BU10JA2VG-C [ROHM]

BU10JA2VG-C是输出为200mA的高性能CMOS稳压器。封装组件采用SSOP5,有利于整机小型化。电路电流33μA,低功耗且噪音特性、负载响应特性优异,适用于车载摄像头、车载雷达等各种用途。;
BU10JA2VG-C
型号: BU10JA2VG-C
厂家: ROHM    ROHM
描述:

BU10JA2VG-C是输出为200mA的高性能CMOS稳压器。封装组件采用SSOP5,有利于整机小型化。电路电流33μA,低功耗且噪音特性、负载响应特性优异,适用于车载摄像头、车载雷达等各种用途。

雷达 稳压器
文件: 总30页 (文件大小:2396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
CMOS LDO Regulators for Automotive  
1ch 200mA  
CMOS LDO Regulators  
BUxxJA2VG-C series  
General Description  
Key Specifications  
BUxxJA2VG-C series are high-performance CMOS LDO  
regulators with output current ability of up to 200mA. The  
SSOP5 package can contribute to the downsizing of the set.  
These devices have excellent noise and load response  
characteristics despite of its low circuit current consumption  
of 33µA. They are most appropriate for various applications  
such as power supplies for radar modules and camera  
modules.  
Input Power Supply Voltage Range:  
Output Current Range:  
Operating Temperature Range:  
Output Voltage Lineup:  
Output Voltage Accuracy:  
Circuit Current:  
1.7V to 6.0V  
0 to 200mA  
-40°C to +125°C  
1.0V to 3.3V  
±2.0%  
33µA(Typ)  
0μA (Typ)  
Standby Current:  
Package  
SSOP5  
W(Typ) x D(Typ) x H(Max)  
2.90mm x 2.80mm x 1.25mm  
Features  
AEC-Q100 qualified(Note 1)  
High Output Voltage Accuracy: 2.0%  
(In all recommended conditions)  
High Ripple Rejection: 68 dB (Typ, 1kHz)  
Compatible with small ceramic capacitor  
(Cin=Cout=0.47µF)  
Low Current Consumption: 33µA  
Output Voltage ON/OFF control  
Built-in Over Current Protection Circuit (OCP)  
Built-in Thermal Shutdown Circuit (TSD)  
Package SSOP5 is similar to SOT23-5(JEDEC)  
(Note 1) Grade1  
Applications  
Automotive Radar modules  
Automotive Camera modules  
Typical Application Circuit  
Vin  
VOUT  
VIN  
Vout  
Cin  
On  
Cout  
BUxxJA2VG-C  
GND  
STBY  
Off  
Figure 1. Typical Application Circuit  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays  
.www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
30.Aug.2017 Rev.004  
© 2014 ROHM Co., Ltd. All rights reserved.  
1/27  
TSZ2211114001  
BUxxJA2VG-C series  
Ordering Information  
B
U
X
X
J
A
2
V
G
-
C
G
Y
Y
Part  
Number  
Output Voltage  
10 : 1.0V  
12 : 1.2V  
1C : 1.25V  
15 : 1.5V  
18 : 1.8V  
25 : 2.5V  
28 : 2.8V  
2J : 2.85V  
30 : 3.0V  
33 : 3.3V  
Series name  
Package  
G : SSOP5  
Product Rank  
C :for Automotive  
Manufacturing  
Code  
Packageing and forming specification  
Embossed tape and reel  
Maximum Output Current : 200mA  
Maximum Power Supply Voltage Range : 6.5V  
High-speed load response, Low noise, Shutdown SW  
TR : The pin number 1 is the upper right  
TL (Note 1) : The pin number 1 is the lower left  
(Note 1) Only xx=18 and 33 models support TL version.  
Pin Description(Note 2)  
Pin No.  
Symbol  
VIN  
Function  
N.C.  
VOUT  
1
2
3
4
5
Input Pin  
GND Pin  
GND  
STBY  
N.C.  
Output Control Pin  
(High:ON, Low:OFF)  
No Connect  
STBY  
VIGND  
VOUT  
Output Pin  
(Note 2) N.C. Pin can be open because it isn’t connecting it inside of IC.  
Block Diagram  
1
VIN  
STBY  
3
STBY  
VREF  
-
+
AMP  
5
OCP  
VOUT  
TSD  
N.C.  
4
2
GND  
Figure 2. Block diagram  
Block  
Function  
Description  
STBY  
VREF  
AMP  
Control Standby mode  
Internal Reference Voltage  
Error AMP  
STBY controls internal block active and standby state  
VREF generates reference voltage.  
AMP amplifies electric signal and drives output power transistor.  
When output current exceeds current ability, OCP restricts Output  
Current.  
OCP  
TSD  
Over Current Protection  
Thermal Shutdown  
When Junction temperature rise and exceed Maximum junction  
temperature, TSD turns off Output power transistor.  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
2/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Absolute Maximum Ratings  
Parameter  
Symbol  
VIN  
Rating  
Unit  
V
-0.3 to +6.5(Note1)  
-0.3 to +6.5  
+150  
Power Supply Voltage Range  
STBY Voltage  
VSTBY  
Tjmax  
Topr  
V
Junction Temperature  
°C  
°C  
°C  
Operating Temperature Range  
-40 to +125  
-55 to +150  
Storage Temperature Range  
Tstg  
(Note 1) Not to exceed Tjmax  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Recommended Operating Ratings(Ta=-40°C to +125°C)  
Parameter  
Power Supply Voltage Range  
STBY voltage  
Symbol  
VIN  
Limit  
1.7 to 6.0  
1.7 to 6.0  
200  
Unit  
V
VSTBY  
IOUTMAX  
V
Maximum Output Current  
mA  
Recommended Operating Conditions  
Rating  
Typ  
Parameter  
Symbol  
Cin  
Unit  
Conditions  
Min  
Max  
Input capacitor  
0.47(Note2) 1.0  
µF  
µF  
A ceramic capacitor is recommended.  
A ceramic capacitor is recommended.  
Output capacitor  
Cout 0.47(Note2) 1.0  
(Note 2) Set the value of the capacitor so that it does not fall below the minimum value.  
Take into consideration the temperature characteristics, DC device characteristics and degradation with time.  
Thermal Resistance (Note 3)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 5)  
2s2p(Note 6)  
SSOP5  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 4)  
θJA  
376.5  
40  
185.4  
30  
°C/W  
°C/W  
ΨJT  
(Note 3)Based on JESD51-2A(Still-Air).  
(Note 4)The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 5)Using a PCB board based on JESD51-3.  
Layer Number of  
Measurement Board  
Material  
Board Size  
Single  
FR-4  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
70μm  
Footprints and Traces  
(Note 6)Using a PCB board based on JESD51-7.  
Layer Number of  
Material  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
Measurement Board  
4 Layers  
FR-4  
Top  
Bottom  
Copper Pattern  
74.2mm x 74.2mm  
Copper Pattern  
Thickness  
70μm  
Copper Pattern  
Thickness  
35μm  
Thickness  
70μm  
Footprints and Traces  
74.2mm x 74.2mm  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
3/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Electrical Characteristics  
(Unless otherwise noted, Ta=-40 to 125°C, VIN=VOUT+1.0V(Note 1), VSTBY=1.5V, Cin=1μF, Cout=1μF.  
The Typical value is defined at Ta=25°C)  
Limit  
Parameter  
Symbol  
Unit  
V
Conditions  
IOUT=0 to 200mA  
VOUT2.5V, VIN=VOUT+0.5 to 6.0V  
VOUT2.5V, VIN=3.0 to 6.0V  
IOUT=10mA  
VOUT2.5V, VIN=3.0 to 6.0V  
IOUT=10mA  
VOUT2.5V, VIN=VOUT+0.5 to 6.0V  
MIN  
TYP  
MAX  
VOUT  
×0.98  
VOUT  
×1.02  
Output Voltage  
VOUT  
VOUT  
-
-
4
6
15  
20  
mV  
mV  
Line Regulation  
VDLI  
Load Regulation1  
Load Regulation2  
VDLO1  
VDLO2  
-
0.5  
1
5
10  
315  
190  
155  
-
mV  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
µA  
IOUT=1 to 100mA  
-
IOUT=1 to 200mA  
-
160  
100  
85  
-
VOUT=1.8V, IOUT=100mA  
VOUT=2.5V, IOUT=100mA  
VOUT2.8V, IOUT=100mA  
VIN=VOUT+1.0V (Note 1)  
applied VOUT×0.98 for VOUT Pin, Ta=25°C  
VOUT=0V, Ta=25°C  
Dropout Voltage  
VDROP  
-
-
Maximum Output Current  
Limit Current  
IOUTMAX  
ILMAX  
200  
250  
400  
100  
33  
-
-
Short Current  
ISHORT  
IGND  
-
-
-
200  
80  
2.0  
Circuit Current  
IOUT=0mA  
Circuit Current (STBY)  
ICCST  
µA  
VSTBY=0V  
VRR=-20dBv, fRR=1kHz  
IOUT=10mA, Ta=25°C  
IOUT=1 to 150mA, Trise=Tfall=1µs  
VIN=VOUT+1.0V, Ta=25°C  
VIN=VOUT+0.5 to VOUT+1.0V  
Trise=Tfall =10µs, Ta=25°C  
Ripple Rejection Ratio  
R.R.  
-
-
68  
-
-
dB  
mV  
mV  
Load Transient Response  
VLOT  
±65  
Line Transient Response  
Output Noise Voltage  
Startup Time  
VLIT  
VNOISE  
TST  
-
-
-
±5  
30  
-
-
µVrms Bandwidth 10 to 100kHz, Ta=25°C  
Output Voltage settled  
100  
300  
µs  
within tolerances (Note 2), Ta=25°C  
ON  
VSTBH  
VSTBL  
ISTBY  
1.1  
-0.2  
-
-
-
-
VIN  
0.5  
4.0  
V
STBY Control  
Voltage  
OFF  
V
Ta=25°C  
STBY Pin Current  
µA  
(Note 1) VIN=3.0V for VOUT2.5V.  
(Note 2) Startup time=time from EN assertion to VOUT×0.98  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
30.Aug.2017 Rev.004  
© 2014 ROHM Co., Ltd. All rights reserved.  
4/27  
TSZ2211115001  
BUxxJA2VG-C series  
Reference data BU18JA2VG-C (Unless otherwise specified, Ta=25°C)  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
IOUT=0mA  
IOUT=50mA  
IOUT=200mA  
IOUT=0mA  
IOUT=50mA  
IOUT=200mA  
Ta=25°C  
VIN=VSTBY  
Ta=25°C  
VIN=VSTBY  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
3.0  
4.0  
5.0  
6.0  
Input Voltage VIN (V)  
Input Voltage VIN (V)  
Figure 3. Output Voltage vs Input Voltage  
Figure 4. Line Regulation  
60  
1.85  
Ta=125  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
50  
40  
30  
20  
10  
0
Ta=25  
Ta=125  
Ta=25  
Ta=-40℃  
Ta=-40  
VIN=VSTBY  
IOUT=0mA  
VIN=3.5V  
VSTBY=1.5V  
0
50  
100  
150  
200  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Output Current IOUT (mA)  
Input Voltage VIN (V)  
Figure 5. Circuit Current vs Input Voltage  
Figure 6. Load Regulation  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
5/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Reference data BU18JA2VG-C (Unless otherwise specified, Ta=25°C)  
120  
100  
80  
60  
40  
20  
0
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
Ta=125  
Ta=25℃  
Ta=-40  
VIN=6.0V  
VIN=3.5V  
VIN=3.0V  
VIN=3.5V  
VSTBY=1.5V  
Ta=25°C  
VSTBY=1.5V  
0
50  
100  
150  
200  
0
100  
200  
300  
400  
500  
Output Current IOUT (mA)  
Output Current IOUT (mA)  
Figure 7. Circuit Current vs Output Current  
Figure 8. OCP Threshold  
100  
1.85  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=3.5V  
VSTBY=1.5V  
IOUT=0.1mA  
VIN=3.5V  
VSTBY=1.5V  
IOUT=0.1mA  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
Temperature Ta (°C)  
Temperature Ta (°C)  
Figure 9. Output Voltage vs Temperature  
Figure 10. Circuit Current vs Temperature  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
6/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Reference data BU18JA2VG-C (Unless otherwise specified, Ta=25°C)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Ta=125  
Ta=-40℃  
Ta=25℃  
VIN=3.5V  
IOUT=0.1mA  
VIN=6.0V  
VSTBY=0V  
0.00  
0.25  
0.50  
STBY Pin Voltage VSTBY(V)  
Figure 11. STBY Threshold  
0.75  
1.00  
1.25  
1.50  
-40 -25 -10 5 20 35 50 65 80 95 110 125  
Temperature Ta (°C)  
Figure 12. Circuit Current at STBY vs Temperature  
450  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
400  
350  
300  
250  
200  
150  
100  
50  
VIN=0.98×VOUT  
VSTBY=1.5V  
Ta=125  
Ta=25℃  
Ta=-40℃  
Ta=125℃  
Ta=25℃  
Ta=-40℃  
0
0.0  
1.0  
2.0  
STBY Pin Voltage VSTBY (V)  
Figure 13. STBY Pin Current vs STBY Pin Voltage  
3.0  
4.0  
5.0  
6.0  
0
50  
100  
150  
200  
Output Current IOUT(mA)  
Figure 14. Dropout Voltage vs Output Current  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G5G0A300040-1-2  
7/27  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Reference data BU18JA2VG-C (Unless otherwise specified, Ta=25°C)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Ta=25°C  
VIN=3.5V  
VRR=-20dBv  
VSTBY=1.5V  
IOUT=10mA  
Cin=Cout=1μF  
Ta=25°C  
VIN=3.5V  
VSTBY=1.5V  
Cin=Cout=1μF  
Bandwidth 10 to 100kHz  
0
100  
1000  
10000  
100000  
0
50  
100  
150  
200  
Frequency (Hz)  
Output Current IOUT (mA)  
Figure 15. Ripple Rejection Ratio vs Frequency  
Figure 16. Output Noise Voltage vs Output Current  
10  
1
0.1  
0.01  
Ta=25°C  
VIN=3.5V  
VSTBY=1.5V  
IOUT=10mA  
Cin=Cout=1μF  
10  
100  
1000  
10000  
100000  
Frequency (Hz)  
Figure 17.Output Noise Density vs Frequency  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G5G0A300040-1-2  
8/27  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Reference data BU18JA2VG-C (Unless otherwise specified, Ta=25°C)  
Trise Tfall=1µs,  
Cin=Cout=1µF  
VIN=3.5V VSTBY=1.5V  
VIN=3.5V VSTBY=1.5V  
Trise Tfall=1µs,  
Cin=Cout=1µF  
200  
100  
0
200  
100  
0
150mA  
100mA  
IOUT  
1mA  
IOUT  
100mA/div  
1mA  
100mA/div  
20µs/div  
20µs/div  
1.90  
1.80  
1.70  
1.90  
1.80  
1.70  
VOUT  
VOUT  
100mV/div  
100mV/div  
Figure 18. Load Response  
(1mA to 100mA)  
Figure 19. Load Response  
(1mA to 150mA)  
VIN=VSTBY  
6.0V  
6.0  
4.0  
2.0  
0.0  
6.0  
4.0  
2.0  
0.0  
2.0V/div  
VIN=VSTBY 3.5V  
3.0V  
2.0V/div  
Slew Rate 1V/µs  
3.0V  
Slew Rate 1V/µs  
1ms/div  
1ms/div  
1.82  
1.80  
1.78  
1.82  
1.80  
1.78  
20mV/div  
VOUT  
20mV/div  
VOUT  
Cout=1.0µF  
IOUT=10mA  
Cout=1.0µF  
IOUT=10mA  
Figure 20. Line Transient Response  
(3.0 to 3.5V)  
Figure 21. Line Transient Response  
(3.0 to 6.0V)  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
9/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Reference data BU18JA2VG-C (Unless otherwise specified, Ta=25°C)  
2.0  
1.0  
0.0  
2.0  
1.0  
0.0  
1.0V/div  
1.5V  
1.0V/div  
1.5V  
VSTBY  
0V  
VSTBY  
0V  
20µs/div  
1.0V/div  
20µs/div  
1.0V/div  
2.0  
1.0  
0.0  
2.0  
1.0  
0.0  
Cout=0.47µF  
Cout=1.0µF  
Cout=2.2µF  
Cout=0.47µF  
Cout=1.0µF  
Cout=2.2µF  
VOUT  
VOUT  
VIN=3.5V  
VIN=3.5V  
Figure 22. Startup Time  
(ROUT=open)  
Figure 23. Startup Time  
(ROUT=9Ω)  
2.0  
1.0  
2.0  
1.5V  
1.5V  
VSTBY  
VSTBY  
1.0  
0.0  
1.0V/div  
1.0V/div  
20µs/div  
0.0  
0V  
0V  
400ms/div  
VOUT  
2.0  
1.0  
0.0  
2.0  
1.0  
0.0  
Cout=0.47µF  
Cout=1.0µF  
Cout=2.2µF  
Cout=0.47µF  
Cout=1.0µF  
Cout=2.2µF  
VOUT  
1.0V/div  
1.0V/div  
VIN=3.5V  
VIN=3.5V  
Figure 24. Discharge Time  
(ROUT=open)  
Figure 25. Discharge Time  
(ROUT=9Ω)  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
10/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Reference data BU33JA2VG-C (Unless otherwise specified, Ta=25°C)  
3.35  
3.33  
3.31  
3.29  
3.27  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
IOUT=0mA  
IOUT=50mA  
IOUT=200mA  
IOUT=0mA  
IOUT=50mA  
IOUT=200mA  
Ta=25°C  
VIN=VSTBY  
Ta=25°C  
VIN=VSTBY  
3.8  
4.3  
4.8  
5.3  
5.8  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Inout Voltage VIN (V)  
Input Voltage VIN (V)  
Figure 26. Output Voltage vs Input Voltage  
Figure 27. Line Regulation  
60  
50  
40  
30  
20  
10  
0
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
Ta=125  
Ta=25  
Ta=-40  
Ta=125℃  
Ta=25  
Ta=-40℃  
VIN=VSTBY  
IOUT=0mA  
VIN=4.3V  
VSTBY=1.5V  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
0
50  
100  
150  
200  
Input Voltage VIN (V)  
Output Current IOUT(mA)  
Figure 28. Circuit Current vs Input Voltage  
Figure 29. Load Regulation  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
11/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Reference data BU33JA2VG-C (Unless otherwise specified, Ta=25°C)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
Ta=125  
Ta=25  
Ta=-40℃  
VIN=3.8V  
VIN=4.3V  
VIN=6.0V  
VIN=4.3V  
VSTBY=1.5V  
0
100  
200  
300  
400  
500  
0
50  
100  
150  
200  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
Figure 31. OCP Threshold  
Figure 30. Circuit Current vs Output Current  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=4.3V  
VSTBY=1.5V  
IOUT=0.1mA  
VIN=4.3V  
VSTBY=1.5V  
IOUT=0.1mA  
-40 -20  
0
20  
Temperature Ta (°C)  
Figure 32. Output Voltage vs Temperature  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature Ta (°C)  
Figure 33. Circuit Current vs Temperature  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
12/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Reference data BU33JA2VG-C (Unless otherwise specified, Ta=25°C)  
200  
180  
160  
140  
120  
100  
80  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta=125  
Ta=-40℃  
Ta=25℃  
60  
VIN=6.0V  
VSTBY=0V  
VIN=4.3V  
IOUT=0.1mA  
40  
20  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0.00  
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
STBY Pin Voltage VSTBY(V)  
Temperature Ta (°C)  
Figure 34. STBY Threshold  
Figure 35. Circuit Current at STBY vs Temperature  
500  
2.0  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Ta=125  
Ta=25  
Ta=-40  
VIN=0.98×VOUT  
VSTBY=1.5V  
Ta=125  
Ta=25℃  
Ta=-40℃  
0
0
50  
100  
150  
200  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
STBY Pin Voltage VSTBY (V)  
Output Current IOUT(mA)  
Figure 36. STBY Pin Current vs STBY Pin Voltage  
Figure 37. Dropout Voltage vs Output Current  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G5G0A300040-1-2  
13/27  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Reference data BU33JA2VG-C (Unless otherwise specified, Ta=25°C)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Ta=25°C  
VIN=4.3V  
VSTBY=1.5V  
Cin=Cout=1μF  
Bandwidth 10 to 100kHz  
Ta=25°C  
VIN=4.3V  
VRR=-20dBv  
VSTBY=1.5V  
IOUT=10mA  
Cin=Cout=1μF  
0
100  
1000  
10000  
100000  
0
50  
100  
150  
200  
Frequency (Hz)  
Output Current IOUT(mA)  
Figure 38. Ripple Rejection Ratio vs Frequency  
Figure 39. Output Noise Voltage vs Output Current  
10  
1
0.1  
Ta=25°C  
VIN=4.3V  
VSTBY=1.5V  
IOUT=10mA  
Cin=Cout=1μF  
0.01  
10  
100  
1000  
10000  
100000  
Frequency (Hz)  
Figure 40. Output Noise Density vs Frequency  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G5G0A300040-1-2  
14/27  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Reference data BU33JA2VG-C (Unless otherwise specified, Ta=25°C)  
VIN=4.3V VSTBY=1.5V  
VIN=4.3V VSTBY=1.5V  
150mA  
Trise Tfall=1µs  
Cin=Cout=1µF  
Trise Tfall=1µs  
Cin=Cout=1µF  
200  
100  
0
200  
100  
0
100mA  
IOUT  
IOUT  
100mA/div  
1mA  
1mA  
100mA/div  
20µs/div  
20µs/div  
3.40  
3.30  
3.20  
3.40  
3.30  
3.20  
VOUT  
VOUT  
100mV/div  
100mV/div  
Figure 41. Load Response  
(1 to 100mA)  
Figure 42. Load Response  
(1 to 150mA)  
2.0V/div  
6.0V  
VIN=VSTBY  
6.0  
6.0  
4.0  
2.0  
0.0  
VIN=VSTBY  
3.8V  
4.3V  
2.0V/div  
4.0  
2.0  
0.0  
Slew Rate 1V/µs  
Slew Rate 1V/µs  
3.8V  
1ms/div  
1ms/div  
20mV/div  
3.32  
3.30  
3.28  
3.32  
3.30  
3.28  
20mV/div  
VOUT  
VOUT  
IOUT=10mA  
Cout=1.0µF  
Cout=1.0µF  
IOUT=10mA  
Figure 43. Line Transient Response  
(3.8 to 4.3V)  
Figure 44. Line Transient Response  
(3.8 to 6.0V)  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
15/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Reference data BU33JA2VG-C (Unless otherwise specified, Ta=25°C)  
2.0  
1.0  
2.0  
1.0V/div  
1.5V  
1.0V/div  
1.0  
0.0  
1.5V  
VSTBY  
0V  
VSTBY  
0V  
0.0  
20µs/div  
20µs/div  
3.0  
2.0  
3.0  
2.0  
1.0V/div  
1.0V/div  
Cout=0.47µF  
Cout=1.0µF  
Cout=2.2µF  
Cout=0.47µF  
Cout=1.0µF  
Cout=2.2µF  
1.0  
0.0  
1.0  
0.0  
VOUT  
VOUT  
VIN=4.3V  
VIN=4.3V  
Figure 45. Startup Time  
(ROUT=open)  
Figure 46. Startup Time  
(ROUT=16.5Ω)  
2.0  
1.0  
0.0  
2.0  
1.5V  
1.5V  
VSTBY  
VSTBY  
1.0  
0.0  
1.0V/div  
1.0V/div  
0V  
0V  
3.0  
3.0  
1.0s/div  
1.0V/div  
40µs/div  
VOUT  
VOUT  
2.0  
1.0  
0.0  
2.0  
1.0  
0.0  
Cout=0.47µF  
Cout=1.0µF  
Cout=2.2µF  
Cout=0.47 F  
Cout=1.0µF  
Cout=2.2µF  
µ
1.0V/div  
=3.5V  
VIN  
VIN=3.5V  
Figure 47. Discharge Time  
(ROUT=open)  
Figure 48. Discharge Time  
(ROUT=16.5Ω)  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
16/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Input/Output Capacitor  
It is recommended that a capacitor is placed close to pin between input pin and GND as well as output pin and GND. The  
input capacitor becomes more necessary when the power supply impedance is high or when the PCB trace has significant  
length. Moreover, the higher the capacitance of the output capacitor the more stable the output will be, even with load and  
line voltage variations. However, please check the actual functionality by mounting on a board for the actual application.  
Also, ceramic capacitors usually have different thermal and equivalent series resistance characteristics and may degrade  
gradually over continued use.  
For additional details, please check with the manufacturer and select the best ceramic capacitor for your application.  
10  
0
Rated Voltage:10V  
B1 characteristics  
-10  
Rated Voltage:10V  
B characteristics  
-20  
-30  
Rated Voltage:6.3V  
B characteristics  
-40  
Rated Voltage:4V  
X6S characteristics  
-50  
Rated Voltage:10V  
F characteristics  
-60  
-70  
-80  
-90  
-100  
0
1
2
3
4
DC Bias Voltage [V]  
Figure 49. Ceramic Capacitor Capacitance Value vs DC Bias Characteristics  
(Characteristics Example)  
Stable region  
Cin=Cout=0.47μF
Ta=-40°C to 125°C  
Equivalent Series Resistance (ESR) of a Ceramic Capacitor  
100  
10  
To prevent oscillation, please attach a capacitor between VOUT  
and GND. Capacitors generally have ESR (equivalent series  
resistance) and it operates stably in the ESR-IOUT area shown  
on the right. Since ceramic capacitors, tantalum capacitors,  
electrolytic capacitors, etc. generally have different ESR, please  
check the ESR of the capacitor to be used and use it within the  
stability area range shown in the right graph for evaluation of the  
actual application.  
Unstable region  
Stable region  
1
0.1  
0.01  
0
50  
100  
150  
200  
IOUT[mA]  
Figure 50. Stability area characteristics  
(VIN=1.7(Note1) to 6.0V)  
(Note1) Set VIN voltage considering Dropout Voltage  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
17/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Power Dissipation  
SSOP5  
1
IC mounted on ROHM standard board based on JEDEC.  
: 1-layer PCB  
(Copper foil area on the reverse side of PCB: 0 mm × 0 mm)  
Board material: FR4  
0.8  
0.67 W  
Board size: 114.3 mm × 76.2 mm × 1.57 mmt  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: ROHM recommended  
footprint + wiring to measure, 2 oz. copper.  
0.6  
0.4  
0.33W  
: 4-layer PCB  
(2 inner layers copper foil area of PCB, copper foil area on the  
reverse side of PCB: 74.2 mm × 74.2 mm)  
Board material: FR4  
Board size: 114.3 mm × 76.2 mm × 1.6 mmt  
Mount condition: PCB and exposed pad are soldered.  
Top copper foil: ROHM recommended  
footprint + wiring to measure, 2 oz. copper.  
2 inner layers copper foil area of PCB  
: 74.2 mm × 74.2 mm, 1 oz. copper.  
0.2  
0
0
25  
50  
75  
100  
125  
150  
Ambient Temperature: Ta [°C]  
Copper foil area on the reverse side of PCB  
: 74.2 mm × 74.2 mm, 2 oz. copper.  
Figure 51. SSOP5 Package Data  
(Reference Data)  
Condition: θJA = 376.5 °C/W, ΨJT (top center) = 40 °C/W  
Condition: θJA = 185.4 °C/W, ΨJT (top center) = 30 °C/W  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
18/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Thermal Design  
Within this IC, the power consumption is decided by the dropout voltage condition, the load current and the circuit current.  
Refer to power dissipation curves illustrated in Figure 51 when using the IC in an environment of Ta ≥ 25 °C. Even if the  
ambient temperature Ta is at 25 °C, depending on the input voltage and the load current, chip junction temperature can be  
very high. Consider the design to be Tj Tjmax = 150 °C in all possible operating temperature range.  
Should by any condition the maximum junction temperature Tjmax = 150 °C rating be exceeded by the temperature increase  
of the chip, it may result in deterioration of the properties of the chip. The thermal impedance in this specification is based on  
recommended PCB and measurement condition by JEDEC standard. Verify the application and allow sufficient margins in  
the thermal design by the following method is used to calculate the junction temperature Tj.  
Tj can be calculated by either of the two following methods.  
1. The following method is used to calculate the junction temperature Tj.  
Tj = Ta + PC × θJA  
Where:  
Tj  
: Junction Temperature  
: Ambient Temperature  
: Power Consumption  
: Thermal Impedance  
(Junction to Ambient)  
Ta  
PC  
θJA  
2. The following method is also used to calculate the junction temperature Tj.  
Tj = TT + PC × ΨJT  
Where:  
Tj  
: Junction Temperature  
TT  
PC  
ΨJT  
: Top Center of Case’s (mold) Temperature  
: Power consumption  
: Thermal Impedance  
(Junction to Top Center of Case)  
The following method is used to calculate the power consumption Pc (W).  
Pc = (VIN - VOUT) × IOUT + VIN × IGND  
Where:  
PC  
VIN  
: Power Consumption  
: Input Voltage  
VOUT  
IOUT  
IGND  
: Output Voltage  
: Load Current  
: Circuit Current  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
19/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Calculation Example (SSOP5)  
If VIN = 3.0 V, VOUT = 1.8 V, IOUT = 50 mA, IGND = 33 μA, the power consumption Pc can be calculated as follows:  
PC = (VIN - VOUT) × IOUT + VIN × IGND  
= (3.0 V – 1.8 V) × 50 mA + 3.0 V × 33 μA  
= 0.06 W  
At the ambient temperature Tamax = 125°C, the thermal Impedance (Junction to Ambient)θJA = 185.4 °C / W ( 4-layer PCB ),  
Tj = Tamax + PC × θJA  
= 125 °C + 0.06 W × 185.4 °C / W  
= 136.1 °C  
When operating the IC, the top center of case’s (mold) temperature TT = 100 °C, ΨJT = 40 °C / W (1-layer PCB),  
Tj = TT + PC × ΨJT  
= 100 °C + 0.06 W × 40 °C / W  
= 102.4 °C  
For optimum thermal performance, it is recommended to expand the copper foil area of the board, increasing the layer and  
thermal via between thermal land pad.  
I/O Equivalence Circuits  
5pin (VOUT)  
3pin (STBY)  
VIN  
VIN  
VOUT  
STBY  
Figure 52. Input / Output equivalent circuit  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
20/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Linear Regulators Surge Voltage Protection  
The following provides instructions on surge voltage overs absolute maximum ratings polarity protection for ICs.  
1. Applying positive surge to the input  
If the possibility exists that surges higher than absolute maximum ratings 6.5 V will be applied to the input, a Zener  
Diode should be placed to protect the device in between the VIN and the GND as shown in the figure 53.  
IN  
OUT  
VIN  
VOUT  
COUT  
GND  
D1  
CIN  
Figure 53. Surges Higher than 6.5 V will be Applied to the Input  
2. Applying negative surge to the input  
If the possibility exists that surges lower than absolute maximum ratings -0.3 V will be applied to the input, a Schottky  
Diode should be place to protect the device in between the VIN and the GND as shown in the figure 54.  
IN  
OUT  
VIN  
VOUT  
COUT  
GND  
D1  
CIN  
Figure 54. Surges Lower than -0.3 V will be Applied to the Input  
Linear Regulators Reverse Voltage Protection  
A linear regulator integrated circuit (IC) requires that the input voltage is always higher than the regulated voltage. Output  
voltage, however, may become higher than the input voltage under specific situations or circuit configurations, and that  
reverse voltage and current may cause damage to the IC. A reverse polarity connection or certain inductor components can  
also cause a polarity reversal between the input and output pins. The following provides instructions on reversed voltage  
polarity protection for ICs.  
1. about Input /Output Voltage Reversal  
In an MOS linear regulator, a parasitic element exists as a body diode in the drain-source junction portion of its power  
MOSFET. Reverse input/output voltage triggers the current flow from the output to the input through the body diode. The  
inverted current may damage or destroy the semiconductor elements of the regulator since the effect of the parasitic  
body diode is usually disregarded for the regulator behavior (Figure 55).  
IR  
VOUT  
VIN  
Error  
AMP.  
VREF  
Figure 55. Reverse Current Path in an MOS Linear Regulator  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G5G0A300040-1-2  
30.Aug.2017 Rev.004  
21/27  
BUxxJA2VG-C series  
An effective solution to this is an external bypass diode connected in-between the input and output to prevent the  
reverse current flow inside the IC (see Figure 56). Note that the bypass diode must be turned on before the internal  
circuit of the IC. Bypass diodes in the internal circuits of MOS linear regulators must have low forward voltage VF. Some  
ICs are configured with current-limit thresholds to shut down high reverse current even when the output is off, allowing  
large leakage current from the diode to flow from the input to the output; therefore, it is necessary to choose one that  
has a small reverse current. Specifically, select a diode with a rated peak inverse voltage greater than the input to output  
voltage differential and rated forward current greater than the reverse current during use.  
D1  
IN  
OUT  
VIN  
VOUT  
COUT  
GND  
CIN  
Figure 56. Bypass Diode for Reverse Current Diversion  
The lower forward voltage (VF) of Schottky barrier diodes cater to requirements of MOS linear regulators, however the  
main drawback is found in the level of their reverse current (IR), which is relatively high. So, one with a low reverse  
current is recommended when choosing a Schottky diode. The VR-IR characteristics versus temperatures show  
increases at higher temperatures.  
If VIN is open in a circuit as shown in the following Figure 57 with its input/output voltage being reversed, the only current  
that flows in the reverse current path is the bias current of the IC. Because the amperage is too low to damage or  
destroy the parasitic element, a reverse current bypass diode is not required for this type of circuit.  
ONOFF  
IBIAS  
IN  
OUT  
VOUT  
COUT  
VIN  
GND  
CIN  
Figure 57. Open VIN  
2. Protection against Input Reverse Voltage  
Accidental reverse polarity at the input connection flows a large current to the diode for electrostatic breakdown  
protection between the input pin of the IC and the GND pin, which may destroy the IC (see Figure 58).  
A Schottky barrier diode or rectifier diode connected in series with the power supply as shown in Figure 59 is the  
simplest solution to prevent this from happening. The solution, however, is unsuitable for a circuit powered by  
batteries because there is a power loss calculated as VF × IOUT, as the forward voltage VF of the diode drops in a  
correct connection. The lower VF of a Schottky barrier diode than that of a rectifier diode gives a slightly smaller  
power loss. Because diodes generate heat, care must be taken to select a diode that has enough allowance in  
power dissipation. A reverse connection allows a negligible reverse current to flow in the diode.  
VIN  
VOUT  
COUT  
GND  
IN  
OUT  
D1  
-
IN  
OUT  
VOUT  
COUT  
VIN  
GND  
CIN  
GND  
CIN  
+
GND  
Figure 58. Current Path in Reverse Input Connection  
Figure 59. Protection against Reverse Polarity 1  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
22/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Figure 60 shows a circuit in which a P-channel MOSFET is connected in series with the power. The diode located  
in the drain-source junction portion of the MOSFET is a body diode (parasitic element). The voltage drop in a  
correct connection is calculated by multiplying the resistance of the MOSFET being turned on by the output  
current IOUT, therefore it is smaller than the voltage drop by the diode (see Figure 59) and results in less of a  
power loss. No current flows in a reverse connection where the MOSFET remains off.  
If the voltage taking account of derating is greater than the voltage rating of MOSFET gate-source junction, lower  
the gate-source junction voltage by connecting voltage dividing resistors as shown in Figure 61.  
Q1  
VIN  
Q1  
VOUT  
COUT  
IN  
OUT  
VIN  
VOUT  
COUT  
IN  
OUT  
R1  
GND  
GND  
CIN  
R2  
CIN  
Figure 61. Protection against Reverse Polarity 3  
Figure 60. Protection against Reverse Polarity 2  
3. Protection against Output Reverse Voltage when Output Connect to an Inductor  
If the output load is inductive, electrical energy accumulated in the inductive load is released to the ground upon  
the output voltage turning off. In-between the IC output and ground pins is a diode for preventing electrostatic  
breakdown, in which a large current flows that could destroy the IC. To prevent this from happening, connect a  
Schottky barrier diode in parallel with the diode (see Figure 62).  
Further, if a long wire is in use for the connection between the output pin of the IC and the load, observe the  
waveform on an oscilloscope, since it is possible that the load becomes inductive. An additional diode is needed  
for a motor load that is affected by its counter electromotive force, as it produces an electrical current in a similar  
way.  
VOUT  
VIN  
OUT  
IN  
GND  
D1  
CIN  
XLL  
COUT  
GND  
GND  
Figure 62. Current Path in Inductive Load (Output: Off)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G5G0A300040-1-2  
30.Aug.2017 Rev.004  
23/27  
BUxxJA2VG-C series  
Operational Notes  
1) Absolute maximum ratings  
This product is produced with strict quality control, however it may be destroyed if operated beyond its absolute  
maximum ratings. In addition, it is impossible to predict all destructive situations such as short-circuit modes, open  
circuit modes, etc. Therefore, it is important to consider circuit protection measures, like adding a fuse, in case the IC is  
operated in a special mode exceeding the absolute maximum ratings.  
2) GND Potential  
GND potential must be the lowest potential of all pins of the IC at all operating conditions. Ensure that no pins are at a  
voltage below the ground pin at any time, even during transient condition.  
3) Setting of Heat  
Carry out the heat design that have adequate margin considering Pd of actual working states.  
4) Pin Short and Mistake Fitting  
When mounting the IC on the PCB, pay attention to the orientation of the IC. If there is mistake in the placement, the IC  
may be burned up.  
5) Mutual Impedance  
Use short and wide wiring tracks for the power supply and ground to keep the mutual impedance as small as possible.  
Use a capacitor to keep ripple to a minimum.  
6) STBY Pin Voltage  
To enable standby mode for all channels, set the STBY pin to 0.5 V or less, and for normal operation, to 1.1 V or more.  
Setting STBY to a voltage between 0.5 and 1.1 V may cause malfunction and should be avoided. Keep transition time  
between high and low (or vice versa) to a minimum.  
Additionally, if STBY is shorted to VIN, the IC will switch to standby mode and disable the output discharge circuit,  
causing a temporary voltage to remain on the output pin. If the IC is switched on again while this voltage is present,  
overshoot may occur on the output. Therefore, in applications where these pins are shorted, the output should always  
be completely discharged before turning the IC on.  
7) Over Current Protection Circuit  
Over current and short circuit protection is built-in at the output, and IC destruction is prevented at the time of load short  
circuit. These protection circuits are effective in the destructive prevention by sudden accidents, please avoid  
applications to where the over current protection circuit operates continuously.  
8) Thermal Shutdown  
This IC has Thermal Shutdown Circuit (TSD Circuit). When the temperature of IC Chip is higher than 180°C(typ), the  
output is turned off by TSD Circuit. TSD Circuit is only designed for protecting IC from thermal over load. Therefore it is  
not recommended that you design application where TSD will work in normal condition.  
9) Output capacitor  
To prevent oscillation at output, it is recommended that the IC be operated at the stable region shown in Figure 50. It  
operates at the capacitance of more than 0.47μF. As capacitance is larger, stability becomes more stable and  
characteristic of output load fluctuation is also improved.  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
24/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Marking Diagram  
SSOP5(TOP VIEW)  
Part Number Marking  
Lot Number  
Part Number  
BU10JA2VG-C  
BU12JA2VG-C  
BU1CJA2VG-C  
BU15JA2VG-C  
BU18JA2VG-C  
BU25JA2VG-C  
BU28JA2VG-C  
BU2JJA2VG-C  
BU30JA2VG-C  
BU33JA2VG-C  
Output Voltage [V]  
Part Number Marking  
1.0  
1.2  
1.25  
1.5  
1.8  
2.5  
2.8  
2.85  
3.0  
3.3  
5T  
5U  
5V  
5W  
XM  
5X  
Z6  
5Y  
5Z  
XN  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
30.Aug.2017 Rev.004  
© 2014 ROHM Co., Ltd. All rights reserved.  
25/27  
TSZ2211115001  
BUxxJA2VG-C series  
Physical Dimension Tape and Reel Information  
Package Name  
SSOP5  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0G5G0A300040-1-2  
26/27  
30.Aug.2017 Rev.004  
BUxxJA2VG-C series  
Revision History  
Date  
Revision  
Changes  
10.Dec.2014  
20.Mar.2015  
24.Mar.2015  
001  
002  
003  
New Release  
Thermal Characteristics is changed.  
Correction of errors.  
Lineup is added  
P.2 TL version is added to the “Ordering Information”.  
Block Diagram is updated  
P.3 The item of the STBY pin is added to “Absolute Maximum Ratings”.  
P.7 “Figure 14. Dropout Voltage vs Output Current” is added  
P.21 to P.23 The item of “Linear Regulators Surge Voltage Protection” is added  
The item of “Linear Regulators Reverse Voltage Protection” is added  
P.25 An expression method of “Marking Diagram” is changed  
P.26 TL version is added to the “Physical Dimension Tape and Reel Information”.  
Others, correction of errors.  
30.Aug.2017  
004  
www.rohm.com  
TSZ02201-0G5G0A300040-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
27/27  
TSZ2211115001  
30.Aug.2017 Rev.004  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY