 1.20 MM HEIGHT, TSSOP-14
ROHM

LMR931G

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMR931G-E2

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMR931G-TR

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMR932F

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMR932F-E2

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMR932F-TR

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMR932FJ

LMR932FJ是输入/输出全振幅运算放大器。具有低电压工作、低消耗电流的特点,是适用于便携式设备、电池监视用途的运算放大器。
ROHM

LMR932FJ-E2

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMR932FV

LMR932FV是输入/输出全振幅运算放大器。具有低电压工作、低消耗电流的特点,是适用于便携式设备、电池监视用途的运算放大器。
ROHM

LMR932FV-E2

Input/Output Full Swing Low Power Operational Amplifiers
ROHM

LMR932FVJ

LMR932FVJ是输入/输出全振幅运算放大器。具有低电压工作、低消耗电流的特点,是适用于便携式设备、电池监视用途的运算放大器。
ROHM