BU2288FV-FE2 [ROHM]

Clock Generator, 36.864MHz, CMOS, PDSO16, ROHS COMPLIANT, SSOP-16;
BU2288FV-FE2
型号: BU2288FV-FE2
厂家: ROHM    ROHM
描述:

Clock Generator, 36.864MHz, CMOS, PDSO16, ROHS COMPLIANT, SSOP-16

时钟 光电二极管 外围集成电路 晶体
文件: 总25页 (文件大小:1641K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
High-performance Clock Generator Series  
DVD-Video Reference  
Clock Generators  
for Audio/Video Equipments  
BU2280FV, BU2288FV, BU2360FV, BU2362FV  
Description  
These clock generators are an IC generating three types of clocks - VIDEO, AUIDIO and SYSTEM clocks – necessary for  
DVD player systems, with a single chip through making use of the PLL technology. Particularly, the AUDIO clock is a  
DVD-Video reference and yet achieves high C/N characteristics to provide a low level of distortion factor.  
Features  
1) Connecting a crystal oscillator generates multiple clock signals with a built-in PLL.  
2) AUDIO clock of high C/N characteristics providing a low level of distortion factor  
3) The AUDIO clock provides switching selection outputs.  
4) Single power supply of 3.3 V  
Applications  
DVD players  
Lineup  
Part name  
BU2280FV  
3.0 3.6  
27.0000  
-
BU2288FV  
3.0 3.6  
27.0000  
-
BU2360FV  
2.7 3.6  
27.0000  
-
BU2362FV  
2.7 3.6  
27.0000  
-
Power source voltage [V]  
Reference frequency [MHz]  
2
1
DVD VIDEO  
27.0000  
-
27.0000  
-
27.0000  
-
27.0000  
-
1/2  
36.8640  
/33.8688  
24.5760  
/22.5792  
18.4320  
/16.9344  
-
768fs  
512fs  
-
-
-
24.5760  
/22.5792  
24.5760  
/22.5792  
24.5760  
/22.5792  
Output  
DVD AUDIO, CD  
frequency  
[MHz]  
(Switching outputs)  
384fs  
256fs  
other  
-
-
-
-
-
-
36.8640  
/16.9344  
-
-
36.8640  
/16.9344  
36.8640  
33.8688  
16.9344  
70  
-
768 (48k type)  
768 (44.1k type)  
384 (44.1k type)  
-
-
SYSTEM  
33.8688  
33.8688  
16.9344  
70  
33.8688  
-
70  
-
70  
Jitter 1σ [psec]  
Long-term-Jitter p-p [nsec]  
Package  
8.0  
5.0  
2.5  
5.0  
SSOP-B24  
SSOP-B16  
SSOP-B16  
SSOP-B16  
June 2007  
Absolute Maximum Ratings (Ta=25)  
Parameter  
Supply voltage  
Symbol  
VDD  
VIN  
BU2280FV  
-0.5 ~ +7.0  
-0.5VDD0.5  
-30 ~ +125  
630 *1  
BU2288FV  
-0.5 ~ +7.0  
-0.5VDD0.5  
-30 ~ +125  
450 *2  
BU2360FV  
-0.5 ~ +7.0  
-0.5VDD0.5  
-30 ~ +125  
450 *2  
BU2362FV  
-0.5 ~ +7.0  
-0.5VDD0.5  
-30 ~ +125  
450 *2  
Unit  
V
Input voltage  
V
Storage temperature range  
Power dissipation  
Tstg  
PD  
mW  
*1 In the case of exceeding Ta = 25, 6.3mW to be reduced per 1℃  
*2 In the case of exceeding Ta = 25, 4.5mW to be reduced per 1℃  
Operating is not guaranteed.  
The radiation-resistance design is not carried out.  
Power dissipation is measured when the IC is mounted to the printed circuit board.  
Recommended Operating Range  
Parameter  
Parameter  
Symbol  
VDD  
BU2280FV  
BU2288FV  
BU2360FV  
2.7 3.6  
BU2362FV  
Unit  
V
3.0 3.6  
3.0 3.6  
2.7 3.6  
Supply voltage  
Input “H” Voltage  
Input “L” Voltage  
Operating temperature  
Output load  
VIH  
0.8VDDVDD  
0.8VDDVDD  
0.8VDDVDD  
0.0 0.2VDD  
-25 ~ +85  
15  
0.8VDDVDD  
V
VIL  
0.0 0.2VDD  
0.0 0.2VDD  
0.0 0.2VDD  
V
Topr  
-5 ~ +70  
-5 ~ +70  
-25 ~ +85  
pF  
pF  
pF  
CL  
15  
-
15  
-
15  
-
CL_27M1  
CL_27M2  
40 (CLK27M1)  
25 (CLK27M2)  
27M output load 1  
-
-
-
Electrical characteristics  
BU2280FVVDD=3.3V, Ta=25, Crystal frequency 27.0000MHz, unless otherwise specified.)  
Parameter  
Output L voltage  
Output H voltage  
Consumption  
current  
Symbol  
VOL  
Min.  
-
Typ.  
Max.  
0.4  
-
Unit  
V
Conditions  
IOL=4.0mA  
IOH=-4.0mA  
-
-
VOH  
2.4  
V
IDD  
-
30  
50  
mA  
At no load  
CLK768-44  
CLK768-48  
CLK512-44  
CLK512-48  
CLK384-44  
CLK384-48  
CLK33M  
CLK16M  
Duty  
-
-
33.8688  
36.8640  
22.5792  
24.5760  
16.9344  
18.4320  
33.8688  
16.9344  
50  
-
-
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
%
At FSEL=L, XTAL×3136 / 625 / 4  
At FSEL=H, XTAL×2048 / 375 / 4  
At FSEL=L, XTAL×3136 / 625 / 6  
At FSEL=H, XTAL×2048 / 375 / 6  
At FSEL=L, XTAL×3136 / 625 / 8  
At FSEL=H, XTAL×2048 / 375 / 8  
XTAL×147 / 40 / 4  
CLK768FS  
CLK512FS  
CLK384FS  
-
-
-
-
-
-
-
-
CLK33M  
CLK16M  
-
-
-
-
XTAL×147 / 40 / 8  
Duty  
45  
-
55  
-
Measured at a voltage of 1/2 of VDD  
*1  
Period-Jitter 1σ  
Period-Jitter  
MIN-MAX  
P-J 1σ  
70  
psec  
P-J  
-
-
420  
2.5  
-
-
psec  
nsec  
nsec  
*2  
MIN-MAX  
Period of transition time required for the  
output reach 80from 20of VDD.  
Period of transition time required for the  
output reach 20from 80of VDD.  
Rise Time  
Tr  
Fall Time  
Tf  
-
-
2.5  
-
-
Output Lock-Time  
Tlock  
1
msec *3  
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN.  
If the input frequency is set to 27.0000MHz, the output frequency will be as listed above.  
2/24  
BU2288FVVDD=3.3V, Ta=25, Crystal frequency 27.0000MHz, unless otherwise specified.)  
Parameter  
Symbol  
VOH  
Min.  
Typ.  
Max.  
Unit  
V
Conditions  
Output L voltage  
Output H voltage  
FSEL input VthL  
FSEL input VthH  
Hysteresis range  
Action circuit current  
2.4  
-
-
IOH=-4.0mA  
VOL  
-
-
0.4  
V
IOL=4.0mA  
VthL  
0.2VDD  
-
-
V
*4  
VthH  
-
-
0.8VDD  
V
*4  
Vhys  
0.2  
-
-
V
Vhys=VthH-VthL*4  
At no load  
IDD  
-
-
27.0000  
22.5792  
24.5760  
33.8688  
16.9344  
27.0000  
16.9344  
36.8640  
50  
40.5  
mA  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
%
CLK512-44  
CLK512-48  
CLK33M  
CLK16M  
CLK27M  
CLKA-A  
CLKA-B  
Duty  
-
-
At FSEL1=OPEN XTAL3136/625/6  
At FSEL1=L XTAL2048/375/6  
XTAL3136/625/4  
XTAL3136/625/8  
XTAL direct out  
CLK512FS  
-
CLK33M  
CLK16M  
CLK27M  
-
-
-
-
-
-
-
-
At FSEL1=OPEN XTAL3136/625/8  
At FSEL1=L XTAL2048/375/4  
Measured at a voltage of 1/2 of VDD  
*1  
CLK A  
-
-
Duty  
45  
-
55  
-
Period-Jitter 1σ  
Period-Jitter  
MIN-MAX  
P-J 1σ  
P-J  
70  
psec  
-
-
420  
2.5  
-
-
psec  
nsec  
nsec  
*2  
MIN-MAX  
Period of transition time required for the  
output reach 80from 20of VDD.  
Period of transition time required for the  
output reach 20from 80of VDD.  
Rise time  
Tr  
Fall time  
Tf  
-
-
2.5  
-
-
Output Lock-Time  
Tlock  
1
msec 3  
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN.  
If the input frequency is set to 27.0000MHz, the output frequency will be as listed above.  
BU2360FVVDD=3.3V, Ta=25, Crystal frequency 27.0000MHz, unless otherwise specified.)  
Parameter  
Output L voltage  
Output H voltage  
FSEL input VthL  
FSEL input VthH  
Hysteresis range  
Action circuit current  
CLK27M  
Symbol  
VOL  
Min.  
Typ.  
Max.  
Unit  
V
Conditions  
-
-
0.4  
IOL=4.0mA  
VOH  
2.4  
-
-
V
IOH=-4.0mA  
VthL  
0.2VDD  
-
-
-
V
*4  
VthH  
-
0.8VDD  
V
*4  
Vhys  
0.2  
-
-
V
Vhys = VthH - VthL *4  
At no load  
IDD  
-
-
27.0  
27.0000  
33.8688  
24.5760  
22.5792  
50  
40.5  
mA  
MHz  
MHz  
MHz  
MHz  
%
CLK27M  
CLK33M  
CLK512_48  
CLK512_44  
Duty  
-
-
XTAL direct out  
CLK33M  
-
XTAL×3136 / 625 / 4  
At FSEL=H, XTAL×2048 / 375 / 6  
At FSEL=L, XTAL×3136 / 625 / 6  
Measured at a voltage of 1/2 of VDD  
*1  
-
-
CLK512FS  
-
-
Duty  
45  
-
55  
-
Period-Jitter 1σ  
Period-Jitter  
MIN-MAX  
P-J 1σ  
P-J  
70  
psec  
-
-
420  
2.5  
-
-
psec  
nsec  
nsec  
*2  
MIN-MAX  
Period of transition time required for the  
output reach 80from 20of VDD.  
Period of transition time required for the  
output reach 20from 80of VDD.  
Rise Time  
Tr  
Fall Time  
Tf  
-
-
2.5  
-
-
Output Lock-Time  
Tlock  
1
msec *3  
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN.  
If the input frequency is set to 27.0000MHz, the output frequency will be as listed above.  
3/24  
BU2362FVVDD=3.3V, Ta=25, Crystal frequency 27.0000MHz, unless otherwise specified.)  
Parameter  
Symbol  
VOH  
Min.  
Typ.  
-
Max.  
Unit  
V
Conditions  
Output L voltage  
Output H voltage  
Action circuit current  
2.4  
-
IOH=-4.0mA  
VOL  
-
-
-
0.4  
V
IOL=4.0mA  
IDD  
35  
45  
-
mA  
At no load  
CLK512-44  
CLK512-48  
CLKA-A  
CLKA-B  
CLK36M  
CLK33M  
CLK16M  
CLK27M  
Duty  
-
22.5792  
24.5760  
16.9344  
36.8640  
36.8640  
33.8688  
16.9344  
27.0000  
50  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
%
At FSEL1=OPEN XTAL3136/625/6  
At FSEL1=L XTAL2048/375/6  
At FSEL1=OPEN XTAL3136/625/8  
At FSEL1=L XTAL2048/375/8  
XTAL2048/375/4  
CLK512FS  
CLKA  
-
-
-
-
-
-
CLK36M  
CLK33M  
-
-
-
-
XTAL3136/625/4  
CLK16M  
-
-
XTAL3136/625/8  
CLK27M  
-
-
XTAL direct out  
Duty  
45  
-
55  
-
Measured at a voltage of 1/2 of VDD  
*1  
Period-Jitter 1σ  
Period-Jitter  
MIN-MAX  
P-J 1σ  
P-J  
70  
psec  
-
-
420  
2.5  
-
-
psec  
nsec  
*2  
MIN-MAX  
Period of transition time required for the  
output reach 80from 20of VDD.  
Period of transition time required for the  
output reach 20from 80of VDD.  
*3  
Rise Time  
Tr  
Fall Time  
Tf  
-
-
2.5  
-
-
nsec  
Output Lock-Time  
Tlock  
1
msec  
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN.  
If the input frequency is set to 27.0000MHz, the output frequency will be as listed above.  
Common to BU2280FVBU2288FVBU2360FV and BU2362FV:  
*1 Period-Jitter 1σ  
This parameter represents standard deviation (=1 σ) on cycle distribution data at the time when the output clock cycles are  
sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd.  
*2 Period-Jitter MIN-MAX  
This parameter represents a maximum distribution width on cycle distribution data at the time when the output clock cycles  
are sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd.  
*3 Output Lock-Time  
The Lock-Time represents elapsed time after power supply turns ON to reach a 3.0V voltage, after the system is switched  
from Power-Down state to normal operation state, or after the output frequency is switched, until it is stabilized at a specified  
frequency, respectively.  
BU2360FV, BU2288FV  
4 This parameter represents lower and upper limit voltages at the Schmitt trigger input PIN having hysteresis characteristics  
shown in figure below. The width requested by these differences is assumed to be a hysteresis width.  
0.2VDD  
0.8VDD  
V
hys  
th  
V L  
V H  
th  
0
Input Voltage [V]  
4/24  
Reference data (BU2280FV basic data)  
RBW=1KHz  
VBW=100Hz  
5.0nsecdiv  
500psecdiv  
10KHzdiv  
Fig.1 33.9MHz output waveform  
VDD=3.3V, at CL=15pF  
Fig.2 33.9MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
Fig.3 33.9MHz Spectrum  
VDD=3.3V, at CL=15pF  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
10KHzdiv  
5.0nsecdiv  
Fig.4 36.9MHz output waveform  
VDD=3.3V, at CL=15pF  
Fig.5 36.9MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
Fig.6 36.9MHz Spectrum  
VDD=3.3V, at CL=15pF  
RBW=1KHz  
VBW=100Hz  
10KHzdiv  
5.0nsecdiv  
500psecdiv  
Fig.7 22.6MHz output waveform  
VDD=3.3V, at CL=15pF  
Fig.8 22.6MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
Fig.9 22.6MHz Spectrum  
VDD=3.3V, at CL=15pF  
RBW=1KHz  
VBW=100Hz  
5.0nsecdiv  
500psecdiv  
10KHzdiv  
Fig.10 24.6MHz output waveform  
VDD=3.3V, at CL=15pF  
Fig.11 24.6MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
Fig.12 24.6MHz Spectrum  
VDD=3.3V, at CL=15pF  
5/24  
Reference data (BU2280FV basic data)  
RBW=1KHz  
VBW=100Hz  
10KHzdiv  
10.0nsecdiv  
500psecdiv  
Fig.13 16.9MHz output waveform  
VDD=3.3V, at CL=15pF  
Fig.14 16.9MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
Fig.15 16.9MHz Spectrum  
VDD=3.3V, at CL=15pF  
RBW=1KHz  
VBW=100Hz  
10KHzdiv  
10.0nsecdiv  
500psecdiv  
Fig.16 18.4MHz output waveform  
VDD=3.3V, at CL=15pF  
Fig.17 18.4MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
Fig.18 18.4MHz Spectrum  
VDD=3.3V, at CL=15pF  
RBW=1KHz  
VBW=100Hz  
5.0nsecdiv  
500psecdiv  
10KHzdiv  
Fig.19 27MHz output waveform  
VDD=3.3V, at CL=15pF  
Fig.20 27MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
Fig.21 27MHz Spectrum  
VDD=3.3V, at CL=15pF  
LT Jitter 6.2nsec  
LT Jitter 8.1nsec  
2.0nsecdiv  
2.0nsecdiv  
Fig.22 24.6MHz LT Jitter  
VDD=3.3V, at CL=15pF  
Fig.23 22.6MHz LT Jitter  
VDD=3.3V, at CL=15pF  
6/24  
Reference data (BU2280FV Temperature and Supply voltage variations data)  
5
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
600  
500  
400  
300  
200  
100  
0
VDD=3.3V  
VDD=2.9V  
VDD=3.7V  
VDD=2.9V  
VDD=3.3V  
VDD=3.3V  
VDD=3.7V  
VDD=2.9V  
VDD=3.7V  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
]
100  
-25  
0
25  
50  
75  
100  
Temperature T[  
]
Temperature T[  
Temperature T[  
]
Fig.24 33.9MHz  
TemperatureDuty  
Fig.25 33.9MHz  
TemperaturePeriod-Jitter 1σ  
Fig.26 33.9MHz  
TemperaturePeriod-Jitter MIN-MAX  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
100  
90  
600  
VDD=2.9V  
VDD=2.9V  
500  
VDD=3.7V  
80  
VDD=3.3V  
70  
60  
50  
VDD=2.9V  
400  
300  
VDD=3.3V  
VDD=3.3V  
VDD=3.7V  
40  
30  
20  
10  
0
VDD=3.7V  
200  
100  
0
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
Temperature T[  
]
Temperature T[  
]
Temperature T[  
]
Fig.27 36.9MHz  
TemperatureDuty  
Fig.28 36.9MHz  
TemperaturePeriod-Jitter 1σ  
Fig.29 36.9MHz  
Temperature rPeriod-Jitter MIN-MAX  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
100  
90  
600  
VDD=3.7V  
500  
VDD=3.3V  
80  
VDD=3.7V  
70  
60  
50  
400  
VDD=2.9V  
VDD=3.7V  
300  
VDD=2.9V  
VDD=2.9V  
VDD=3.3V  
40  
VDD=3.3V  
200  
30  
20  
10  
0
100  
0
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
]
100  
-25  
0
25  
Temperature T[ ]  
: ℃  
50  
75  
100  
Temperature T[  
]
Temperature T[  
Fig.30 22.6MHz  
TemperatureDuty  
Fig.31 22.6MHz  
TemperaturePeriod-Jitter 1σ  
Fig.32 22.6MHz  
TemperaturePeriod-Jitter MIN-MAX  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
100  
90  
600  
VDD=3.7V  
500  
80  
VDD=3.3V  
VDD=2.9V  
70  
VDD=3.3V  
400  
VDD=2.9V  
VDD=3.3V  
60  
50  
40  
300  
VDD=2.9V  
VDD=3.7V  
200  
VDD=3.7V  
30  
20  
10  
0
100  
0
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
]
100  
-25  
0
25  
50  
75  
100  
Temperature T[  
]
Temperature T[  
Temperature T[  
]
Fig.33 24.6MHz  
TemperatureDuty  
Fig.34 24.6MHz  
TemperaturePeriod-Jitter 1σ  
Fig.35 24.6MHz  
TemperaturePeriod-Jitter MIN-MAX  
7/24  
Reference data (BU2280FV Temperature and Supply voltage variations data)  
600  
500  
400  
300  
200  
100  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
VDD=2.9V  
VDD=3.7V  
VDD=3.7V  
VDD=3.7V  
VDD=2.9V  
VDD=3.3V  
VDD=3.3V  
VDD=3.3V  
VDD=2.9V  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
Temperature T[  
]
Temperature T[  
]
TemperatureT[]  
Fig.36 16.9MHz  
TemperatureDuty  
Fig.37 16.9MHz  
TemperaturePeriod-Jitter 1σ  
Fig.38 16.9MHz  
TemperaturePeriod-Jitter MIN-MAX  
55  
100  
90  
600  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
500  
80  
VDD=3.7V  
VDD=3.7V  
70  
400  
VDD=3.3V  
VDD=3.7V  
60  
50  
40  
300  
VDD=2.9V  
VDD=3.3V  
VDD=2.9V  
VDD=2.9V  
200  
100  
0
VDD=3.3V  
30  
20  
10  
0
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
Temperature T[  
]
Temperature T[  
]
Temperature T[  
]
Fig.39 18.4MHz  
Fig.40 18.4MHz  
Fig.41 18.4MHz  
TemperatureDuty  
TemperaturePeriod-Jitter 1σ  
TemperaturePeriod-Jitter MIN-MAX  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
100  
90  
600  
VDD=2.9V  
500  
80  
VDD=2.9V  
VDD=3.3V  
70  
400  
60  
50  
40  
VDD=3.7V  
VDD=2.9V  
300  
VDD=3.3V  
VDD=3.3V  
200  
VDD=3.7V  
VDD=3.7V  
30  
20  
10  
0
100  
0
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
]
100  
-25  
0
25  
50  
75  
]
100  
Temperature T[  
]
Temperature T[  
Temperature T[  
Fig.42 27MHz  
TemperatureDuty  
Fig.43 27MHz  
TemperaturePeriod-Jitter 1σ  
Fig.44 27MHz  
TemperaturePeriod-Jitter MIN-MAX  
50  
40  
30  
20  
10  
0
VDD=3.7V  
VDD=3.3V  
VDD=2.9V  
-25  
0
25  
50  
75  
100  
Temperature T[  
]
Fig.45 Action circuit current  
(with maximum output load)  
TemperatureConsumption current  
8/24  
Reference data (BU2360FV basic data)  
RBW=1KHz  
VBW=100Hz  
5.0nsecdiv  
500psecdiv  
10KHzdiv  
Fig.46 27MHz output waveform  
VDD=3.3V, at CL=40pF  
Fig.47 27MHz Period-Jitter  
VDD=3.3V, at CL=40pF  
Fig.48 27MHz Spectrum  
VDD=3.3V, at CL=40pF  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
10KHzdiv  
5.0nsecdiv  
Fig.49 27MHz output waveform  
VDD=3.3V, at CL=25pF  
Fig.50 27MHz Period-Jitter  
VDD=3.3V, at CL=25pF  
Fig.51 27MHz Spectrum  
VDD=3.3V, at CL=25pF  
RBW=1KHz  
VBW=100Hz  
5.0nsecdiv  
500psecdiv  
10KHzdiv  
Fig.52 33.9MHz output waveform  
VDD=3.3V, at CL=15pF  
Fig.53 33.9MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
Fig.54 33.9MHz Spectrum  
VDD=3.3V, at CL=15pF  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
10KHzdiv  
5.0nsecdiv  
Fig.55 24.6MHz output waveform  
VDD=3.3V, at CL=15pF  
Fig.56 24.6MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
Fig.57 24.6MHz Spectrum  
VDD=3.3V, at CL=15pF  
9/24  
Reference data (BU2360FV basic data)  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
5.0nsecdiv  
10KHzdiv  
Fig.58 22.6MHz output waveform  
VDD=3.3V, at CL=15pF  
Fig.60 22.6MHz Spectrum  
VDD=3.3V, at CL=15pF  
Fig.59 22.6MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
LT Jitter 2.5nsec  
LT Jitter 2.3nsec  
1.0nsecdiv  
1.0nsecdiv  
Fig61. 24.6MHz LT Jitter  
VDD=3.3V, at CL=15pF  
Fig62. 22.6MHz LT Jitter  
VDD=3.3V, at CL=15pF  
Reference data (BU2360FV Temperature and Supply voltage variations data)  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
600  
VDD=2.4V  
VDD=2.4V  
500  
400  
300  
200  
100  
0
VDD=3.7V  
VDD=2.4V  
VDD=3.3V  
VDD=3.3V  
VDD=3.3V  
VDD=3.7V  
VDD=3.7V  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
]
100  
-25  
0
25  
50  
75  
]
100  
Temperature T[  
]
Temperature T[  
Temperature T[  
Fig.64 27MHz (40pF)  
TemperaturePeriod-Jitter 1σ  
Fig.65 27MHz (40pF)  
TemperaturePeriod-Jitter MIN-MAX  
Fig.63 27MHz (40pF)  
TemperatureDuty  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
100  
600  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD=2.4V  
VDD=2.4V  
VDD=3.3V  
500  
400  
300  
VDD=2.4V  
VDD=3.7V  
VDD=3.3V  
VDD=3.7V  
200  
100  
0
VDD=3.3V  
VDD=3.7V  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
]
100  
-25  
0
25  
50  
75  
]
100  
Temperature T[  
]
Temperature T[  
Temperature T[  
Fig.67 27MHz (25pF)  
TemperaturePeriod-Jitter 1σ  
Fig.68 27MHz (25pF)  
TemperaturePeriod-Jitter MIN-MAX  
Fig.66 27MHz (25pF)  
TemperatureDuty  
10/24  
Reference data (BU2360FV Temperature and Supply voltage variations data)  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
600  
500  
400  
300  
200  
100  
0
VDD=2.4V  
VDD=3.3V  
VDD=2.4V  
VDD=2.4V  
VDD=3.7V  
VDD=3.3V  
VDD=3.3V  
VDD=3.7V  
VDD=3.7V  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
Temperature T[  
]
Temperature T[  
]
Temperature T[  
]
Fig.69 33.9MHz  
TemperatureDuty  
Fig.70 33.9MHz  
TemperaturePeriod-Jitter 1σ  
Fig.71 33.9MHz  
TemperaturePeriod-Jitter MIN-MAX  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
100  
600  
90  
VDD=3.7V  
500  
VDD=2.4V  
80  
70  
60  
400  
300  
VDD=2.4V  
VDD=3.7V  
50  
VDD=3.3V  
VDD=3.3V  
VDD=3.7V  
40  
VDD=2.4V  
200  
100  
0
30  
20  
10  
0
VDD=3.3V  
-25  
0
25  
50  
75  
100  
-25  
0
25  
Temperature T[  
: ℃  
50  
75  
100  
-25  
0
25  
50  
75  
]
100  
Temperature T[  
]
]
Temperature T[  
Fig.72 24.6MHz  
Fig.73 24.6MHz  
Fig.74 24.6MHz  
TemperatureDuty  
TemperaturePeriod-Jitter 1σ  
TemperaturePeriod-Jitter MIN-MAX  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
100  
600  
90  
VDD=3.7V  
80  
VDD=3.7V  
500  
70  
400  
300  
200  
VDD=3.3V  
VDD=3.3V  
VDD=2.4V  
60  
50  
40  
VDD=2.4V  
30  
VDD=3.7V  
VDD=2.4V  
VDD=3.3V  
20  
10  
0
100  
0
-25  
0
25  
50  
75  
100  
-25  
0
25  
Temperature T[ ]  
: ℃  
50  
75  
100  
-25  
0
25  
50  
75  
100  
Temperature T[  
]
Temperature T[  
]
Fig.75 22.6MHz  
TemperatureDuty  
Fig.76 22.6MHz  
TemperaturePeriod-Jitter 1σ  
Fig.77 22.6MHz  
TemperaturePeriod-Jitter MIN-MAX  
50  
40  
30  
20  
10  
0
VDD=3.7V  
VDD=3.3V  
VDD=2.4V  
-25  
0
25  
50  
75  
100  
Temperature T[  
]
Fig.78 Action circuit current  
(with maximum output load)  
TemperatureConsumption current  
11/24  
Reference dataBU2362FV basic data)  
RBW=1KHz  
VBW=100Hz  
5.0nsecdiv  
500psecdiv  
10KHzdiv  
Fig.79 33.9MHz output waveform  
VDD=3.3V, at CL=15pF  
Fig.80 33.9MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
Fig.81 33.9MHz Spectrum  
VDD=3.3V, at CL=15pF  
RBW=1KHz  
VBW=100Hz  
5.0nsecdiv  
500psecdiv  
10KHzdiv  
Fig.82 36.9MHz output waveform  
VDD=3.3V, at CL=15pF  
Fig.83 36.9MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
Fig.84 36.9MHz Spectrum  
VDD=3.3V, at CL=15pF  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
10KHzdiv  
5.0nsecdiv  
Fig.86 22.6MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
Fig.85. 22.6MHz output waveform  
VDD=3.3V, at CL=15pF  
Fig.87 22.6MHz Spectrum  
VDD=3.3V, at CL=15pF  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
5.0nsecdiv  
Fig.89 24.6MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
Fig.90 24.6MHz Spectrum  
VDD=3.3V, at CL=15pF  
Fig.88 24.6MHz output waveform  
VDD=3.3V, at CL=15pF  
12/24  
Reference dataBU2362FV basic data)  
RBW=1KHz  
VBW=100Hz  
5.0nsecdiv  
500psecdiv  
10KHzdiv  
Fig.91 16.9MHz output waveform  
VDD=3.3V, at CL=15pF  
Fig.92 16.9MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
Fig.93 16.9MHz Spectrum  
VDD=3.3V, at CL=15pF  
RBW=1KHz  
VBW=100Hz  
5.0nsecdiv  
500psecdiv  
10KHzdiv  
Fig.94 27MHz output waveform  
VDD=3.3V, at CL=15pF  
Fig.95 27MHz Period-Jitter  
VDD=3.3V, at CL=15pF  
Fig.96 27MHz Spectrum  
VDD=3.3V, at CL=15pF  
LT Jitter 4.8nsec  
2.0nsecdiv  
2.0nsecdiv  
Fig.97 24.6MHz LT Jitter  
VDD=3.3V, at CL=15pF  
Fig.98 22.6MHz LT Jitter  
VDD=3.3V, at CL=15pF  
13/24  
Reference data (BU2362FV Temperature and Supply voltage variations data)  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD=3.3V  
VDD=3.7V  
VDD=2.4V  
VDD=3.7V  
VDD=2.4V  
VDD=2.4V  
VDD=3.3V  
VDD=3.7V  
VDD=3.3V  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
Temperature T[  
]
Temperature T[  
]
Temperature T[  
]
Fig.99 33.9MHz  
TemperatureDuty  
Fig.100 33.9MHz  
TemperaturePeriod-Jitter 1σ  
Fig.101 33.9MHz  
TemperaturePeriod-Jitter MIN-MAX  
55  
100  
90  
600  
500  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD=2.4V  
VDD=3.7V  
VDD=2.4V  
400  
VDD=3.3V  
VDD=2.4V  
VDD=3.7V  
300  
200  
VDD=3.7V  
VDD=3.3V  
VDD=3.3V  
100  
0
-25  
0
25  
50  
75  
]
100  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
]
100  
Temperature T[  
Temperature T[  
]
Temperature T[  
Fig.102 36.9MHz  
Fig.103 36.9MHz  
Fig.104 36.9MHz  
TemperatureDuty  
TemperaturePeriod-Jitter 1σ  
TemperaturePeriod-Jitter MIN-MAX  
600  
500  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
400  
VDD=3.3V  
VDD=2.4V  
VDD=3.7V  
VDD=3.7V  
VDD=2.4V  
VDD=2.4V  
300  
200  
VDD=3.7V  
VDD=3.3V  
100  
VDD=3.3V  
0
-25  
0
25  
Temperature T[ ]  
: ℃  
50  
75  
100  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
Temperature T[  
]
Temperature T[  
]
Fig.105 22.6MHz  
TemperatureDuty  
Fig.106 22.6MHz  
TemperaturePeriod-Jitter 1σ  
Fig.107 22.6MHz  
TemperaturePeriod-Jitter MIN-MAX  
100  
55  
600  
500  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
VDD=2.4V  
VDD=3.7V  
VDD=2.4V  
400  
VDD=2.4V  
300  
200  
VDD=3.3V  
VDD=3.7V  
VDD=3.3V  
VDD=3.3V  
VDD=3.7V  
100  
0
-25  
0
25  
50  
75  
]
100  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
Temperature T[  
Temperature T[  
]
Temperature T[  
]
Fig.108 24.6MHz  
TemperatureDuty  
Fig.109 24.6MHz  
TemperaturePeriod-Jitter 1σ  
Fig.110 24.6MHz  
TemperaturePeriod-Jitter MIN-MAX  
14/24  
Reference data (BU2362FV Temperature and Supply voltage variations data)  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
600  
500  
400  
300  
200  
100  
0
VDD=3.7V  
VDD=3.7V  
VDD=3.3V  
VDD=2.4V  
VDD=3.7V  
VDD=2.4V  
VDD=3.3V  
VDD=3.3V  
VDD=2.4V  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
]
100  
-25  
0
25  
50  
75  
]
100  
Temperature T[  
]
Temperature T[  
: ℃  
Temperature T[  
Fig.111 16.9MHz  
Fig.112 16.9MHz  
Fig.113 16.9MHz)  
TemperatureDuty  
TemperaturePeriod-Jitter 1σ  
TemperaturePeriod-Jitter MIN-MAX  
55  
100  
90  
600  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
500  
80  
VDD=2.4V  
70  
VDD=3.3V  
VDD=2.4V  
400  
VDD=3.7V  
VDD=3.3V  
VDD=3.3V  
60  
50  
40  
30  
300  
200  
VDD=3.7V  
VDD=3.7V  
VDD=2.4V  
20  
100  
0
10  
0
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
]
100  
-25  
0
25  
50  
75  
]
100  
Temperature T[  
]
Temperature T[  
Temperature T[  
Fig.114 27MHz  
TemperatureDuty  
Fig.115 27MHz  
TemperaturePeriod-Jitter 1σ  
Fig.116 27MHz  
TemperaturePeriod-Jitter MIN-MAX  
50  
40  
VDD=3.7V  
30
20  
10  
0
VDD=2.4V  
VDD=3.3V  
-25  
0
25  
50  
75  
100  
Temperature T[  
]
Fig.117 Action circuit current  
(with maximum output load)  
TemperatureConsumption current  
*Refer to the BU2362FV data for BU2288FV data.  
15/24  
Block diagram, Pin assignment  
BU2280FV  
3:CLK27M1  
(27.0000MHz)  
4:CLK27M2  
(27.0000MHz)  
24:CLK27M3  
(27.0000MHz)  
12:CLK33M  
1/4  
1/6  
1/8  
(33.8688MHz)  
XTALIN=27.0000MHz  
8:XTALIN  
XTAL  
OSC  
PLL1  
PLL2  
9:XTALOUT  
22:CLK768FS  
(CTRLFS=OPEN:36.8640MHz  
CTRLFS=L  
:33.8688MHz)  
16:CLK512FS1  
(CTRLFS=OPEN:24.5760MHz  
1/4  
1/6  
1/8  
CTRLFS=L  
:22.5792MHz)  
15:CLK512FS2  
(CTRLFS=OPEN:24.5760MHz  
CTRLFS=L  
:22.5792MHz)  
20:CLK384FS  
(CTRLFS=OPEN:18.4320MHz  
CTRLFS=L :16.9344MHz)  
21:OE  
23:CTRLFS  
(
Fig.118  
1:VDD1  
24:CLK27M3  
23:CTRLFS  
22:CLK768FS  
21:OE  
2:VSS1  
3:CLK27M1  
4:CLK27M2  
5:AVDD  
20:CLK384FS  
19:DVDD  
6:AVDD  
7:AVSS  
18:DVSS  
8:XTALIN  
9:XTALOUT  
10:VSS2  
11:VDD2  
12:CLK33M  
17:DVSS  
16:CLK512FS1  
15:CLK512FS2  
14:VDD2  
13:VSS2  
Fig.119  
CTRLFS  
CLK384FS  
16.9344MHz  
18.4320MHz  
CLK512FS  
CLK768FS  
L
22.5792MHz  
24.5760MHz  
33.8688MHz  
36.8640MHz  
OPEN  
16/24  
Block diagram, Pin assignment  
BU2288FV  
3:CLK27M  
(27.0000MHz)  
15:CLK33M  
(33.8688MHz)  
1/4  
1/6  
1/8  
XTALIN=27.0000MHz  
8:XTALIN  
XTAL  
OSC  
13:CLK16M  
(16.9344MHz)  
PLL1  
PLL2  
7:XTALOUT  
9:CLKA  
(FSEL=OPEN:16.9344MHz  
FSEL=L :36.8640MHz)  
1/4  
1/6  
10:CLK512FS  
(FSEL=OPEN:22.5792MHz  
FSEL=L :24.5760MHz)  
16:OE  
14:FSEL1  
Fig.120  
1:VDD2  
16:OE  
2:VSS2  
15:CLK33M  
14:FSEL1  
13:CLK16M  
12:DVDD  
11:DVSS  
3:CLK27M  
4:TEST  
5:AVDD  
6:AVSS  
7:XTALOUT  
8:XTALIN  
10:CLK512FS  
9:CLKA  
Fig.121  
CLK512FS  
CLKA  
FSEL1  
OPEN  
L
22.5792MHz  
24.5760MHz  
16.9344MHz  
36.8640MHz  
17/24  
Block diagram, Pin assignment  
BU2360FV  
3:CLK27M  
(27.0000MHz)  
4:CLK27M  
(27.0000MHz)  
15:CLK33M1  
(33.8688MHz)  
13:CLK33M2  
(33.8688MHz)  
1/4  
1/6  
XTALIN=27.0000MHz  
7:XTALIN  
XTAL  
OSC  
PLL1  
PLL2  
8:XTALOUT  
10:CLK512FS1  
(FSEL=OPEN:24.5760MHz  
FSEL=L  
:22.5792MHz)  
9:CLK512FS2  
(FSEL=OPEN:24.5760MHz  
FSEL=L  
1/6  
:22.5792MHz)  
16:OE  
14:FSEL  
Fig.122  
1:VDD2  
2:VSS2  
16:OE  
15:CLK33M1  
14:FSEL  
3:CLK27M1  
4:CLK27M2  
5:AVDD  
13:CLK33M2  
12:DVDD  
6:AVSS  
11:DVSS  
7:XTALIN  
8:XTALOUT  
10:CLK512FS1  
9:CLK512FS2  
Fig.123  
FSEL  
L
CLK512FS1 / 2  
22.5792MHz  
24.5760MHz  
OPEN  
18/24  
Block diagram, Pin assignment  
BU2362FV  
3:CLK27M  
(27.0000MHz)  
15:CLK33M  
(33.8688MHz)  
1/4  
1/6  
1/8  
XTALIN=27.0000MHz  
8:XTALIN  
XTAL  
OSC  
13:CLK16M  
(16.9344MHz)  
PLL1  
PLL2  
7:XTALOUT  
16:CLK36M  
(36.8640MHz)  
1/4  
1/6  
9:CLKA  
(FSE=OPEN:16.9344MHz  
FSEL=L :36.8640MHz)  
10:CLK512FS  
(FSE=OPEN:22.5792MHz  
FSEL=L :24.5760MHz)  
14:FSEL1  
Fig.124  
1:VDD2  
16:CLK36M  
15:CLK33M  
14:FSEL1  
13:CLK16M  
12:DVDD  
2:VSS2  
3:CLK27M  
4:TEST  
5:AVDD  
6:AVSS  
11:DVSS  
7:XTALOUT  
8:XTALIN  
10:CLK512FS  
9:CLKA  
Fig.125  
FSEL1  
OPEN  
L
CLK512FS  
22.5792MHz  
24.5760MHz  
CLKA  
16.9344MHz  
36.8640MHz  
19/24  
Example of application circuit  
BU2280FV  
24:CLK27M3  
23:CTRLFS  
22:CLK768FS  
21:OE  
1:VDD1  
27.0000MHz  
0.1uF  
OPEN:48.0kHz type  
L:44.1kHz type  
36.8640MHz  
or 33.8688MHz  
OPEN:Enable  
L:Disable  
2:VSS1  
27.0000MHz  
27.0000MHz  
3:CLK27M1  
4:CLK27M2  
5:AVDD  
20:CLK384FS  
19:DVDD  
18.4320MHz  
or 16.9344MHz  
6:AVDD  
0.1uF  
0.1uF  
18:DVSS  
7:AVSS  
17:DVSS  
8:XTALIN  
9:XTALOUT  
10:VSS2  
11:VDD2  
12:CLK33M  
16:CLK512FS1  
15:CLK512FS2  
14:VDD2  
24.5760MHz  
or 22.5792MHz  
24.5760MHz  
0.1uF  
or 22.5792MHz  
0.1uF  
33.8688MHz  
13:VSS2  
Fig.126  
Description of terminal  
PIN No.  
1
PIN name  
PIN function  
VDD1  
VSS1  
Power supply for 27MHz  
GND for 27MHz  
2
3
CLK27M1  
CLK27M2  
AVDD  
27.0000MHz Clock output terminal 1  
27.0000MHz Clock output terminal 2  
Power supply for Analog block  
Power supply for Analog block  
GND for Analog block  
4
5
6
AVDD  
7
AVSS  
8
XTALIN  
XTALOUT  
VSS2  
Crystal input terminal  
9
Crystal output terminal  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
GND for 33MHz  
VDD2  
Power supply for 33MHz  
33.8688MHz Clock output terminal  
GND for 33MHz  
CLK33M  
VSS2  
VDD2  
Power supply for 33MHz  
CLK512FS2  
CLK512FS1  
DVSS  
CTRLFS=OPEN:24.5760MHz, CTRLFS=L:22.5792MHz  
CTRLFS=OPEN:24.5760MHz, CTRLFS=L:22.5792MHz  
GND for Digital block  
DVSS  
GND for Digital block  
DVDD  
Power supply for Digital block  
CLK384FS  
OE  
CTRLFS=OPEN:18.4320MHz, CTRLFS=L:16.9344MHz  
Output enable (with pull-up), OPEN:enableL:disable  
CTRLFS=OPEN:36.8640MHz, CTRLFS=L:33.8688MHz  
15, 16, 20, 22PIN output selection (with pull-up)  
OPEN:24.5760MHz(15PIN, 16PIN), 18.4320MHz(20PIN), 36.8640MHz(22PIN)  
L:22.5792MHz(15PIN, 16PIN), 16.9344MHz(20PIN), 33.8688MHz(22PIN)  
27.0000MHz Clock output terminal 3  
CLK768FS  
23  
24  
CTRLFS  
CLK27M3  
Note) Basically, mount ICs to the printed circuit board for use. (If the ICs are not mounted to the printed circuit board, the characteristics of ICs  
may not be fully demonstrated.)  
Mount 0.1µF capacitors in the vicinity of the IC PINs between 1PIN (VDD1) and 2PIN (VSS1), 5PIN-6PIN (AVDD) and 7PIN (AVSS), 10PIN  
(VSS2) and 11PIN (VDD2), 13PIN(VSS2) and 14PIN (VDD2), 17PIN-18PIN (DVSS) and 19PIN(DVDD), respectively.  
Depending on the conditions of the printed circuit board, mount an additional electrolytic capacitor between the power supply and GND terminal.  
For EMI protection, it is effective to put ferrite beads in the origin of power supply to be fed to BU2280FV from the printed circuit board or to insert  
a capacitor (of 1or less), which bypasses high frequency desired, between the power supply and the GND terminal.  
20/24  
Example of application circuit  
BU2360FV  
1:VDD2  
16:OE  
OPEN:Enable  
L:Disable  
0.1uF  
2:VSS2  
15:CLK33M1  
14:FSEL  
33.8688MHz  
3:CLK27M1  
4: CLK27M2  
5:AVDD  
27.0000MHz  
27.0000MHz  
OPEN:48.0kHz type  
L:44.1kHz type  
33.8688MHz  
13:CLK32M2  
12:DVDD  
0.1uF  
0.1uF  
6:AVSS  
11:DVSS  
10:CLK512FS1  
9:CLK512FS2  
7:XTALIN  
8:XTALOUT  
24.5760MHz  
or 22.5792MHz  
24.5760MHz  
or 22.5792MHz  
Fig.127  
Description of terminal  
PIN No.  
PIN name  
VDD2  
PIN function  
1
2
Power supply for 27MHz  
GND for 27MHz  
VSS2  
3
CLK27M1  
CLK27M2  
AVDD  
27.0000MHz Clock output terminal 1 (CL=40pF)  
27.0000MHz Clock output terminal 2 (CL=25pF)  
Power supply for Analog block  
4
5
6
AVSS  
GND for Analog block  
7
XTALIN  
Crystal input terminal  
8
XTALOUT  
CLK512FS2  
CLK512FS1  
DVSS  
Crystal output terminal  
9
FSEL=OPEN:24.5760MHzFSEL=L:22.5792MHz  
FSEL=OPEN:24.5760MHzFSEL=L:22.5792MHz  
GND for Digital block  
10  
11  
12  
13  
DVDD  
Power supply for Digital block  
CLK33M2  
33.8688MHz Clock output terminal 2  
9, 10PIN output selection (with pull-up)  
OPEN:24.5760MHz(9, 10PIN), L:22.5792MHz(9, 10PIN)  
33.8688MHz Clock output terminal 1  
Output enable (with pull-up), OPEN:enableL:disable  
14  
FSEL  
15  
16  
CLK33M1  
OE  
Note) Basically, mount ICs to the printed circuit board for use. (If the ICs are not mounted to the printed circuit board, the characteristics of ICs  
may not be fully demonstrated.)  
Mount 0.1µF capacitors in the vicinity of the IC PINs between 1PIN (VDD2) and 2PIN (VSS2), 5PIN (AVDD) and 6PIN (AVSS), 11PIN (DVSS) and  
12PIN (DVDD), respectively.  
Depending on the conditions of the printed circuit board, mount an additional electrolytic capacitor between the power supply and GND terminal.  
For EMI protection, it is effective to put ferrite beads in the origin of power supply to be fed to BU2360FV from the printed circuit board or to insert  
a capacitor (of 1or less), which bypasses high frequency desired, between the power supply and the GND terminal.  
21/24  
Example of application circuit  
BU2362FV  
1:VDD2  
16:CLK36M  
15:CLK33M  
14:FSEL1  
36.8640MHz  
33.8688MHz  
2:VSS2  
H:44.1KHz mode  
L:48KHz mode  
3:CLK27M  
4:TEST  
27.0000MHz  
27.0000MHz  
13:CLK16M  
12:DVDD  
16.9344MHz  
5:AVDD  
6:AVSS  
11:DVSS  
22.5792MHz  
10:CLK512FS1  
7:XTALOUT  
8:XTALIN  
or 24.5670MHz  
16.9344MHz  
or 36.8640MHz  
9:CLKA  
Fig.128  
Pin No.  
PIN NAME  
Function  
1
2
3
VDD2  
Power supply for CLK27, CLK36M  
GND for CLK27, CLK36M  
VSS2  
CLK27M  
27MHz Clock output terminal  
Input pin for TEST : with pull-down  
(Please set ”L” or OPEN, normally)  
Power supply for Analog block  
GND for Analog block  
4
TEST  
5
6
AVDD  
AVSS  
7
XTALOUT  
XTALIN  
CLKA  
Crystal output terminal  
8
Crystal input terminal  
9
CLKA output terminal (16.9344MHz or 36.8640MHz)  
10  
11  
12  
13  
14  
15  
16  
CLK512FS  
DVSS  
512fs Clock output terminal (22.5792MHz or 24.5760MHz)  
Power supply for Digital block  
DVDD  
GND for Digital block  
CLK16M  
FSEL1  
16.9344MHz Clock output terminal  
CLKA or CLK512FS pin output select : with pull-up  
33.8688MHz Clock output terminal  
36.8640MHz Clock output terminal  
CLK33M  
CLK36M  
Cautions on use (BU2362FV)  
Basically, mount ICs to the printed circuit board for use. (If the ICs are not mounted to the printed circuit board, the  
characteristics of ICs may not be fully demonstrated.)  
Mount 0.1µF capacitors in the vicinity of the IC PINs between 1PIN (VDD2) and 2PIN (VSS2), 5PIN (AVDD) and 6PIN  
(AVSS), 11PIN (DVSS) and 12PIN (DVDD), respectively.  
For the fine-tuning of frequencies, insert several numbers of pF in the 7PIN and 8PIN to GND.  
Depending on the conditions of the printed circuit board, mount an additional electrolytic capacitor between the power  
supply and GND terminal.  
For EMI protection, it is effective to put ferrite beads in the origin of power supply to be fed to BU2362FV from the  
printed circuit board or to insert a capacitor (of 1or less), which bypasses high frequency desired, between the  
power supply and the GND terminal.  
*Refer to the BU2362FV Example of application circuit for BU2288FV Example of application circuit.  
Even though we believe that the example of recommended circuit is worth of a recommendation, please be sure to thoroughly  
recheck the characteristics before use.  
22/24  
Cautions on use  
(1) Absolute Maximum Ratings  
An excess in the absolute maximum ratings, such as applied voltage (VDD or VIN), operating temperature range (Topr),  
etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit.  
If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take  
physical safety measures including the use of fuses, etc.  
(2) Recommended operating conditions  
These conditions represent a range within which characteristics can be provided approximately as expected. The  
electrical characteristics are guaranteed under the conditions of each parameter.  
(3) Reverse connection of power supply connector  
The reverse connection of power supply connector can break down ICs. Take protective measures against the  
breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC’s  
power supply terminal.  
(4) Power supply line  
Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines.  
In this regard, for the digital block power supply and the analog block power supply, even though these power supplies  
has the same level of potential, separate the power supply pattern for the digital block from that for the analog block,  
thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to  
the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.  
Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal.  
At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the  
capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus  
determining the constant.  
(5) GND voltage  
Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state.  
Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric  
transient.  
(6) Short circuit between terminals and erroneous mounting  
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting  
can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or  
between the terminal and the power supply or the GND terminal, the ICs can break down.  
(7) Operation in strong electromagnetic field  
Be noted that using ICs in the strong electromagnetic field can malfunction them.  
(8) Inspection with set PCB  
On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress.  
Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set  
PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the  
jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In  
addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention  
to the transportation and the storage of the set PCB.  
(9) Input terminals  
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the  
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of  
the input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input  
terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not  
apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power  
supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the  
guaranteed value of electrical characteristics.  
(10) Ground wiring pattern  
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND  
pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that  
resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of  
the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.  
(11) External capacitor  
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a  
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.  
23/24  
Product Designation  
-
-
B
U
2
2
2
8
0
0
F
V
E
2
Package Type  
FVSSOP-B24  
Part No.  
Type  
Packing specification  
E2: Reel-like emboss taping  
2280  
B
U
3
6
F
V
F
E
2
Part No.  
Packing specification  
FE2: Reel-like emboss taping  
Type  
2288, 2360, 2362  
Package Type  
FVSSOP-B16  
SSOP-B16  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
Direction  
of feed  
E2  
5.0 0.2  
16  
9
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
8
0.15 0.1  
0.1  
0.22 0.1  
0.65  
Direction of feed  
1pin  
Reel  
(Unit:mm)  
When you order , please order in times the amount of package quantity.  
SSOP-B24  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
2000pcs  
7.8 0.2  
Direction  
of feed  
E2  
24  
13  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
12  
0.15 0.1  
0.1  
0.65  
0.22 0.1  
Direction of feed  
1pin  
Reel  
(Unit:mm)  
When you order , please order in times the amount of package quantity.  
Catalog No.07T171A '07.6 ROHM © 1000 NZ  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level  
of reliability and the malfunction of which would directly endanger human life (such as medical  
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers  
and other safety devices), please be sure to consult with our sales representative in advance.  
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance  
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow  
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in  
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM  
cannot be held responsible for any damages arising from the use of the products under conditions out of the  
range of the specifications or due to non-compliance with the NOTES specified in this catalog.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUROPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2008 ROHM CO.,LTD.  
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev2.0  

相关型号:

BU2291AFV

Clock Generator, 71.877264MHz, CMOS, PDSO16, SSOP-16
ROHM

BU2294AF

Clock generator IC
ETC

BU22P-TRW-P-H

2.0mm pitch/Disconnectable Insulation displacement and Crimp style connectors
JST

BU22P-TRW-PC-H

2.0mm pitch/Disconnectable Insulation displacement and Crimp style connectors
JST

BU22UA3WNVX-TL

Versatile Package FULL CMOS LDO Regulator
ROHM

BU2302

1 Func, 1.17MHz, CMOS, PDIP8, DIP-8
ROHM

BU2302F

Analog Timer Circuit
ETC

BU2302F-E2

Programmable Timer, 1 Timer(s), CMOS, PDSO8, SOP-8
ROHM

BU2305

1 Func, 1.17MHz, CMOS, PDIP8, DIP-8
ROHM

BU2305F

1 Func, 1.17MHz, CMOS, PDSO8, SOP-8
ROHM

BU2305F-E2

1 Func, 1.17MHz, CMOS, PDSO8, SOP-8
ROHM

BU2360FV

DVD-video Reference Clock Generators for Audio/Video Equipments
ROHM