BU9799KV-E2 [ROHM]

Liquid Crystal Driver, 50-Segment, PQFP64, ROHS COMPLIANT, VQFP-64;
BU9799KV-E2
型号: BU9799KV-E2
厂家: ROHM    ROHM
描述:

Liquid Crystal Driver, 50-Segment, PQFP64, ROHS COMPLIANT, VQFP-64

驱动 接口集成电路
文件: 总27页 (文件大小:705K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Standard LCD Segment Driver  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Features  
Key Specifications  
„
Integrated RAM for display data (DDRAM):  
50 x 4 bit (Max 200 Segment)  
LCD drive output :  
4 Common output, 50 Segment output  
Integrated Buffer AMP for LCD driving  
Integrated Oscillator circuit  
Supply Voltage Range:  
+2.5V to +5.5V  
LCD drive power supply Range:  
Operating Temperature Range:  
Max Segments:  
Display Duty:  
Bias:  
+2.5V to +5.5V  
-40°C to +85°C  
200 Segments  
1/4  
„
„
„
„
„
„
„
1/2, 1/3 selectable  
2wire serial interface  
No external components  
Interface:  
Low power consumption design  
Independent power supply for LCD driving  
Integrated Electrical volume register (EVR) function  
Package  
W (Typ.) x D (Typ.) x H (Max.)  
Applications  
„
„
„
„
„
„
„
„
Telephone  
FAX  
Portable equipment (POS, ECR, PDA etc.)  
DSC  
DVC  
Car audio  
Home electrical appliances  
Meter equipment, etc.  
VQFP64  
12.00mm x 12.00mm x 1.60mm  
Typical Application Circuit  
VDD  
VLCD  
COM0  
COM1  
COM2  
COM3  
VDD  
VLCD  
SD  
SCL  
Controller  
Segment  
LCD  
VDD  
SEG0  
SEG1  
INHb  
OSCIN  
TEST1  
TEST2  
TEST3  
VSS  
SEG49  
Internal oscillator circuit mode  
Figure 1. Typical application circuit  
Product structureSilicon monolithic integrated circuit This product is not designed for protection against radioactive rays.  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
1/24  
TSZ2211114001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Block Diagram / Pin Configuration / Pin Description  
COM0 …… COM3  
SEG0 SEG49  
VLCD  
LCD voltage generator  
Segment  
driver  
Common  
driver  
49  
32  
SEG21  
LCD  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
COM0  
COM1  
COM2  
COM3  
SEG20  
SEG19  
SEG18  
SEG17  
SEG16  
SEG15  
SEG14  
SEG13  
SEG12  
SEG11  
SEG10  
SEG9  
BIAS  
Blink timing  
generator  
Common  
counter  
DDRAM  
SELECTOR  
VSS  
INHb  
Command  
Data Decoder  
Command  
register  
OSCIN  
OSCILLATOR  
SEG8  
Power On Reset  
Serial interface  
SEG7  
SEG6  
64  
17  
VDD  
VSS  
IF FILTER  
SDA  
TEST3  
TEST2  
TEST1  
SCL  
Figure 2. Block Diagram  
Figure 3. Pin Configuration (TOP VIEW)  
Table 1 Pin Description  
Terminal  
Terminal No.  
8
I/O  
I
Function  
Input terminal for turning off display  
H: turn on display L: turn off display  
INHb  
Test input (ROHM use only)  
TEST1=”L”: POR circuit enable  
TEST1=”H”: POR circuit disable,  
refer to “Cautions in Power ON/OFF”  
TEST1  
9
I
Test input (ROHM use only)  
Must be connected to VSS  
TEST2  
TEST3  
OSCIN  
SDA  
10  
I
I
I
I
I
Test input (ROHM use only)  
Must be connected to VSS  
5
External clock input  
External clock and Internal clock modes can be selected by command.  
Must be connected to VSS when use internal oscillation circuit.  
4
7
Serial data input  
SCL  
6
3
Serial data transfer clock  
GND  
VSS  
VDD  
2
Power supply  
VLCD  
SEG0-49  
COM0-3  
1
Power supply for LCD driving  
SEGMENT output for LCD driving  
COMMON output for LCD driving  
11-60  
61-64  
O
O
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
© 2013 ROHM Co., Ltd. All rights reserved.  
2/24  
TSZ2211115001  
23.Jan.2015 Rev.003  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Absolute Maximum Ratings (VSS=0V)  
Parameter  
Symbol  
Ratings  
Unit  
V
Remarks  
Power Supply Voltage1  
Power Supply Voltage2  
VDD  
-0.5 to +7.0  
-0.5 to +7.0  
Power supply  
LCD drive voltage  
VLCD  
V
When operated at more than 25,  
subtract 7.5mW/°C (Package only)  
Power dissipation  
Input voltage range  
Pd  
0.75  
W
V
VIN  
Topr  
Tstg  
-0.5 to VDD+0.5  
-40 to +85  
Operational temperature  
range  
Storage temperature range  
-55 to +125  
Recommended Operating Ratings(Ta=-40°C to +85°C,VSS=0V)  
Ratings  
Parameter  
Symbol  
Unit  
Remarks  
MIN  
2.5  
TYP  
MAX  
5.5  
Power Supply Voltage1  
Power Supply Voltage2  
VDD  
-
-
V
V
Power supply  
VLCD  
2.5  
5.5  
LCD drive voltage  
Electrical Characteristics  
DC Characteristics (VDD=2.5V to 5.5V, VLCD=2.5V to 5.5V, VSS=0V, Ta=-40to 85, unless otherwise specified)  
Limits  
Parameter  
Symbol  
Unit  
Conditions  
MIN  
TYP  
MAX  
“H” level input voltage  
“L” level input voltage  
“H” level input current  
“L” level input current  
VIH  
VIL  
IIH  
0.8VDD  
-
VDD  
V
V
SDA,SCL  
SDA,SCL  
VSS  
-
-
0.2VDD  
-
-1  
-
1
-
µA SDA,SCL  
µA SDA,SCL  
IIL  
-
SEG  
COM  
RON  
RON  
Ist  
3.5  
3.5  
-
-
k  
LCD Driver on  
resistance  
Iload=±10µA  
-
-
kΩ  
Standby current  
-
5
µA Display off, Oscillation off  
VDD=3.3V, VLCD=5V, Ta=25℃  
µA Power save mode1, FR=70Hz  
1/3 bias, Frame inverse  
VDD=3.3V, VLCD=5V, Ta=25℃  
µA Power save mode1, FR=70Hz  
1/3 bias, Frame inverse  
Power consumption 1  
Power consumption 2  
IDD  
-
-
2.5  
10  
15  
20  
ILCD  
Oscillation Characteristics (VDD=2.5V to 5.5V, VLCD=2.5V to 5.5V, VSS=0V, Ta=-40to 85, unless otherwise specified)  
Limits  
Parameter  
Frame frequency  
MPU interface Characteristics  
Symbol  
fCLK  
Unit  
Conditions  
MIN  
56  
TYP  
80  
MAX  
104  
Hz FR = 80Hz setting, VDD=3.3V  
(VDD=2.5V to 5.5V, VLCD=2.5V to 5.5V, VSS=0V, Ta=-40to 85, unless otherwise specified)  
Limits  
Parameter  
Symbol  
Unit  
Conditions  
MIN  
-
TYP  
MAX  
Input rise time  
tr  
-
-
-
-
-
-
-
-
-
-
-
0.3  
µs  
µs  
µs  
µs  
µs  
µs  
us  
µs  
µs  
µs  
µs  
Input fall time  
tf  
-
0.3  
SCL cycle time  
tSCYC  
tSHW  
tSLW  
2.5  
0.6  
1.3  
100  
100  
1.3  
0.6  
0.6  
0.6  
-
-
-
-
-
-
-
-
-
“H” SCL pulse width  
“L” SCL pulse width  
SDA setup time  
tSDS  
SDA hold time  
tSDH  
Buss free time  
tBUF  
START condition hold time  
START condition setup time  
STOP condition setup time  
tHD;STA  
tSU;STA  
tSU;STO  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
3/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
SDA  
tf  
tS LW  
tSCYC  
tBUF  
SCL  
SDA  
tSDH  
tS HW  
tSDS  
tHD; STA  
tr  
tSU; STO  
tSU; STA  
Figure 4. Interface Timing  
I/O equivalent circuit  
SDA  
VDD  
VSS  
SCL  
VSS  
VLCD  
VSS  
VSS  
VDD  
VDD  
OSCIN  
VSS  
TEST3  
VSS  
VLCD  
SEG/COM  
VSS  
Figure 5. I/O equivalent circuit  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
4/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Example of recommended circuit  
VDD  
VLCD  
COM0  
COM1  
COM2  
COM3  
VDD  
VLCD  
SD  
SCL  
Controller  
Segment  
LCD  
VDD  
SEG0  
SEG1  
INHb  
OSCIN  
TEST1  
TEST2  
TEST3  
VSS  
SEG49  
Internal oscillator circuit mode  
VLCD  
VDD  
COM0  
COM1  
COM2  
COM3  
VDD  
VLCD  
SD  
SCL  
Controller  
Segment  
LCD  
VDD  
SEG0  
SEG1  
INHb  
OSCIN  
TEST1  
TEST3  
TEST2  
VSS  
SEG49  
External clock input mode  
Figure 6. Example of recommended circuit  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
5/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Functional descriptions  
Command /Data transfer method  
This device is controlled by 2-wire signal (SDA, SCL).  
SDA  
SCL  
START condition  
STOP condition  
Figure 7. 2-SPI Command/Data transfer Format  
It is necessary to generate START condition and STOP condition in 2wire serial interface transfer method.  
Slave address  
A
Display Data  
A
P
Command  
S
0
0
1
1
1
1
1
0
0
A
C
Command or data judgment bit  
Acknowledge  
STOP condition  
START condition  
Figure 8. Interface protcol  
Method of how to transfer command and data is shown as follows.  
1) Generate “START condition”.  
2) Issue Slave address.  
3) Transfer command and display data.  
Acknowledge  
Data format is 8bits. After transfer of 8-bits data, Acknowledge bit is returned.  
When SCL 8th =’L’ after transfer 8bit data (Slave Address, Command, Display Data), SDA outputs ’L’  
When SCL 9th =’L’, SDA stops output function.  
(Since SDA Output format is NMOS-Open-Drain, it can’t output ‘H’ level.)  
If there is no need Acknowledge function, please input ‘L’ level from SCL 8th=’L’ to SCL 9th=’L’.  
SDA  
1-7  
8
9
1-7  
8
9
1-7  
8
9
SCL  
S
P
ACK  
DATA  
DATA  
SLAVE ADDRESS  
ACK  
ACK  
START  
STOP  
condition  
condition  
Figure 9. Acknowledge timing  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
6/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Command transfer method  
Issue Slave Address (“01111100”) after generation of “START condition”.  
1byte after Slave Address always becomes command input.  
MSB (“command or data judge bit”) of command decide if next data is command or display data.  
When set “command or data judge bit”=‘1’, next byte data is command.  
When set “command or data judge bit”=‘0’, next byte data is display data.  
S
Slave address  
Display Data  
A
A
1 Command  
A
1
Command  
Command  
A 1  
A
0
P
Command  
When display data is transferred, inputting of command is not allowed  
When one wants to input command again, please generate “START condition” once.  
If “START condition” or “STOP condition” are inputted in the middle of command transmission, command will be  
canceled.  
If Slave address is inputted after “START condition”, execution of command is allowed.  
Please input “Slave Address” in the first data transmission after “START condition”.  
When Slave Address cannot be recognized in the first data transmission, Acknowledge does not return and next  
transmission will be invalid. When data transmission is invalid status, if “START conditions” are transmitted again, it will  
return to valid status.  
Take care to observe MPU Interface characteristic such as Input rise time and Setup/Hold time when transferring  
command and data (Refer to MPU Interface).  
Write display and transfer method  
This device has Display Data RAM (DDRAM) of 50×4=200bits.  
The relationship between data input and display data, DDRAM data and address are as follows;  
Slave address  
Command  
S
01111100  
A
0
0000000  
A
a
b
c
d
e
f
g
h
A
i
j
k
l
m
n
o
p
A
P
Display Data  
8 bit data will be stored in DDRAM. The address to be written is the address specified by ADSET command, and the  
address is automatically incremented in every 4bit data.  
Data can be continuously written in DDRAM by transmitting Data continuously.  
(When RAM data is written successively after writing RAM data to 31h (SEG49), the address is returned to 00h (SEG0)  
by the auto-increment function.  
DDRAM address  
00  
a
01  
e
f
02  
03  
m
n
04  
05  
06  
07  
・・・  
2Fh  
30h  
31h  
0
1
2
3
i
j
COM0  
COM1  
COM2  
COM3  
b
BIT  
c
g
h
k
l
o
d
p
SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7  
SEG47 SEG48 SEG49  
Data transfer to DDRAM happens every 4bit data.  
So it will be finished to transfer with no need to wait ACK.  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
7/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
OSCILLATOR  
There are two kinds of clock for logic and analog circuit; from internal oscillator circuit or external clock input. If internal  
oscillator circuit will be used, OSCIN must be connected to VSS.  
*When using external clock mode, it has to input external clock from OSCIN terminal after ICSET command setting.  
Clock  
OSCIN  
VSS  
OSCIN  
VSS  
BU9799KV  
BU9799KV  
Figure 10. Internal oscillator circuit mode  
Figure 11. External clock input mode  
LCD Driver Bias Circuit  
This device generates LCD driving voltage with on-chip Buffer AMP.  
And it can drive LCD at low power consumption.  
*1/3 and 1/2Bias can set in MODESET command.  
*Line and frame inversion can set in DISCTL command.  
Refer to the “LCD driving waveform” about each LCD driving waveform.  
Blink timing generator  
This device has Blink function.  
* This device will be at Blink mode with BLKCTL command.  
Blink frequency varies widely by characteristic of fCLK, when internal oscillator circuit is used.  
Refer to Oscillation Characteristics for more details on fCLK.  
Reset initialize condition  
Initial conditions after execution of Software Reset are as follows.  
Display is OFF.  
DDRAM address is initialized (DDRAM Data is not initialized).  
Refer to Command Description about initialize value of register.  
Command / Function List  
Description List of Command / Function  
No.  
1
Command  
Mode Set (MODE SET)  
Function  
Set LCD drive mode  
2
Address set (ADSET)  
Display control (DISCTL)  
Set IC Operation (ICSET)  
Blink control (BLKCTL)  
All Pixel control (APCTL)  
EVR Set 1 (EVRSET1)  
EVR Set 2 (EVRSET2)  
Set LCD display mode 1  
Set LCD display mode 2  
Set IC operation  
Set Blink mode  
3
4
5
6
Set pixel condition  
Set EVR 1  
7
8
Set EVR 2  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
8/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Detailed command description  
D7 (MSB) is bit for command or data judgment.  
Refer to Command and data transfer method.  
C: 0: Next byte is RAM write data.  
1: Next byte is command.  
Mode Set (MODE SET)  
MSB  
D7  
LSB  
D0  
D6  
1
D5  
0
D4  
0
D3  
P3  
D2  
P2  
D1  
*
C
*
( * : Don’t care)  
Set display ON and OFF  
Setting  
P3  
Reset initialize condition  
Display OFF  
Display ON  
0
1
Display OFF : Regardless of DDRAM data, all SEGMENT and COMMON output will be stopped after 1frame off  
data write. Display OFF mode will be finished by Display ON.  
Display ON : SEGMENT and COMMON output will be active and start to read the display data from DDRAM.  
Set bias level  
setup  
P2  
0
Reset initialize condition  
1/3 Bias  
1/2 Bias  
1
Refer to LCD driving waveform  
Address set (ADSET)  
MSB  
D7  
LSB  
D0  
D6  
0
D5  
0
D4  
P4  
D3  
P3  
D2  
P2  
D1  
P1  
C
P0  
It is set address as follows;  
MSB  
LSB  
Internal register  
command  
Address [5]  
ICSET [P2]  
Address [4]  
・・・  
・・・  
Address [0]  
ADSET [P0]  
ADSET [P4]  
The range of address can be set as 00000 to 10001(2).  
Don’t set out of range address, otherwise address will be set 00000.  
ICSET command is only define MSB bit of address, not set the address of DDRAM.  
If want to set the address of DDRAM, it has to be input ADSET command.  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
9/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Display control (DISCTL)  
MSB  
D7  
LSB  
D0  
D6  
0
D5  
1
D4  
P4  
D3  
P3  
D2  
P2  
D1  
P1  
C
P0  
Set Power save mode FR  
Power save mode FR  
P4  
P3  
Reset initialize condition  
Normal mode (80Hz)  
0
0
1
1
0
1
0
1
Power save mode1 (71Hz)  
Power save mode2 (64Hz)  
Power save mode3 (50Hz)  
* Power consumption is reduced in the follow order:  
Normal mode > Power save mode1 > Power save mode2 > Power save mode3  
Set LCD drive waveform  
Setup  
Line inversion  
Frame inversion  
P2  
0
Reset initialize condition  
1
* Power consumption is reduced in the follow order: Line inversion > Frame inversion  
Refer to LCD drive waveform  
Set Power save mode SR  
Setup  
Power save mode1  
Power save mode2  
Normal mode  
P1  
0
P0  
0
Reset initialize condition  
0
1
1
0
High power mode  
1
1
* Power consumption is increased in the follow order:  
Power save mode 1 < Power save mode 2 < Normal mode < High power mode  
(Reference current consumption data)  
Setup  
Power save mode 1  
Power save mode 2  
Normal mode  
Current consumption  
×0.6  
×0.8  
×1.0  
×1.2  
High power mode  
*Above data is reference. It depends on Panel load.  
(Note) The setting of Power save mode FR, LCD waveform, Power save mode will influence the following display image qualities.  
Please select most suitable value from current consumption and display image quality with LCD panel.  
Mode  
Flicker  
Image quality, contrast  
Power save mode FR  
LCD waveform  
-
-
Power save mode SR  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
10/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Set IC Operation (ICSET)  
MSB  
D7  
LSB  
D0  
D6  
1
D5  
1
D4  
0
D3  
1
D2  
P2  
D1  
P1  
C
P0  
P2: Define the MSB bit of address of DDRAM. Refer to ADSET command.  
Set software reset execution  
Setup  
No operation  
P1  
0
Software Reset execute  
1
This command will be set initialize condition.  
When executed Software reset, P1 and P0 will be ignored.  
Set oscillator mode  
setup  
P0  
0
Reset initialize condition  
Internal oscillation  
External clock input  
1
Internal oscillation: Must be connected to VSS.  
External clock input: Input external clock from OSCIN terminal  
ICSET  
Command  
OSCIN_EN  
(internal)  
Internal OSC mode  
External clock mode  
INT oscillation  
(internal)  
EXT clock  
(OSCIN)  
Figure 12. Oscillator mode change timing  
Blink control (BLKCTL)  
MSB  
D7  
LSB  
D0  
D6  
1
D5  
1
D4  
1
D3  
0
D2  
*
D1  
P1  
C
P0  
Set blink mode  
Blink mode (Hz)  
P1  
P0  
0
Reset initialize condition  
OFF  
0.5  
1
0
0
1
1
1
0
2
1
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
11/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
All Pixel control (APCTL)  
MSB  
D7  
LSB  
D0  
D6  
1
D5  
1
D4  
1
D3  
1
D2  
1
D1  
P1  
C
P0  
All display set ON, OFF  
APON  
P1  
Reset initialize condition  
Normal  
0
1
All pixel ON  
APOFF  
Normal  
P0  
0
Reset initialize condition  
All pixel OFF  
1
All pixels ON  
All pixels OFF  
:
:
All pixels are ON regardless of DDRAM data  
All pixels are OFF regardless of DDRAM data  
(Note) This command is valid in Display on status.  
The data of DDRAM don’t change by this command. If set both P1 and P0 =”1”, APOFF will be select.  
EVR Set 1(EVRSET1)  
MSB  
D7  
LSB  
D0  
D6  
1
D5  
1
D4  
0
D3  
0
D2  
P2  
D1  
P1  
C
P0  
It is able to control 32-step Electrical Volume Register (EVR).  
It is able to set V0 voltage level (the max level voltage of LCD driving voltage).  
It is set electrical volume register as follows;  
MSB  
EVR4  
LSB  
EVR0  
EVR3  
EVR2  
EVR1  
EVRSET1 EVRSET1 EVRSET1 EVRSET2 EVRSET2  
P2  
P1  
P0  
P1  
P0  
0
0
0
0
0
Reset initialize condition  
Electrical Volume Register (EVR) is set “00000” in reset initialize condition  
In “00000” condition, V0 voltage output VLCD voltage.  
Please refer to next page about V0 output voltage.  
It is prohibited the EVR setting that V0 voltage will be under 2.5V.  
EVRSET1 is defined the upper 3bit of electrical volume register.  
It will be set the electrical volume register by this command (EVRSET1) input.  
EVR Set 2(EVRSET2)  
MSB  
D7  
LSB  
D0  
D6  
1
D5  
1
D4  
1
D3  
1
D2  
0
D1  
P1  
C
P0  
EVRSET2 is defined the lower 2bit of electrical volume register.  
It will be set the electrical volume register by this command (EVRSET2) input.  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
12/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
The relationship of Electrical Volume Register (EVR) setting and V0 voltage  
Calculation  
formula  
EVR  
VLCD= 5.500 VLCD= 5.000 VLCD= 4.000 VLCD= 3.500 VLCD= 3.000 VLCD= 2.500 [V]  
V0= 5.500  
0
VLCD  
V0= 5.000  
V0= 4.839  
V0= 4.688  
V0= 4.545  
V0= 4.412  
V0= 4.286  
V0= 4.167  
V0= 4.054  
V0= 3.947  
V0= 3.846  
V0= 3.750  
V0= 3.659  
V0= 3.571  
V0= 3.488  
V0= 3.409  
V0= 3.333  
V0= 3.261  
V0= 3.191  
V0= 3.125  
V0= 3.061  
V0= 3.000  
V0= 2.941  
V0= 2.885  
V0= 2.830  
V0= 2.778  
V0= 2.727  
V0= 2.679  
V0= 2.632  
V0= 2.586  
V0= 2.542  
V0= 2.500  
V0= 2.459  
V0= 4.000  
V0= 3.871  
V0= 3.750  
V0= 3.636  
V0= 3.529  
V0= 3.429  
V0= 3.333  
V0= 3.243  
V0= 3.158  
V0= 3.077  
V0= 3.000  
V0= 2.927  
V0= 2.857  
V0= 2.791  
V0= 2.727  
V0= 2.667  
V0= 2.609  
V0= 2.553  
V0= 2.500  
V0= 2.449  
V0= 2.400  
V0= 2.353  
V0= 2.308  
V0= 2.264  
V0= 2.222  
V0= 2.182  
V0= 2.143  
V0= 2.105  
V0= 2.069  
V0= 2.034  
V0= 2.000  
V0= 1.967  
V0= 3.500  
V0= 3.387  
V0= 3.281  
V0= 3.182  
V0= 3.088  
V0= 3.000  
V0= 2.917  
V0= 2.838  
V0= 2.763  
V0= 2.692  
V0= 2.625  
V0= 2.561  
V0= 2.500  
V0= 2.442  
V0= 2.386  
V0= 2.333  
V0= 2.283  
V0= 2.234  
V0= 2.188  
V0= 2.143  
V0= 2.100  
V0= 2.059  
V0= 2.019  
V0= 1.981  
V0= 1.944  
V0= 1.909  
V0= 1.875  
V0= 1.842  
V0= 1.810  
V0= 1.780  
V0= 1.750  
V0= 1.721  
V0= 3.000  
V0= 2.903  
V0= 2.813  
V0= 2.727  
V0= 2.647  
V0= 2.571  
V0= 2.500  
V0= 2.432  
V0= 2.368  
V0= 2.308  
V0= 2.250  
V0= 2.195  
V0= 2.143  
V0= 2.093  
V0= 2.045  
V0= 2.000  
V0= 1.957  
V0= 1.915  
V0= 1.875  
V0= 1.837  
V0= 1.800  
V0= 1.765  
V0= 1.731  
V0= 1.698  
V0= 1.667  
V0= 1.636  
V0= 1.607  
V0= 1.579  
V0= 1.552  
V0= 1.525  
V0= 1.500  
V0= 1.475  
V0= 2.500 [V]  
V0= 2.419 [V]  
V0= 2.344 [V]  
V0= 2.273 [V]  
V0= 2.206 [V]  
V0= 2.143 [V]  
V0= 2.083 [V]  
V0= 2.027 [V]  
V0= 1.974 [V]  
V0= 1.923 [V]  
V0= 1.875 [V]  
V0= 1.829 [V]  
V0= 1.786 [V]  
V0= 1.744 [V]  
V0= 1.705 [V]  
V0= 1.667 [V]  
V0= 1.630 [V]  
V0= 1.596 [V]  
V0= 1.563 [V]  
V0= 1.531 [V]  
V0= 1.500 [V]  
V0= 1.471 [V]  
V0= 1.442 [V]  
V0= 1.415 [V]  
V0= 1.389 [V]  
V0= 1.364 [V]  
V0= 1.339 [V]  
V0= 1.316 [V]  
V0= 1.293 [V]  
V0= 1.271 [V]  
V0= 1.250 [V]  
V0= 1.230 [V]  
1
0.967*VLCD V0= 5.323  
0.937*VLCD V0= 5.156  
0.909*VLCD V0= 5.000  
0.882*VLCD V0= 4.853  
0.857*VLCD V0= 4.714  
0.833*VLCD V0= 4.583  
0.810*VLCD V0= 4.459  
0.789*VLCD V0= 4.342  
0.769*VLCD V0= 4.231  
0.750*VLCD V0= 4.125  
0.731*VLCD V0= 4.024  
0.714*VLCD V0= 3.929  
0.697*VLCD V0= 3.837  
0.681*VLCD V0= 3.750  
0.666*VLCD V0= 3.667  
0.652*VLCD V0= 3.587  
0.638*VLCD V0= 3.511  
0.625*VLCD V0= 3.438  
0.612*VLCD V0= 3.367  
0.600*VLCD V0= 3.300  
0.588*VLCD V0= 3.235  
0.576*VLCD V0= 3.173  
0.566*VLCD V0= 3.113  
0.555*VLCD V0= 3.056  
0.545*VLCD V0= 3.000  
0.535*VLCD V0= 2.946  
0.526*VLCD V0= 2.895  
0.517*VLCD V0= 2.845  
0.508*VLCD V0= 2.797  
0.500*VLCD V0= 2.750  
0.491*VLCD V0= 2.705  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Prohibit setting  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
13/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
LCD driving waveform  
(1/3bias)  
Line inversion  
Frame inversion  
SEGn SEGn+1 SEGn+2 SEGn+3  
SEGn SEGn+1 SEGn+2 SEGn+3  
COM0  
COM1  
COM2  
COM3  
stateA  
stateB  
COM0  
stateA  
stateB  
COM1  
COM2  
COM3  
1frame  
1frame  
V0  
V0  
COM0  
COM1  
COM2  
COM3  
SEGn  
COM0  
VSS  
V0  
VSS  
V0  
COM1  
VSS  
V0  
VSS  
V0  
COM2  
VSS  
V0  
VSS  
V0  
COM3  
VSS  
V0  
VSS  
V0  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+2  
SEGn+3  
SEGn+1  
SEGn+2  
SEGn+3  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
VSS  
stateA  
(COM0-SEGn)  
stateA  
(COM0-SEGn)  
stateB  
(COM1-SEGn)  
stateB  
(COM1-SEGn)  
Figure 13. LCD waveform at line inversion (1/3bias)  
Figure 14. LCD waveform at frame inversion (1/3bias)  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
14/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
(1/2bias)  
Line inversion  
Frame inversion  
SEGn SEGn+1 SEGn+2 SEGn+3  
SEGn SEGn+1 SEGn+2 SEGn+3  
COM0  
COM1  
COM2  
COM3  
stateA  
stateB  
COM0  
COM1  
COM2  
COM3  
stateA  
stateB  
1frame  
1frame  
V0  
V0  
COM0  
COM1  
COM2  
COM0  
COM1  
COM2  
COM3  
SEGn  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
VLCD  
COM3  
VSS  
VSS  
V0  
VLCD  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+1  
SEGn+2  
SEGn+3  
VSS  
V0  
VSS  
V0  
SEGn+2  
SEGn+3  
VSS  
V0  
VSS  
V0  
VSS  
VSS  
stateA  
(COM0-SEGn)  
stateA  
(COM0-SEGn)  
stateB  
(COM1-SEGn)  
stateB  
(COM1-SEGn)  
Figure 15. LCD waveform in line inversion (1/2bias)  
Figure 16. LCD waveform in frame inversion (1/2bias)  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
15/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Example of display data  
If LCD layout pattern is like as Figure 17, Figure 18, and display pattern is like as Figure 19.  
Display data will be shown as follows;  
COM0  
COM1  
COM2  
COM3  
Figure 17. Example COM line pattern  
SEG1 SEG3  
SEG2  
SEG5 SEG7  
SEG4 SEG6 SEG8  
SEG9  
SEG10  
Figure 18. Example SEG line pattern  
Figure 19. Example Display pattern  
<DDRAM data mapping in Figure 19 display pattern>  
S
E
G
0
S
E
G
1
S
E
G
2
S
E
G
3
S
E
G
4
S
E
G
5
S
E
G
6
S
E
G
7
S
E
G
8
S
E
G
9
S
E
G
S
E
G
S
E
G
S
E
G
S
E
G
S
E
G
S
E
G
S
E
G
S
E
G
S
E
G
10 11 12 13 14 15 16 17 18 19  
COM0 D0  
COM1 D1  
COM2 D2  
COM3 D3  
Address  
0
0
0
0
1
0
0
0
1
1
0
1
0
1
1
1
1
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
1
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
16/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Initialize sequence  
Please follow below sequence after Power-on to set this LSI to initial condition.  
Power on  
STOP condition  
START condition  
Issue slave address  
Execute Software Reset by sending ICSET command.  
*Each register value and DDRAM address, DDRAM data are random condition after power on till initialize sequence is executed.  
Start sequence  
Start sequence example1  
No.  
1
Input  
D7 D6 D5 D4 D3 D2 D1 D0  
Descriptions  
Power on  
VDD=05V (Tr=0.1ms)  
2
3
4
5
6
7
8
wait 100µs  
Initialize IC  
Stop  
Stop condition  
Start condition  
Issue slave address  
Software Reset  
Start  
Slave address  
0
1
1
1
1
1
1
0
1
1
1
1
1
0
1
0
1
1
0
0
1
*
0
1
0
0
0
0
1
0
ICSET  
BLKCTL  
*
DISCTL  
0
EVRSET1  
EVRSET2  
9
1
1
1
1
1
1
0
1
0
1
0
0
0
0
1
1
10  
11  
12  
13  
ICSET  
1
0
1
0
1
0
0
0
1
0
*
0
0
1
0
ADSET  
0
RAM address set  
Display Data  
Display Data  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
address  
address  
00h - 01h  
02h - 03h  
Display Data  
*
*
*
*
*
*
*
*
address  
12h - 13h  
14  
15  
16  
17  
18  
Stop  
Stop condition  
Start condition  
Issue slave address  
Display ON  
Start  
Slave address  
0
1
1
1
1
0
1
0
1
1
1
0
0
*
0
*
MODESET  
Stop  
Stop condition  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
17/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Start sequence example2  
Initialize  
Initialize Sequence  
DISPON Sequence  
RAM write Sequence  
DISPOFF Sequence  
DISPON  
RAM write  
DISPOFF  
This LSI is initialized with Initialize Sequence. And start to display with DISPON Sequence.  
This LSI will update display data with RAM write Sequence.  
And stop the display with DISPOFF sequence.  
If you want to restart to display, This LSI will restart to display with DISPON Sequence.  
Initialize sequence  
DATA  
Input  
Description  
D7 D6 D5 D4 D3 D2 D1 D0  
Power on  
wait 100us  
STOP  
START  
Execute Software Reset  
Display OFF  
0
1
1
0
*
1
1
1
0
*
1
1
0
0
*
1
0
0
0
*
1
1
0
0
*
1
0
0
0
*
0
1
0
0
*
0
0
0
0
*
Slave address  
ICSET  
RAM address set  
Display data  
MODESET  
ADSET  
Display data  
STOP  
DISPON sequence  
DATA  
Input  
Description  
D7 D6 D5 D4 D3 D2 D1 D0  
START  
Slave address  
0
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
1
1
0
1
0
1
1
1
0
1
0
1
1
1
0
1
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
Execute internal OSC mode  
Set Display Control  
Set BLKCTL  
ICSET  
DISCTL  
BLKCTL  
APCTL  
Set APCTL  
Set EVR1  
EVRSET1  
EVRSET2  
MODESET  
Set EVR2  
Display ON  
STOP  
RAM write sequence  
DATA  
Input  
Description  
D7 D6 D5 D4 D3 D2 D1 D0  
START  
Slave address  
0
1
1
1
1
1
1
1
0
*
1
1
0
1
1
1
1
1
0
*
1
1
1
1
1
1
1
0
0
*
1
0
1
1
1
0
1
0
0
*
1
1
1
0
1
0
1
1
0
*
1
0
1
0
1
0
0
0
0
*
0
0
1
0
0
0
0
0
0
*
0
1
1
0
0
0
0
0
0
*
Execute internal OSC mode  
Set Display Control  
Set BLKCTL  
ICSET  
DISCTL  
BLKCTL  
APCTL  
Set APCTL  
Set EVR1  
EVRSET1  
EVRSET2  
MODESET  
ADSET  
Set EVR2  
Display ON  
RAM address set  
Display data  
Display Data  
STOP  
DISPOFF sequence  
DATA  
Input  
Description  
D7 D6 D5 D4 D3 D2 D1 D0  
START  
Slave address  
0
1
1
1
1
1
1
1
0
1
0
0
1
1
0
1
0
0
0
0
0
0
1
0
Execute internal OSC mode  
Display OFF  
ICSET  
MODESET  
STOP  
According to the effect of noise or other external factor, BU9799KV occur abnormal operation.  
To avoid this phenomenon, please input command according to upper sequence certainly,  
when initializing IC, displaying ON/OFF, and refreshing RAM data.  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
18/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
DISCTL setup flow chart  
START  
Picture  
quality  
Power save FR = Normal Mode  
Line inversion  
Power save SR = High Power Mode  
Reduce Power consumption  
or  
Best picture image quality  
DISCTL setting  
"10100011"  
Power consumption  
Power save FR = Save mode3  
Frame inversion  
Power save SR = Save mode1  
DISCTL setting  
"10111100"  
Power save FR = Save mode3  
Frame inversion  
No  
DISCTL setting  
"10111100"  
Display flicker exist?  
Power save SR = Save mode1  
Yes  
Power save FR = Save mode2  
Frame inversion  
DISCTL setting  
"10110100"  
Power save SR = Save mode1  
Power save FR = Save mode2  
Frame inversion  
Power save SR = Save mode1  
No  
DISCTL setting  
"10110100"  
Display flicker exist?  
Yes  
Power save FR = Save mode1  
Frame inversion  
Power save SR = Save mode1  
DISCTL setting  
"10101100"  
Power save FR = Save mode1  
Line inversion  
Power save SR = Save mode1  
No  
DISCTL setting  
"10101100"  
Display flicker exist?  
Yes  
Power save FR = Normal  
Frame inversion  
Power save SR = Save mode1  
DISCTL setting  
"10100100"  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
19/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Cautions in Power ON/OFF  
Power supply sequence  
Please keep Power ON/OFF sequence as below waveform.  
To prevent incorrect display, malfunction and abnormal current,  
VDD must be turned on before VLCD In power up sequence.  
VDD must be turned off after VLCD In power down sequence.  
Please satisfies VLCDVDD, t1>0ns, t2>0ns  
t1  
t2  
VLCD  
10%  
10%  
VDD min  
VDD  
VDD min  
Figure 20. Power supply sequence  
Caution in P.O.R circuit use  
This device has “P.O.R” (Power-On Reset) circuit and Software Reset function.  
Please keep the following recommended Power-On conditions in order to power up properly.  
Please set power up conditions to meet the recommended tR, tF, tOFF, and Vbot spec below in order to ensure P.O.R  
operation  
*It has to set TEST1=”L” to be valid in POR circuit.  
tF  
VDD  
tR  
Recommended condition of tR, tF, tOFF, Vbot (Ta=25)  
tR tF tOFF Vbot  
Less than Less than More than Less than  
5ms 5ms 20ms 0.3V  
tOFF  
Vbot  
Figure 21. Power ON/OFF waveform  
If it is difficult to meet above conditions, execute the following sequence after Power-On.  
*It has to keep the following sequence in the case of TEST1=”H”. As POR circuit is invalid status.  
(1) TEST1 =”H”  
VDD  
SDA  
SCL  
STOP condition  
Figure 22. Stop condition  
(2) Generate STOP condition  
(3) Generate START condition  
(4) Issue slave address  
(5) Execute ICSET command (Software reset).  
Refer to the item of the ICSET command for the details.  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
20/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Operational Notes  
(1) Absolute Maximum Ratings  
Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit  
between pins or an open circuit between pins. Therefore, it is important to consider circuit protection measures, such as  
adding a fuse, in case the IC is operated over the absolute maximum ratings.  
(2) Recommended Operating conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
(3) Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
terminals.  
(4) Power Supply Lines  
Design the PCB layout pattern to provide low impedance ground and supply lines. Separate the ground and supply lines  
of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the  
analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature  
and aging on the capacitance value when using electrolytic capacitors.  
(5) Ground Voltage  
The voltage of the ground pin must be the lowest voltage of all pins of the IC at all operating conditions. Ensure that no  
pins are at a voltage below the ground pin at any time, even during transient condition.  
(6) Short between Pins and Mounting Errors  
Be careful when mounting the IC on printed circuit boards. The IC may be damaged if it is mounted in a wrong  
orientation or if pins are shorted together. Short circuit may be caused by conductive particles caught between the pins.  
(7) Operation under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
(8) Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
(9) Regarding Input Pins of the IC  
In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The operation  
of these parasitic elements can result in mutual interference among circuits, operational faults, or physical damage.  
Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an input pin lower  
than the GND voltage should be avoided. Furthermore, do not apply a voltage to the input terminals when no power  
supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input terminals have  
voltages within the values specified in the electrical characteristics of this IC..  
(10) GND Wiring Pattern  
When using both small-signal and large-current GND traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the GND traces of external components do not cause variations on  
the GND voltage. The power supply and ground lines must be as short and thick as possible to reduce line impedance.  
(11) External Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
(12) Unused Input Terminals  
Input terminals of an IC are often connected to the gate of a CMOS transistor. The gate has extremely high impedance  
and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of IC. So unless otherwise specified, input terminals not being used should be connected to the  
power supply or ground line.  
(13) Rush current  
When power is first supplied to the IC, rush current may flow instantaneously. It is possible that the charge current to the  
parasitic capacitance of internal photo diode or the internal logic may be unstable. Therefore, give special consideration  
to power coupling capacitance, power wiring, width of GND wiring, and routing of connections.  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
21/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Ordering Information  
B
U
9
7
9
9
K
V -  
E 2  
Package  
Part Number  
Packaging and forming specification  
KV  
: VQFP64 E2: Embossed tape and reel  
(VQFP64)  
Marking Diagram  
VQFP64 (TOP VIEW)  
Part Number Marking  
LOT Number  
B U 9 7 9 9  
1PIN MARK  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
22/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Physical Dimension, Tape and Reel Information  
Package Name  
VQFP64  
<Tape and Reel information>  
Tape  
Embossed carrier tape (with dry pack)  
Quantity  
1000pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
23/24  
TSZ2211115001  
Daattaasshheeeett  
BU9799KV  
MAX 200 segments (SEG50×COM4)  
Revision History  
Date  
Revision  
Changes  
14.Mar.2012  
001  
002  
003  
New Release  
Improved the statement in all pages.  
Deleted “Status of this document” in page 23.  
Changed format of Physical Dimension, Tape and Reel Information.  
8.Jan.2013  
23.Jan.2015  
Add the condition when power supply in page 20.  
www.rohm.com  
TSZ02201-0A0A2D300040-1-2  
23.Jan.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
24/24  
TSZ2211115001  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BU98032CH-3BW

65,536 Colors 132RGB x 132 STN LCD control driver
ROHM

BU9817FV

4-channel temperature sensor IC for PCs with I2C BUS interface
ROHM

BU98267CH-3BW

ディスプレイドライバ
ETC

BU9829GUL-W

Silicon Monolithic Integrated Circuit
ROHM

BU9829GUL-WE2

WL-CSP EEPROM family SPI BUS
ROHM

BU9829GUL-W_10

WL-CSP EEPROM family SPI BUS
ROHM

BU9831

Non-volatile electronic potentiometer
ROHM

BU9831F

Non-volatile electronic potentiometer
ROHM

BU9832GUL-W

Silicon Monolithic Integrated Circuit
ROHM

BU9832GUL-WE2

WL-CSP EEPROM family SPI BUS
ROHM

BU9832GUL-W_10

WL-CSP EEPROM family SPI BUS
ROHM

BU9833GUL-W

Silicon Monolithic Integrated Circuit
ROHM