LM358PR [ROHM]

SIGNATURE SERIES Operational Amplifiers; 签名系列运算放大器
LM358PR
型号: LM358PR
厂家: ROHM    ROHM
描述:

SIGNATURE SERIES Operational Amplifiers
签名系列运算放大器

运算放大器
文件: 总18页 (文件大小:963K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
General-purpose Operational Amplifiers / Comparators  
SIGNATURE SERIES  
Operational Amplifiers  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
No.11094EBT05  
Description  
SIGNATURE  
SERIES  
The Universal Standard family LM358 / 324, LM2904 /  
2902 monolithic ICs integrate two independent  
op-amps and phase compensation capacitors on a  
single chip  
Dual  
Quad  
and feature high-gain, low power consumption, and  
an operating voltage range of 3[V] to 32[V]  
(single power supply.)  
LM358 family  
LM358DT  
LM358PT  
LM358ST  
LM358WDT  
LM358WPT  
LM2904 family  
LM324 family  
LM2902 family  
LM2902DT  
LM2902PT  
LM2904DT  
LM2904PT  
LM2904ST  
LM2904WDT  
LM2904WPT  
LM324DT  
LM324PT  
LM324WDT  
LM2902WDT  
Features  
1) Operating temperature range  
Commercial Grade  
LM358/324 family  
:
0[] to + 70[]  
Extended Industrial Grade  
2) Wide operating supply voltage  
+3[V] to +32[V] (single supply)  
±1.5[V] to ±16[V] (dual supply)  
3) Low supply current  
LM2904/2902 family : -40[] to +125[]  
4) Common-mode input voltage range including ground  
5) Differential input voltage range equal to maximum rated supply voltage  
6) High large signal voltage gain  
7) Wide output voltage range  
Pin Assignment  
1
2
3
4
5
6
7
14  
OUTPUT 4  
OUTPUT 1  
Vcc+  
INVERTING  
INPUT 1  
NON-INVERTING  
INVERTING  
INPUT 4  
OUTPUT 1  
1
2
3
4
8
7
6
5
13  
NON-INVERTING  
INVERTING  
INPUT 1  
12  
11  
10  
9
OUTPUT 2  
INPUT 1  
INPUT 4  
Vcc-  
- +  
Vcc+  
INVERTING  
INPUT 2  
NON-INVERTING  
INPUT 1  
NON-INVERTING  
INPUT 2  
NON-INVERTING  
INPUT 3  
+ -  
INVERTING  
INPUT 2  
INVERTING  
INPUT 3  
NON-INVERTING  
INPUT 2  
Vcc-  
8
OUTPUT 2  
OUTPUT 3  
SO package14  
SO package8  
TSSOP8  
Mini SO8  
TSSOP14  
LM358DT  
LM358PT  
LM358ST  
LM324DT  
LM324PT  
LM358WDT  
LM2904DT  
LM358WPT  
LM2904PT  
LM2904ST  
LM324WDT  
LM2902DT  
LM2902WDT  
LM2902PT  
LM2904WDT  
LM2904WPT  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
1/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
Absolute Maximum Ratings (Ta=25[])  
Rating  
Parameter  
Symbol  
Unit  
LM358 family  
LM324 family LM2904 family LM2902 family  
+32  
Supply Voltage  
VDD  
Topr  
V
V
Operating Temperature Range  
Storage Temperature Range  
Input Common-mode Voltage  
Maximum Junction Temperature  
0 to +70  
-40 to +125  
Tstg  
-65 to +150  
-0.3 to +32  
+150  
VICM  
Tjmax  
Electric Characteristics  
LM358,LM324 family(Unless otherwise specified, Vcc+=+5[V], Vcc-=0[V])  
Limit  
Temperature  
Fig.  
No  
Parameter  
Symbol  
LM358 family  
LM324 family  
Unit  
Conditions  
range  
Min.  
Typ.  
2
Max.  
Min.  
Typ.  
2
Max.  
VO=1.4[V],RS=0[]  
25℃  
Full range  
25℃  
7
9
7
Input Offset Voltage (*1)  
Input Offset Current (*1)  
Input Bias Current (*1)  
VIO  
IIO  
mV 5[V]< Vcc+<30[V]  
0<VIC< Vcc+-1.5[V]  
98  
98  
98  
98  
98  
2
9
30  
30  
nA VO=1.4[V]  
Full range  
25℃  
20  
20  
100  
150  
300  
150  
200  
IIB  
nA VO=1.4[V]  
Full range  
Vcc+=15[V]  
V/mV VO=1.4[V] to 11.4[V]  
RL=2[k]  
Large Signal Voltage Gain  
Supply Voltage Rejection Ratio  
AVD  
SVR  
25℃  
25  
100  
25  
100  
25℃  
Full range  
25℃  
65  
65  
70  
60  
100  
65  
65  
70  
60  
110  
RS10[k]  
dB  
Vcc+=5[V] to 30[V]  
0.7  
1.5  
0.8  
1.5  
1.2  
Vcc+=5[V],No Load  
Vcc+=30[V],No Load  
Vcc+=5[V],No Load  
Vcc+=30[V],No Load  
25℃  
3
Supply Current (All Amp)  
ICC  
mA  
99  
Full range  
Full range  
25℃  
0.7  
1.2  
3
2
3
Vcc+-1.5  
Vcc+-2.0  
Vcc+-1.5  
Vcc+-2.0  
Input Common-mode Voltage Range  
Common-mode Rejection Ratio  
Output Short Circuit Current (*2)  
VICM  
CMR  
V
Vcc+=30[V]  
98  
98  
99  
Full range  
25℃  
85  
80  
dB RS10[k]  
Full range  
Vcc+=15[V],VO=+2[V]  
VID=+1[V]  
Isource  
25℃  
20  
40  
60  
20  
40  
70  
mA  
VO=+2[V],  
10  
12  
20  
50  
10  
12  
20  
50  
mA  
Vcc+=15[V],VID=-1[V]  
VO=+0.2[V],  
Output Sink Current (*2)  
Isink  
25℃  
99  
μA  
Vcc+=15[V] ,VID=-1[V]  
25℃  
Full range  
25℃  
0
28  
5
Vcc+-1.5  
Vcc+-2.0  
27  
27  
28  
5
20  
20  
Output Voltage Swing  
Vopp  
VOH  
VOL  
V
V
RL=2[k]  
99  
99  
99  
0
27  
27  
High Level Output Voltage  
Low Level Output Voltage  
Vcc+=30[V],RL=10[k]  
Full range  
25℃  
20  
mV RL=10[k]  
Full range  
20  
RL=2[k],CL=100[pF],  
Vcc+=15[V]  
Slew Rate  
SR  
25℃  
25℃  
0.6  
1.1  
0.4  
1.3  
V/μs  
99  
99  
VI=0.5[V] to 3[V],  
Unity Gain  
Vcc+=30[V],RL=2[k],  
Gain Bandwidth Product  
GBP  
MHz CL=100[pF]  
VIN=10[mV],f=100[kHz]  
f=1[kHz],AV=20[dB]  
RL=2[k]  
CL=100[pF],VO=2[Vpp]  
Total Harmonic Distortion  
Input Equivalent Noise Voltage  
Input Offset Voltage Drift  
Input Offset Current Drift  
THD  
en  
25℃  
25℃  
0.02  
55  
0.015  
40  
99  
99  
99  
f=1[kHz],RS=100[]  
Vcc+=30[V]  
nV/ Hz  
μV/℃  
pA/℃  
DVIO  
DIIO  
7
7
10  
10  
Channel Separation  
(*1) Absolute value  
VO1/VO2  
25℃  
120  
120  
dB 1[kHz]f20[kHz]  
(*2) Under high temperatures, please consider the power dissipation when selecting the output current.  
When output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
2/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
LM2904,LM2902 family(Unless otherwise specified, Vcc+=+5[V], Vcc-=0[V])  
Limit  
Temperature  
Fig.  
Parameter  
Symbol  
LM2904 family  
LM2902 family  
Unit  
Conditions  
No  
range  
Min.  
Typ.  
2
Max.  
Min.  
Typ.  
2
Max.  
25℃  
Full range  
25℃  
7
7
Input Offset Voltage (*3)  
Input Offset Current (*3)  
Input Bias Current (*3)  
VIO  
IIO  
mV VO=1.4[V]  
nA VO=1.4[V]  
nA VO=1.4[V]  
98  
98  
98  
98  
99  
2
9
2
9
50  
30  
Full range  
25℃  
20  
200  
150  
200  
20  
200  
150  
300  
IIB  
Full range  
Vcc+=15[V]  
V/mV VO=1.4[V] to 11.4[V]  
RL=2[k]  
Large Signal Voltage Gain  
Supply Voltage Rejection Ratio  
AVD  
SVR  
25℃  
25  
100  
25  
100  
25℃  
Full range  
25℃  
65  
65  
70  
60  
100  
65  
65  
70  
60  
110  
dB RS10[k]  
0.7  
1.2  
0.7  
1.5  
0.8  
1.5  
1.2  
Vcc+=5[V],No Lord  
25℃  
3
Vcc+=30[V],No Lord  
mA  
Supply Current (All Amp)  
ICC  
99  
Full range  
Full range  
25℃  
2
1.2  
Vcc+=5[V],No Lord  
3
Vcc+=30[V],No Lord  
Vcc+-1.5  
Vcc+-2.0  
Vcc+-1.5  
Vcc+-2.0  
Input Common-mode Voltage Range  
Common-mode Rejection Ratio  
Output Short Circuit Current (*4)  
VICM  
CMR  
V
Vcc+=30[V]  
98  
98  
98  
Full range  
25℃  
85  
80  
dB RS=10[k]  
Full range  
Vcc+=+15[V],VO=+2[V]  
VID=+1[V]  
Isource  
25℃  
25℃  
20  
40  
60  
20  
40  
70  
mA  
VO=2[V],Vcc+=+5[V]  
VID=-1[V]  
10  
12  
20  
50  
10  
12  
20  
50  
mA  
Output Sink Current (*4)  
Isink  
99  
VO=+0.2[V],  
μA  
Vcc+=+15[V] ,VID=-1[V]  
25℃  
Full range  
25℃  
0
28  
5
Vcc+-1.5  
Vcc+-2.0  
27  
27  
28  
5
20  
20  
Output Voltage Swing  
Vopp  
VOH  
VOL  
V
V
RL=2[k]  
99  
99  
99  
0
27  
27  
Vcc+=30[V],RL=10[k]  
Vcc+=30[V],RL=10[k]  
High Level Output Voltage  
Low Level Output Voltage  
Full range  
25℃  
20  
mV RL=10[k]  
RL=2[k],CL=100[pF],  
Full range  
20  
Unity Gain  
Slew Rate  
SR  
25℃  
25℃  
25℃  
0.6  
1.1  
0.4  
1.3  
V/μs  
99  
99  
99  
VI=0.5[V] to 3[V]  
Vcc+=1.5[V]  
Vcc+=30[V],RL=2[k]  
Gain Bandwidth Product  
Total Harmonic Distortion  
GBP  
THD  
MHz CL=100[pF]  
VIN=10[mV]  
f=1[kHz],AV=20[dB]  
RL=2[k]  
0.02  
0.015  
CL=100[pF],  
Vcc+=30[V],VO=2[Vpp]  
f=1[kHz],RS=100[]  
Input Equivalent Noise Voltage  
Input Offset Voltage Drift  
Input Offset Current Drift  
en  
DVIO  
25℃  
7
40  
7
99  
99  
Vcc+=30[V]  
nV/ Hz  
μV/℃  
-
-
DIIO  
10  
120  
10  
120  
pA/℃  
Channel Separation  
(*3) Absolute value  
VO1/VO2  
25℃  
dB 1[kHz]f20[kHz]  
(*4) Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
3/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
Reference Data LM358 family  
LM358 family  
LM358 family  
LM358 family  
800  
LM358PT  
LM358WPT  
LM358ST  
600  
25℃  
32V  
LM358DT  
LM358WDT  
0℃  
400  
200  
5V  
70℃  
3V  
0
70  
0
25  
50  
75  
100  
[]  
AMBIENT TEMPERATURE
Fig. 1  
Fig. 2  
Fig. 3  
Derating Curve  
Supply Current – Supply Voltage  
Supply Current – Ambient Temperature  
LM358 family  
LM358 family  
LM358 family  
0℃  
0℃  
25℃  
70℃  
25℃  
70℃  
Fig. 4  
Fig. 5  
Fig. 6  
Maximum Output Voltage – Supply Voltage  
Maximum Output Voltage – Ambient Temperature  
(VCC=5[V],RL=2[k])  
Output Source Current – Output Voltage  
(VCC=5[V])  
(RL=10[k])  
LM358 family  
LM358 family  
LM358 family  
15V  
70℃  
3V  
5V  
0℃  
3V  
5V  
15V  
25℃  
Fig. 7  
Fig. 8  
Fig. 9  
Output Source Current – Ambient Temperature  
Output Sink Current – Output Voltage  
Output Sink Current – Ambient Temperature  
(VOUT=0[V])  
(VCC=5[V])  
(VOUT=VCC)  
LM358 family  
LM358 family  
LM358 family  
32V  
0℃  
25℃  
0℃  
25℃  
5V  
3V  
70℃  
70℃  
Fig. 10  
Low Level Sink Current - Supply Voltage  
(VOUT=0.2[V])  
Fig. 11  
Fig. 12  
Low Level Sink Current - Ambient Temperature  
(VOUT=0.2[V])  
Input Offset Voltage - Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
4/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
Reference Data LM358 family  
LM358 family  
LM358 family  
LM358 family  
3V  
32V  
25℃  
0℃  
5V  
32V  
3V  
5V  
70℃  
Fig. 13  
Fig. 14  
Fig. 15  
Input Offset Voltage – Ambient Temperature  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
LM358 family  
Input Bias Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
LM358 family  
LM358 family  
0℃  
70℃  
25℃  
0℃  
25℃  
70℃  
[V]  
Fig. 16  
Fig. 17  
Fig. 18  
Input Bias Current – Ambient Temperature  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
Input Offset Current – Supply Voltage  
(Vicm=0[V],VOUT=1.4[V])  
Input Offset Voltage – Common Mode Input Voltage  
(VCC=5[V])  
LM358 family  
LM358 family  
LM358 family  
0℃  
15V  
25℃  
3V  
5V  
5V  
32V  
70℃  
Fig. 19  
Fig. 20  
Large Signal Voltage Gain  
– Supply Voltage  
(RL=2[k])  
Fig. 21  
Input Offset Current  
– Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
Large Signal Voltage Gain  
– Ambient Temperature  
(RL=2[k])  
LM358 family  
LM358 family  
LM358 family  
36V  
32V  
0℃  
25℃  
70℃  
5V  
3V  
Fig. 22  
Fig. 23  
Fig. 24  
Common Mode Rejection Ratio  
– Supply Voltage  
Common Mode Rejection Ratio  
– Ambient Temperature  
Power Supply Rejection Ratio  
– Ambient Temperature  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
5/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
Reference Data LM324 family  
LM324 family  
LM324 family  
LM324 family  
1000  
LM324ST  
LM324DT  
800  
LM324WDT  
32V  
25℃  
600  
400  
200  
0℃  
5V  
70℃  
3V  
0
70  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [
]
Fig. 25  
Fig. 26  
Fig. 27  
Derating Curve  
Supply Current – Supply Voltage  
Supply Current – Ambient Temperature  
LM324 family  
LM324 family  
LM324 family  
0℃  
0℃  
25℃  
70℃  
25℃  
70℃  
Fig. 28  
Fig. 29  
Maximum Output Voltage – Ambient Temperature  
(VCC=5[V],RL=2[k])  
Fig. 30  
Maximum Output Voltage – Supply Voltage  
Output Source Current – Output Voltage  
(RL=10[k])  
(VCC=5[V])  
LM324 family  
LM324 family  
LM324 family  
15V  
70℃  
3V  
5V  
0℃  
5V  
3V  
15V  
25℃  
Fig. 31  
Fig. 32  
Fig. 33  
Output Source Current – Ambient Temperature  
Output Sink Current – Output Voltage  
Output Sink Current – Ambient Temperature  
(VOUT=0[V])  
(VCC=5[V])  
(VOUT=VCC)  
LM324 family  
LM324 family  
LM324 family  
32V  
0℃  
25℃  
0℃  
25℃  
5V  
3V  
70℃  
70℃  
Fig. 34  
Low Level Sink Current - Supply Voltage  
(VOUT=0.2[V])  
Fig. 35  
Fig. 36  
Low Level Sink Current - Ambient Temperature  
(VOUT=0.2[V])  
Input Offset Voltage - Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
6/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
Reference Data LM324 family  
LM324 family  
LM324 family  
LM324 family  
3V  
25℃  
32V  
0℃  
5V  
32V  
3V  
5V  
70℃  
Fig. 37  
Fig. 38  
Fig. 39  
Input Offset Voltage – Ambient Temperature  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
LM324 family  
Input Bias Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
LM324 family  
LM324 family  
0℃  
70℃  
25℃  
0℃  
25℃  
70℃  
[V]  
Fig. 40  
Fig. 41  
Fig. 42  
Input Offset Current – Supply Voltage  
(Vicm=0[V],VOUT=1.4[V])  
Input Bias Current – Ambient Temperature Input Offset Voltage – Common Mode Input Voltage  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
(VCC=5[V])  
LM324 family  
LM324 family  
LM324 family  
25℃  
15V  
0℃  
3V  
5V  
5V  
32V  
70℃  
Fig. 43  
Fig. 44  
Fig. 45  
Input Offset Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
Large Signal Voltage Gain – Supply Voltage  
Large Signal Voltage Gain  
– Ambient Temperature  
(RL=2[k])  
(RL=2[k])  
LM324 family  
LM324 family  
LM324 family  
36V  
32V  
0℃  
25℃  
5V  
3V  
70℃  
Fig. 46  
Fig. 47  
Fig. 48  
Common Mode Rejection Ratio  
– Supply Voltage  
Common Mode Rejection Ratio  
– Ambient Temperature  
Power Supply Rejection Ratio  
– Ambient Temperature  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
7/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
Reference Data LM2904 family  
LM2904 family  
LM2904 family  
LM2904 family  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
800  
600  
400  
200  
0
LM2904PT  
LM2904WPT  
LM2904ST  
32V  
25℃  
LM2904DT  
LM2904WDT  
40℃  
5V  
125℃  
105℃  
3V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE
[]  
Fig. 49  
Fig. 50  
Fig. 51  
Derating Curve  
Supply Current – Supply Voltage  
Supply Current – Ambient Temperature  
LM2904 family  
LM2904 family  
LM2904 family  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
5
-40℃  
-40℃  
4
3
2
1
0
25℃  
125℃  
105℃  
25℃  
105℃  
125℃  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
0
1
2
3
4
5
SUPPLY VOLTAGE [V]  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig. 52  
Fig. 53  
Fig. 54  
Maximum Output Voltage – Supply Voltage  
Maximum Output Voltage – Ambient Temperature  
Output Source Current – Output Voltage  
(VCC=5[V])  
(RL=10[k])  
(VCC=5[V],RL=2[k])  
LM2904 family  
LM2904 family  
LM2904 family  
100  
10  
30  
20  
10  
0
50  
15V  
105℃  
3V  
40  
5V  
125℃  
30  
1
-40℃  
25℃  
5V  
15V  
3V  
20  
0.1  
10  
0
0.01  
0.001  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
0
0.4  
0.8  
1.2  
1.6  
2
AMBIENT TEMPERATURE []  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig. 55  
Fig. 56  
Fig. 57  
Output Source Current – Ambient Temperature  
(VOUT=0[V])  
Output Sink Current – Output Voltage  
Output Sink Current – Ambient Temperature  
(VOUT=VCC)  
(VCC=5[V])  
LM2904 family  
LM2904 family  
LM2904 family  
80  
8
80  
-40℃  
32V  
70  
60  
50  
40  
30  
20  
10  
0
6
25℃  
70  
-40℃  
25℃  
5V  
4
60  
50  
2
0
40  
125℃  
105℃  
3V  
30  
-2  
105℃  
125℃  
20  
10  
0
-4  
-6  
-8  
-50 -25  
0
25 50 75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig. 58  
Fig. 59  
Fig. 60  
Low Level Sink Current - Ambient Temperature  
(VOUT=0.2[V])  
Low Level Sink Current - Supply Voltage  
Input Offset Voltage - Supply Voltage  
(VOUT=0.2[V])  
(Vicm=0[V], VOUT=1.4[V])  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
8/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
Reference Data LM2904 family  
LM2904 family  
LM2904 family  
LM2904 family  
50  
40  
30  
20  
10  
0
8
50  
40  
30  
20  
10  
0
6
4
3V  
25℃  
32V  
-40℃  
2
0
5V  
32V  
-2  
-4  
-6  
-8  
3V  
5V  
105℃  
125℃  
-50 -25  
0
25 50  
75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
]
AMBIENTFTEigM.P6E1RATURE [  
Fig. 62  
Fig. 63  
Input Offset Voltage – Ambient Temperature  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
LM2904 family  
LM2904 family  
LM2904 family  
10  
8
50  
6
4
-40℃  
105℃  
125℃  
40  
30  
20  
10  
0
5
25℃  
-40℃  
25℃  
2
0
0
-2  
-4  
-6  
-8  
125℃  
105℃  
-5  
-10  
-10  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25  
50 75 100 125 150  
-1  
0
1
2
3
4
5
[V]  
INPUT VOLTAGE
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig. 64  
Fig. 65  
Fig. 66  
Input Offset Current – Supply Voltage  
(Vicm=0[V],VOUT=1.4[V])  
Input Bias Current – Ambient Temperature Input Offset Voltage – Common Mode Input Voltage  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
(VCC=5[V])  
LM2904 family  
LM2904 family  
LM2904 family  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
10  
-40℃  
25℃  
15V  
5
0
3V  
5V  
5V  
32V  
105℃  
125℃  
80  
-5  
80  
70  
70  
60  
-10  
60  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
4
6
8
10  
12  
14  
16  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig. 67  
Fig. 68  
Fig. 69  
Input Offset Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
Large Signal Voltage Gain – Supply Voltage  
Large Signal Voltage Gain  
– Ambient Temperature  
(RL=2[k])  
(RL=2[k])  
LM2904 family  
LM2904 family  
LM2904 family  
140  
140  
36V  
32V  
140  
130  
120  
110  
100  
90  
-40℃  
25℃  
120  
100  
120  
100  
80  
80  
125℃  
5V  
105℃  
80  
3V  
60  
60  
70  
40  
60  
40  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig. 70  
Fig. 71  
Fig. 72  
Common Mode Rejection Ratio  
– Supply Voltage  
Common Mode Rejection Ratio  
– Ambient Temperature  
Power Supply Rejection Ratio  
– Ambient Temperature  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
9/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
Reference Data LM2902 family  
LM2902 family  
LM2902 family  
LM2902 family  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1000  
800  
600  
400  
200  
0
LM2902ST  
32V  
25℃  
40℃  
LM2902DT  
LM2902WDT  
5V  
125℃  
105℃  
3V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
[]  
AMBIENT TEMPERATURE
Fig. 73  
Fig. 74  
Fig. 75  
Derating Curve  
Supply Current – Supply Voltage  
Supply Current – Ambient Temperature  
LM2902 family  
LM2902 family  
LM2902 family  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
5
-40℃  
-40℃  
4
3
2
1
0
25℃  
125℃  
105℃  
25℃  
105℃  
125℃  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
0
1
2
3
4
5
SUPPLY VOLTAGE [V]  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig. 76  
Fig. 77  
Fig. 78  
Output Source Current – Output Voltage  
(VCC=5[V])  
Maximum Output Voltage – Supply Voltage  
Maximum Output Voltage – Ambient Temperature  
(RL=10[k])  
(VCC=5[V],RL=2[k])  
LM2902 family  
LM2902 family  
LM2902 family  
100  
30  
20  
10  
0
50  
15V  
105℃  
3V  
40  
10  
5V  
125℃  
30  
1
-40℃  
5V  
3V  
15V  
20  
0.1  
25℃  
10  
0
0.01  
0.001  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
0
0.4  
0.8  
1.2  
1.6  
2
AMBIENT TEMPERATURE []  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig. 79  
Fig. 80  
Fig. 81  
Output Source Current – Ambient Temperature  
(VOUT=0[V])  
Output Sink Current – Output Voltage  
(VCC=5[V])  
Output Sink Current – Ambient Temperature  
(VOUT=VCC)  
LM2902 family  
LM2902 family  
LM2902 family  
80  
8
80  
-40℃  
32V  
70  
60  
50  
40  
30  
20  
10  
0
6
25℃  
70  
-40℃  
25℃  
5V  
4
60  
50  
40  
2
0
125℃  
3V  
105℃  
30  
-2  
105℃  
125℃  
20  
10  
0
-4  
-6  
-8  
-50 -25  
0
25 50 75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig. 82  
Fig. 83  
Fig. 84  
Low Level Sink Current - Ambient Temperature  
(VOUT=0.2[V])  
Low Level Sink Current - Supply Voltage  
Input Offset Voltage - Supply Voltage  
(VOUT=0.2[V])  
(Vicm=0[V], VOUT=1.4[V])  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
10/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
Reference Data LM2902 family  
LM2902 family  
LM2902 family  
LM2902 family  
50  
40  
30  
20  
10  
0
8
50  
40  
30  
20  
10  
0
6
4
3V  
25℃  
32V  
-40℃  
2
0
5V  
32V  
-2  
-4  
-6  
-8  
3V  
5V  
105℃  
125℃  
-50 -25  
0
25 50  
75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
]
AMBIENTFTEigM.P8E5RATURE [  
Fig. 86  
Fig. 87  
Input Offset Voltage – Ambient Temperature  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
LM2902 family  
LM2902 family  
LM2902 family  
10  
8
50  
6
4
-40℃  
105℃  
125℃  
40  
30  
20  
10  
0
5
25℃  
-40℃  
25℃  
2
0
0
-2  
-4  
-6  
-8  
125℃  
105℃  
-5  
-10  
-10  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25  
50 75 100 125 150  
-1  
0
1
2
3
4
5
[V]  
INPUT VOLTAGE
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig. 88  
Fig. 89  
Fig. 90  
Input Offset Current – Supply Voltage  
(Vicm=0[V],VOUT=1.4[V])  
Input Bias Current – Ambient Temperature Input Offset Voltage – Common Mode Input Voltage  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
(VCC=5[V])  
LM2902 family  
LM2902 family  
LM2902 family  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
10  
-40℃  
15V  
25℃  
5
3V  
0
5V  
5V  
105℃  
125℃  
32V  
80  
-5  
80  
70  
70  
60  
-10  
60  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
4
6
8
10  
12  
14  
16  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig. 91  
Fig. 92  
Fig. 93  
Input Offset Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
Large Signal Voltage Gain – Supply Voltage  
Large Signal Voltage Gain  
– Ambient Temperature  
(RL=2[k])  
(RL=2[k])  
LM2902 family  
LM2902 family  
LM2902 family  
140  
140  
36V  
32V  
140  
130  
120  
110  
100  
90  
-40℃  
25℃  
120  
100  
120  
100  
80  
80  
125℃  
5V  
105℃  
3V  
80  
60  
60  
70  
40  
60  
40  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
AMBIENTFTiEgM.P9E5RATURE []  
Fig. 96  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig. 94  
Common Mode Rejection Ratio  
– Supply Voltage  
Common Mode Rejection Ratio  
– Ambient Temperature  
Power Supply Rejection Ratio  
– Ambient Temperature  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
11/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
Circuit Diagram  
+
Vcc  
INVERTING  
INPUT  
OUTPUT  
NON-INVERTING  
INPUT  
-
Vcc  
Fig.97 Circuit Diagram (each Op-Amp)  
Measurement Circuit 1 NULL Method Measurement Condition  
Vcc+, Vcc-, EK, Vicm Unit: [V]  
LM2904/LM2902 family  
LM358/LM324 family  
Parameter  
VF S1 S2 S3  
Calculation  
Vcc+ Vcc- EK Vicm Vcc+ Vcc- EK Vicm  
Input Offset Voltage  
Input Offset Current  
VF1 ON ON OFF 5 to 30  
0
0
0
0
0
0
0
0
0
0
-1.4  
-1.4  
-1.4  
-1.4  
-1.4  
-11.4  
-1.4  
-1.4  
-1.4  
-1.4  
0
0
5 to 30  
0
0
0
0
0
0
0
0
0
0
-1.4  
-1.4  
-1.4  
-1.4  
-1.4  
-11.4  
-1.4  
-1.4  
-1.4  
-1.4  
0
0
1
2
VF2 OFF OFF OFF  
5
5
5
5
VF3 OFF ON  
OFF  
0
0
Input Bias Current  
3
4
5
6
VF4 ON OFF  
5
0
5
0
VF5  
15  
15  
5
0
15  
15  
5
0
Large Signal Voltage Gain  
Common-mode Rejection Ratio  
Supply Voltage Rejection Ratio  
ON ON ON  
VF6  
0
0
VF7  
0
0
ON ON OFF  
VF8  
5
3.5  
0
5
3.5  
0
VF9  
5
5
ON ON OFF  
VF10  
30  
0
30  
0
Calculation-  
1. Input Offset Voltage (VIO)  
0.1[μF]  
VF1  
1+ Rf /Rs  
Vio  
[V]  
Rf  
50[k]  
2. Input Offset Current (IIO)  
0.1[μF]  
500[k]  
VF2 - VF1  
Iio  
[A]  
Ri(1+ Rf / Rs)  
EK  
VOUT  
S1  
Ri  
Vcc+  
+15[V]  
3. Input Bias Current (IIB)  
Rs  
VF4 -  
VF3  
500[k]  
[A]  
Ib  
50[] 10[k]  
50[] 10[k]  
Vicm  
2× Ri (1+ Rf / Rs)  
DUT  
4. Large Signal Voltage Gain (AVD)  
S3  
Rs  
Ri  
S2  
Rf 50[k]  
1000[pF]  
10× (1+ Rf /Rs)  
VF6 - VF5  
[dB]  
AV 20× Log  
Vcc-  
VF  
V
RL  
-15[V]  
5.Common-mode Rejection Ration (CMRR)  
3.5× (1+ Rf/ Rs)  
VF8-VF7  
[dB]  
Log  
CMRR 20×  
6. Supply Voltage Rejection Ration (SVR)  
Vcc+×(1+Rf/Rs)  
VF10 - VF9  
Fig.98 Measurement circuit1 (Each Op-Amps)  
[dB]  
PSRR 20×Log  
Vcc+=25V  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
12/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
Measurement circuit2 Switch condition  
SW SW SW SW SW SW SW SW SW SW SW SW SW SW SW  
10 11 12 13 14 15  
SW No.  
1
2
3
4
5
6
7
8
9
Supply Current  
OFF OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF OFF  
OFF OFF ON OFF OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF  
OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF  
OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF OFF ON OFF OFF OFF OFF ON ON ON OFF OFF OFF OFF  
OFF ON OFF OFF OFF ON ON OFF OFF ON ON OFF OFF OFF OFF  
ON OFF OFF OFF ON OFF ON OFF OFF OFF OFF ON OFF OFF OFF  
High level Output Voltage  
Low level Output Voltage  
Output source current  
Output sink current  
Slew Rate  
Gain band width product  
Equivalent input noise voltage  
Input voltage  
3[V]  
SW4  
SW5  
SW6  
R2  
R3  
0.5[V]  
Vcc +  
t
Input waveform  
A
Output voltage  
SR  
ΔV / Δt  
3[V]  
SW1 SW2 SW3  
SW10 SW11 SW12 SW13 SW14 SW15  
SW7 SW8 SW9  
RS  
R1  
Vcc -  
ΔV  
A
Δt  
RL  
CL  
V
V
0.5[V]  
VIN- VIN+  
VOUT  
t
Output waveform  
Fig.99 Measurement circuit2 (Each Op-Amps)  
Fig.100 Slew Rate Input Waveform  
Measurement Circuit3 Channel Separation  
R2=100[k]  
R2=100[k]  
Vcc+=+2.5[V]  
Vcc+=+2.5[V]  
R1=1[k]  
R1=1[k]  
other  
CH  
CH1  
VIN  
VOUT1  
=0.5 [Vrms]  
V
R1//R2  
R1//R2  
VOUT2  
V
-
Vcc-=-2.5[V]  
Vcc =-2.5[V]  
100×VOUT1  
VOUT2  
VO1/VO2=20×log  
Fig.101 Measurement Circuit3  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
13/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
Description of Electrical Characteristics  
Described below are descriptions of the relevant electrical terms  
Please note that item names, symbols and their meanings may differ from those on another manufacturer’s documents.  
1.Absolute maximum ratings  
The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of electrical characteristics or damage to  
the part itself as well as peripheral components.  
1.1 Power supply voltage (Vcc+/Vcc-)  
Expresses the maximum voltage that can be supplied between the positive and negative supply terminals without causing deterioration of the electrical  
characteristics or destruction of the internal circuitry.  
1.2 Differential input voltage (VID)  
Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC.  
1.3 Input common-mode voltage range (VICM)  
Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration of the characteristics or damage to  
the IC itself. Normal operation is not guaranteed within the common-mode voltage range of the maximum ratings – use within the input common-mode  
voltage range of the electric characteristics instead.  
1.4 Operating and storage temperature ranges (Topr,Tstg)  
The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power  
consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive  
deterioration of the electrical characteristics.  
1.5 Power dissipation (Pd)  
Indicates the power that can be consumed by a particular mounted board at ambient temperature (25). For packaged products, Pd is determined by the  
maximum junction temperature and the thermal resistance.  
2. Electrical characteristics  
2.1 Input offset voltage (VIO)  
Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the  
output voltage to 0 V.  
2.2 Input offset voltage drift (DVIO)  
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.  
2.3 Input offset current (IIO)  
Indicates the difference of input bias current between the non-inverting and inverting terminals.  
2.4 Input offset current drift (DIIO)  
Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation.  
2.5 Input bias current (IIB)  
Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input  
bias current at the inverting terminal.  
2.6 Circuit current (ICC)  
Indicates the current of the IC itself that flows under specified conditions and during no-load steady state.  
2.7 High level output voltage/low level output voltage (VOH/VOL)  
Signifying the voltage range that can be output under specified load conditions, it is in general divided into high level output voltage and low level output  
voltage. High level output voltage indicates the upper limit of the output voltage, while low level output voltage the lower limit.  
2.8 Large signal voltage gain (AVD)  
The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting terminals, it is (normally) the amplifying  
rate (gain) with respect to DC voltage.  
AVD = (output voltage fluctuation) / (input offset fluctuation)  
2.9 Input common-mode voltage range (VICM)  
Indicates the input voltage range under which the IC operates normally.  
2.10 Common-mode rejection ratio (CMRR)  
Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation).  
CMRR = (change in input common-mode voltage) / (input offset fluctuation)  
2.11 Power supply rejection ratio (SVR)  
Denotes the ratio of fluctuation of the input offset voltage when supply voltage is changed (DC fluctuation).  
SVR = (change in power supply voltage) / (input offset fluctuation)  
2.12 Output source current/ output sink current (IOH/IOL)  
The maximum current that can be output under specific output conditions, it is divided into output source current and output sink current. The output source  
current indicates the current flowing out of the IC, and the output sink current the current flowing into the IC.  
2.13 Channel separation (VO1/VO2)  
Expresses the amount of fluctuation of the input offset voltage or output voltage with respect to the change in the output voltage of a driven channel.  
2.14 Slew rate (SR)  
Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied.  
2.15 Gain bandwidth product (GBP)  
The product of the specified signal frequency and the gain of the op-amp at such frequency, it gives the approximate value of the frequency where the gain of  
the op-amp is 1 (maximum frequency, and unity gain frequency).  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
14/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
Derating curves  
800  
1000  
800  
600  
400  
200  
0
LM358PT  
LM358WPT  
LM2904PT  
LM2904WPT  
LM2902ST  
LM358ST  
600  
400  
200  
0
LM2904ST  
LM2902DT  
LM2902WDT  
LM2904DT  
LM2904WDT  
LM324PT  
LM358DT  
LM358WDT  
LM324DT  
LM324WDT  
70  
75  
70  
75  
0
25  
50  
100  
125  
150  
0
25  
50  
100  
125  
150  
AMBIENT TEMPERATURE [℃]  
AMBIENT TEMPERATURE [℃]  
LM358DR/PWR/DGKR  
LM324DR/PWR/KDR  
LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM2902DR/PWR/KDR/KPWR/KQDR/KQPWR  
Power Dissipation  
Power Dissipation  
Package  
Pd[W]  
450  
θja [/W]  
Package  
Pd[W]  
610  
θja [/W]  
4.9  
3.6  
4.0  
SO package14  
TSSOP14  
SO package8 (*8)  
TSSOP8 (*6)  
500  
870  
7.0  
470  
3.76  
Mini SO8 (*7)  
Fig.102 Derating Curves  
Precautions  
1) Unused circuits  
Vcc+  
When there are unused circuits, it is recommended that they be connected as in Fig.103, setting  
the non-inverting input terminal to a potential within the in-phase input voltage range (VICM).  
2) Input terminal voltage  
Applying Vcc- + 32V to the input terminal is possible without causing deterioration of the electrical  
characteristics or destruction, irrespective of  
connect  
to Vicm  
the supply voltage. However, this does not ensure normal circuit operation. Please note that the  
circuit operates normally only when the input voltage is  
within the common mode input voltage range of the electric characteristics.  
Vcc-  
3) Power supply (single / dual)  
The op-amp operates when the voltage supplied is between Vcc+ and Vcc-.  
Therefore, the single supply op-mp can be used as a dual supply op-amp as well.  
Fig.103 Disable circuit example  
4) Power dissipation (Pd)  
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to the rise in chip temperature, including  
reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under actual operating conditions and apply a sufficient  
margin in thermal design. Refer to the thermal derating curves for more information.  
5) Short-circuit between pins and erroneous mounting  
Incorrect mounting may damage the IC. In addition, the presence of foreign substances between the outputs, the output and the power supply, or the output  
and Vcc- may result in IC destruction.  
6) Operation in a strong electromagnetic field  
Operation in a strong electromagnetic field may cause malfunctions.  
7) Radiation  
This IC is not designed to withstand radiation.  
8) IC handing  
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuation of the electrical characteristics due to piezoelectric (piezo)  
effects.  
9) IC operation  
The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected to the middle potential of Vcc+ and  
Vcc-, crossover distortion occurs at the changeover between discharging and charging of the output current. Connecting a resistor between the output  
terminal and Vcc-, and increasing the bias current for Class A operation will suppress crossover distortion.  
10) Board inspection  
Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition,  
when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal. Furthermore, please  
take measures against ESD in the assembly process as well as during transportation and storage.  
11) Output capacitor  
Discharge of the external output capacitor to Vcc+ is possible via internal parasitic elements when Vcc+ is shorted to Vcc-, causing damage to the internal  
circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation due to output capacitive load does not occur, such as in voltage  
comparators, use an output capacitor with a capacitance less than 0.1μF.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
15/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
Ordering part number  
L
M
2
9
0
2
W
D
T
Family name  
LM358  
LM324  
LM2902  
LM2904  
ESD Tolerance  
applicable  
W : 2kV  
Package type  
D : S.O package  
P : TSSOP  
Packaging and forming specification  
R: Embossed tape and reel  
S : Mini SO  
None : Normal  
S.O package8  
<Tape and Reel information>  
4.9± 0.2  
(MAX 5.25 include BURR)  
Tape  
Embossed carrier tape  
2500pcs  
+6°  
Quantity  
4°  
4°  
8
7
6
5
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
Direction  
of feed  
(
)
1
2
3
4
0.545  
0.2± 0.1  
S
1.27  
0.42± 0.1  
Direction of feed  
1pin  
0.1  
S
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
S.O package14  
<Tape and Reel information>  
8.65± 0.1  
+6°  
4°  
(Max 9.0 include BURR)  
Tape  
Embossed carrier tape  
4°  
14  
8
Quantity  
2500pcs  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
Direction  
of feed  
(
)
1
7
1PIN MARK  
0.515  
+0.05  
0.03  
0.22  
0.08  
S
+0.05  
0.42  
1.27  
0.04  
M
0.08  
Direction of feed  
1pin  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
TSSOP8  
<Tape and Reel information>  
3.0± 0.1  
(MAX 3.35 include BURR)  
4 ± ±4  
Tape  
Embossed carrier tape  
8
7 6 5  
Quantity  
2500pcs  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
Direction  
of feed  
(
)
1
2
3
4
1PIN MARK  
+0.05  
0.145  
0.03  
0.525  
S
0.08 S  
+0.05  
0.245  
M
0.04  
0.08  
Direction of feed  
1pin  
0.65  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
16/17  
LM358DT/PT/ST/WDT/WPT,LM2904DT/PT/ST/WDT/WPT  
LM324DT/PT/WDT,LM2902DT/PT/WDT  
Technical Note  
TSSOP14  
<Tape and Reel information>  
5.0± 0.1  
(Max 5.35 include BURR)  
Tape  
Embossed carrier tape  
2500pcs  
4
± 4  
14  
8
Quantity  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
Direction  
of feed  
(
)
1
7
0.55  
1PIN MARK  
+0.05  
0.145  
0.03  
S
0.08  
+0.05  
0.04  
S
Direction of feed  
1pin  
0.245  
0.65  
M
0.08  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
Mini SO8  
<Tape and Reel information>  
3.0± 0.1  
(MAX 3.35 include BURR)  
4 ± ±4  
Tape  
Embossed carrier tape  
8
7 6 5  
Quantity  
2500pcs  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
Direction  
of feed  
(
)
1
2
3
4
1PIN MARK  
+0.05  
0.525  
0.145  
0.03  
S
0.08  
0.08  
S
M
+0.05  
0.32  
0.04  
Direction of feed  
1pin  
0.65  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
17/17  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY