BU97520AKV-M [ROHM]

BU97520AKV-M是1/4、1/3占空比车载用通用LCD驱动器,最多可显示276段LCD。本产品支持高液晶电压驱动及高帧频率驱动,也可驱动高显示精度的VA液晶。最多可控制6个通用/PWM输出,通过丰富的频率设定功能,无需频闪即可实现LED背光和LED按钮的照明。还内置最多30键的键盘扫描功能,可实现PCB上的配线削减和MCU的尺寸缩减和成本削减。支持TTL电平输入,可直接连接各种电源电压的MCU。;
BU97520AKV-M
型号: BU97520AKV-M
厂家: ROHM    ROHM
描述:

BU97520AKV-M是1/4、1/3占空比车载用通用LCD驱动器,最多可显示276段LCD。本产品支持高液晶电压驱动及高帧频率驱动,也可驱动高显示精度的VA液晶。最多可控制6个通用/PWM输出,通过丰富的频率设定功能,无需频闪即可实现LED背光和LED按钮的照明。还内置最多30键的键盘扫描功能,可实现PCB上的配线削减和MCU的尺寸缩减和成本削减。支持TTL电平输入,可直接连接各种电源电压的MCU。

PC 驱动 CD 驱动器
文件: 总45页 (文件大小:2402K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
LCD Segment Drivers  
Multi-function LCD Segment Drivers  
BU97520AKV-M  
MAX 276 Segment(69SEG x 4COM)  
General Description  
Key Specifications  
The BU97520AKV-M is 1/4 or 1/3 Duty General-purpose  
LCD driver. The BU97520AKV-M can drive up to 276  
LCD Segments directly. The BU97520AKV-M can also  
control up to 6 General-purpose output pins / 6 PWM  
output pins. These products also incorporate a key scan  
circuit that accepts input from up to 30 keys to reduce  
printed circuit board wiring.  
Supply Voltage Range:  
+2.7V to +6.0V  
-40°C to +85°C  
276 Segments  
Operating Temperature Range:  
Max Segments:  
Display Duty:  
Bias:  
Interface:  
1/3, 1/4 Selectable  
1/2, 1/3 Bias  
3wire Serial Interface  
Package  
W(Typ) × D(Typ) × H(Max)  
Features  
AEC-Q100 Qualified (Note 1)  
Key Input Function for up to 30 Keys. (A key scan is  
performed only when a key is pressed.)  
Either 1/4 or 1/3 Duty can be Selected with the Serial  
Control Data.  
1/4 Duty Drive: up to 276 Segments  
1/3 Duty Drive: up to 207 Segments  
Selectable Display Frame Frequency for Common  
and Segment Output Waveforms.  
Configurable Output Pin to Segment Output / PWM  
Output / General-purpose Output.(Max 6 Pins)  
Built-in OSC Circuit  
VQFP80  
14.00mm x 14.00mm x 1.60mm  
The INHb Pin can Force the Display to the off State.  
Integrated Voltage Detect Type Power on Reset  
(VDET) Circuit  
No External Component  
Low Power Consumption Design  
Supports Line and Frame Inversion  
(Note 1) Grade 3  
Applications  
Car Audio, Home Electrical Appliance,  
Meter Equipment etc.  
Typical Application Circuit  
Key matrix  
(P1/G1)  
(P6/G6)  
(Generalpurpose/PWM pins)  
(For use controlof backlight)  
KS1/S56  
|
KS6/S61  
KI1/S62  
|
KI5/S66  
COM1  
COM2  
COM3  
COM4  
S1/P1/G1  
S2/P2/G2  
VDD  
INHb  
+5V  
(Note 2)  
S6/P6/G6  
S7  
LCD Panel  
(Up to 276  
Segments)  
SCE  
SCL  
From  
Controller  
S66  
S67  
SDI  
S68  
OSC/S69  
SDO  
To Controller  
(Note 2) Insert capacitors between VDD and VSS C 0.1µF.  
Figure 1. Typical Application Circuit  
Product structure : Silicon monolithic integrated circuit This product is not designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
1/42  
TSZ22111 14 001  
BU97520AKV-M  
Block Diagram  
---  
---  
COMMON Driver  
SEGMENT Driver  
INHb  
Clock / Timing  
Generator  
OSC/S69  
Control Register  
PWM Register  
SCE  
SCL  
SDI  
Shift Register  
Serial  
Interface  
LCD voltage  
Generator  
SDO  
KEY Buffer  
KEY SCAN  
VLCD  
VDD  
VSS  
VLCD1  
VDET  
VLCD2  
Figure 2. Block Diagram  
Pin Configuration  
61  
40  
KI2 / S63  
S42  
S41  
S40  
S39  
S38  
S37  
S36  
S35  
S34  
S33  
S32  
S31  
S30  
S29  
S28  
S27  
S26  
S25  
S24  
S23  
KI3 / S64  
KI4 / S65  
KI5 / S66  
COM1  
COM2  
COM3  
COM4  
S67  
VDD  
S68  
SDO  
VSS  
OSC / S69  
INHb  
SCE  
SCL  
SDI  
S1 / P1 / G1  
S2 / P2 / G2  
80  
21  
1
20  
Figure 3. Pin Configuration (TOP VIEW)  
2/42  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
BU97520AKV-M  
Absolute Maximum Ratings (VSS = 0.0V)  
Parameter  
Maximum Supply Voltage  
Symbol  
VDD  
VIN1  
VIN2  
Pd  
Conditions  
Rating  
Unit  
V
V
VDD  
-0.3 to +7.0  
-0.3 to +7.0  
-0.3 to +7.0  
1.20(Note)  
-40 to +85  
-55 to +125  
SCE, SCL, SDI, INHb, OSC  
Input Voltage  
KI1 to KI5  
V
Allowable Loss  
Operating Temperature  
Storage Temperature  
-
-
-
W
°C  
°C  
Topr  
Tstg  
(Note) Derate by 12.0mW/°C when operating above Ta=25°C (when mounted in ROHM’s standard board).  
(Board size: 70mm×70mm×1.6mm material: FR4 board copper foil: land pattern only)  
Caution1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open  
circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case  
the IC is operated over the absolute maximum ratings  
Caution2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB boards with power dissipation taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Recommended Operating Conditions (Ta = -40°C to +85°C, VSS = 0V)  
Rating  
Typ  
5.0  
Parameter  
Symbol  
VDD  
Conditions  
Unit  
V
Min  
2.7  
Max  
6.0  
Supply Voltage  
-
Electrical Characteristics (Ta = -40°C to +85°C, VDD = 2.7V to 6.0V, VSS = 0V)  
Limit  
Typ  
Parameter  
Symbol  
Pin  
Conditions  
Unit  
Min  
Max  
VH1  
VH2  
SCE, SCL, SDI, INHb, OSC -  
-
-
0.03VDD  
0.1VDD  
-
-
V
V
Hysteresis  
KI1 to KI5  
-
Power-on Detection  
Voltage  
VDET  
VDD  
-
1.4  
1.8  
2.2  
V
VIH1  
VIH2  
VIH3  
SCE, SCL, SDI, INHb, OSC 4.0V ≤ VDD ≤ 6.0V  
SCE, SCL, SDI, INHb, OSC 2.7V ≤ VDD < 4.0V  
0.4VDD  
0.8VDD  
0.7VDD  
-
-
-
VDD  
VDD  
VDD  
V
V
V
“H” Level Input Voltage  
KI1 to KI5  
-
SCE, SCL, SDI, INHb  
OSC, KI1 to KI5  
KI1 to KI5  
“L” Level Input Voltage  
VIL1  
-
0
-
0.2VDD  
V
Input Floating Voltage  
Pull-down Resistance  
Output Off Leakage  
Current  
VIF  
RPD  
-
-
50  
-
0.05VDD  
250  
V
kΩ  
KI1 to KI5  
VDD = 5.0V  
100  
IOFFH  
SDO  
VO = 6.0V  
-
-
6.0  
µA  
“H” Level Input Current  
“L” Level Input Current  
IIH1  
IIL1  
SCE, SCL,SDI, INHb, OSC VI = 5.5V  
SCE, SCL,SDI, INHb, OSC VI = 0V  
-
-
-
-
-
-
5.0  
µA  
µA  
-5.0  
-
-
-
-
VOH1  
VOH2  
VOH3  
VOH4  
VOL1  
VOL2  
VOL3  
VOL4  
VOL5  
S1 to S69  
IO = -20µA  
VDD-0.9  
VDD-0.9  
VDD-0.9  
“H” Level  
Output Voltage  
COM1 to COM4  
P1/G1 to P6/G6  
KS1 to KS6  
S1 to S69  
IO = -100µA  
IO = -1mA  
IO = -500µA  
IO = 20µA  
V
VDD-1.0 VDD-0.5 VDD-0.2  
-
-
-
-
-
-
0.9  
0.9  
0.9  
1.5  
0.5  
COM1 to COM4  
P1/G1 to P6/G6  
KS1 to KS6  
SDO  
IO = 100µA  
IO = 1mA  
IO = 25µA  
“L” Level  
Output Voltage  
V
0.2  
-
0.5  
0.1  
IO = 1mA  
1/2 Bias  
IO = ±20µA  
1/2 Bias  
IO = ±100µA  
1/3 Bias  
IO = ±20µA  
1/3 Bias  
IO = ±20µA  
1/3 Bias  
IO = ±100µA  
1/3 Bias  
IO = ±100µA  
Power-saving mode  
VDD = 5.0V  
Output open ,1/2 Bias  
Frame frequency =  
80Hz  
VDD = 5.0V  
Output open ,1/3 Bias  
Frame frequency =  
80Hz  
1/2VDD  
-0.9  
1/2VDD  
-0.9  
2/3VDD  
-0.9  
1/3VDD  
-0.9  
2/3VDD  
-0.9  
1/3VDD  
-0.9  
1/2VDD  
+0.9  
1/2VDD  
+0.9  
2/3VDD  
+0.9  
1/3VDD  
+0.9  
2/3VDD  
+0.9  
1/3VDD  
+0.9  
VMID1  
VMID2  
VMID3  
VMID4  
VMID5  
S1 to S69  
-
-
-
-
-
COM1 to COM4  
S1 to S69  
Middle Level  
Output Voltage  
V
S1 to S69  
COM1 to COM4  
VMID6  
IDD1  
COM1 to COM4  
VDD  
-
-
-
15  
IDD2  
VDD  
VDD  
-
-
85  
170  
210  
Current Consumption  
µA  
IDD3  
110  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
3/42  
TSZ22111 15 001  
BU97520AKV-M  
Oscillation Characteristics(Ta = -40°C to +85°C, VDD = 2.7V to 6.0V , VSS = 0V)  
Limit  
Typ  
-
Parameter  
Symbol  
Pin  
Conditions  
Unit  
Min  
300  
510  
Max  
720  
690  
Oscillator Frequency 1  
Oscillator Frequency 2  
External Clock  
fOSC 1  
fOSC 2  
-
-
VDD = 2.7V to 6.0V  
VDD = 5V  
kHz  
kHz  
600  
fOSC 3  
30  
-
1000  
kHz  
Frequency(Note 1)  
External clock mode  
(OC=1)  
External Clock Rise Time  
External Clock Fall Time  
External Clock Duty  
tr  
tf  
tDTY  
-
-
30  
160  
160  
50  
-
-
70  
ns  
ns  
%
OSC  
(Note 1) Frame frequency is decided by external clock and dividing ratio of FC0, FC1, FC2 setting.  
[Reference Data]  
700  
650  
600  
550  
500  
450  
400  
350  
300  
VDD = 6.0V  
VDD = 5.0V  
VDD = 3.3V  
VDD = 2.7V  
-40  
-20  
0
20  
40  
60  
80  
Temperature[°C]  
Figure 4. Oscillator Frequency Typical Temperature Characteristics  
MPU Interface Characteristics (Ta = -40°C to +85°C, VDD = 2.7V to 6.0V, VSS = 0V)  
Limit  
Typ  
Parameter  
Symbol  
Pin  
Conditions  
Unit  
Min  
120  
120  
120  
120  
120  
320  
Max  
Data Setup Time  
Data Hold Time  
SCE Wait Time  
SCE Setup Time  
SCE Hold Time  
Clock Cycle Time  
High-level Clock Pulse  
Width  
Low-Level Clock Pulse  
Width (Write)  
Low-Level Clock Pulse  
Width (Read)  
tDS  
tDH  
tCP  
tCS  
tCH  
SCL, SDI  
SCL, SDI  
SCE, SCL  
SCE, SCL  
SCE, SCL  
SCL  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
tCCYC  
tCHW  
SCL  
120  
120  
1.6  
-
-
-
-
-
-
-
-
ns  
ns  
µs  
ns  
ns  
tCLWW SCL  
tCLWR SCL  
-
RPU=4.7kΩ, CL=10pF(Note 2)  
-
SCE, SCL,  
-
Rise Time  
Fall Time  
tr  
tf  
160  
160  
SDI  
SCE, SCL,  
SDI  
-
-
INHb Switching Time  
SDO Output Delay Time  
SDO Rise Time  
tC  
tDC  
tDR  
INHb, SCE  
SDO  
SDO  
-
10  
-
-
-
-
-
-
µs  
µs  
µs  
RPU=4.7KΩ, CL=10pF(Note 2)  
RPU=4.7KΩ, CL=10pF(Note 2)  
1.5  
1.5  
(Note 2) Since SDO is an open-drain output, “tDC” and “tDR” depend on the resistance of the pull-up resistor RPU and the load capacitance CL.  
RPU: 1kΩ≤RPU≤10kΩ is recommended.  
CL: A parasitic capacitance to VSS in an application circuit. Any component is not necessary to be attached.  
Power supply for I/O level  
RPU  
Host  
SDO  
CL  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
4/42  
TSZ22111 15 001  
BU97520AKV-M  
MPU Interface Characteristics continued  
1. When SCL is stopped at the low level  
VIH1  
SCE  
VIL1  
tCCYC  
tCHW  
tCLWW  
tCLWR  
VIH1  
VIL1  
SCL  
SDI  
tCH  
tCS  
tr  
tf  
VIH1  
VIL1  
tDS  
tDH  
SDO  
VOL5  
tDC  
tDR  
2. When SCL is stopped at the high level  
VIH1  
SCE  
VIL1  
tCCYC  
tCHW  
tCLWW  
tCLWR  
VIH1  
VIL1  
SCL  
tCP  
tCH  
tr  
tf  
VIH1  
VIL1  
SDI  
tDS  
tDH  
SDO  
VOL5  
tDC  
tDR  
Figure 5. Serial Interface Timing  
Pin Description  
Handling  
when  
Pin  
Pin No.  
Function  
Active  
I/O  
unused  
Segment output for displaying the display data transferred  
by serial data input. The S1/P1/G1 to S6/P6/G6 pins can  
also be used as General-purpose / PWM outputs when so  
set up by the control data.  
Segment output for displaying the display data transferred  
by serial data input.  
S1/P1/G1 to  
S6/P6/G6  
79,80,  
1 to 4,  
-
-
O
O
OPEN  
OPEN  
S7 to S55  
S67,S68  
5 to 53,  
69,71  
Key scan outputs  
Although normal key scan timing lines require diodes to be  
inserted in the timing lines to prevent shorts, since these  
outputs are unbalanced CMOS transistor outputs, these  
outputs will not be damaged by shorting when these outputs  
are used to form a key matrix. The KS1/S56 to KS6/S61  
pins can be used as segment outputs when so specified by  
the control data.  
KS1/S56 to  
KS6/S61  
54 to 59  
-
O
OPEN  
Key scan inputs  
I
VSS  
KI1/S62 to  
KI5/S66  
These pins have built-in pull-down resistors.  
The KI1/S62 to KI5/S66 pins can be used as segment  
outputs when so specified by the control data.  
Common driver output pins. The frame frequency is fo[Hz].  
Segment output for displaying the display data transferred  
by serial data input.  
60 to 64  
65 to 68  
74  
-
-
-
O
O
I
OPEN  
OPEN  
VSS  
COM1 to COM4  
OSC/S69  
The pin OSC/S69 can be used as external clock input pin  
when set up by the control data.  
O
OPEN  
Serial data transfer inputs. Must be connected to the  
controller.  
SCE: Chip enable  
SCE  
SCL  
SDI  
76  
77  
78  
H
-
I
I
I
VSS  
VSS  
VSS  
SCL: Clock for serial data transfer.  
SDI: Transfer data  
SDO  
72  
Output data  
-
O
OPEN  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
5/42  
TSZ22111 15 001  
BU97520AKV-M  
Pin Description continued  
Handling  
when  
Pin  
Pin No.  
Function  
Active  
I/O  
unused  
Display off control input.  
When INHb = low (VSS), Display forced off  
S1/P1/G1 to S6/P6/G6 = low (VSS)  
S7 to S69 = low (VSS)  
COM1 to COM4 = low (VSS)  
Stop the LCD drive bias voltage generation divider  
resistors.  
INHb(Note)  
75  
L
I
VDD  
Stop the internal oscillation circuit.  
When INHb = high (VDD), Display on  
However, serial data transfer is possible when the display is  
forced off.  
Power supply pin.  
VDD  
VSS  
70  
73  
-
-
-
-
-
-
A supply voltage of 2.7V to 6.0V must be applied to this pin.  
Power supply pin. Must be connected to Ground.  
(Note) Regarding the details of the INHb pin and the control of each output, refer to INHb Pin and Display Control.  
IO Equivalence Circuit  
VDD  
VDD  
SCE, SDI, SCL,INHb  
VSS  
VDD  
VSS  
VDD  
OSC/S69  
S7 to S55, S67, S68  
COM1 to COM4  
VSS  
VDD  
VSS  
VDD  
KI1/S62 to KI5/S66  
S1/P1/G1 to  
S6/P6/G6,  
KS1/S56 to KS6/S61  
VSS  
VDD  
VSS  
SDO  
VSS  
Figure 6. I/O Equivalence Circuit  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
6/42  
TSZ22111 15 001  
BU97520AKV-M  
Serial Data Transfer Formats  
1. 1/4 Duty  
(1) When SCL is stopped at the low level  
SCE  
SCL  
0
1
0
0
0
0
1
0
D1  
D2  
D71  
D72  
0
0
0
0
0
KM0 KM1 KM2  
P0  
P1  
P2  
FL  
DR  
DT  
FC0  
FC1  
FC2  
OC  
SC  
BU0  
BU1  
BU2  
0
0
SDI  
B0  
B1  
B2  
B3  
A0  
A1  
A2  
A3  
Device Code  
8bit  
Display Data  
72bit  
Control Data  
22bit  
DD  
2bit  
0
1
0
0
0
0
1
0
D73  
D74  
D143  
D144  
D145  
D146  
D147  
D148  
D149  
D150 D151 D152 D153 D154 D155 D156 PG1 PG2 PG3 PG4 PG5 PG6  
PF0  
PF1  
PF2  
PF3  
0
1
B0  
B1  
B2  
B3  
A0  
A1  
A2  
A3  
Device Code  
8bit  
Display Data  
84bit  
Control Data  
10bit  
DD  
2bit  
0
1
0
0
0
0
1
0
D157  
D158  
D216  
0
0
0
0
0
0
0
W10 W11  
W16 W17 W20 W21  
W26 W27 W30 W31  
W36 W37  
1
0
B0  
B1  
B2  
B3  
A0  
A1  
A2  
A3  
Device Code  
8bit  
Display Data  
60bit  
Control Data  
34bit  
DD  
2bit  
0
1
0
0
0
0
1
0
D217  
D218  
D276  
0
0
0
0
0
0
0
W40 W41  
W46 W47 W50 W51  
W56 W57 W60 W61  
W66 W67  
1
1
B0  
B1  
B2  
B3  
A0  
A1  
A2  
A3  
Device Code  
8bit  
Display Data  
60bit  
Control Data  
34bit  
DD  
2bit  
Figure 7. 3-SPI Data Transfer Format  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
7/42  
TSZ22111 15 001  
BU97520AKV-M  
Serial Data Transfer Formats continued  
(2) When SCL is stopped at the high level  
SCE  
SCL  
0
1
0
0
0
0
1
0
0
0
0
D1  
D2  
D71  
D72  
0
0
0
0
0
KM0  
KM1  
KM2  
P0  
P1  
P2  
FL  
DR  
DT  
FC0  
FC1  
PG4  
W26  
W56  
FC2  
OC  
SC  
BU0  
BU1  
BU2  
0
0
1
1
0
1
0
1
SDI  
B0  
B1  
B2  
B3  
A0  
A1  
A2  
A3  
A3  
A3  
A3  
Device Code  
8bit  
Display Data  
72bit  
Control Data  
22bit  
DD  
2bit  
0
1
0
0
0
0
1
D73  
D74  
D143 D144 D145 D146 D147 D148 D149 D150 D151 D152 D153 D154 D155 D156  
PG1  
W20  
W50  
PG2  
W21  
W51  
PG3  
PG5  
PG6  
PF0  
W31  
W61  
PF1  
PF2  
PF3  
B0  
B1  
B2  
B3  
A0  
A1  
A2  
Device Code  
8bit  
Display Data  
84bit  
Control Data  
10bit  
DD  
2bit  
0
1
0
0
0
0
1
D157 D158  
D216  
0
0
0
0
0
0
0
W10  
W11  
W16  
W17  
W27  
W30  
W36  
W37  
B0  
B1  
B2  
B3  
A0  
A1  
A2  
Device Code  
8bit  
Display Data  
Control Data  
34bit  
DD  
60bit  
2bit  
0
1
0
0
0
0
1
D217 D218  
D276  
0
0
0
0
0
0
0
W40  
W41  
W46  
W47  
W57  
W60  
W66  
W67  
B0  
B1  
B2  
B3  
A0  
A1  
A2  
Device Code  
8bit  
Display Data  
60bit  
Control Data  
34bit  
DD  
2bit  
Figure 8. 3-SPI Data Transfer Format  
Device code ----------------------------- “42H”  
D1 to D276 ------------------------------ Display data  
KM0 to KM2 ----------------------------- Key Scan output pin / Segment output pin switching control data  
P0 to P2 ---------------------------------- Segment / PWM / General-purpose output pin switching control data  
FL ------------------------------------------ Line Inversion or Frame Inversion switching control data  
DR ----------------------------------------- 1/3 Bias drive or 1/2 Bias drive switching control data  
DT ----------------------------------------- 1/4 Duty drive or 1/3 Duty drive switching control data  
FC0 to FC2 ------------------------------ Common / Segment output waveform frame frequency switching control data  
OC ----------------------------------------- Internal oscillator operating mode / External clock operating mode switching control data  
SC ----------------------------------------- Segment on/off control data  
BU0 to BU2 ------------------------------ Normal mode / power-saving mode control data  
PG1 to PG6 ------------------------------ PWM / General-purpose output control data  
PF0 to PF3 ------------------------------- PWM output waveform frame frequency control data  
Wn0 to Wn7 (n=1 to 6) ---------------- PWM output waveform duty control data  
DD------------------------------------------- Direction data  
When it is coincident with device code, BU97520AKV-M capture display data and control data at falling edge of SCE.  
So, please transfer the bit number of send display data and control data as specified number in the above figure.  
Specified number of bits is 104bit (Device code: 8bit, Display data and Control data: 94bit, DD: 2bit).  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
8/42  
TSZ22111 15 001  
BU97520AKV-M  
Serial Data Transfer Formats continued  
2. 1/3 Duty  
(1) When SCL is stopped at the low level  
SCE  
SCL  
0
1
0
0
0
0
1
0
D1  
D73  
D157  
0
D2  
D71  
D72  
0
0
0
0
0
KM0 KM1 KM2  
P0  
P1  
P2  
FL  
DR  
DT  
FC0  
FC1  
PG4  
W26  
W56  
FC2  
OC  
SC  
BU0  
BU1  
BU2  
0
0
1
1
0
1
0
1
SDI  
B0  
B1  
B2  
B3  
A0  
A1  
A2  
A3  
Device Code  
8bit  
Display Data  
72bit  
Control Data  
22bit  
DD  
2bit  
0
1
0
0
0
0
1
0
D74  
D143 D144 D145 D146 D147 D148 D149 D150 D151 D152 D153 D154 D155 D156  
PG1  
W20  
W50  
PG2  
W21  
W51  
PG3  
PG5  
PG6  
PF0  
W31  
W61  
PF1  
PF2  
PF3  
B0  
B1  
B2  
B3  
A0  
A1  
A2  
A3  
Device Code  
8bit  
Display Data  
84bit  
Control Data  
10bit  
DD  
2bit  
0
1
0
0
0
0
1
0
D158  
D207  
0
0
0
0
0
0
0
W10  
W11  
W16  
W17  
W27  
W30  
W36  
W37  
B0  
B1  
B2  
B3  
A0  
A1  
A2  
A3  
Device Code  
8bit  
Display Data  
51bit  
Control Data  
39bit  
DD  
2bit  
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
W40  
W41  
W46  
W47  
W57  
W60  
W66  
W67  
B0  
B1  
B2  
B3  
A0  
A1  
A2  
A3  
Device Code  
8bit  
Control Data  
94bit  
DD  
2bit  
Figure 9. 3-SPI Data Transfer Format  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
9/42  
TSZ22111 15 001  
BU97520AKV-M  
Serial Data Transfer Formats continued  
(2) When SCL is stopped at the high level  
SCE  
SCL  
0
1
0
0
0
0
1
0
0
0
0
D1  
D2  
D71  
D72  
0
0
0
0
0
KM0 KM1 KM2  
P0  
P1  
P2  
FL  
DR  
DT  
FC0  
FC1  
PG4  
W26  
W56  
FC2  
OC  
SC  
BU0  
BU1  
BU2  
0
0
1
1
0
1
0
1
SDI  
B0  
B1  
B2  
B3  
A0  
A1  
A2  
A3  
A3  
A3  
A3  
Device Code  
8bit  
Display Data  
72bit  
Control Data  
22bit  
DD  
2bit  
0
1
0
0
0
0
1
D73  
D74  
D143 D144 D145 D146 D147 D148 D149 D150 D151 D152 D153 D154 D155 D156  
PG1  
W20  
W50  
PG2  
W21  
W51  
PG3  
PG5  
PG6  
PF0  
W31  
W61  
PF1  
PF2  
PF3  
B0  
B1  
B2  
B3  
A0  
A1  
A2  
Device Code  
8bit  
Display Data  
84bit  
Control Data  
10bit  
DD  
2bit  
0
1
0
0
0
0
1
D157 D158  
D207  
0
0
0
0
0
0
0
W10  
W11  
W16  
W17  
W27  
W30  
W36  
W37  
B0  
B1  
B2  
B3  
A0  
A1  
A2  
Device Code  
8bit  
Display Data  
51bit  
Control Data  
39bit  
DD  
2bit  
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
W40  
W41  
W46  
W47  
W57  
W60  
W66  
W67  
B0  
B1  
B2  
B3  
A0  
A1  
A2  
Device Code  
8bit  
Control Data  
94bit  
DD  
2bit  
Figure 10. 3-SPI Data Transfer Format  
Device code ----------------------------- “42H”  
D1 to D276 ------------------------------ Display data  
KM0 to KM2 ----------------------------- Key Scan output pin / Segment output pin switching control data  
P0 to P2 ---------------------------------- Segment / PWM / General-purpose output pin switching control data  
FL ------------------------------------------ Line Inversion or Frame Inversion switching control data  
DR ----------------------------------------- 1/3 Bias drive or 1/2 Bias drive switching control data  
DT ----------------------------------------- 1/4 Duty drive or 1/3 Duty drive switching control data  
FC0 to FC2 ------------------------------ Common / Segment output waveform frame frequency switching control data  
OC ----------------------------------------- Internal oscillator operating mode / External clock operating mode switching control data  
SC ----------------------------------------- Segment on/off control data  
BU0 to BU2 ------------------------------ Normal mode / power-saving mode control data  
PG1 to PG6 ------------------------------ PWM / General-purpose output control data  
PF0 to PF3 ------------------------------- PWM output waveform frame frequency control data  
Wn0 to Wn7 (n=1 to 6) ---------------- PWM output waveform duty control data  
DD------------------------------------------- Direction data  
When it is coincident with device code, BU97520AKV-M capture display data and control data at falling edge of SCE.  
So, please transfer the bit number of send display data and control data as specified number in the above figure.  
Specified number of bits is 104bit (Device code: 8bit, Display data and Control data: 94bit, DD: 2bit).  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
10/42  
TSZ22111 15 001  
BU97520AKV-M  
Control Data Functions  
1. KM0, KM1 and KM2: Key Scan output pin / Segment output pin switching control data  
These control data bits switch the functions of the KS1/S56 to KS6/S61 output pins between key scan output and segment  
output.  
Output Pin State  
Maximum  
Number of  
Input keys  
Reset  
Condition  
KM0  
KM1  
KM2  
KS1/S56 KS2/S57 KS3/S58 KS4/S59 KS5/S60 KS6/S61  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
KS1  
S56  
S56  
S56  
S56  
S56  
S56  
S56  
KS2  
KS2  
S57  
S57  
S57  
S57  
S57  
S57  
KS3  
KS3  
KS3  
S58  
S58  
S58  
S58  
S58  
KS4  
KS4  
KS4  
KS4  
S59  
S59  
S59  
S59  
KS5  
KS5  
KS5  
KS5  
KS5  
S60  
S60  
S60  
KS6  
KS6  
KS6  
KS6  
KS6  
KS6  
S61  
S61  
30  
25  
20  
15  
10  
5
-
-
-
-
-
-
-
0
0
2. P0, P1 and P2: Segment / PWM / General-purpose output pin switching control data  
These control data bits are used to select the function of the S1/P1/G1 to S6/P6/G6 output pins (Segment Output Pins or  
PWM Output Pins or General-purpose Output Pins).  
Reset  
Condition  
P0  
P1  
P2  
S1/P1/G1  
S2/P2/G2  
S3/P3/G3  
S4/P4/G4  
S5/P5/G5  
S6/P6/G6  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
S1  
S2  
S2  
S3  
S3  
S3  
P3/G3  
P3/G3  
P3/G3  
P3/G3  
S3  
S4  
S4  
S4  
S5  
S5  
S5  
S5  
S5  
P5/G5  
P5/G5  
S5  
S6  
S6  
S6  
S6  
S6  
S6  
P6/G6  
S6  
-
-
-
-
-
-
-
P1/G1  
P1/G1  
P1/G1  
P1/G1  
P1/G1  
P1/G1  
S1  
P2/G2  
P2/G2  
P2/G2  
P2/G2  
P2/G2  
S2  
S4  
P4/G4  
P4/G4  
P4/G4  
S4  
PWM output or General-purpose output pin is selected by PGx (x=1 to 6) control data bit.  
When the General-purpose Output Pin Function is selected, the correspondence between the output pins and the respective  
display data is given in the table below.  
Corresponding Display Data  
Output Pins  
1/4 Duty Mode  
1/3 Duty Mode  
S1/P1/G1  
S2/P2/G2  
S3/P3/G3  
S4/P4/G4  
S5/P5/G5  
S6/P6/G6  
D1  
D5  
D9  
D13  
D17  
D21  
D1  
D4  
D7  
D10  
D13  
D16  
When the General-purpose Output Pin Function is selected, the respective output pin outputs a “HIGH” level when its  
corresponding display data is set to “1”. Likewise, it will output a “LOW” level, if its corresponding display data is set to “0”.  
For example, S4/P4/G4 is used as a General-purpose Output Pin in case of 1/4 Duty, if its corresponding display data  
D13 is set to “1”, then S4/P4/G4 will output “HIGH(VDD)” level. Likewise, if D13 is set to “0”, then S4/P4/G4 will output  
“LOW(VSS)” level.  
3. DR: 1/3 Bias drive or 1/2 Bias drive switching control data  
This control data bit selects either 1/3 Bias drive or 1/2 Bias drive.  
DR  
0
Bias Drive Scheme  
1/3 Bias drive  
Reset Condition  
1
1/2 Bias drive  
-
4. FL: Line Inversion or Frame Inversion switching control data  
This control data bit selects either Line Inversion or Frame Inversion.  
FL  
0
Inversion Setting  
Line  
Reset Condition  
1
Frame  
-
Typically, when driving large capacitance LCD, Line inversion will increase the influence of crosstalk.  
Regarding driving waveform, refer to LCD Driving waveform.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
11/42  
TSZ22111 15 001  
 
BU97520AKV-M  
Control Data Functions continued  
5. DT: 1/4 Duty drive or 1/3 Duty drive switching control data  
This control data bit selects either 1/4 Duty drive or 1/3 Duty drive.  
DT  
0
Duty Drive Scheme  
1/4 Duty drive  
Reset Condition  
1
1/3 Duty drive  
-
6. FC0, FC1 and FC2: Common / Segment output waveform frame frequency switching control data  
These control data bits set the display frame frequency.  
Display Frame Frequency  
FC0  
FC1  
FC2  
Reset Condition  
fo(Hz)  
fOSC(Note)/12288  
fOSC/10752  
fOSC/9216  
fOSC/7680  
fOSC/6144  
fOSC/4608  
fOSC/3840  
fOSC/3072  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
-
-
-
-
-
-
-
(Note) fOSC: Internal oscillation frequency (600kHz Typ)  
7. OC: Internal oscillator operating mode / External clock operating mode switching control data  
This control data bit selects the oscillation mode.  
OC  
0
1
Operating Mode  
Internal oscillator  
External Clock  
In/Out Pin(OSC/S69) Status  
S69 (segment output)  
OSC (clock input)  
Reset Condition  
-
<External Clock input timing function>  
Internal oscillation / external clock select signal behavior is below.  
Please input external clock after serial data sending.  
SCE  
SCL  
0
0
0
1
0
D1  
D2  
OC  
SC  
BU0  
BU1  
BU2  
0
1
0
0
0
SDI  
B0  
B1  
B2  
B3  
A0  
A1  
A2  
A3  
Display Data/  
Control Data  
DD  
2 bits  
Device Code  
8bits  
Internal oscillationExtarnal Clock  
Select signal(Internal signal)  
Internal oscillation  
(Internal signal)  
Extarnal Clock  
(OSC)  
8. SC: Segment on/off control data  
This control data bit controls the on/off state of the segments.  
SC  
0
1
Display State  
Reset Condition  
On  
Off  
-
Note that when the segments are turned off by setting SC to “1”, the segments are turned off by outputting segment off  
waveforms from the segment output pins.  
9. BU, BU1 and BU2: Normal mode / power-saving mode control data  
This control data bit selects either normal mode or power-saving mode.  
Segment Outputs  
Common Outputs  
Operating  
Output Pin States During Key Scan Standby  
OSC  
Oscillator  
Normal Operating  
Reset  
Condition  
BU0 BU1 BU2  
Mode  
KS1  
H
L
KS2  
H
L
KS3  
H
L
KS4  
H
L
KS5  
H
L
KS6  
H
H
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
-
-
-
-
-
-
-
L
L
L
L
H
H
L
L
L
H
H
H
Power-  
Stopped  
saving  
Low(VSS)  
L
L
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
Power-saving mode status: S1/P1/G1 to S6/P6/G6 = active only General-purpose output  
S7 to S69 = low(VSS)  
COM1 to COM4 = low(VSS)  
Stop the LCD drive bias voltage generation circuit  
Stop the Internal oscillation circuit  
However, serial data transfer is possible.  
Regarding the details of the INHb pin and the control of each output, refer to INHb Pin and Display Control.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
12/42  
TSZ22111 15 001  
 
BU97520AKV-M  
Control Data Functions continued  
10. PG1, PG2, PG3, PG4, PG5 and PG6: PWM / General-purpose output control data  
This control data bit select either PWM output or General-purpose output of Sx/Px/Gx pins.(x=1 to 6)  
PGx(x=1 to 6)  
Mode  
Reset Condition  
0
1
PWM output  
General-purpose output  
-
<PWM<->GPO Changing function>  
Normal behavior of changing GPO to PWM is below.  
- PWM operation is started by command import timing of DD:01 during GPO PWM change.  
- Please take care of reflect timing of new duty setting of DD:10 and DD:11 is from the next PWM.  
DD:11  
DD:00  
DD:01  
DD:10  
SCE  
New duty decided timing  
GPO > PWM change  
---  
PWM / GPO output  
Next PWM cycle  
Start of PWM operation  
(PWM waveform in immediate duty)  
(PWM waveform in new duty)  
In order to avoid this operation, please input commands in reverse as below.  
DD:10  
DD:00  
DD:11  
DD:01  
SCE  
New duty decided timing  
--  
GPO PWM change  
PWM / GPO output  
Start of PWM operation  
(PWM waveform on new duty)  
11. PF0, PF1, PF2 and PF3: PWM output waveform frame frequency control data  
These control data bits set the frame frequency for PWM output waveforms.  
PWM output Frame Frequency  
Reset  
Condition  
PF0  
PF1  
PF2  
PF3  
fp(Hz)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
fOSC/4096  
fOSC/3840  
fOSC/3584  
fOSC/3328  
fOSC/3072  
fOSC/2816  
fOSC/2560  
fOSC/2304  
fOSC/2048  
fOSC/1792  
fOSC/1536  
fOSC/1280  
fOSC/1024  
fOSC/768  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
fOSC/512  
fOSC/256  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
13/42  
TSZ22111 15 001  
BU97520AKV-M  
Control Data Functions continued  
12. W10 to W17(Note), W20 to W27, W30 to W37, W40 to W47, W50 to W57 and W60 to W67: PWM output waveform duty  
control data.  
These control data bits set the high level pulse width for PWM output waveforms.  
N = 1 to 6, Tp = 1/fp  
Wn0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Wn1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Wn2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Wn3  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
Wn4  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
Wn5  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
Wn6  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
Wn7  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
PWM Duty  
(1/256) x Tp  
(2/256) x Tp  
(3/256) x Tp  
(4/256) x Tp  
(5/256) x Tp  
(6/256) x Tp  
(7/256) x Tp  
(8/256) x Tp  
(9/256) x Tp  
(10/256) x Tp  
(11/256) x Tp  
(12/256) x Tp  
(13/256) x Tp  
(14/256) x Tp  
(15/256) x Tp  
(16/256) x Tp  
(17/256) x Tp  
(18/256) x Tp  
(19/256) x Tp  
(20/256) x Tp  
(21/256) x Tp  
(22/256) x Tp  
(23/256) x Tp  
(24/256) x Tp  
(25/256) x Tp  
(26/256) x Tp  
(27/256) x Tp  
Reset Condition  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
(230/256) x Tp  
(231/256) x Tp  
(232/256) x Tp  
(233/256) x Tp  
(234/256) x Tp  
(235/256) x Tp  
(236/256) x Tp  
(237/256) x Tp  
(238/256) x Tp  
(239/256) x Tp  
(240/256) x Tp  
(241/256) x Tp  
(242/256) x Tp  
(243/256) x Tp  
(244/256) x Tp  
(245/256) x Tp  
(246/256) x Tp  
(247/256) x Tp  
(248/256) x Tp  
(249/256) x Tp  
(250/256) x Tp  
(251/256) x Tp  
(252/256) x Tp  
(253/256) x Tp  
(254/256) x Tp  
(255/256) x Tp  
(256/256) x Tp  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(Note): W10 to W17:S1/P1/G1 PWM duty data  
W20 to W27:S2/P2/G2 PWM duty data  
W30 to W37:S3/P3/G3 PWM duty data  
W40 to W47:S4/P4/G4 PWM duty data  
W50 to W57:S5/P5/G5 PWM duty data  
W60 to W67:S6/P6/G6 PWM duty data.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
14/42  
TSZ22111 15 001  
BU97520AKV-M  
Display Data and Output Pin Correspondence  
1. 1/4 Duty  
Output Pin(Note)  
S1/P1/G1  
S2/P2/G2  
S3/P3/G3  
S4/P4/G4  
S5/P5/G5  
S6/P6/G6  
S7  
COM1  
D1  
D5  
D9  
D13  
D17  
D21  
D25  
COM2  
D2  
D6  
D10  
D14  
D18  
D22  
D26  
COM3  
D3  
D7  
D11  
D15  
D19  
D23  
D27  
COM4  
D4  
D8  
D12  
D16  
D20  
D24  
D28  
S8  
D29  
D30  
D31  
D32  
S9  
D33  
D34  
D35  
D36  
S10  
D37  
D38  
D39  
D40  
S11  
D41  
D42  
D43  
D44  
S12  
D45  
D46  
D47  
D48  
S13  
D49  
D50  
D51  
D52  
S14  
D53  
D54  
D55  
D56  
S15  
D57  
D58  
D59  
D60  
S16  
D61  
D62  
D63  
D64  
S17  
D65  
D66  
D67  
D68  
S18  
D69  
D70  
D71  
D72  
S19  
D73  
D74  
D75  
D76  
S20  
D77  
D78  
D79  
D80  
S21  
D81  
D82  
D83  
D84  
S22  
D85  
D86  
D87  
D88  
S23  
D89  
D90  
D91  
D92  
S24  
D93  
D94  
D95  
D96  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
S40  
S41  
S42  
S43  
S44  
S45  
S46  
S47  
S48  
S49  
S50  
S51  
S52  
S53  
S54  
S55  
S56  
D97  
D98  
D99  
D100  
D104  
D108  
D112  
D116  
D120  
D124  
D128  
D132  
D136  
D140  
D144  
D148  
D152  
D156  
D160  
D164  
D168  
D172  
D176  
D180  
D184  
D188  
D192  
D196  
D200  
D204  
D208  
D212  
D216  
D220  
D224  
D228  
D232  
D236  
D240  
D244  
D248  
D252  
D101  
D105  
D109  
D113  
D117  
D121  
D125  
D129  
D133  
D137  
D141  
D145  
D149  
D153  
D157  
D161  
D165  
D169  
D173  
D177  
D181  
D185  
D189  
D193  
D197  
D201  
D205  
D209  
D213  
D217  
D221  
D225  
D229  
D233  
D237  
D241  
D245  
D249  
D102  
D106  
D110  
D114  
D118  
D122  
D126  
D130  
D134  
D138  
D142  
D146  
D150  
D154  
D158  
D162  
D166  
D170  
D174  
D178  
D182  
D186  
D190  
D194  
D198  
D202  
D206  
D210  
D214  
D218  
D222  
D226  
D230  
D234  
D238  
D242  
D246  
D250  
D103  
D107  
D111  
D115  
D119  
D123  
D127  
D131  
D135  
D139  
D143  
D147  
D151  
D155  
D159  
D163  
D167  
D171  
D175  
D179  
D183  
D187  
D191  
D195  
D199  
D203  
D207  
D211  
D215  
D219  
D223  
D227  
D231  
D235  
D239  
D243  
D247  
D251  
S57  
S58  
S59  
S60  
S61  
S62  
S63  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
15/42  
TSZ22111 15 001  
BU97520AKV-M  
Display Data and Output Pin Correspondence continued  
Output Pin(Note)  
COM1  
D253  
D257  
D261  
D265  
D269  
D273  
COM2  
D254  
D258  
D262  
D266  
D270  
D274  
COM3  
D255  
D259  
D263  
D267  
D271  
D275  
COM4  
D256  
D260  
D264  
D268  
D272  
D276  
S64  
S65  
S66  
S67  
S68  
S69  
(Note) The Segment Output Pin function is assumed to be selected for the output pins S1/P1/G1 to S6/P6/G6.  
To illustrate further, the states of the S21 output pin is given in the table below.  
Display Data  
State of S21 Output Pin  
D81  
0
0
D82  
0
D83  
0
D84  
0
1
LCD Segments corresponding to COM1 to COM4 are OFF.  
LCD Segment corresponding to COM4 is ON.  
0
0
0
0
1
0
LCD Segment corresponding to COM3 is ON.  
0
0
0
1
1
0
1
0
LCD Segments corresponding to COM3 and COM4 are ON.  
LCD Segment corresponding to COM2 is ON.  
0
0
1
1
0
1
1
0
LCD Segments corresponding to COM2 and COM4 are ON.  
LCD Segments corresponding to COM2 and COM3 are ON.  
0
1
1
0
1
0
1
0
LCD Segments corresponding to COM2, COM3 and COM4 are ON.  
LCD Segment corresponding to COM1 is ON.  
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
LCD Segments corresponding to COM1 and COM4 are ON.  
LCD Segments corresponding to COM1 and COM3 are ON.  
LCD Segments corresponding to COM1, COM3 and COM4 are ON.  
LCD Segments corresponding to COM1 and COM2 are ON.  
LCD Segments corresponding to COM1, COM2, and COM4 are ON.  
LCD Segments corresponding to COM1, COM2, and COM3 are ON.  
LCD Segments corresponding to COM1 to COM4 are ON.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
16/42  
TSZ22111 15 001  
BU97520AKV-M  
Display Data and Output Pin Correspondence continued  
2. 1/3 Duty  
Output Pin(Note)  
S1/P1/G1  
S2/P2/G2  
S3/P3/G3  
S4/P4/G4  
S5/P5/G5  
S6/P6/G6  
S7  
COM1  
D1  
D4  
D7  
D10  
D13  
D16  
D19  
COM2  
D2  
D5  
D8  
D11  
D14  
D17  
D20  
COM3  
D3  
D6  
D9  
D12  
D15  
D18  
D21  
S8  
D22  
D23  
D24  
S9  
D25  
D26  
D27  
S10  
D28  
D29  
D30  
S11  
D31  
D32  
D33  
S12  
D34  
D35  
D36  
S13  
D37  
D38  
D39  
S14  
D40  
D41  
D42  
S15  
D43  
D44  
D45  
S16  
D46  
D47  
D48  
S17  
D49  
D50  
D51  
S18  
D52  
D53  
D54  
S19  
D55  
D56  
D57  
S20  
D58  
D59  
D60  
S21  
D61  
D62  
D63  
S22  
D64  
D65  
D66  
S23  
D67  
D68  
D69  
S24  
D70  
D71  
D72  
S25  
D73  
D74  
D75  
S26  
D76  
D77  
D78  
S27  
D79  
D80  
D81  
S28  
D82  
D83  
D84  
S29  
D85  
D85  
D87  
S30  
D88  
D89  
D90  
S31  
D91  
D92  
D93  
S32  
D94  
D95  
D96  
S33  
D97  
D98  
D99  
S34  
S35  
S36  
S37  
S38  
S39  
S40  
S41  
S42  
S43  
S44  
S45  
S46  
S47  
S48  
S49  
S50  
S51  
S52  
S53  
S54  
S55  
S56  
S57  
S58  
S59  
S60  
S61  
S62  
S63  
D100  
D103  
D106  
D109  
D112  
D115  
D118  
D121  
D124  
D127  
D130  
D133  
D136  
D139  
D142  
D145  
D148  
D151  
D154  
D157  
D160  
D163  
D166  
D169  
D172  
D175  
D178  
D181  
D184  
D187  
D101  
D104  
D107  
D110  
D113  
D116  
D119  
D122  
D125  
D128  
D131  
D134  
D137  
D140  
D143  
D146  
D149  
D152  
D155  
D158  
D161  
D164  
D167  
D170  
D173  
D176  
D179  
D182  
D185  
D188  
D102  
D105  
D108  
D111  
D114  
D117  
D120  
D123  
D126  
D129  
D132  
D135  
D138  
D141  
D144  
D147  
D150  
D153  
D156  
D159  
D162  
D165  
D168  
D171  
D174  
D177  
D180  
D183  
D186  
D189  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
17/42  
TSZ22111 15 001  
BU97520AKV-M  
Display Data and Output Pin Correspondence continued  
Output Pin(Note)  
COM1  
D190  
D193  
D196  
D199  
D202  
D205  
COM2  
D191  
D194  
D197  
D200  
D203  
D206  
COM3  
D192  
D195  
D198  
D201  
D204  
D207  
S64  
S65  
S66  
S67  
S68  
S69  
(Note) The Segment Output Pin function is assumed to be selected for the output pins S1/P1/G1 to S6/P6/G6.  
To illustrate further, the states of the S21 output pin is given in the table below.  
Display Data  
State of S21 Output Pin  
D61  
0
0
D62  
0
0
D63  
0
1
LCD Segments corresponding to COM1, COM2 and COM3 are OFF.  
LCD Segment corresponding to COM3 is ON.  
0
1
0
LCD Segment corresponding to COM2 is ON.  
0
1
1
0
1
0
LCD Segments corresponding to COM2 and COM3 are ON.  
LCD Segment corresponding to COM1 is ON.  
1
1
1
0
1
1
1
0
1
LCD Segments corresponding to COM1 and COM3 are ON.  
LCD Segments corresponding to COM1 and COM2 are ON.  
LCD Segments corresponding to COM1, COM2 and COM3 are ON.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
18/42  
TSZ22111 15 001  
BU97520AKV-M  
Serial Data Output  
1. When SCL is stopped at the low level(Note 1)  
SCE  
SCL  
SDI  
1
1
0
0
0
0
1
0
B0  
B1  
B2  
B3  
A0  
A1  
A2  
A3  
SDO  
X
KD1  
KD2  
KD27 KD28 KD29 KD30  
PA  
Output Data  
Figure 11. Serial data output format  
(Note 1)  
1. X=Don’t care  
2. B0 to B3, A0 to A3: Serial Interface address  
3. Serial Interface address: 43H  
4. KD1 to KD30: Key data  
5. PA: Power-saving acknowledge data  
6. If a key data read operation is executed when SDO is high, the read key data (KD1 to KD30) and power-saving acknowledge data (PA) will be invalid.  
2. When SCL is stopped at the high level(Note 2)  
SCE  
SCL  
SDI  
1
1
0
0
0
0
1
0
B0  
B1  
B2  
B3  
A0  
A1  
A2  
A3  
SDO  
X
KD1  
KD2  
KD3  
KD28 KD29 KD30  
PA  
X
Output Data  
Figure 12. Serial Data Output Format  
(Note 2)  
1. X=Don’t care  
2. B0 to B3, A0 to A3: Serial Interface address  
3. Serial Interface address: 43H  
4. KD1 to KD30: Key data  
5. PA: Power-saving acknowledge data  
6. If a key data read operation is executed when SDO is high, the read key data (KD1 to KD30) and power-saving acknowledge data (PA) will be invalid.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
19/42  
TSZ22111 15 001  
 
BU97520AKV-M  
Output Data  
1. KD1 to KD30: Key Data  
When a key matrix of up to 30 keys is formed from the KS1 to KS6 output pins and the KI1 to KI5 input pins and one of those  
keys is pressed, the key output data corresponding to that key will be set to 1. The table shows the relationship between  
those pins and the key data bits.  
Item  
KS1  
KS2  
KS3  
KS4  
KS5  
KS6  
KI1  
KD1  
KD6  
KD11  
KD16  
KD21  
KD26  
KI2  
KD2  
KD7  
KD12  
KD17  
KD22  
KD27  
KI3  
KD3  
KD8  
KD13  
KD18  
KD23  
KD28  
KI4  
KD4  
KD9  
KD14  
KD19  
KD24  
KD29  
KI5  
KD5  
KD10  
KD15  
KD20  
KD25  
KD30  
2. PA: Power-saving Acknowledge Data  
This output data is set to the state when the key was pressed. In that case SDO will go to the low level. If serial data is input  
during this period and the mode is set (normal mode or power-saving mode), the IC will be set to that mode. PA is set to 1 in  
the power-saving mode and to 0 in the normal mode.  
Power-saving Mode  
Power-saving mode is activated when least one of control data BU0 or BU1 or BU2 is set to 1. All segment and common  
outputs will go low. The oscillation circuit will stop (It can be restarted by a key press), thus reducing power consumption.  
This mode can be disabled when control data bits BU0, BU1 and BU2 are all set to 0. However, note that the S1/P1/G1 to  
S6/P6/G6 outputs can still be used as General-purpose output pins according to the state of the P0 to P2 control data bits,  
even in power-saving mode. (See Control Data Functions.)  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
20/42  
TSZ22111 15 001  
BU97520AKV-M  
Key Scan Operation Function  
1. Key Scan Timing  
The key scan period is 4608T(s). To reliably determine the on/off state of the keys, the BU97520AKV-M scans the keys twice  
and determines that a key has been pressed when the key data agrees. It outputs a key data read request (a low level on  
SDO) 9840T(s) after starting a key scan. If the key data does not agree and a key was pressed at that point, it scans the  
keys again. Thus the BU97520AKV-M cannot detect a key press shorter than 9840T(s).  
*
1
1
*
KS1  
KS2  
KS3  
KS4  
KS5  
KS6  
*
*
2
2
*
*
3
3
*
*
4
4
*
*
5
5
6
6
9216T(s)  
1
fOSC  
T =  
Figure 13. Key Scan Timing(Note)  
(Note) In power-saving mode the high/low state of these pins is determined by the BU0 to BU2 bits in the control data. Key scan output signals are not output  
from pins that are set “L”.  
2. In Normal Mode  
The pins KS1 to KS6 are set “H”.  
When a key is pressed a key scan is started and the keys are scanned until all keys are released. Multiple key presses are  
recognized by determining whether multiple key data bits are set.  
If a key is pressed for longer than 9840T(s) (Where T=1/fOSC ) the BU97520AKV-M outputs a key data read request (a low  
level on SDO) to the controller. The controller acknowledges this request and reads the key data. However, if SCE is high  
during a serial data transfer, SDO will be set “H”.  
After the controller reads the key data, the key data read request is cleared (SDO is set high) and the BU97520AKV-M  
performs another key scan. Also note that SDO, being an open-drain output, requires a pull-up resistor (between 1kand  
10kΩ).  
Key Input 1  
Key Input 2  
9840T(s)  
Key scan  
SCE  
9840T(s)  
9840T(s)  
Key address  
Serial data transfer Serial data transfer  
Serial data transfer  
Key address  
Key address(43H)  
SDI  
SDO  
Key data read  
Key data read  
Key data read  
1
Key data read request  
Key data read request  
Key data read request  
T=  
fOSC  
Figure 14. Key Scan Operation In Normal Mode  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
21/42  
TSZ22111 15 001  
BU97520AKV-M  
Key Scan Operation Function continued  
3. In Power-saving Mode  
The pins KS1 to KS6 are set to high or low by the BU0 to BU2 bits in the control data. (See the Control Data Functions for  
details.)  
If a key on one of the lines corresponding to a KS1 to KS6 pin which is set high is pressed, the oscillation is started and a  
key scan is performed. Keys are scanned until all keys are released. Multiple key presses are recognized by determining  
whether multiple key data bits are set.  
If a key is pressed for longer than 9840T(s)(Where T=1/fOSC) the BU97520AKV-M outputs a key data read request (a low level  
on SDO) to the controller. The controller acknowledges this request and reads the key data. However, if SCE is high during a  
serial data transfer, SDO will be set high.  
After the controller reads the key data, the key data read request is cleared (SDO is set high) and the BU97520AKV-M  
performs another key scan. However, this does not clear power-saving mode. Also note that SDO, being an open-drain output,  
requires a pull-up resistor (between 1kΩ and 10kΩ).  
Power-saving mode key scan example  
Example: BU0=0, BU1=0, BU2=1 (only KS6 high level output)  
(L)KS1  
(L)KS2  
(L)KS3  
When any one of these keys is pressed,  
the oscillation is started and the keys are scanned.  
(L)KS4  
(L)KS5  
(H)KS6  
(Note)  
Kl1  
Kl2  
Kl3  
Kl4  
Kl5  
(Note)  
These diodes are required to reliable recognize multiple key presses on the KS6 line when power-saving mode state with only KS6 high, as in the above  
example. That is, these diodes prevent incorrect operations due to sneak currents in the KS6 key scan output signal when keys on the KS1 to KS5 lines are  
pressed at the same time.  
Key Input 2  
(KS6 line)  
Key scan  
9840T(s)  
9840T(s)  
SCE  
Serial data transfer Serial data transfer  
Serial data transf er  
Key address  
Key address(43H)  
SDI  
SDO  
Key data read  
Key data read  
Key data read request  
1
Key data read request  
T=  
fOSC  
Figure 15. Key Scan Operation In Power-saving Mode  
Multiple Key Press  
Although the BU97520AKV-M is capable of key scanning without inserting diodes for dual key presses, triple key presses on  
the KI1 to KI5 input pin lines or multiple key presses on the KS1 to KS6 output pin lines, multiple key presses other than  
these cases may result in keys that were not pressed recognized as having been pressed. Therefore, a diode must be  
inserted in series with each key. Applications that do not recognize multiple key presses of three or more keys should ignore  
the key data if the key data contains three or more bits that has a value of “1”.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
22/42  
TSZ22111 15 001  
BU97520AKV-M  
Controller Key Data Read Technique  
When the controller receives a key data read request from BU97520AKV-M, it performs a key data read acquisition operation  
using either the Timer Based Key Data Acquisition or the Interrupt Based Key Data Acquisition.  
1. Timer Based Key Data Acquisition Technique  
Under the Timer Based Key Data Acquisition Technique, the controller uses a timer to determine the states of the keys  
(on or off) and read the key data. Please refer to the flow chart below.  
SCE = 「L 」  
NO  
SDO = 「L 」  
YES  
Key data read  
processing  
Key data read processing: Refer to Serial Data Output”  
Figure 16. Flowchart  
In this technique, the controller uses a timer to determine key on/off states and read the key data. The controller must check  
the SDO state when SCE is low every t7 period without fail. If SDO is low, the controller recognizes that a key has been  
pressed and executes the key data read operation.  
The period t7 in this technique must satisfy the following condition.  
t7>t4+t5+t6  
If a key data read operation is executed when SDO is high, the read key data (KD1 to KD30) and power-saving acknowledge  
data (PA) will be invalid.  
Key on  
Key on  
Key Input 1  
Key scan  
t3  
t3  
t4  
t3  
SCE  
t6  
t6  
t6  
SDI  
t5  
t5  
t5  
Key data read  
SDO  
Key data read request  
t7  
t7  
t7  
t7  
Controller determination  
(key on)  
Controller determination  
(key on)  
Controller determination  
(key on)  
Controller determination  
(key on)  
Controller determination  
(key on)  
t3: Key scan execution time when the key data agreed for two key scans. 9840T(s)  
t4: Key scan execution time when the key data did not agree for two key scans and the key scan was executed again.  
19680T(s) (T = 1 / fOSC  
)
t5: Key address (43H) transfer time  
t6: Key data read time  
Figure 17. Timer Based Key Data Read Operation  
23/42  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
BU97520AKV-M  
Controller Key Data Read Technique continued  
2. Interrupt Based Key Data Acquisition Technique  
Under the Interrupt Based Key Data Acquisition Technique, the controller uses interrupts to determine the state of the keys  
(on or off) and read the key data. Please refer to the flow chart diagram below.  
SCE  
L」  
NO  
SDOL」  
YES  
Key data read  
processing  
Wait for at  
least t8  
NO  
SDOH」  
YES  
off  
Key  
Key data read processing: Refer to Serial Data Output”  
Figure 18. Flowchart  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
24/42  
TSZ22111 15 001  
BU97520AKV-M  
Controller Key Data Read Technique continued  
In this technique, the controller uses interrupts to determine key on/off states and read the key data. The controller must  
check the SDO state when SCE is low. If SDO is low, the controller recognizes that a key has been pressed and executes  
the key data read operation. After that the next key on/off determination is performed after the time t8 has elapsed by  
checking the SDO state when SCE is low and reading the key data. The period t8 in this technique must satisfy t8 > t4.  
If a key data read operation is executed when SDO is high, the read key data (KD1 to KD30) and power-saving acknowledge  
data (PA) will be invalid.  
Key on  
Key on  
Key Input 1  
Key scan  
t3  
t3  
t4  
t3  
SCE  
t6  
t6  
t6  
t6  
SDI  
t5  
t5  
t5  
t5  
Key data read  
SDO  
Key data read request  
t8  
t8  
t8  
t8  
Controller  
determination  
(key on)  
Controller  
determination determination  
(key on)  
(key on)  
Controller  
Controller  
determination  
(key on)  
Controller  
determination  
(key on)  
Controller  
determination  
(key on)  
t3: Key scan execution time when the key data agreed for two key scans. 9840T(s)  
t4: Key scan execution time when the key data did not agree for two key scans and the key scan was executed again.  
19680T(s) (T = 1 / fOSC  
)
t5: Key address (43H) transfer time  
t6: Key data read time  
Figure 19. Interrupt Based Key Data Read Operation  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
25/42  
TSZ22111 15 001  
BU97520AKV-M  
LCD Driving Waveform  
1. Line Inversion 1/4 Duty 1/3Bias Drive Scheme  
fo[Hz]  
VLCD  
VLCD1  
VLCD2  
0V  
VLCD  
VLCD1  
VLCD2  
0V  
VLCD  
VLCD1  
VLCD2  
0V  
VLCD  
VLCD1  
VLCD2  
0V  
COM1  
COM2  
COM3  
COM4  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when all LCD  
segment correstpoding to COM1,  
COM2,COM3, and COM4 are off.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when only LCD segments  
corresponding to COM1 is on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when only LCD segments  
corresponding to COM2 is on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM1 and COM2 are on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when only LCD segments  
corresponding to COM3 is on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM1 and COM3 are on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM2 and COM3 are on.  
VLCD  
VLCD1  
VLCD2  
0V  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM1, COM2,  
and COM3 are on.  
LCD driver output when only LCD segments  
corresponding to COM4 is on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM2 and COM4 are on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when  
all LCD segments corresponding  
to COM1, COM2, COM3, and COM4 are on.  
Figure 20. LCD Waveform (1/4 Duty, 1/3 Bias, Line Inversion)  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
26/42  
TSZ22111 15 001  
BU97520AKV-M  
LCD Driving Waveform continued  
2. Line Inversion 1/4 Duty 1/2 Bias Drive Scheme  
fo[Hz]  
VLCD  
COM1  
COM2  
COM3  
COM4  
VLCD1,VLCD2  
0V  
VLCD  
VLCD1,VLCD2  
0V  
VLCD  
VLCD1,VLCD2  
0V  
VLCD  
VLCD1,VLCD2  
0V  
LCD driver output when all LCD  
segment corresponding to COM1,  
COM2,COM3, and COM4 are off.  
VLCD  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when only LCD segments  
corresponding to COM1 are on.  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when only LCD segments  
corresponding to COM2 are on.  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when LCD segments  
corresponding to COM1 and COM2 are on.  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when only LCD segments  
corresponding to COM3 are on.  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when LCD segments  
corresponding to COM1 and COM3 are on.  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when LCD segments  
corresponding to COM2 and COM3 are on.  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when LCD segments  
VLCD1,VLCD2  
corresponding to COM1,COM2 and COM3 are on.  
0V  
VLCD  
LCD driver output when only LCD segments  
corresponding to COM4 are on.  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when LCD segments  
corresponding to COM2 and COM4 are on.  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when  
VLCD1,VLCD2  
0V  
all LCD segments corresponding  
to COM1, COM2, COM3, and COM4 are on.  
Figure 21. LCD Waveform (1/4 Duty, 1/2 Bias, Line Inversion)  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
27/42  
TSZ22111 15 001  
BU97520AKV-M  
LCD Driving Waveform continued  
3. Line Inversion 1/3 Duty 1/3 Bias Drive Scheme  
fo[Hz]  
VLCD  
VLCD1  
VLCD2  
0V  
VLCD  
VLCD1  
VLCD2  
0V  
VLCD  
VLCD1  
VLCD2  
0V  
COM1  
COM2  
COM3  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when all LCD  
segments correstpoding to COM1,  
COM2 and COM3 are off.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when only LCD segments  
corresponding to COM1 is on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when only LCD segments  
corresponding to COM2 is on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM1 and COM2 are on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when only LCD segments  
corresponding to COM3 is on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM1 and COM3 are on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM2 and COM3 are on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when all LCD segments  
corresponding to COM1, COM2,  
and COM3 are on.  
Figure 22. LCD Waveform (1/3 Duty, 1/3 Bias, Line Inversion)(Note)  
(Note) COM4 function is same as COM1 at 1/3 Duty.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
28/42  
TSZ22111 15 001  
BU97520AKV-M  
LCD Driving Waveform continued  
4. Line Inversion 1/3 Duty 1/2 Bias Drive Scheme  
fo[Hz]  
VLCD  
COM1  
COM2  
COM3  
VLCD1,VLCD2  
0V  
VLCD  
VLCD1,VLCD2  
0V  
VLCD  
VLCD1,VLCD2  
0V  
LCD driver output when all LCD  
segments correstpoding to COM1,  
COM2, and COM3 are off.  
VLCD  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when only LCD segments  
corresponding to COM1 is on.  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when only LCD segments  
corresponding to COM2 is on.  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when LCD segments  
corresponding to COM1 and COM2 are on.  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when only LCD segments  
corresponding to COM3 is on.  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when LCD segments  
corresponding to COM1 and COM3 are on.  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when LCD segments  
corresponding to COM2 and COM3 are on.  
VLCD1,VLCD2  
0V  
VLCD  
LCD driver output when all LCD segments  
VLCD1,VLCD2  
0V  
corresponding to COM1,COM2 and COM3 are on.  
Figure 23. LCD Waveform (1/3 Duty, 1/2 Bias, Line Inversion)(Note)  
(Note) COM4 function is same as COM1 at 1/3 Duty.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
29/42  
TSZ22111 15 001  
BU97520AKV-M  
LCD Driving Waveform continued  
5. Frame Inversion 1/4 Duty 1/3 Bias Drive Scheme  
fo[Hz]  
VLCD  
VLCD1  
VLCD2  
0V  
COM1  
COM2  
COM3  
COM4  
VLCD  
VLCD1  
VLCD2  
0V  
VLCD  
VLCD1  
VLCD2  
0V  
VLCD  
VLCD1  
VLCD2  
0V  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when all LCD  
segments corresponding to COM1,  
COM2, COM3 and COM4 are off.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when only LCD segments  
corresponding to COM1 is on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when only LCD segments  
corresponding to COM2 is on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM1 and COM2 are on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when only LCD segments  
corresponding to COM3 is on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM1 and COM3 are on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM2 and COM3 are on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM1, COM2 and COM3 are on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when only LCD segments  
corresponding to COM4 is on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM2 and COM4 are on  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when all LCD segments  
corresponding to COM1, COM2, COM3  
and COM4 are on.  
Figure 24. LCD Waveform (1/4 Duty, 1/3 Bias, Frame Inversion)  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
30/42  
TSZ22111 15 001  
BU97520AKV-M  
LCD Driving Waveform continued  
6. Frame Inversion 1/4 Duty 1/2 Bias Drive Scheme  
fo[Hz]  
VLCD  
VLCD1, VLCD2  
COM1  
COM2  
COM3  
COM4  
0V  
VLCD  
VLCD1, VLCD2  
0V  
VLCD  
VLCD1, VLCD2  
0V  
VLCD  
VLCD1, VLCD2  
0V  
VLCD  
LCD driver output when all LCD  
segments corresponding to COM1,  
COM2, COM3 and COM4 are off.  
VLCD1, VLCD2  
0V  
VLCD  
VLCD1, VLCD2  
LCD driver output when only LCD segments  
corresponding to COM1 is on.  
0V  
VLCD  
VLCD1, VLCD2  
LCD driver output when only LCD segments  
corresponding to COM2 is on.  
0V  
VLCD  
VLCD1, VLCD2  
LCD driver output when LCD segments  
corresponding to COM1 and COM2 are on.  
0V  
VLCD  
VLCD1, VLCD2  
LCD driver output when only LCD segments  
corresponding to COM3 is on.  
0V  
VLCD  
VLCD1, VLCD2  
LCD driver output when LCD segments  
corresponding to COM1 and COM3 are on.  
0V  
VLCD  
VLCD1, VLCD2  
LCD driver output when LCD segments  
corresponding to COM2 and COM3 are on.  
0V  
VLCD  
VLCD1, VLCD2  
LCD driver output when LCD segments  
0V  
corresponding to COM1, COM2 and COM3 are on.  
VLCD  
VLCD1, VLCD2  
LCD driver output when only LCD segments  
corresponding to COM4 is on.  
0V  
VLCD  
VLCD1, VLCD2  
LCD driver output when LCD segments  
corresponding to COM2 and COM4 are on.  
0V  
VLCD  
VLCD1, VLCD2  
0V  
LCD driver output when all LCD segments  
corresponding to COM1, COM2, COM3  
and COM4 are on.  
Figure 25. LCD Waveform (1/4 Duty, 1/2 Bias, Frame Inversion)  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
31/42  
TSZ22111 15 001  
BU97520AKV-M  
LCD Driving Waveform continued  
7. Frame Inversion 1/3 Duty 1/3 Bias Drive Scheme  
fo[Hz]  
VLCD  
VLCD1  
VLCD2  
0V  
COM1  
COM2  
COM3  
VLCD  
VLCD1  
VLCD2  
0V  
VLCD  
VLCD1  
VLCD2  
0V  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when all LCD  
segments corresponding to COM1,  
COM2 and COM3 are off.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when only LCD segments  
corresponding to COM1 is on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when only LCD segments  
corresponding to COM2 is on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM1 and COM2 are on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when only LCD segments  
corresponding to COM3 is on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM1 and COM3 are on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when LCD segments  
corresponding to COM2 and COM3 are on.  
VLCD  
VLCD1  
VLCD2  
0V  
LCD driver output when all LCD segments  
corresponding to COM1, COM2 and COM3 are on.  
Figure 26. LCD Waveform (1/3 Duty, 1/3 Bias, Frame Inversion)(Note)  
(Note) COM4 function is same as COM1 at 1/3 Duty.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
32/42  
TSZ22111 15 001  
BU97520AKV-M  
LCD Driving Waveform continued  
8. Frame Inversion 1/3 Duty 1/2 Bias Drive Scheme  
fo[Hz]  
VLCD  
VLCD1, VLCD2  
COM1  
COM2  
COM3  
0V  
VLCD  
VLCD1, VLCD2  
0V  
VLCD  
VLCD1, VLCD2  
0V  
VLCD  
LCD driver output when all LCD  
segments corresponding to COM1,  
COM2 and COM3 are off.  
VLCD1, VLCD2  
0V  
VLCD  
VLCD1, VLCD2  
LCD driver output when only LCD segments  
corresponding to COM1 is on.  
0V  
VLCD  
VLCD1, VLCD2  
LCD driver output when only LCD segments  
corresponding to COM2 is on.  
0V  
VLCD  
VLCD1, VLCD2  
LCD driver output when LCD segments  
corresponding to COM1 and COM2 are on.  
0V  
VLCD  
VLCD1, VLCD2  
LCD driver output when only LCD segments  
corresponding to COM3 is on.  
0V  
VLCD  
VLCD1, VLCD2  
LCD driver output when LCD segments  
corresponding to COM1 and COM3 are on.  
0V  
VLCD  
VLCD1, VLCD2  
LCD driver output when LCD segments  
corresponding to COM2 and COM3 are on.  
0V  
VLCD  
VLCD1, VLCD2  
0V  
LCD driver output when all LCD  
segments corresponding to COM1,  
COM2 and COM3 are on.  
Figure 27. LCD Waveform (1/3 Duty, 1/2 Bias, Frame Inversion)(Note)  
(Note) COM4 function is same as COM1 at 1/3 Duty.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
33/42  
TSZ22111 15 001  
BU97520AKV-M  
INHb Pin and Display Control  
The INHb pin operates Display off of LCD.  
INHb control depends on set pin function.  
Below table shows pin function and control by the INHb pin.  
Control  
Pin Function  
INHb = L  
INHb = H  
SEG/COM  
Display forced off  
Operation Stop  
Display on  
PWM/GPO  
Operation Available  
Key Scan  
Available regardless of INHb  
Available regardless of INHb  
External Clock Input  
Below table shows pin name and pin state of INHb = L.  
Each output state are decided by Control data(P0 to P2, KM0 to KM2, OC)  
For the details, please refer to Control Data Functions.  
Pin Function(Note) (In case of INHb = L)  
Pin Name  
External  
Clock Input  
SEG  
COM  
PWM  
GPO  
Keyscan  
Stop  
(VSS)  
Stop  
(VSS)  
Stop  
(VSS)  
S1/P1/G1 to S6/P6/G6  
-
-
-
-
-
-
Stop  
(VSS)  
S7 to S55, S67, S68  
KS1/S56 to KS6/S61  
-
-
-
-
Stop  
(VSS)  
Keyscan Output  
Operation  
-
-
-
-
-
Stop  
(VSS)  
Keyscan  
Input Operation  
KI1/S62 to KI5/S66  
OSC/S69  
-
-
-
-
-
-
Stop  
(VSS)  
Clock Input  
Operation  
-
-
Stop  
(VSS)  
COM1 to COM4  
-
-
(Note) -means the pin does not have the function.  
For example, S1/P1/G1 to S6/P6/G6 are not set COM, Keyscan and External Clock Input.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
34/42  
TSZ22111 15 001  
 
BU97520AKV-M  
INHb Pin and Display Control- continued  
Since the IC internal data (the display data D1 to D276 and the control data) is undefined when power is first applied,  
applications should set the INHb pin low at the same time as power is applied to turn off the display (This sets the S1/P1/G1  
to S6/P6/G6, S7 to S69, COM1 to COM4 to the VSS level.) and during this period send serial data from the controller. The  
controller should then set the INHb pin high after the data transfer has completed. This procedure prevents meaningless  
displays at power on.  
1. 1/4 Duty  
t1(Note 1)  
90%  
VDET(Min)  
VDD  
(Note 1)  
V
IL1  
INHb  
SCE  
tC  
t2  
(Note 1)  
V
IL1  
Display data and control data transfer  
Internal data  
D1 to D72, KM0 to KM2,  
P0 to P2, FL, DR, DT, OC,  
FC0 to FC2, SC, BU0 to BU2  
(Note 2)  
Default  
Defined  
Undefined  
Undefined  
Internal data  
D73 to D156,PG1 to PG6,  
PF0 to PF3  
(Note 2)  
Default  
Defined  
Defined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
(Note 2)  
Internal data  
D157 to D216, W10 to W37  
Default  
Internal data  
(Note 2)  
D217 to D276, W40 to W67  
Defined  
Default  
Figure 28. Power on/off and INHb Control Sequence (1/4 Duty)  
(Note 1) t1≥0, t2≥0, tC: 10µs (Min)  
When VDD level is over 90%, there may be cases where command is not received correctly in unstable VDD.  
(Note 2) Display data are undefined. Regarding default value, refer to Reset Condition.  
2. 1/3 Duty  
(Note 3)  
t1  
90%  
VDET(Min)  
VDD  
(Note 3)  
V
IL1  
INHb  
t2  
tC  
V
(Note 3)  
IL1  
SCE  
Display data and control data transfer  
Internal data  
D1 to D72 ,KM0 to KM2,  
P0 to P2,FL,DR,DT,OC,  
FC0 to FC2,SC,BU0 to BU2  
(Note 4)  
Default  
Defined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Internal data  
D73 to D156,PG1 to PG6,  
PF0 to PF3  
(Note 4)  
Defined  
Defined  
Default  
Undefined  
Undefined  
Undefined  
(Note 4)  
Internal data  
D157 to D207,W10 to W37  
Default  
Internal data  
W40 to W67  
(Note 4)  
Default  
Defined  
Figure 29. Power ON/OFF and INHb Control Sequence (1/3 Duty)  
(Note 3) t1≥0, t2≥0, tC: 10µs (Min)  
When VDD level is over 90%, there may be cases where command is not received correctly in unstable VDD.  
(Note 4) Display data are undefined. Regarding default value, refer to Reset Condition.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
35/42  
TSZ22111 15 001  
BU97520AKV-M  
Oscillation Stabilization Time  
It must be noted that the oscillation of the internal oscillation circuit is unstable for a maximum of 100μs (oscillation  
stabilization time) after oscillation has started.  
Internal oscillation  
circuit  
Oscillation  
stabilization time  
(100µs Max)  
Oscillation stopped  
Oscillation operation  
(under normal conditions)  
<Oscillation start>  
1.If the INHb pin status is switched from "L" to "H"  
when control data OC = "0" and BU0 to BU2 ="000"  
2.If the contorol data BU is set from "1" to "0"  
when INHb = "H" and contorol data OC ="0"  
Figure 30. Oscillation Stabilization Time  
Power-saving Mode Operation in External Clock Mode  
After receiving [BU0,BU1,BU2]=[1,1,1], BU97520AKV-M enter to power saving mode synchronized with frame then Segment  
and Common pins output VSS level.  
Therefore, in external clock mode, it is necessary to input the external clock based on each frame frequency setting after  
sending [BU0,BU1,BU2]=[1,1,1].  
For the required number of clock, refer to 6. FC0, FC1 and FC2: Common / Segment output waveform frame frequency  
switching control data”.  
For example, please input the external clock as below.  
[FC0,FC1,FC2]=[0,0,0]: In case of fOSC/12288 setting, it needs over 12288clk,  
[FC0,FC1,FC2]=[0,1,0]: In case of fOSC/9216 setting, it needs over 9216clk,  
[FC0,FC1,FC2]=[1,1,1]: In case of fOSC/3072 setting, it needs over 3072clk  
Please refer to the timing chart below.  
SCE  
SCL  
SDI  
0
0
0
1
0
D1  
D2  
SC  
BU0  
BU1  
BU2  
0
OC  
0
1
0
0
B0  
B1  
B2  
B3  
A0  
A1  
A2  
A3  
Display Data/  
Control Data  
DD  
2 bits  
Device Code  
8bits  
To input External clock at  
least 1 frame or more  
SEG  
VSS  
VSS  
COM1  
COM2  
COM3  
COM4  
VSS  
VSS  
VSS  
Output at Power saving mode(VSS level)  
Output at Normal mode  
Power saving  
Last Display flame  
of Sirial data  
receiving  
Figure 31. External Clock Stop Timing(1/4 Duty)  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
36/42  
TSZ22111 15 001  
BU97520AKV-M  
Voltage Detection Type Reset Circuit (VDET)  
The Voltage Detection Type Reset Circuit generates an output signal that resets the system when power is applied for  
the first time and when the power supply voltage drops (that is, for example, the power supply voltage is less than or equal to  
the power down detection voltage VDET = 1.8V Typ.). To ensure that this reset function works properly, it is recommended  
that a capacitor be connected to the power supply line so that both the power supply voltage (VDD) rise time when power is  
first applied and the power supply voltage (VDD) fall time when the voltage drops are at least 1ms.  
To refrain from data transmission is strongly recommended while power supply is rising up or falling down to prevent from the  
occurrence of disturbances on transmission and reception.  
VDD  
VSS  
t1  
t2  
VDD Min  
VDD Min  
t3  
VDD=1.0V  
Figure 32. VDET Detection Timing  
Power supply voltage VDD fall time: t1 > 1ms  
Power supply voltage VDD rise time: t2 > 1ms  
Internal reset power supply retain time: t3 > 1ms  
When it is difficult to keep above conditions, it is possibility to cause meaningless display due to no IC initialization.  
Please execute the IC initialization as quickly as possible after Power-on to reduce such an affect.  
See the IC initialization flow as below.  
But since commands are not received when the power is OFF, the IC initialization flow is not the same function as POR.  
Set [BU0,BU1,BU2]=[1,1,1](power-saving mode) and SC=1(Display Off) as quickly as possible after Power-on.  
BU97520AKV-M can receive commands in 0ns after Power-on(VDD level is 90%).  
Please refer to the timing chart of INHb Pin and Display Control.  
Reset Condition  
When BU97520AKV-M is initialized, the internal status after power supply has been reset as the following table.  
Instruction  
Key Scan Mode  
S1/P1/G1 to S6/P6/G6 Pin  
LCD Bias  
At Reset Condition  
[KM0,KM1,KM2]=[1,1,1]: Key scan no use  
[P0,P1,P2]=[0,0,0]:all segment output  
DR=0:1/3 Bias  
LCD Duty  
DT=0:1/4 Duty  
Line / Frame Inversion Mode  
Display Frame Frequency  
Display Clock Mode  
LCD Display  
FL=0:Line Inversion  
[FC0,FC1,FC2]=[0,0,0]:fOSC/12288  
OC=0:Internal oscillator  
SC=1:OFF  
Power Mode  
[BU0,BU1,BU2] =[1,1,1]:Power saving mode  
PGx=0:PWM output(x=1 to 6)  
[PF0,PF1,PF2,PF3]=[0,0,0,0]: fOSC /4096  
[Wn0 to Wn7]=[0,0,0,0,0,0,0,0]  
1/256xTp(n=1 to 6,Tp=1/fp)  
PWM/GPO Output  
PWM Frequency  
PWM Duty  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
37/42  
TSZ22111 15 001  
BU97520AKV-M  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately  
obtained. The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
7.  
8.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
38/42  
TSZ22111 15 001  
BU97520AKV-M  
Operational Notes continued  
10. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
11. Regarding the Input Pin of the IC  
In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The  
operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical  
damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an  
input pin lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins  
when no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the  
input pins have voltages within the values specified in the electrical characteristics of this IC.  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
39/42  
TSZ22111 15 001  
BU97520AKV-M  
Ordering Information  
B U  
9
7
5
2
0
A
K
V -  
M E 2  
Package  
Part Number  
Product Rank  
M: for Automotive  
Packaging Specification  
E2: Embossed tape and reel  
(VQFP80)  
KV : VQFP80  
Marking Diagram  
VQFP80 (TOP VIEW)  
Part Number Marking  
LOT Number  
BU97520AKV  
Pin 1 Mark  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
40/42  
TSZ22111 15 001  
BU97520AKV-M  
Physical Dimension, Tape and Reel Information  
VQFP80  
Package Name  
1PIN MARK  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
41/42  
TSZ22111 15 001  
BU97520AKV-M  
Revision History  
Version  
Date  
Description  
001  
14.Feb.2014 New Release  
002  
003  
26.Feb.2014 Correction of erroneous descriptions in Figure 8 and Figure10.  
24.Mar.2014 Change the condition of VIH1 and VIH2 in page 3  
Correction of erroneous descriptions in Figure 3.  
Correction of erroneous chapter number.  
004  
17.Apr.2014  
Modify Note number.  
Add Note on AEC-Q100 Qualified in page 1.  
Add External Clock Duty Min limit in page 4.  
Modify Data Setup Time Min limit in page 4.  
Modify Data Hold Time Min limit in page 4.  
Modify SCE Wait Time Min limit in page 4.  
Modify SCE Setup Time Min limit in page 4.  
Modify SCE Hold Time Min limit in page 4.  
Modify High-level Clock Pulse Width Min limit in page 4.  
Modify Low-level Clock Pulse Width (Write) Min limit in page 4.  
Modify SDO Output Delay Time CL description in page 4.  
Modify SDO Rise Time CL description in page 4.  
005  
17.Feb.2015  
Add Clock Cycle Time in page 4.  
Add Low-Level Clock Pulse Width (Read) in page 4.  
Add RPU and CL explanation in page 4.  
Add SDO signal, tccyc and tclwr on Figure5 Serial Interface Timing in page 5.  
Modify tclww from tclw on Figure5 Serial Interface Timing in page 5.  
Modify reference level of tchw to VIH1 from 50% on Figure5 Serial Interface Timing in page 5.  
Modify reference level of tclww t to VIL1 from 50% on Figure5 Serial Interface Timing in page 5.  
Delete tcp on Figure5 Serial Interface Timing(1.When SCL is stopped at the low level) in page 5.  
Delete tcs on Figure5 Serial Interface Timing(2.When SCL is stopped at the high level) in page 5.  
Add packing specification for tray in page 39 and page 40.  
006  
19.Mar.2015 Modify INHb Handling when unused of Pin Description in page 6.  
Page 3. Modify Temparature condition in Absolute Maximum Ratings.Ta=25˚C → Removed  
Page 3. Modify Maximum Supply Voltage in Absolute Maximum Ratings. -0.3 to +6.5 → -0.3 to +7.0.  
Page 3. Modify Input Voltage in Absolute Maximum Ratings. -0.3 to +6.5 → -0.3 to +7.0.  
Page 3. Add OSC in Absolute Maximum Ratings Input Voltage.  
Page 3. Add Caution2 in Absolute Maximum Ratings condition. (Moved from Operational Notes)  
Page.3. Add OSC pin in Electrical Characteristics table.  
Page 4. Add External Clock Rise Time and External Clock Fall Time in Oscillation Characteristics.  
Page 5. Add KI1/S62 to KI5/S66 in Pin Description I/O and Handling when unused Input terminal  
description.  
Page 5. Add OSC/S69 in Pin Description I/O and Handling when unused Input terminal description.  
Page 11 to 14. Add Reset condition in Control Data Functions.  
007  
27.Dec.2017  
Page 11. Add 4. FL: Line Inversion or Frame Inversion control data explanation.  
Page 12. Add External Clock input timing function in 7. OC: Internal oscillator operating mode /  
External clock operating mode control data.  
Page 34. Modify Figure 28. Power on/off and INHb Control Sequence (1/4 Duty).  
Page 34. Modify Figure 29. Power on/off and INHb Control Sequence (1/3 Duty).  
Page 35. Add Power-saving mode operation in external clock mode.  
Page 36. Add Voltage Detection Type Reset Circuit (VDET) explanation.  
Correction of errors.  
Minor translation to have more conformity between Japanese and English version.  
Page.6 Add Pin Description Note  
008  
02.Aug.2019 Page.8,10,and 12 Add Description  
Page.34 Add INHb Pin and Display Control description  
www.rohm.com  
TSZ02201-0P4P0D300570-1-2  
02.Aug.2019 Rev.008  
© 2014 ROHM Co., Ltd. All rights reserved.  
42/42  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BU97530KVT-M

BU97530KVT-M是1/5、1/4、1/3占空比、Static车载用通用LCD驱动器,最多可显示445段LCD。本产品支持高液晶电压驱动及高帧频率驱动,也可驱动高显示精度的VA液晶。最多可控制9个通用/PWM输出,通过丰富的频率设定功能,无需频闪即可实现LED背光和LED按钮的照明。还内置最多30键的键盘扫描功能,可实现PCB上的配线削减和MCU的尺寸缩减和成本削减。内置有EVR功能,可进行LCD对比度的调节,还支持TTL电平输入,因此能直接连接各种电源电压的MCU。
ROHM

BU97540KV-E2

Multi-function Segment Drivers
ROHM

BU97540KV-M

Multi-function Segment Drivers
ROHM

BU97540KV-ME2

Liquid Crystal Driver, 68-Segment, PQFP80,
ROHM

BU97550KV-E2

Multi-function LCD Segment Drivers
ROHM

BU97550KV-M

Multi-function LCD Segment Drivers
ROHM

BU97550KV-ME2

Multi-function LCD Segment Drivers
ROHM

BU97550KV-M_15

Multi-function LCD Segment Drivers
ROHM

BU97565CH-3BW

RAM built-in, Dot-matrix STN LCD control driver
ROHM

BU97600FUV-M

AEC-Q100 Qualified
ROHM

BU97600FV-M

AEC-Q100 Qualified
ROHM

BU97600XXX

AEC-Q100 Qualified
ROHM