BU52011HFV-TR [ROHM]

Omnipolar Detection Hall ICs; 全极霍尔检测芯片
BU52011HFV-TR
型号: BU52011HFV-TR
厂家: ROHM    ROHM
描述:

Omnipolar Detection Hall ICs
全极霍尔检测芯片

传感器 换能器 磁场传感器 输出元件
文件: 总32页 (文件大小:608K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Hall ICs  
Omnipolar Detection Hall ICs  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
No.10045EGT02  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Description  
The omnipolar Hall ICs are magnetic switches that can operate both S-and N-pole, upon which the output goes from Hi to  
Low. In addition to regular single-output Hall ICs, We offer a lineup of dual-output units with a reverse output terminal (active  
High).  
Features  
1) Omnipolar detection  
2) Micro power operation (small current using intermittent operation method)(BD7411G is excluded.)  
3) Ultra-compact and thin wafer level CSP4 package (BU52054GWZ, BU52055GWZ)  
4) Ultra-compact wafer level CSP4 package (BU52015GUL, BU52001GUL)  
5) Ultra-Small outline package SSON004X1216 (BU52061NVX, BU52053NVX, BU52056NVX)  
6) Ultra-Small outline package HVSOF5 (BU52011HFV, BU52021HFV)  
7) Small outline package (BU52025G, BD7411G)  
8) Line up of supply voltage  
For 1.8V Power supply voltage (BU52054GWZ, BU52055GWZ, BU52015GUL, BU52061NVX, BU52053NVX,  
BU52056NVX, BU52011HFV)  
For 3.0V Power supply voltage (BU52001GUL)  
For 3.3V Power supply voltage (BU52021HFV, BU52025G)  
For 5.0V Power supply voltage (BD7411G)  
9) Dual output type (BU52015GUL)  
10) High ESD resistance 8kV (HBM) (6kV for BU52056NVX)  
Applications  
Mobile phones, notebook computers, digital video camera, digital still camera, white goods etc.  
Lineup matrix  
Supply  
voltage  
(V)  
Operate  
point  
(mT)  
Supply current  
(AVG)  
Output  
type  
Hysteresis Period  
Package  
Product name  
(mT)  
0.9  
(ms)  
50  
(A)  
BU52054GWZ  
BU52055GWZ  
BU52015GUL  
BU52001GUL  
BU52061NVX  
BU52053NVX  
BU52056NVX  
BU52011HFV  
BU52021HFV  
BU52025G  
1.653.60 +/-6.3  
1.653.60 +/-4.1  
1.653.30 +/-3.0  
2.403.30 +/-3.7  
1.653.60 +/-3.3  
1.653.60 +/-3.0  
1.653.60 +/-4.6  
1.653.30 +/-3.0  
2.403.60 +/-3.7  
2.403.60 +/-3.7  
4.505.50 +/-3.4  
5.0µ  
5.0µ  
5.0µ  
8.0µ  
4.0µ  
5.0µ  
5.0µ  
5.0µ  
8.0µ  
8.0µ  
2.0m  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
UCSP35L1  
UCSP35L1  
VCSP50L1  
VCSP50L1  
SSON004X1216  
SSON004X1216  
SSON004X1216  
HVSOF5  
0.8  
0.9  
0.8  
0.9  
0.9  
0.8  
0.9  
0.8  
0.8  
0.4  
50  
50  
50  
50  
50  
50  
50  
50  
50  
-
HVSOF5  
SSOP5  
BD7411G  
SSOP5  
Plus is expressed on the S-pole; minus on the N-pole  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.G  
1/31  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
Absolute maximum ratings  
BU52054GWZ, BU52055GWZ (Ta=25)  
BU52015GUL (Ta=25)  
Parameter  
Symbol  
Ratings  
Unit  
V
Parameter  
Symbol  
VDD  
Ratings  
Unit  
V
1
3
Power Supply Voltage  
VDD  
-0.1+4.5※  
Power Supply Voltage  
Output Current  
-0.1+4.5※  
Output Current  
IOUT  
Pd  
±0.5  
mA  
mW  
IOUT  
Pd  
±0.5  
mA  
mW  
2
4
Power Dissipation  
100※  
Power Dissipation  
420※  
Operating  
Temperature Range  
Operating  
Temperature Range  
Topr  
Tstg  
-40+85  
Topr  
Tstg  
-40+85  
Storage  
Temperature Range  
Storage  
Temperature Range  
-40+125  
-40+125  
1. Not to exceed Pd  
3. Not to exceed Pd  
2. Reduced by 1.00mW for each increase in Ta of 1over 25℃  
(mounted on 24mm×20mm Glass-epoxy PCB)  
4. Reduced by 4.20mW for each increase in Ta of 1over 25℃  
(mounted on 50mm×58mm Glass-epoxy PCB)  
BU52001GUL (Ta=25)  
BU52061NVX, BU52053NVX, BU52056NVX(Ta=25)  
Parameter  
Power Supply Voltage  
Output Current  
Symbol  
VDD  
Ratings  
-0.1+4.5※  
±1  
Unit  
V
Parameter  
Power Supply Voltage  
Output Current  
Symbol  
VDD  
Ratings  
-0.1+4.5※  
±0.5  
Unit  
V
5
7
IOUT  
Pd  
mA  
mW  
IOUT  
Pd  
mA  
mW  
6
8
Power Dissipation  
420※  
Power Dissipation  
2049※  
Operating  
Temperature Range  
Operating  
Temperature Range  
Topr  
-40+85  
Topr  
-40+85  
Storage  
Temperature Range  
5. Not to exceed Pd  
Storage  
Temperature Range  
7. Not to exceed Pd  
Tstg  
-40+125  
Tstg  
-40+125  
6. Reduced by 4.20mW for each increase in Ta of 1over 25℃  
(mounted on 50mm×58mm Glass-epoxy PCB)  
8. Reduced by 4.20mW for each increase in Ta of 1over 25℃  
(mounted on 50mm×58mm Glass-epoxy PCB)  
BU52011HFV (Ta=25)  
BU52021HFV (Ta=25)  
Parameter  
Symbol  
VDD  
Ratings  
Unit  
V
Parameter  
Symbol  
VDD  
Ratings  
Unit  
V
9
11  
Power Supply Voltage  
-0.1+4.5※  
Power Supply Voltage  
-0.1+4.5※  
Output Current  
IOUT  
Pd  
±0.5  
mA  
mW  
Output Current  
IOUT  
Pd  
±1  
mA  
mW  
10  
12  
Power Dissipation  
536※  
Power Dissipation  
536※  
Operating  
Temperature Range  
Operating  
Temperature Range  
Topr  
Tstg  
-40+85  
Topr  
Tstg  
-40+85  
Storage  
Temperature Range  
Storage  
Temperature Range  
-40+125  
-40+125  
9. Not to exceed Pd  
11 Not to exceed Pd  
10. Reduced by5.36mW for each increase in Ta of 1over 25℃  
(mounted on 70mm×70 mm×1.6mm Glass-epoxy PCB)  
12. Reduced by 5.36mW for each increase in Ta of 1over 25℃  
(mounted on 70mm×70 mm×1.6mm Glass-epoxy PCB)  
BU52025G (Ta=25)  
BD7411G (Ta=25)  
Parameter  
Power Supply Voltage  
Output Current  
Symbol  
VDD  
Ratings  
-0.1+4.5※  
±1  
Unit  
V
Parameter  
Power Supply Voltage  
Output Current  
Symbol  
VDD  
Ratings  
-0.3+7.0※  
±1  
Unit  
V
13  
15  
IOUT  
Pd  
mA  
mW  
IOUT  
Pd  
mA  
mW  
14  
16  
Power Dissipation  
540※  
Power Dissipation  
540※  
Operating  
Temperature Range  
Operating  
Temperature Range  
Topr  
-40+85  
Topr  
-40+85  
Storage  
Temperature Range  
13. Not to exceed Pd  
Storage  
Temperature Range  
15. Not to exceed Pd  
Tstg  
-40+125  
Tstg  
-55+150  
14. Reduced by 5.40mW for each increase in Ta of 1over 25℃  
(mounted on 70mm×70 mm×1.6mm Glass-epoxy PCB)  
16. Reduced by 5.40mW for each increase in Ta of 1over 25℃  
(mounted on 70mm×70 mm×1.6mm Glass-epoxy PCB)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.G  
2/31  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
Magnetic, Electrical characteristics  
BU52054GWZ (Unless otherwise specified, VDD=1.80V, Ta=25)  
Limits  
Parameter  
Symbol  
Unit  
V
Conditions  
Min.  
1.65  
Typ.  
Max.  
3.60  
Power Supply Voltage  
VDD  
1.80  
BopS  
BopN  
BrpS  
-
6.3  
-6.3  
5.4  
-5.4  
0.9  
0.9  
7.9  
Operate Point  
mT  
mT  
mT  
ms  
V
-7.9  
-
3.5  
-
Release Point  
BrpN  
-
-
-
-3.5  
BhysS  
BhysN  
-
-
Hysteresis  
Period  
Tp  
-
50  
-
100  
17  
17  
BrpN<B<BrpS  
OUT =-0.5mA  
Output High Voltage  
Output Low Voltage  
Supply Current  
VOH  
VDD-0.2  
-
0.2  
8
I
B<BopN, BopS<B  
OUT =+0.5mA  
VOL  
-
-
-
-
-
V
I
IDD(AVG)  
IDD(EN)  
IDD(DIS)  
5
µA Average  
Supply Current During Startup Time  
Supply Current During Standby Time  
2.8  
1.8  
-
mA During Startup Time Value  
µA During Standby Time Value  
-
17B = Magnetic flux density  
1mT=10Gauss  
Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor.  
After applying power supply, it takes one cycle of period (TP) to become definite output.  
Radiation hardiness is not designed.  
www.rohm.com  
2011.12 - Rev.G  
3/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BU52055GWZ (Unless otherwise specified, VDD=1.80V, Ta=25)  
Limits  
Parameter  
Symbol  
Unit  
V
Conditions  
Min.  
1.65  
Typ.  
Max.  
3.60  
Power Supply Voltage  
VDD  
1.80  
BopS  
BopN  
BrpS  
-
4.1  
-4.1  
3.3  
-3.3  
0.8  
0.8  
5.5  
Operate Point  
mT  
mT  
mT  
ms  
V
-5.5  
-
1.5  
-
Release Point  
BrpN  
-
-
-
-1.5  
BhysS  
BhysN  
-
-
Hysteresis  
Period  
Tp  
-
50  
-
100  
18  
18  
BrpN<B<BrpS  
OUT =-0.5mA  
Output High Voltage  
Output Low Voltage  
Supply Current  
VOH  
VDD-0.2  
-
0.2  
8
I
B<BopN, BopS<B  
OUT =+0.5mA  
VOL  
-
-
-
-
-
V
I
IDD(AVG)  
IDD(EN)  
IDD(DIS)  
5
µA Average  
Supply Current During Startup Time  
Supply Current During Standby Time  
2.8  
1.8  
-
mA During Startup Time Value  
µA During Standby Time Value  
-
18B = Magnetic flux density  
1mT=10Gauss  
Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor.  
After applying power supply, it takes one cycle of period (TP) to become definite output.  
Radiation hardiness is not designed.  
www.rohm.com  
2011.12 - Rev.G  
4/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BU52015GUL (Unless otherwise specified, VDD=1.80V, Ta=25)  
Limits  
Parameter  
Symbol  
Unit  
V
Conditions  
Min.  
1.65  
Typ.  
Max.  
3.30  
Power Supply Voltage  
VDD  
1.80  
BopS  
BopN  
BrpS  
-
3.0  
-3.0  
2.1  
-2.1  
0.9  
0.9  
5.0  
Operate Point  
mT  
mT  
mT  
ms  
V
-5.0  
-
0.6  
-
Release Point  
BrpN  
-
-
-
-0.6  
BhysS  
BhysN  
-
-
Hysteresis  
Period  
Tp  
-
50  
-
100  
19  
19  
OUT1: BrpN<B<BrpS  
OUT2: B<BopN, BopS<B  
IOUT = -0.5mA  
Output High Voltage  
Output Low Voltage  
Supply Current 1  
Supply Current During Startup Time 1  
VOH  
VDD-0.2  
-
0.2  
8
OUT1: B<BopN, BopS<B  
OUT2: BrpN<B<BrpS  
IOUT = +0.5mA  
VOL  
-
-
-
-
-
-
-
-
V
IDD1(AVG)  
5
µA VDD=1.8V, Average  
VDD=1.8V,  
mA  
IDD1(EN)  
2.8  
1.8  
8
-
During Startup Time Value  
VDD=1.8V,  
Supply Current During Standby Time 1 IDD1(DIS)  
-
µA  
During Standby Time Value  
Supply Current 2  
IDD2(AVG)  
12  
-
µA VDD=2.7V, Average  
VDD=2.7V,  
Supply Current During Startup Time 2  
IDD2(EN)  
4.5  
4.0  
mA  
µA  
During Startup Time Value  
VDD=2.7V,  
Supply Current During Standby Time 2 IDD2(DIS)  
-
During Standby Time Value  
19 B = Magnetic flux density  
1mT=10Gauss  
Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor.  
After applying power supply, it takes one cycle of period (TP) to become definite output.  
Radiation hardiness is not designed.  
www.rohm.com  
2011.12 - Rev.G  
5/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BU52001GUL (Unless otherwise specified, VDD=3.0V, Ta=25)  
Limits  
Parameter  
Symbol  
Unit  
V
Conditions  
Min.  
2.4  
Typ.  
Max.  
3.3  
Power Supply Voltage  
VDD  
3.0  
BopS  
BopN  
BrpS  
-
3.7  
-3.7  
2.9  
-2.9  
0.8  
0.8  
5.5  
Operate Point  
mT  
mT  
mT  
ms  
V
-5.5  
-
0.8  
-
Release Point  
BrpN  
-
-
-
-0.8  
BhysS  
BhysN  
-
-
Hysteresis  
Period  
Tp  
-
50  
-
100  
-
20  
20  
BrpN<B<BrpS  
OUT =-1.0mA  
Output High Voltage  
Output Low Voltage  
Supply Current  
VOH  
VDD-0.4  
I
B<BopN,BopS<B  
OUT =+1.0mA  
VOL  
-
-
-
-
-
0.4  
12  
-
V
I
IDD(AVG)  
IDD(EN)  
IDD(DIS)  
8
µA Average  
Supply Current During Startup Time  
Supply Current During Standby Time  
4.7  
3.8  
mA During Startup Time Value  
µA During Standby Time Value  
-
20 B = Magnetic flux density  
1mT=10Gauss  
Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor.  
After applying power supply, it takes one cycle of period (TP) to become definite output.  
Radiation hardiness is not designed.  
www.rohm.com  
2011.12 - Rev.G  
6/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BU52061NVX (Unless otherwise specified, VDD=1.80V, Ta=25)  
Limits  
Parameter  
Symbol  
Unit  
V
Conditions  
Min.  
1.65  
Typ.  
Max.  
3.60  
Power Supply Voltage  
VDD  
1.80  
BopS  
BopN  
BrpS  
2.3  
-4.7  
1.2  
-3.4  
-
3.3  
-3.3  
2.4  
4.7  
-2.3  
3.4  
-1.2  
-
Operate Point  
mT  
mT  
mT  
ms  
V
Release Point  
BrpN  
-2.4  
0.9  
0.9  
BhysS  
BhysN  
Hysteresis  
-
-
Period  
Tp  
-
50  
-
100  
21  
21  
BrpN<B<BrpS  
OUT =-0.5mA  
Output High Voltage  
Output Low Voltage  
Supply Current 1  
Supply Current During Startup Time 1  
VOH  
VDD-0.2  
-
0.2  
7
I
B<BopN, BopS<B  
OUT =+0.5mA  
VOL  
-
-
-
-
-
-
-
-
V
I
IDD1(AVG)  
4
µA VDD=1.8V, Average  
VDD=1.8V,  
mA  
IDD1(EN)  
5.0  
1.8  
9
-
During Startup Time Value  
VDD=1.8V,  
Supply Current During Standby Time 1 IDD1(DIS)  
-
µA  
During Standby Time Value  
Supply Current 2  
IDD2(AVG)  
16  
-
µA VDD=3.0V, Average  
VDD=3.0V,  
Supply Current During Startup Time 2  
IDD2(EN)  
9.0  
4.4  
mA  
µA  
During Startup Time Value  
VDD=3.0V,  
Supply Current During Standby Time 2 IDD2(DIS)  
-
During Standby Time Value  
21 B = Magnetic flux density  
1mT=10Gauss  
Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor.  
After applying power supply, it takes one cycle of period (TP) to become definite output.  
Radiation hardiness is not designed.  
www.rohm.com  
2011.12 - Rev.G  
7/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BU52053NVX (Unless otherwise specified, VDD=1.80V, Ta=25)  
Limits  
Parameter  
Symbol  
Unit  
V
Conditions  
Min.  
1.65  
Typ.  
Max.  
3.60  
Power Supply Voltage  
VDD  
1.80  
BopS  
BopN  
BrpS  
-
3.0  
-3.0  
2.1  
-2.1  
0.9  
0.9  
5.0  
Operate Point  
mT  
mT  
mT  
ms  
V
-5.0  
-
0.6  
-
Release Point  
BrpN  
-
-
-
-0.6  
BhysS  
BhysN  
-
-
Hysteresis  
Period  
Tp  
-
50  
-
100  
22  
22  
BrpN<B<BrpS  
OUT =-0.5mA  
Output High Voltage  
Output Low Voltage  
Supply Current  
VOH  
VDD-0.2  
-
0.2  
8
I
B<BopN, BopS<B  
OUT =+0.5mA  
VOL  
-
-
-
-
-
V
I
IDD(AVG)  
IDD(EN)  
IDD(DIS)  
5
µA Average  
Supply Current During Startup Time  
Supply Current During Standby Time  
2.8  
1.8  
-
mA During Startup Time Value  
µA During Standby Time Value  
-
22B = Magnetic flux density  
1mT=10Gauss  
Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor.  
After applying power supply, it takes one cycle of period (TP) to become definite output.  
Radiation hardiness is not designed.  
www.rohm.com  
2011.12 - Rev.G  
8/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BU52011HFV (Unless otherwise specified, VDD=1.80V, Ta=25)  
Limits  
Parameter  
Symbol  
Unit  
V
Conditions  
Min.  
1.65  
Typ.  
Max.  
3.30  
Power Supply Voltage  
VDD  
1.80  
BopS  
BopN  
BrpS  
-
3.0  
-3.0  
2.1  
-2.1  
0.9  
0.9  
5.0  
Operate Point  
mT  
mT  
mT  
ms  
V
-5.0  
-
0.6  
-
Release Point  
BrpN  
-
-
-
-0.6  
BhysS  
BhysN  
-
-
Hysteresis  
Period  
Tp  
-
50  
-
100  
23  
23  
BrpN<B<BrpS  
OUT =-0.5mA  
Output High Voltage  
Output Low Voltage  
Supply Current 1  
Supply Current During Startup Time 1  
VOH  
VDD-0.2  
-
0.2  
8
I
B<BopN, BopS<B  
OUT =+0.5mA  
VOL  
-
-
-
-
-
-
-
-
V
I
IDD1(AVG)  
5
µA VDD=1.8V, Average  
VDD=1.8V,  
mA  
IDD1(EN)  
2.8  
1.8  
8
-
During Startup Time Value  
VDD=1.8V,  
Supply Current During Standby Time 1 IDD1(DIS)  
-
µA  
During Standby Time Value  
Supply Current 2  
IDD2(AVG)  
12  
-
µA VDD=2.7V, Average  
VDD=2.7V,  
Supply Current During Startup Time 2  
IDD2(EN)  
4.5  
4.0  
mA  
µA  
During Startup Time Value  
VDD=2.7V,  
Supply Current During Standby Time 2 IDD2(DIS)  
-
During Standby Time Value  
23 B = Magnetic flux density  
1mT=10Gauss  
Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor.  
After applying power supply, it takes one cycle of period (TP) to become definite output.  
Radiation hardiness is not designed.  
www.rohm.com  
2011.12 - Rev.G  
9/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BU52056NVX (Unless otherwise specified, VDD=1.80V, Ta=25)  
Limits  
Parameter  
Symbol  
Unit  
V
Conditions  
Min.  
1.65  
Typ.  
Max.  
3.60  
Power Supply Voltage  
VDD  
1.80  
BopS  
BopN  
BrpS  
-
4.6  
-4.6  
3.8  
-3.8  
0.8  
0.8  
6.4  
Operate Point  
mT  
mT  
mT  
ms  
V
-6.4  
-
2.0  
-
Release Point  
BrpN  
-
-
-
-2.0  
BhysS  
BhysN  
-
-
Hysteresis  
Period  
Tp  
-
50  
-
100  
24  
24  
BrpN<B<BrpS  
OUT =-0.5mA  
Output High Voltage  
Output Low Voltage  
Supply Current  
VOH  
VDD-0.2  
-
0.2  
8
I
B<BopN, BopS<B  
OUT =+0.5mA  
VOL  
-
-
-
-
-
V
I
IDD(AVG)  
IDD(EN)  
IDD(DIS)  
5
µA Average  
Supply Current During Startup Time  
Supply Current During Standby Time  
2.8  
1.8  
-
mA During Startup Time Value  
µA During Standby Time Value  
-
24B = Magnetic flux density  
1mT=10Gauss  
Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor.  
After applying power supply, it takes one cycle of period (TP) to become definite output.  
Radiation hardiness is not designed.  
www.rohm.com  
2011.12 - Rev.G  
10/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BU52021HFV,BU52025G (Unless otherwise specified, VDD=3.0V, Ta=25)  
Limits  
Parameter  
Symbol  
Unit  
V
Conditions  
Min.  
2.4  
Typ.  
Max.  
3.6  
Power Supply Voltage  
VDD  
3.0  
BopS  
BopN  
BrpS  
-
3.7  
-3.7  
2.9  
-2.9  
0.8  
0.8  
5.5  
Operate Point  
mT  
mT  
mT  
ms  
V
-5.5  
-
0.8  
-
Release Point  
BrpN  
-
-
-
-0.8  
BhysS  
BhysN  
-
-
Hysteresis  
Period  
Tp  
-
50  
-
100  
-
25  
25  
BrpN<B<BrpS  
OUT =-1.0mA  
Output High Voltage  
Output Low Voltage  
Supply Current  
VOH  
VDD-0.4  
I
B<BopN, BopS<B  
OUT =+1.0mA  
VOL  
-
-
-
-
-
0.4  
12  
-
V
I
IDD(AVG)  
IDD(EN)  
IDD(DIS)  
8
µA Average  
Supply Current During Startup Time  
Supply Current During Standby Time  
4.7  
3.8  
mA During Startup Time Value  
µA During Standby Time Value  
-
25 B = Magnetic flux density  
1mT=10Gauss  
Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor.  
After applying power supply, it takes one cycle of period (TP) to become definite output.  
Radiation hardiness is not designed.  
www.rohm.com  
2011.12 - Rev.G  
11/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BD7411G (Unless otherwise specified, VDD=5.0V, Ta=25)  
Limits  
Parameter  
Symbol  
Unit  
V
Conditions  
Min.  
4.5  
Typ.  
Max.  
5.5  
Power Supply Voltage  
VDD  
5.0  
BopS  
BopN  
BrpS  
-
3.4  
-3.4  
3.0  
5.6  
Operate Point  
mT  
mT  
mT  
V
-5.6  
-
1.5  
-
Release Point  
BrpN  
-
-
-
-3.0  
0.4  
0.4  
-1.5  
BhysS  
BhysN  
-
-
Hysteresis  
26  
26  
BrpN<B<BrpS  
IOUT =-1.0mA  
Output High Voltage  
Output Low Voltage  
Supply Current  
VOH  
VOL  
IDD  
4.6  
-
-
-
0.4  
4
B<BopN, BopS<B  
-
-
V
I
OUT =+1.0mA  
2
mA  
26 B = Magnetic flux density  
1mT=10Gauss  
Positive (“+”) polarity flux is defined as the magnetic flux from south pole which is direct toward to the branded face of the sensor.  
Radiation hardiness is not designed.  
www.rohm.com  
2011.12 - Rev.G  
12/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
Figure of measurement circuit  
Tp  
BOP/BRP  
200Ω  
VDD  
GND  
VDD  
VDD  
VDD  
OUT  
OUT  
100µF  
Oscilloscope  
GND  
V
Bop and Brp are measured with applying the magnetic field from the outside.  
The period is monitored by Oscilloscope.  
Fig.2 Tp mesurement circuit  
Fig.1 Bop,Brp mesurement circuit  
Product Name  
IOUT  
VOH  
BU52001GUL, BU52021HFV,  
BU52025G, BD7411G  
1.0mA  
BU52054GWZ, BU52055GWZ,  
BU52015GUL, BU52061NVX,  
BU52053NVX, BU52056NVX,  
BU52011HFV  
VDD  
0.5mA  
OUT  
VDD  
100µF  
IOUT  
GND  
V
Fig.3 VOH mesurement circuit  
VOL  
Product Name  
IOUT  
BU52001GUL, BU52021HFV,  
BU52025G, BD7411G  
1.0mA  
VDD  
BU52054GWZ, BU52055GWZ,  
BU52015GUL, BU52061NVX,  
BU52053NVX, BU52056NVX,  
BU52011HFV  
OUT  
VDD  
0.5mA  
100µF  
IOUT  
GND  
V
Fig.4 VOL measurement circuit  
IDD  
Product Name  
C
A
BU52054GWZ, BU52055GWZ,  
BU52015GUL, BU52001GUL,  
BU52061NVX, BU52053NVX,  
BU52056NVX, BU52011HFV,  
BU52021HFV, BU52025G  
VDD  
2200µF  
100µF  
VDD  
OUT  
C
GND  
BD7411G  
Fig.5 IDD measurement circuit  
www.rohm.com  
2011.12 - Rev.G  
13/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
Technical (Reference) Data  
BU52054GWZ(VDD=1.653.6V type)  
8.0  
6.0  
8.0  
6.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Bop S  
Brp S  
Bop S  
Brp S  
VDD=1.8V  
4.0  
4.0  
Ta = 25°C  
VDD=1.8V  
2.0  
2.0  
0.0  
0.0  
-2.0  
-4.0  
-6.0  
-8.0  
-2.0  
-4.0  
-6.0  
-8.0  
Brp N  
Brp N  
Bop N  
Bop N  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
AMBIENT TEMPERATURE [℃]  
AMBIENT TEMPERATURE [℃]  
SUPPLY VOLTAGE [V]  
Fig.6 Bop,Brp– Ambient temperature  
Fig.7 Bop,Brp– Supply voltage  
Fig.8 TP– Ambient temperature  
100  
14.0  
16.0  
90  
14.0  
12.0  
10.0  
8.0  
12.0  
10.0  
8.0  
Ta = 25°C  
80  
Ta = 25°C  
VDD=1.8V  
70  
60  
50  
40  
30  
20  
10  
0
6.0  
6.0  
4.0  
4.0  
2.0  
2.0  
0.0  
0.0  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
-60 -40 -20  
0
20 40 60 80 100  
[℃]  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE  
SUPPLY VOLTAGE [V]  
Fig.11 IDD– Supply voltage  
Fig.10 IDD– Ambient temperature  
Fig.9 TP– Supply voltage  
BU52055GWZ(VDD=1.653.6V type)  
8.0  
8.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD=1.8V  
Ta = 25°C  
6.0  
6.0  
4.0  
VDD=1.8V  
Bop S  
Bop S  
Brp S  
4.0  
Brp S  
2.0  
0.0  
2.0  
0.0  
-2.0  
-4.0  
-6.0  
-8.0  
-2.0  
-4.0  
-6.0  
-8.0  
Brp N  
Bop N  
Brp N  
Bop N  
-60 -40 -20  
0
20 40 60 80 100  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
-60 -40 -20  
0
20 40 60 80 100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
Fig.13 Bop,Brp– Supply voltage  
Fig.14 TP – Ambient temperature  
Fig.12 Bop,Brp– Ambient temperature  
16.0  
14.0  
12.0  
10.0  
8.0  
100  
Ta = 25°C  
VDD=1.8V  
90  
14.0  
12.0  
10.0  
8.0  
Ta = 25°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.0  
6.0  
4.0  
4.0  
2.0  
2.0  
0.0  
0.0  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
-60 -40 -20  
0
20 40 60 80 100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
Fig.16  
IDD– Ambient temperature  
Fig.15 TP– Supply voltage  
Fig.17 IDD– Supply voltage  
www.rohm.com  
2011.12 - Rev.G  
14/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BU52015GUL, BU52011HFV (VDD=1.653.3V type)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8.0  
6.0  
8.0  
6.0  
VDD=1.8V  
Ta = 25°C  
VDD=1.8V  
Bop S  
4.0  
4.0  
Bop S  
Brp S  
2.0  
2.0  
Brp S  
Brp N  
0.0  
0.0  
Brp N  
Bop N  
-2.0  
-4.0  
-6.0  
-8.0  
-2.0  
-4.0  
-6.0  
-8.0  
Bop N  
-60 -40 -20  
0
20 40 60 80 100  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
-60 -40 -20  
0
20 40 60 80 100  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig.19 Bop,Brp Supply voltage  
Fig.18 Bop,Brp– Ambient temperature  
Fig.20 TP – Ambient temperature  
14.0  
14.0  
100  
90  
12.0  
10.0  
8.0  
12.0  
10.0  
8.0  
Ta = 25°C  
80  
VDD=1.8V  
Ta = 25°C  
70  
60  
50  
40  
30  
20  
10  
0
6.0  
6.0  
4.0  
4.0  
2.0  
2.0  
0.0  
0.0  
-60 -40 -20  
0
20 40 60 80 100  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
1.4 1.8 2.2 2.6 3.0 3.4 3.8  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
Fig.23 IDD – Supply voltage  
Fig.21 TP– Supply voltage  
Fig.22 IDD– Ambient temperature  
BU52001GUL (VDD=2.43.3V type)  
8.0  
8.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta = 25°C  
VDD=3.0V  
6.0  
6.0  
VDD=3.0V  
Bop S  
Bop S  
4.0  
4.0  
2.0  
2.0  
Brp S  
Brp S  
0.0  
0.0  
-2.0  
-2.0  
Brp N  
Brp N  
-4.0  
-4.0  
Bop N  
Bop N  
-6.0  
-8.0  
-6.0  
-8.0  
-60 -40 -20  
0
20 40 60 80 100  
2.0  
2.4  
2.8  
3.2  
3.6  
-60 -40 -20  
0
20 40 60 80 100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [℃]  
AMBIENT TEMPERATURE [  
]
Fig.25 Bop,Brp– Supply voltage  
Fig.24 Bop,Brp–Ambient temperature  
Fig.26 TP– Ambient temperature  
100  
90  
14.0  
14.0  
Ta = 25°C  
12.0  
10.0  
8.0  
12.0  
10.0  
8.0  
Ta = 25°C  
80  
VDD=3.0V  
70  
60  
50  
40  
30  
20  
10  
0
6.0  
6.0  
4.0  
4.0  
2.0  
2.0  
0.0  
0.0  
2.0  
2.4  
2.8  
3.2  
3.6  
2.0  
2.4  
2.8  
3.2  
3.6  
-60 -40 -20  
0
20 40 60 80 100  
SUPPLY VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [℃]  
Fig.29 IDD – Supply voltage  
Fig.27 TP– Supply voltage  
Fig.28 IDD– Ambient temperature  
www.rohm.com  
2011.12 - Rev.G  
15/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BU52061NVX(VDD=1.653.6V type)  
8.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8.0  
VDD=1.8V  
Ta = 25°C  
6.0  
4.0  
6.0  
4.0  
VDD=1.8V  
Bop S  
Bop S  
2.0  
2.0  
Brp S  
Brp N  
Brp S  
Brp N  
0.0  
0.0  
-2.0  
-4.0  
-6.0  
-8.0  
-2.0  
-4.0  
-6.0  
-8.0  
Bop N  
Bop N  
-60 -40 -20  
0
20 40 60 80 100  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
-60 -40 -20  
0
20 40 60 80 100  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig.30 Bop,Brp– Ambient temperature  
Fig.31 Bop,Brp– Supply voltage  
Fig.32 TP – Ambient temperature  
100  
14.0  
12.0  
10.0  
8.0  
14.0  
VDD=1.8V  
90  
12.0  
10.0  
8.0  
Ta = 25°C  
80  
Ta = 25°C  
70  
60  
50  
40  
30  
20  
10  
0
6.0  
6.0  
4.0  
4.0  
2.0  
2.0  
0.0  
0.0  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
-60 -40 -20  
0
20 40 60 80 100  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig.34 IDD– Ambient temperature  
Fig.33 TP– Supply voltage  
Fig.35  
IDD – Supply voltage  
BU52053NVX (VDD=1.653.6V type)  
8.0  
8.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta = 25°C  
VDD=1.8V  
6.0  
4.0  
6.0  
VDD=1.8V  
Bop S  
Brp S  
Bop S  
4.0  
2.0  
2.0  
Brp S  
0.0  
0.0  
Brp N  
Brp N  
Bop N  
-2.0  
-4.0  
-6.0  
-8.0  
-2.0  
-4.0  
Bop N  
-6.0  
-8.0  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig.36 Bop,Brp– Ambient temperature  
Fig.37 Bop,Brp– Supply voltage  
Fig.38 TP – Ambient temperature  
14.0  
100  
16.0  
Ta = 25°C  
90  
Ta = 25°C  
VDD=1.8V  
14.0  
12.0  
10.0  
8.0  
12.0  
10.0  
8.0  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.0  
6.0  
4.0  
4.0  
2.0  
2.0  
0.0  
0.0  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
-60 -40 -20  
0
20 40 60 80 100  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig.41 IDD – Supply voltage  
Fig.40  
IDD– Ambient temperature  
Fig.39 TP– Supply voltage  
www.rohm.com  
2011.12 - Rev.G  
16/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BU52056NVX(VDD=1.653.6V type)  
8.0  
6.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8.0  
6.0  
VDD=1.8V  
Ta = 25°C  
Bop S  
Brp S  
VDD=1.8V  
Bop S  
Brp S  
4.0  
4.0  
2.0  
2.0  
0.0  
0.0  
-2.0  
-4.0  
-6.0  
-8.0  
-2.0  
-4.0  
-6.0  
-8.0  
Brp N  
Bop N  
Brp N  
Bop N  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
Fig.42 Bop,Brp– Ambient temperature  
Fig.43 Bop,Brp– Supply voltage  
Fig.44 TP – Ambient temperature  
14.0  
14.0  
100  
VDD=1.8V  
Ta = 25°C  
Ta = 25°C  
90  
12.0  
10.0  
8.0  
12.0  
10.0  
8.0  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.0  
6.0  
4.0  
4.0  
2.0  
2.0  
0.0  
0.0  
-60 -40 -20  
0
20 40 60 80 100  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig.45 TP– Supply voltage  
Fig.46 IDD– Ambient temperature  
Fig.47 IDD– Supply voltage  
BU52021HFV, BU52025G (VDD=2.43.6V type)  
8.0  
8.0  
6.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD=3.0V  
VDD=3.0V  
Ta = 25°C  
6.0  
4.0  
Bop S  
Bop S  
Brp S  
4.0  
2.0  
2.0  
Brp S  
Brp N  
0.0  
0.0  
Brp N  
Bop N  
-2.0  
-4.0  
-6.0  
-8.0  
-2.0  
-4.0  
-6.0  
-8.0  
Bop N  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig.49 Bop,Brp– Supply voltage  
Fig.48 Bop,Brp–Ambient temperature  
Fig.50 TP – Ambient temperature  
14.0  
100  
90  
14.0  
VDD=3.0V  
Ta = 25°C  
12.0  
10.0  
8.0  
12.0  
10.0  
8.0  
Ta = 25°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.0  
6.0  
4.0  
4.0  
2.0  
2.0  
0.0  
0.0  
-60 -40 -20  
0
20 40 60 80 100  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLATAGE [V]  
SUPPLY VOLTAGE [V]  
Fig.52 IDD – Ambient temperature  
Fig.53  
I
DD – Supply voltage  
Fig.51 TP – Supply voltage  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.G  
17/31  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BD7411G (VDD=4.55.5V type)  
8.0  
6.0  
8.0  
6.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
VDD=5.0V  
Ta = 25°C  
VDD=5.0V  
Bop S  
Bop S  
Brp S  
4.0  
4.0  
2.0  
2.0  
Brp S  
Brp N  
0.0  
0.0  
Brp N  
Bop N  
-2.0  
-4.0  
-6.0  
-8.0  
-2.0  
-4.0  
-6.0  
-8.0  
Bop N  
4.0  
4.5  
5.0  
5.5  
6.0  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE  
[℃]  
Fig.54 Bop,Brp–Ambient temperature  
Fig.55 Bop,Brp– Supply voltage  
Fig.56 IDD – Ambient temperature  
6.0  
5.0  
Ta = 25°C  
4.0  
3.0  
2.0  
1.0  
0.0  
4.0  
4.5  
5.0  
5.5  
6.0  
SUPPLY VOLTAGE [V]  
Fig.57  
IDD – Supply voltage  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.G  
18/31  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
Block Diagram  
BU52054GWZ, BU52055GWZ  
VDD  
Adjust the bypass capacitor  
value as necessary, according  
to voltage noise conditions, etc.  
0.1µF  
B1  
TIMING LOGIC  
HALL  
ELEMENT  
The CMOS output terminals enable direct  
connection to the PC, with no external pull-up  
resistor required.  
×
B2 OUT  
A1,A2  
GND  
Fig.58  
FUNCTION  
A2  
B2  
A1  
B1  
A1  
A2  
PIN No.  
A1  
PIN NAME  
GND  
COMMENT  
GROUND  
GROUND  
A2  
GND  
B1  
VDD  
POWER SUPPLY  
OUTPUT  
B2  
OUT  
B1  
B2  
Surface  
Reverse  
BU52015GUL  
VDD  
0.1µF  
B2  
Adjust the bypass capacitor value as  
necessary, according to voltage noise  
conditions, etc.  
TIMING LOGIC  
OUT1  
A1  
HALL  
ELEMENT  
The CMOS output terminals enable direct  
connection to the PC, with no external pull-up  
resistor required.  
GND  
VDD  
×
OUT2  
A2  
B1  
GND  
Fig.59  
A2  
B2  
A1  
B1  
A1  
A2  
PIN No.  
A1  
PIN NAME  
OUT1  
OUT2  
GND  
FUNCTION  
COMMENT  
Output pin (Active Low)  
Output pin (Active High)  
GROUND  
A2  
B1  
B1  
Surface  
B2  
B2  
VDD  
Power Supply Voltage  
Reverse  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.G  
19/31  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BU52001GUL  
VDD  
0.1µF  
A1  
Adjust the bypass capacitor value as  
TIMING LOGIC  
HALL  
necessary, according to voltage noise conditions, etc.  
ELEMENT  
×
B1 OUT  
The CMOS output terminals enable direct connection  
to the PC, with no external pull-up resistor required.  
A2  
GND  
Fig.60  
A2  
A1  
A1  
A2  
PIN No.  
A1  
PIN NAME  
VDD  
FUNCTION  
POWER SUPPLY  
GROUND  
COMMENT  
A2  
GND  
B1  
OUT  
OUTPUT  
B2  
N.C.  
OPEN or Short to GND.  
B1  
B2  
Surface  
B2  
B1  
Reverse  
BU52061NVX, BU52053NVX, BU52056NVX  
VDD  
0.1µF  
4
Adjust the bypass capacitor value as  
necessary, according to voltage noise  
conditions, etc.  
TIMING LOGIC  
HALL  
ELEMENT  
×
OUT  
1
2
The CMOS output terminals enable direct  
connection to the PC, with no external pull-up  
resistor required.  
GND  
Fig.61  
4
3
3
2
4
1
PIN No.  
PIN NAME  
OUT  
FUNCTION  
OUTPUT  
COMMENT  
1
2
3
4
GND  
GROUND  
N.C.  
OPEN or Short to GND.  
1
2
VDD  
POWER SUPPLY  
Surface  
Reverse  
www.rohm.com  
2011.12 - Rev.G  
20/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BU52011HFV, BU52021HFV  
VDD  
0.1µF  
4
Adjust the bypass capacitor value as  
necessary, according to voltage noise  
conditions, etc.  
TIMING LOGIC  
HALL  
The CMOS output terminals enable direct connection  
to the PC, with no external pull-up resistor required.  
ELEMENT  
×
OUT  
5
2
GND  
Fig.62  
4
3
4
3
5
1
5
1
PIN No.  
PIN NAME  
N.C.  
FUNCTION  
GROUND  
COMMENT  
1
2
3
4
5
OPEN or Short to GND.  
GND  
N.C.  
OPEN or Short to GND.  
VDD  
POWER SUPPLY  
OUTPUT  
2
2
OUT  
Surface  
Reverse  
BU52025G  
VDD  
0.1µF  
4
Adjust the bypass capacitor value as  
necessary, according to voltage noise  
conditions, etc.  
TIMING LOGIC  
HALL  
The CMOS output terminals enable direct  
connection to the PC, with no external pull-up  
resistor required.  
ELEMENT  
×
OUT  
5
2
GND  
Fig.63  
4
3
4
3
5
1
5
1
PIN No.  
PIN NAME  
N.C.  
FUNCTION  
GROUND  
COMMENT  
1
2
3
4
5
OPEN or Short to GND.  
GND  
N.C.  
OPEN or Short to GND.  
2
2
VDD  
POWER SUPPLY  
OUTPUT  
Surface  
Reverse  
OUT  
www.rohm.com  
2011.12 - Rev.G  
21/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
BD7411G  
VDD  
5
0.1µF  
Adjust the bypass capacitor  
value as necessary, according  
to voltage noise conditions, etc.  
TIMING LOGIC  
REG  
The CMOS output terminals enable direct  
connection to the PC, with no external pull-up  
resistor required.  
HALL  
ELEMENT  
×
OUT  
4
2
GND  
Fig.64  
4
3
4
3
5
5
1
PIN No.  
PIN NAME  
N.C.  
FUNCTION  
GROUND  
COMMENT  
1
2
3
4
5
OPEN or Short to GND.  
GND  
N.C.  
OPEN or Short to GND.  
OUT  
OUTPUT  
1
2
2
Surface  
VDD  
POWER SUPPLY  
Reverse  
www.rohm.com  
2011.12 - Rev.G  
22/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
Description of Operations  
(Micropower Operation)  
The bipolar detection Hall IC adopts an intermittent operation method  
to save energy. At startup, the Hall elements, amp, comparator and  
other detection circuits power ON and magnetic detection begins.  
During standby, the detection circuits power OFF, thereby reducing  
current consumption. The detection results are held while standby is  
active, and then output.  
IDD  
Period  
Startup time  
Standby time  
Reference period: 50ms (MAX100ms)  
Reference startup time: 48µs  
BD7411G don’t adopts an intermittent operation method.  
t
Fig.65  
(Offset Cancelation)  
The Hall elements form an equivalent Wheatstone (resistor) bridge  
circuit. Offset voltage may be generated by a differential in this bridge  
resistance, or can arise from changes in resistance due to package or  
bonding stress. A dynamic offset cancellation circuit is employed to  
cancel this offset voltage.  
VDD  
I
When Hall elements are connected as shown in Fig. 66 and a  
magnetic field is applied perpendicular to the Hall elements, voltage is  
generated at the mid-point terminal of the bridge. This is known as Hall  
voltage.  
Dynamic cancellation switches the wiring (shown in the figure) to  
redirect the current flow to a 90˚ angle from its original path, and  
thereby cancels the Hall voltage.  
+
B
×
Hall Voltage  
The magnetic signal (only) is maintained in the sample/hold circuit  
during the offset cancellation process and then released.  
GND  
Fig.66  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.G  
23/31  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
(Magnetic Field Detection Mechanism)  
S
N
S
S
N
S
N
Magnetic  
Flux  
Magnetic  
Flux  
Fig.67  
The Hall IC cannot detect magnetic fields that run horizontal to the package top layer.  
Be certain to configure the Hall IC so that the magnetic field is perpendicular to the top layer.  
N
S
N
S
S
N
OUT [V]  
Magnetic  
Magnetic  
High  
Flux  
Flux  
High  
High  
Low  
Low  
B
0
Bop N  
Brp N  
Bop S  
Brp S  
Magnetic flux density [mT]  
Fig.68  
N-Pole  
S-Pole  
The bipolar detection Hall IC detects magnetic fields running perpendicular to the top surface of the package. There is an  
inverse relationship between magnetic flux density and the distance separating the magnet and the Hall IC: when distance  
increases magnetic density falls. When it drops below the operate point (Bop), output goes HIGH. When the magnet gets  
closer to the IC and magnetic density rises, to the operate point, the output switches LOW. In LOW output mode, the  
distance from the magnet to the IC increases again until the magnetic density falls to a point just below Bop, and output  
returns HIGH. (This point, where magnetic flux density restores HIGH output, is known as the release point, Brp.) This  
detection and adjustment mechanism is designed to prevent noise, oscillation and other erratic system operation.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.G  
24/31  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
Intermittent Operation at Power ON  
Power ON  
VDD  
Startup time  
Standby time  
High  
Startup time  
Standby time  
Supply current  
(Intermittentaction)  
Indefinite  
interval  
OUT  
(No magnetic  
field present)  
Indefinite  
interval  
OUT  
(Magnetic  
field present)  
Low  
Fig.69  
The bipolar detection Hall IC adopts an intermittent operation method in detecting the magnetic field during startup, as  
shown in Fig. 69. It outputs to the appropriate terminal based on the detection result and maintains the output condition  
during the standby period. The time from power ON until the end of the initial startup period is an indefinite interval, but it  
cannot exceed the maximum period, 100ms. To accommodate the system design, the Hall IC output read should be  
programmed within 100ms of power ON, but after the time allowed for the period ambient temperature and supply voltage.  
BD7411G don’t adopts an intermittent operation method.  
Magnet Selection  
Of the two representative varieties of permanent magnet, neodymium generally offers greater magnetic power per volume  
than ferrite, thereby enabling the highest degree of miniaturization, Thus, neodymium is best suited for small equipment  
applications. Fig. 70 shows the relation between the size (volume) of a neodymium magnet and magnetic flux density. The  
graph plots the correlation between the distance (L) from three versions of a 4mm X 4mm cross-section neodymium magnet  
(1mm, 2mm, and 3mm thick) and magnetic flux density. Fig. 71 shows Hall IC detection distance – a good guide for  
determining the proper size and detection distance of the magnet. Based on the BU52011HFV, BU52015GUL operating  
point max 5.0 mT, the minimum detection distance for the 1mm, 2mm and 3mm magnets would be 7.6mm, 9.22mm, and  
10.4mm, respectively. To increase the magnet’s detection distance, either increase its thickness or sectional area.  
10  
9
t=3mm  
8
t=1mm  
7
6
5
4
3
2
1
0
t=2mm  
7.6mm 9.2mm  
10.4mm  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Magnet Hall IC distance L [mm]  
Fig.70  
X
Magnet  
t
Magnet material: NMX-44CH  
Maker: Hitachi Metals.,LTD  
t
Y
X=Y=4mm  
t=1mm,2mm,3mm  
L: Variable  
Flux density measuring point  
Magnet size  
Fig.71 Magnet Dimensions and Flux Density Measuring Point  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.G  
25/31  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
Position of the Hall Effect IC(Reference)  
UCSP35L1  
0.40  
VCSP50L1  
0.55  
SSON004X1216  
0.6  
HVSOF5  
0.6  
SSOP5  
0.8  
0.8  
1.45  
0.8  
0.55  
0.40  
0.6  
0.2  
0.35  
0.2  
0.25  
(UNIT:mm)  
Footprint dimensions (Optimize footprint dimensions to the board design and soldering condition)  
UCSP35L1  
VCSP50L1  
SSON004X1216  
SD  
b3  
e
Reference  
Value  
Symbol  
e
0.40  
Φ0.20  
0.20  
Please avoid having potential overstress  
from PCB material, strength, mounting  
positions.  
If you had any further questions or  
concerns, please contact your Rohm  
sales and affiliate.  
b3  
SD  
SE  
0.20  
HVSOF5  
SSOP5  
(UNIT:mm)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.G  
26/31  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
Terminal Equivalent Circuit Diagram  
OUT , OUT1, OUT2  
VDD  
Because they are configured for CMOS (inverter) output, the  
output pins require no external resistance and allow direct  
connection to the PC. This, in turn, enables reduction of the  
current that would otherwise flow to the external resistor during  
magnetic field detection, and supports overall low current  
(micropower) operation.  
GND  
Fig.72  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.G  
27/31  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
Notes for use  
1) Absolute maximum ratings  
Exceeding the absolute maximum ratings for supply voltage, operating conditions, etc. may result in damage to or  
destruction of the IC. Because the source (short mode or open mode) cannot be identified if the device is damaged in this  
way, it is important to take physical safety measures such as fusing when implementing any special mode that operates in  
excess of absolute rating limits.  
2) GND voltage  
Make sure that the GND terminal potential is maintained at the minimum in any operating state, and is always kept lower  
than the potential of all other pins.  
3) Thermal design  
Use a thermal design that allows for sufficient margin in light of the power dissipation (Pd) in actual operating conditions.  
4) Pin shorts and mounting errors  
Use caution when positioning the IC for mounting on printed circuit boards. Mounting errors, such as improper positioning  
or orientation, may damage or destroy the device. The IC may also be damaged or destroyed if output pins are shorted  
together, or if shorts occur between the output pin and supply pin or GND.  
5) Positioning components in proximity to the Hall IC and magnet  
Positioning magnetic components in close proximity to the Hall IC or magnet may alter the magnetic field, and therefore  
the magnetic detection operation. Thus, placing magnetic components near the Hall IC and magnet should be avoided in  
the design if possible. However, where there is no alternative to employing such a design, be sure to thoroughly test and  
evaluate performance with the magnetic component(s) in place to verify normal operation before implementing the design.  
6) Slide-by position sensing  
Fig.73 depicts the slide-by configuration employed for position sensing. Note that when the gap (d) between the magnet  
and the Hall IC is narrowed, the reverse magnetic field generated by the magnet can cause the IC to malfunction. As seen  
in Fig.74, the magnetic field runs in opposite directions at Point A and Point B. Since the bipolar detection Hall IC can  
detect the S-pole at Point A and the N-pole at Point B, it can wind up switching output ON as the magnet slides by in the  
process of position detection. Fig. 75 plots magnetic flux density during the magnet slide-by. Although a reverse magnetic  
field was generated in the process, the magnetic flux density decreased compared with the center of the magnet. This  
demonstrates that slightly widening the gap (d) between the magnet and Hall IC reduces the reverse magnetic field and  
prevents malfunctions.  
10  
8
Reverse  
Magnetic  
Field  
Magnet  
Slide  
6
4
Magnetic Flux  
2
0
-2  
-4  
-6  
-8  
-10  
A
S
B
Hall IC  
L
Magnetic Flux  
0
1
2
3
4
5
6
7
8
9
10  
N
Fig.74  
Horizontal distance from the magnet [mm]  
Fig.75  
Fig.73  
7) Operation in strong electromagnetic fields  
Exercise extreme caution about using the device in the presence of a strong electromagnetic field, as such use may cause  
the IC to malfunction.  
8) Common impedance  
Make sure that the power supply and GND wiring limits common impedance to the extent possible by, for example,  
employing short, thick supply and ground lines. Also, take measures to minimize ripple such as using an inductor or  
capacitor.  
9) GND wiring pattern  
When both a small-signal GND and high-current GND are provided, single-point grounding at the reference point of the set  
PCB is recommended, in order to separate the small-signal and high-current patterns, and to ensure that voltage changes  
due to the wiring resistance and high current do not cause any voltage fluctuation in the small-signal GND. In the same  
way, care must also be taken to avoid wiring pattern fluctuations in the GND wiring pattern of external components.  
10)Exposure to strong light  
Exposure to halogen lamps, UV and other strong light sources may cause the IC to malfunction. If the IC is subject to such  
exposure, provide a shield or take other measures to protect it from the light. In testing, exposure to white LED and  
fluorescent light sources was shown to have no significant effect on the IC.  
11)Power source design  
Since the IC performs intermittent operation, it has peak current when it’s ON. Please taking that into account and under  
examine adequate evaluations when designing the power source.  
www.rohm.com  
2011.12 - Rev.G  
28/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
Ordering part number  
B U  
5
2
0
0
1
G U  
L
-
E
2
Part No.  
BU, BD  
Part No.  
Package  
Packaging and forming specification  
E2: Embossed tape and reel  
(UCSP35L1, VSCP50L1)  
TR: Embossed tape and reel  
(SSON004X1216,HVSOF5, SSOP5)  
52054, 52055, 52015  
52001, 52061, 52053  
52056, 52011, 52021  
52025, 7411  
GWZ : UCSP35L1  
GUL : VSCP50L1  
NVX : SSON004X1216  
HFV : HVSOF5  
G
: SSOP5  
UCSP35L1(BU52054GWZ)  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
3000pcs  
1PIN MARK  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
0.80±0.05  
(
)
S
S
0.06  
φ
4- 0.20 0.05  
0.05 A B  
A
B
A
B
1
2
Direction of feed  
1pin  
0.2±0.05  
0.4  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
UCSP35L1(BU52055GWZ)  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
1PIN MARK  
Quantity  
3000pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
0.80±0.05  
(
)
S
S
0.06  
φ
4- 0.20 0.05  
0.05 A B  
A
B
A
B
1
2
Direction of feed  
1pin  
0.2±0.05  
0.4  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.G  
29/31  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
VCSP50L1(BU52015GUL)  
<Tape and Reel information>  
1PIN MARK  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
E2  
1.10±0.1  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
S
0.08  
S
φ
4- 0.25±0.05  
0.05  
A B  
A
B
B
A
1
2
0.30±0.1  
0.50  
Direction of feed  
1pin  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
VCSP50L1(BU52001GUL)  
<Tape and Reel information>  
1PIN MARK  
Tape  
Embossed carrier tape  
Quantity  
3000pcs  
E2  
1.10±0.1  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
S
0.08  
S
φ
4- 0.25±0.05  
0.05  
A B  
A
B
B
A
1
2
0.30±0.1  
0.50  
Direction of feed  
1pin  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
SSON004X1216  
<Tape and Reel information>  
1.2 0.1  
Tape  
Embossed carrier tape  
Quantity  
5000pcs  
TR  
Direction  
of feed  
1PIN MARK  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
S
0.08  
S
+0.05  
0.65 0.1  
0.2  
-
0.04  
1
2
4
3
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
1pin  
0.75 0.1  
Reel  
(Unit : mm)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.12 - Rev.G  
30/31  
BU52001GUL,BU52011HFV,BU52021HFV,BU52015GUL,BU52025G,BU52053NVX,  
BU52054GWZ,BU52055GWZ,BU52056NVX,BU52061NVX,BD7411G  
Technical Note  
HVSOF5  
<Tape and Reel information>  
1.6 0.05  
1.0 0.05  
(0.8)  
(0.3)  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
TR  
Direction  
of feed  
5
1
4
3
4
5
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
3
2 1  
2
1pin  
0.13 0.05  
S
0.1  
S
0.5  
0.22 0.05  
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
M
0.08  
Reel  
(Unit : mm)  
SSOP5  
<Tape and Reel information>  
°
°
+
4  
2.9 0.2  
4
6
°
4
Tape  
Embossed carrier tape  
5
Quantity  
3000pcs  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
1pin  
+0.05  
0.13  
0.03  
S
+0.05  
0.04  
0.42  
0.1  
0.95  
S
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
Reel  
(Unit : mm)  
www.rohm.com  
2011.12 - Rev.G  
31/31  
© 2011 ROHM Co., Ltd. All rights reserved.  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BU52012HFV

Hall effect Switch
ROHM

BU52012HFV-TR

Unipolar Detection Hall ICs
ROHM

BU52012NVX

Hall effect Switch
ROHM

BU52012NVX-TR

Unipolar Detection Hall ICs
ROHM

BU52013HFV

Hall effect Switch
ROHM

BU52013HFV-TL

Sensor/Transducer, CMOS, 6 Pin, Plastic/epoxy,
ROHM

BU52013HFV-TR

暂无描述
ROHM

BU52014HFV

Hall effect Switch
ROHM

BU52014HFV-TR

Hall Effect Sensor, 0.6mT Min, 5mT Max, 0.20-1.60V, CMOS, Plastic/epoxy, Rectangular, 6 Pin, Surface Mount, ROHS COMPLIANT, HVSOF-5
ROHM

BU52014HFVTR

MAGNETIC FIELD SENSOR-HALL EFFECT, 0.6-5mT, 0.20-1.60V, RECTANGULAR, SURFACE MOUNT, ROHS COMPLIANT, HVSOF-5
ROHM

BU52015GUL

Hall effect Switch
ROHM

BU52015GUL-E2

Hall Effect Sensor, 0.6mT Min, 5mT Max, 0.20-1.60V, Bipolar, Plastic/epoxy, Square, 4 Pin, Surface Mount, ROHS COMPLIANT, VCSP-4
ROHM