BM92T10MWV [ROHM]

Type-C USB Power Delivery Controller;
BM92T10MWV
型号: BM92T10MWV
厂家: ROHM    ROHM
描述:

Type-C USB Power Delivery Controller

文件: 总31页 (文件大小:1198K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Type-C USB Power Delivery Controller  
BM92T10MWV  
General Description  
Applications  
BM92T10 is a full function Type-C USB-PD controller  
that supports USB Power Delivery using base-band  
communication. It is compatible with USB Type-C  
specification rev1.1 and USB Power Delivery  
specification rev2.0.  
Consumer Applications  
Laptop PCs, Tablet PCs, Desktop PCs  
Key Specifications  
BM92T10 includes support for the PD policy engine and  
communicates with an Embedded Controller or the SoC  
via host interface. It supports SOP, SOP’, SOP’’ and  
SOP’’’ signaling, allowing it to communicate with cable  
marker ICs, support alternate modes and protocol  
adapters.  
VBUS Voltage Range:  
Power Sink Voltage Range:  
Power Source Voltage Range:  
Power Consumption at Low Power: 0.4m W (Typ)  
Operating Temperature Range: -30°C to +105°C  
4.75V to 20V  
4.75V to 20V  
4.75V to 20V  
Package  
Features  
USB Type-C Spec 1.1 compatible  
W (Typ) x D (Typ) x H (Max)  
UQFN40V5050A 5.00mm x 5.00mmx 1.00mm  
USB PD Spec 2.0 compatible (BMC-PHY)  
Two channel power path control using N-channel  
MOSFET drivers with back flow prevention  
Type C cable orientation detection  
Built-in VCONN Switch and VCONN controller  
Direct VBUS powered operation  
Supports Deep-Sleep-Mode (PC Application)  
Supports DFP/UFP/DRP mode.  
Supports Dead Battery operation.  
Supports analog audio headphone detection  
SMBus Interface for Host Communication  
EC-less Operation (Auto mode)  
Typical Application Circuit(s)  
Charger Power  
VBUS  
Power Supply  
For Prov (5V)  
HSSW  
SGND  
SGND  
SGND  
SGND  
SGND  
SGND  
VSVR 5V  
(3.3V5.0V)  
SGND  
SGND  
SGND  
VDDIO  
(1.7V3.6V)  
VDDIO  
VCONN  
VCONN_IN  
SMDATA  
SMCLK  
GPIO0VIN_EN)  
GPIO1ALERT#)  
CC1  
CC2  
CC1  
CC2  
EC-I/F  
GPO2/VDIV(BST_EN)  
GPO3/FB(HSSWEN)  
USB Type-C  
Receptacle  
XCLPOFF1  
XCLPOFF2  
BM92T10MWV  
UQFN40V5050A  
GPIO7(UPSCLK)  
GPIO6(UPSDO)  
GPIO5(UPSDIN)  
GPIO4(UPSCS)  
SCK  
SI  
SPI-IF  
SO  
CSB  
VCCIN  
DBGMODDT  
DBGRSTCK  
IDSEL/ATST1  
VSTR/ATST2  
XRST  
D+  
D-  
To direct USB-PHY  
VCCIN  
RX1+/RX1-  
RX2+/RX2-  
SGND  
To direct USB-3.x PHY  
TX1+/TX1-  
TX2+/TX2-  
VCCIN  
GND  
SGND  
GND  
SGND  
Figure A. Typical Application Circuit  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201- 0232AA000180 -1-2  
30, Jul.2015, Rev.001  
1/27  
BM92T10MWV  
Contents  
Contents........................................................................................................................................................................................2  
Notation.........................................................................................................................................................................................3  
Reference ......................................................................................................................................................................................3  
1
2
3
4
Introduction............................................................................................................................................................................4  
Pin Description ......................................................................................................................................................................5  
Pin Configuration...................................................................................................................................................................7  
Package Dimensions.............................................................................................................................................................8  
Electrical Characteristics......................................................................................................................................................9  
Absolute Maximum Ratings .................................................................................................................................................9  
Recommended Operating Conditions................................................................................................................................10  
Circuit Current Characteristics ...........................................................................................................................................10  
Digital Pin DC Characteristics............................................................................................................................................11  
Power supply management................................................................................................................................................12  
5
5.1  
5.2  
5.3  
5.4  
5.5  
5.5.1  
5.5.2  
5.6  
5.6.1  
5.6.2  
Outline............................................................................................................................................................................12  
Electrical Characteristics ................................................................................................................................................13  
CC_PHY ............................................................................................................................................................................14  
Outline............................................................................................................................................................................14  
Electrical Characteristics ................................................................................................................................................16  
Table 5-6. CC_PHY Characteristics..............................................................................................................................................16  
5.7  
5.7.1  
5.7.2  
Voltage detection ...............................................................................................................................................................17  
Outline............................................................................................................................................................................17  
Electrical Characteristics ................................................................................................................................................17  
Table 5-7. Voltage Detection characteristics.................................................................................................................................17  
5.8  
5.8.1  
5.8.2  
VBUS Discharge................................................................................................................................................................18  
Outline............................................................................................................................................................................18  
Electrical Characteristics ................................................................................................................................................18  
Table 5-8. VBUS Discharge Characteristics..................................................................................................................................18  
5.9  
5.9.1  
5.9.2  
Power FET Gate Driver (SINK & SOURCE) ......................................................................................................................19  
Outline............................................................................................................................................................................19  
Electrical Characteristics ................................................................................................................................................19  
Table 5-9. Power FET Gate Driver Characteristics .......................................................................................................................19  
5.10  
5.11  
5.12  
6
6.1  
7
Power On Sequence ......................................................................................................................................................20  
Power Off Sequence ......................................................................................................................................................21  
I/O Equivalence Circuit...................................................................................................................................................22  
Application Example ...........................................................................................................................................................25  
Selection of Components Externally connected.................................................................................................................25  
Function Description...........................................................................................................................................................25  
Application Circuits for Different Firmware Types ...........................................................................................................25  
Operational Notes................................................................................................................................................................26  
8
9
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
2/27  
 
BM92T10MWV  
Notation  
Category  
Notation  
Description  
Unit  
V
Volt (Unit of voltage)  
A
Ampere (Unit of current)  
Ohm (Unit of resistance)  
Farad (Unit of capacitance)  
degree Celsius (Unit of Temperature)  
Hertz (Unit of frequency)  
second (Unit of time)  
minute (Unit of time)  
Ω, Ohm  
F
deg., degree  
Hz  
s (lower case)  
min  
b, bit  
bit (Unit of digital data)  
1 byte = 8 bits  
B, byte  
Unit prefix  
M, mega-, mebi-  
M, mega-, million-  
K, kilo-, kibi-  
k, kilo-  
220 = 1,048,576 (used with “bit” or “byte”)  
106 = 1,000,000 (used with “Ω” or “Hz”)  
210 = 1,024 (used with “bit” or “byte”)  
103 = 1,000 (used with “Ω” or “Hz”)  
10-3  
m, milli-  
μ, micro-  
n, nano-  
p, pico-  
xxh, xxH  
10-6  
10-9  
10-12  
Numeric value  
Hexadecimal number.  
“x”: any alphanumeric of 0 to 9 or A to F.  
xxb  
Binary number; “b” may be omitted.  
“x”: a number, 0 or 1  
“_” is used as a nibble (4-bit) delimiter.  
(eg. “0011_0101b” = “35h”)  
Address  
Data  
#xxh  
Address in a hexadecimal number.  
“x”: any alphanumeric of 0 to 9 or A to F.  
bit[n]  
n-th single bit in the multi-bit data.  
bit[n:m]  
“H”, High  
“L”, Low  
“Z”, “Hi-Z”  
Bit range from bit[n] to bit[m].  
Signal level  
High level (over VIH or VOH) of logic signal.  
Low level (under VIL or VOL) of logic signal.  
High impedance state of 3-state signal.  
Reference  
Name  
Reference Document  
Release Date  
Publisher  
USB Type-C  
USB PD  
“USB Type-C Specification Release 1.1”  
Apr. 3, 2015  
Aug. 11, 2014  
USB.org  
USB.org  
“Power Delivery Specification Revision2.0 Version1.0”  
System Management  
Implementers Forum  
SMBus  
“System Management Bus (SMBus) Specification Version 2.0”  
Aug. 3, 2000  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
3/27  
 
 
BM92T10MWV  
1
Introduction  
BM92T10 is a full function Type-C USB-PD controller that supports USB Power Delivery using base-band communication. It  
is compatible with USB Type-C specification rev1.1 and USB Power Delivery specification rev2.0  
BM92T10 includes the following functional blocks: Type-C Physical Layer (base-band PHY), BMC encoder / decoder,  
USB-PD Protocol engine, two N-ch MOSFET switch drivers to control two MOSFETS each, OVP FET and SMBus interface  
for communicating with the host controller. It requires an external embedded controller that includes Device Policy Manager  
and GPIOs for Type-C USB-PD operation. BM92T10 is able to operate independently in an AC adapter or in a dead battery  
condition where the embedded controller is not operational. BM92T10 includes an EEPROM, enabling code updates via the  
SPI interface during prototyping phase.  
BM92T10 controller comes in four variations depending on Technical Note for their circuit design. Please refer for additional  
details  
Figure 1-1 shows the block diagram.  
CSENSEN  
CSENSEP  
XCLPOFF1  
XCLPOFF2  
CC1  
SMCLK  
NchFET Switch  
Driver  
SMDATA  
VDDIO  
SMbus  
GPIO1  
Type-C  
Device Policy  
Manager  
Physical Layer  
GPIO0  
VCONN_IN  
CC2  
DBGMODDT  
DBGRSTCK  
BB PD  
Physical Layer  
Protocol  
SPI  
I/F  
GPIO7  
(UPSCLK)  
LDO15DCAP  
LDO28CAP  
LDO15ACAP  
EEPROM  
GPIO6  
(UPSDO)  
Type-C USBPD  
GPIO5  
(UPSDIN)  
Figure 1-1. Block Diagram  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
4/27  
 
BM92T10MWV  
Pin Description  
2
Table 2-1. Pin Description  
Power  
PKG  
PIN  
#
Pin Name  
BLOCK  
GND  
I/O  
Type  
Description  
Note  
System  
1
2
GND  
I
GND  
Ground  
VSTR/ATST2  
TEST/Debug IO  
Analog  
Analog TEST/ Debug Pin2  
SMBus ID (device address)  
selection “H”:1Ah, “L”:18h  
/Debug Pin1  
3
4
5
IDSEL/ATST1  
XRST  
TEST/Debug  
Interface  
I
Analog  
Digital  
Analog  
I
VCCIN  
Digital block Reset  
Internal Power supply  
VCCIN  
USB-PD  
O
(For internal use, need to  
connect capacitor to GND  
5V SVR INPUT and  
6
VSVR  
POWER  
I
Power  
SPDSRC_FET_SRC voltage  
7
8
9
DSCHG  
GND  
VB  
Interface  
GND  
IO  
Analog  
GND  
Discharge NMOS Drain  
Ground  
I
I
POWER  
Power  
Power Source from VBUS  
Refer to  
Technical  
Note  
Refer to  
Technical  
Note  
Refer to  
Technical  
Note  
Refer to  
Technical  
Note  
GPIO4  
(Ext mode: UPSCS)  
I/O  
(O)  
General purpose I/O port 4  
/(Ext mode: SPI Chip Select)  
10  
11  
12  
13  
Interface  
Interface  
Interface  
Interface  
Digital  
Digital  
Digital  
Digital  
VCCIN  
VCCIN  
VCCIN  
VCCIN  
GPIO5  
(Ext mode: UPSDIN)  
I/O  
(I)  
General purpose I/O port 5  
/(Ext mode: SPI DATA IN)  
GPIO6  
(Ext mode: UPSDO)  
I/O  
(O)  
General purpose I/O port 6  
/(Ext mode: SPI DATA OUT)  
GPIO7  
(Ext mode: UPSCLK)  
I/O  
(IO)  
General purpose I/O port 7  
/(Ext mode: SPI CLK INPUT)  
14  
15  
DBGRSTCK  
DBGMODDT  
TEST  
TEST  
IO  
IO  
Digital  
Digital  
VDDIO  
VDDIO  
Test for logic  
Test for logic  
Refer to  
Technical  
Note  
Refer to  
Technical  
Note  
General purpose I/O port 0  
VIN_EN  
16  
17  
GPIO0  
GPIO1  
Interface  
Interface  
IO  
IO  
Digital  
Digital  
VDDIO  
VDDIO  
General purpose I/O port 1  
ALERT#  
18  
19  
20  
VDDIO  
POWER  
Interface  
Interface  
I
Power  
Digital  
Digital  
Interface Voltage (3.3V)  
SMBus Data  
SMDATA  
SMCLK  
IO  
I
VDDIO  
VDDIO  
SMBus Clock  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
5/27  
 
BM92T10MWV  
PKG  
PIN  
#
Power  
System  
Pin Name  
BLOCK  
I/O  
O
I
Type  
Description  
Note  
Refer to  
Technical  
Note  
Power Path FET Gate Control  
SPDSNK_G1  
FET Gate  
Control  
21  
22  
23  
24  
25  
26  
S2_DRV_G1  
S2_DRV_SRC  
S2_DRV_G2  
S1_DRV_G1  
S1_DRV_SRC  
S1_DRV_G2  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Power Path FET BG/SRC  
Voltage  
SPDSNK_SRC  
Refer to  
Technical  
Note  
FET Gate  
Control  
Refer to  
Technical  
Note  
Power Path FET Gate Control  
SPDSNK_G2  
FET Gate  
Control  
O
O
I
Refer to  
Technical  
Note  
Power Path FET Gate Control  
SPDSRC_G1  
FET Gate  
Control  
Power Path FET BG/SRC  
Voltage  
SPDSRC_SRC  
Refer to  
Technical  
Note  
FET Gate  
Control  
Refer to  
Technical  
Note  
Power Path FET Gate Control  
SPDSRC_G2  
FET Gate  
Control  
O
27  
28  
GND  
VEX  
GND  
I
I
GND  
Ground  
POWER  
Power  
Extension Power Input  
O
/IO  
O
/IO  
Digital  
/Analog  
Digital  
/Analog  
General purpose Output port 2  
BST_EN function  
General purpose Output port 3  
HSSWEN function  
29  
30  
GPO2/VDIV  
GPO3/FB  
Interface  
Interface  
VCCIN  
VCCIN  
Current Sense Voltage Input  
Negative  
/ Pin 29,30 Configuration  
31  
32  
CSENSEN  
CSENSEP  
CDET  
CDET  
I
I
Analog  
Analog  
VCCIN  
VCCIN  
*(Pin31,Pin32)=(H,H):GPO  
mode, other case: Current  
Sense mode.  
Current Sense Voltage Input  
Positive  
/ Pin 29,30 Configuration  
*(Pin31,Pin32)=(H,H):GPO  
mode, other case: Current  
Sense mode.  
Disable Clamper of CC1  
33  
34  
XCLPOFF1  
XCLPOFF2  
CCPHY  
CCPHY  
I
I
Analog  
Analog  
VCCIN  
VCCIN  
L:Dead-battery not support  
Open: Dead-battery support  
Disable Clamper of CC2  
L:Dead-battery not support  
Open: Dead-battery support  
Configuration channel 1 for  
Type-C  
35  
36  
37  
CC1  
CCPHY  
CCPHY  
CCPHY  
IO  
I
Analog  
Analog  
Analog  
VCONN_IN  
CC2  
Input power for VCONN  
Configuration channel 2 for  
Type-C  
IO  
Internal LDO 1.5V for Digital  
Need Capacitor  
Internal LDO 2.8V for Analog  
Need Capacitor  
Internal LDO 1.5V for Analog  
Need Capacitor  
38  
39  
40  
LDO15DCAP  
LDO28CAP  
LDO15ACAP  
POWER  
POWER  
POWER  
O
O
O
Analog  
Analog  
Analog  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
6/27  
BM92T10MWV  
Pin Configuration  
3
30 29 28 27 26 25 24 23 22 21  
CSENSEN 31  
20  
SMCLK  
32  
33  
34  
CSENSEP  
XCLPOFF1  
XCLPOFF2  
CC1  
19 SMDATA  
18  
VDDIO  
17  
GPIO1  
16 GPIO0  
BM92T10MWV  
UQFN40PIN  
TOP VIEW  
35  
36  
VCONN_IN  
CC2  
15  
14  
13  
12  
DBGMODDT  
DBGRSTCK  
37  
38  
39  
40  
LDO15DCAP  
LDO28CAP  
LDO15ACAP  
GPIO7(UPSCLK)  
GPIO6(UPSDO)  
11 GPIO5(UPSDIN)  
1
2
3
4
5
6
7
8
9
10  
Figure 3-1. Pin configuration  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
7/27  
 
BM92T10MWV  
4
Package Dimensions  
Ordering Information  
B M 9 2 T 1 0 M W V  
-
E 2  
Part Number  
Package  
MWV:UQFN40V5050A  
Packaging and forming specification  
E2: Embossed tape and reel  
Lot No.  
M92T10  
Figure 4-1. UQFN40V5050A Package Dimensions  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
8/27  
 
BM92T10MWV  
5
Electrical Characteristics  
5.1 Absolute Maximum Ratings  
Table 5-1. Absolute Maximum Ratings  
Ta=25)  
Parameter  
Symbol  
Rating  
Unit  
Conditions  
Maximum Supply Voltage1  
(VB, VEX, DSCHG, S2_DRV_G1,  
S2_DRV_G2,S2_DRV_SRC,  
S1_DRV_G1,S1_DRV_SRC, S1_DRV_G2 )  
Maximum Supply Voltage2  
(VDDIO)  
Maximum Supply Voltage3  
(VSVR, DBGRSTCK, DBGMODDT, GPIO0,  
GPIO1, SMDATA, SMCLK, VCONN_IN)  
Maximum Supply Voltage4  
*1  
*2  
VIN1  
-0.3 to +28  
V
VIN2  
VIN3  
-0.3 to +6.0  
-1.0 to+6.0  
V
V
(VSTR/ATST2, IDSEL/ATST1, XRST,  
VCCIN, GPIO4, GPIO5,GPIO6,GPIO7,  
GPO2/VDIV, GPO3/FB, CSENSEN,  
CSENSEP, XCLPOFF1, XCLPOFF2, CC1,  
CC2, LDO15DCAP, LDO28CAP,  
LDO15ACAP,)  
VIN4  
Vdiff  
-0.3 to +6.0  
-0.3 to +6.0  
V
Maximum different Voltage  
(S2_DRV_G1-S2_DRV_SRC,  
S2_DRV_G2-S2_DRV_SRC,  
S1_DRV_G1-S1_DRV_SRC,  
S1_DRV_G2-S1_DRV_SRC)  
V
Power Dissipation  
Pd  
2.61  
W
*3  
Operating Temperature Range  
Topr  
-30 to +105  
degree *4  
degree  
Storage Temperature Range  
Tstg  
-55 to +125  
*1 When the DSCHG pin is applied voltage should by way of resistance more than 120Ω (4W).  
*2 The different voltage between S*DRV_G* and S*DRV_SRC is defined “Symbol Vdiff”. S*_DRV_G*=S*_DRV_SRC+5.8V (typ.)  
*3 This value is the permissible loss using a ROHM specification board (74.2 x 74.2 x 1.6tmm, 4 layered board mounting).  
At the time of PCB mounting the permissible loss varies with the size and material of board.  
When using more than at Ta=25, it is reduced 26.1 mW per 1.CautionUse in excess of this value may result in damage to the device. Moreover,  
normal operation is not protected.  
*4 Target spec.  
3
PDMAX=2.61W  
2.5  
θja = 38.3 /W  
2
1.5  
1
0.5  
0
0
25  
50  
75  
100  
125  
150  
AmbientTemperature [°C]  
Figure 5-1. Power Dissipation  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
9/27  
 
 
BM92T10MWV  
5.2 Recommended Operating Conditions  
Table 5-2. Recommended Operating Conditions  
(Ta=25°C)  
Conditions  
Item  
Symbol  
Range  
Unit  
VB, VEX Voltage  
VB, VEX  
4.75 20  
V
*2  
*2  
VSVR Voltage  
VDDIO Voltage  
VSVR  
VDDIO  
VCONN  
3.1 5.5  
1.7 5.5  
4.75 5.5  
V
V
V
VCONN_IN Input Voltage  
*2 target design  
5.3 Circuit Current Characteristics  
Table 5-3. Common Characteristics  
Electrical Characteristics (Ta=25°C, VSVR=3.3V, VB=open, VEX=open, VDDIO=3.3V)  
Limit  
Item  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
[Circuit Current]  
Unattached current  
Idd_unatt  
Idd_att  
0.4  
3.5  
mW  
mW  
@VSVR=3.3V  
Attached current  
@VSVR=3.3V  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
10/27  
 
 
BM92T10MWV  
5.4 Digital Pin DC Characteristics  
Table5-4. Digital Pin DC Characteristics  
Electrical Characteristics (Ta=25°C, VSVR=3.3V, VB=open, VEX=open, VDDIO=3.3V, VCCIN=VSVR)  
Limit  
Item  
Symbol  
Unit  
Comment  
Min  
Typ  
Max  
[Digital characteristics Power: VDDIO]  
(Input Digital Pins: SMCLK, DBGRSTCK) (Input/ Output Pins: GPIO0, GPIO1, SMDATA, DBGMODDT )  
0.8×  
VDDIO  
VDDIO+0  
.3  
Input "H" level (SMCLK, SMDATA)  
VIH1  
-
V
0.2×  
VDDIO  
Input "L" level (SMCLK, SMDATA)  
VIL1  
IIC1  
-0.3  
-5  
-
V
Input leak current (SMCLK, SMDATA)  
0
5
μA  
Power: VDDIO  
0.8×  
VDDIO  
VDDIO+0  
.3  
Input "H" level (other Digital input)  
Input "L" level (other Digital input)  
VIH2  
VIL2  
IIC2  
-
-
V
V
0.2×  
VDDIO  
-0.3  
-1  
-
Input leak current  
(other Digital input)  
0
-
1
μA  
V
Power: VDDIO  
IOL=350uA Max  
Source=1mA  
VIN=VDDIO  
VOL  
SMDATA  
SMDATA pin "L" level voltage  
0.4  
0.3  
3
Output Voltage when “L”  
(other Digital output)  
VOL1  
-
-
V
OFF Leakage Current  
(other Digital output)  
IIOFF1  
-3  
-
μA  
[Digital characteristics Power: VCCIN]  
(Input Digital Pins: XRST) (Input/ Output Pins:GPIO4, GPIO5, GPIO6, GPIO7) (Output Pins: GPO2/VDIV, GPO3/FB)  
0.8×  
VCCIN  
VCCIN+0.  
3
Input "H" level (XRST,GPIOs)  
Input "H" level(XRST,GPIOs)  
Input "L" level (XRST,GPIOs)  
Input leak current (XRST,GPIOs)  
Input "H" level (other Digital input)  
Input "L" level (other Digital input)  
VIH3  
VIH3  
VIL3  
IIC3  
-
-
V
V
0.8×  
VCCIN  
VCCIN+0.  
3
0.2×  
VDDIO  
-0.3  
-5  
-
V
0
-
5
μA  
V
Power: VCCIN  
Power: VCCIN  
Source=1mA  
0.8×  
VDDIO  
VDDIO+0  
.3  
VIH4  
VIL4  
IIC4  
0.2×  
VDDIO  
-0.3  
-1  
-
V
Input leak current  
(other Digital input)  
0
-
1
μA  
V
Output Voltage when “L”  
(other Digital output)  
VOL2  
-
0.3  
VIN=VCCIN  
CSENSEP=CSENS  
EN=VCCIN  
OFF Leakage Current  
(other Digital output)  
IIOFF2  
-3  
-
3
μA  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
11/27  
 
BM92T10MWV  
5.5 Power supply management  
5.5.1 Outline  
This LSI has a power selector. It select the lowest power supply voltage from VSVR, VEX, or VB for low power  
consumption. Internal Power Supply (VCCIN) gives priority in order of VSVR, VEX, and VB. VCCIN supplied from the  
power selector is used to LSI main power source. LDOs (for internal only) are supplied from VCCIN, and output each  
internal supply voltage.  
Each power supply input have UVLO (2.8Vtyp) and OVLO (VSVR: 6.4Vtyp, VEX/VB: 6.4/15.0/28.0Vtyp).And POR  
(power on reset) signal is generated from detection of LDO28OK, LDO15DOK, LDO15AOK, and VCCIN.  
UVLO  
/OVLO  
signal  
UVLO/OVLO  
Detection  
5V  
0~20V 0~20V  
VSVR  
VEX  
VB  
4.7μF  
1μF  
1μF  
1μF  
Internal  
Power  
Supply  
VCCIN  
LDO  
(2.8V)  
LDO28OK  
LDO28CAP  
LDO15DCAP  
LDO15ACAP  
POR  
signal  
POR  
(2.6V)  
LDO  
(1.5V)  
LDO15DOK  
LDO15AOK  
LDO  
(1.5V)  
Internal  
Power  
Supply  
3.3V  
VDDIO  
detection  
signal  
VDDIO  
DET  
Figure 5-2. Power Supply Management Block Diagram and Timing Chart  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
12/27  
 
 
BM92T10MWV  
5.5.2 Electrical Characteristics  
Table 5-5. Power Supply Management Characteristics  
Limit  
Typ  
Item  
Symbol  
Unit  
Comment  
Min  
Max  
[Analog characteristics]  
Unless otherwise specified  
Ta=25°C, GND=0V, Bypass Capacitor(VCCIN)=4.7μF, Bypass Capacitors(LDO28CAP, LDO15DCAP, LDO15ACAP) =1μF  
Input Analog Pins: VSVR, VEX, VB  
UVLO release voltage  
UVLO detect voltage  
UVLO1H  
UVLO1L  
OVLO5  
-
-
-
-
-
2.8  
2.7  
6.4  
15  
-
-
-
-
-
V
V
V
V
V
VSVR, VEX, VB=up  
VSVR, VEX, VB=down  
VSVR, VEX, VB=up  
VEX, VB=up  
OVLO detect voltage (5V mode)  
OVLO detect voltage (12V mode)  
OVLO detect voltage (20V mode)  
OVLO12  
OVLO20  
28  
VEX, VB=up  
OVLO hysteresis voltage (5V mode)  
OVLO hysteresis voltage (12V mode)  
OVLO hysteresis voltage (20V mode)  
OVLO5hys  
OVLO12hys  
OVLO20hys  
-
-
240  
580  
-
-
mV OVLO5-release voltage  
mV OVLO12-release voltage  
mV OVLO20-release voltage  
-
-
-
-
-
580  
2.6  
2.8  
1.5  
1.5  
-
-
-
-
-
Power ON reset threshold voltage  
LDO28CAP output voltage  
LDO15DCAP output voltage  
LDO15ACAP output voltage  
POR  
V28  
V15D  
V15D  
V
V
V
V
VCCIN=up  
No Load, VSVR=5V  
No Load, VSVR=5V  
No Load, VSVR=5V  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
13/27  
 
BM92T10MWV  
5.6 CC_PHY  
5.6.1 Outline  
CC_PHY has below functions of USB Type-C. (Refer to USB Type-C Spec)  
- Defining Port Mode  
> DFP Mode Condition  
> UFP Mode Condition  
> DRP Mode Condition  
- DFP-to-UFP Attach / Detach Detection  
- Plug Orientation / Cable Twist Detection  
- USB Type-C VBUS Current Detection and Usage  
- VCONN (Supply for SOP’) Control  
- Base-Band Power Delivery Communication (BBPD communication)  
- Discovery and Configuration of Functional Extensions  
VBUS  
5V  
[VCONNSW]  
Power Switch  
with OCP  
VCONN_IN  
VBUS_MONI  
CC1  
CC2  
BB_PHY  
(BBPD  
Communication  
TX/RX)  
Receptacle  
XCALMP1OFF  
XCALMP2OFF  
CC DET  
(CC Terminal  
Condition Monitor)  
UFP-CLAMP  
Rd  
Rd  
GND  
GND  
PORT_CONT  
Figure 5-3. CC_PHY Block Diagram  
[PORT_CONT]  
This block chose the port mode according to the setting from MCU.  
(DFP)  
Variable current source is connected to CC terminal. These currents of each mode are 80μA±20%: Default Current,  
180μA±8%: Medium Current and 330μA±8%: High Current.  
(UFP)  
Pull-down resistor (Rd=5.1kΩ±10%) is connected to CC terminal.  
(DRP)  
Changing DFP and UFP is repeated frequently.  
[CC_DET]  
CC_DET has functions of “Attach / Detach Detection”, “Plug Orientation / Cable Twist Detection”, “Discovery and detect  
extension mode” and “USB Type-C VBUS Current Detection”.  
Attach / Detach is detected with monitoring voltage of CC terminal. When the voltage of CC terminal become under a  
threshold voltage at DFP, attach is detected. Oppositely, when the voltage of CC terminal become over a threshold voltage,  
detach is detected. When the voltage of CC terminal become over a threshold voltage at UFP, attach is detected.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
14/27  
 
 
BM92T10MWV  
Plug orientation and cable twist is detected from the relationship of two CC terminals. Because only one wire is connected  
to Rd, the difference between two CC terminals is generated.  
UFP can detect the maximum current of the power source by monitoring the voltage of CC terminal.  
It is possible to detect extension mode because DFP can detect Ra at Attach / Detach detection.  
[UFP_CLAMP]  
1.1V Clamp is used for UFP emulation at dead-battery condition.  
[VBUS_MONI]  
UFP detect Attach / Detach by existence of VBUS voltage. VBUSDET detects Attach when VBUS voltage over the  
threshold voltage. And it detects Detach when VBUS under the threshold voltage.  
[VCONNSW]  
VCONNSW is the power switch for VCONN source. It has OCP (1.3Atyp) function.  
[BB_PHY]  
If Type-C controller supports BBPD, CC terminal can output BBPD communication signal. (Refer to BB_PHY)  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
15/27  
BM92T10MWV  
5.6.2 Electrical Characteristics  
Table 5-6. CC_PHY Characteristics  
Limit  
Item  
Symbol  
Unit  
Comment  
Min  
Typ  
Max  
[PORT_CONT characteristics]  
Unless otherwise specified  
Ta=25°C, VSVR=VEX=VB=5V, VCONN_IN=5V, VDDIO=3.3V, GND=0V, Bypass Capacitor(VCCIN)=4.7μF,  
Bypass Capacitors(LDO28CAP, LDO15DCAP, LDO15ACAP) =1μF  
Input Analog Pins: CC1, CC2, VCONN_IN  
Pull up current 1  
Pull up current 2  
Pull up current 3  
Pull down resistor  
CCPUP1  
CCPUP2  
CCPUP3  
CCPDN  
64  
80  
96  
μA  
μA  
μA  
kΩ  
Ta=-30105°C  
Ta=-30105°C  
Ta=-30105°C  
Ta=-30105°C  
166  
304  
4.6  
180  
330  
5.1  
194  
356  
5.6  
[UFP_CLAMP characteristics]  
Unless otherwise specified  
Ta=25°C, VSVR=VEX=VB=5V, VCONN_IN=5V, VDDIO=3.3V, GND=0V, Bypass Capacitor(VCCIN)=4.7μF,  
Bypass Capacitors(LDO28CAP, LDO15DCAP, LDO15ACAP) =1μF Input Analog Pins: CC1, CC2, VCONN_IN  
CCx terminal input impedance  
CCx clamp voltage  
CCZin  
CCCLP  
126  
0.7  
-
-
-
kΩ  
V
1.3  
Iin=80 to 330μA  
[VBUS MONI]  
Unless otherwise specified  
Ta=25°C, VSVR=VEX=VB=5V, VCONN_IN=5V, VDDIO=3.3V, GND=0V, Bypass Capacitor(VCCIN)=4.7μF,  
Bypass Capacitors(LDO28CAP, LDO15DCAP, LDO15ACAP) =1μF Input Analog Pins: CC1, CC2, VCONN_IN  
VBUS presence detection level  
[VCONNSW]  
CCVBDET  
-
3.42  
-
V
Unless otherwise specified  
Ta=25°C, VSVR=VEX=VB=5V, VCONN_IN=5V, VDDIO=3.3V, GND=0V, Bypass Capacitor(VCCIN)=4.7μF,  
Bypass Capacitors(LDO28CAP, LDO15DCAP, LDO15ACAP) =1μF Input Analog Pins: CC1, CC2, VCONN_IN  
VCONN_IN to CCx resistance  
Overcurrent protection level  
[BB_PHY]  
CCVCR  
CCVCOCP  
-
-
-
500  
-
mΩ  
A
1.1  
Unless otherwise specified  
Ta=25°C, VSVR=VEX=VB=5V, VCONN_IN=5V, VDDIO=3.3V, GND=0V, Bypass Capacitor(VCCIN)=4.7μF,  
Bypass Capacitors(LDO28CAP, LDO15DCAP, LDO15ACAP) =1μF Input Analog Pins: CC1, CC2, VCONN_IN  
TX BCM frequency  
fBBTX  
BBVOH  
BBVOL  
BBVIH  
BBVIL  
300  
-
-
0.6  
0.5  
kHz  
V
mV  
V
TX voltage output H level  
TX voltage output L level  
RX voltage input H level  
RX voltage input L level  
1.05  
0
-
1.2  
75  
0.65  
-
0.45  
V
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
16/27  
 
 
BM92T10MWV  
5.7 Voltage detection  
5.7.1 Outline  
VDET Block detects the voltage level of VBUS or VEX. It can detect follow conditions; (1) the voltage over the protection  
level, (2) the voltage over the setting range and (3) the voltage under the setting range.  
-VBUS or VEX voltage Detection for PDO of USB-PD spec.  
-OVP (over voltage protection) Detection: Vnom +20%typ  
-OVR (over voltage range) Detection: Vnom +5%typ  
-UVR (under voltage range) Detection: Vnom -5%typ  
VEX  
VBUS  
Voltage Selector  
+
-
+
-
+
-
OVP Detection  
OVR Detection  
UVR Detection  
Variable Reference  
Voltage  
Figure 5-4. Voltage Detection Block Diagram  
5.7.2 Electrical Characteristics  
Table 5-7. Voltage Detection characteristics  
Limit  
Item  
Symbol  
Unit  
Comment  
Min  
Typ  
Max  
[VDET characteristics]  
Unless otherwise specified  
Ta=25°C, VSVR=VEX=VB=5V, VCONN_IN=VCCIN, VDDIO=3.3V, GND=0V, Bypass Capacitor(VCCIN)=4.7μF,  
Bypass Capacitors(LDO28CAP, LDO15DCAP, LDO15ACAP) =1μF, Vnom=5V  
Input Analog Pins: VEX, VB  
Over voltage protection detection rate  
Over voltage range detection rate  
Under voltage range detection rate  
OVP  
OVR  
UVR  
17  
3
-7  
20  
5
-5  
23  
7
-3  
%
%
%
Standard voltage=Vnom  
Standard voltage=Vnom  
Standard voltage=Vnom  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
17/27  
 
 
 
 
BM92T10MWV  
5.8 VBUS Discharge  
5.8.1 Outline  
NMOS switch is prepared for VBUS discharging.  
VBUS Line  
DSCHG  
GND  
discharge  
control  
Figure 5-5. VBUS Discharge Block Diagram  
5.8.2 Electrical Characteristics  
Table 5-8. VBUS Discharge Characteristics  
Limit  
Item  
Symbol  
Unit  
Comment  
Min  
Typ  
Max  
[Discharge characteristics]  
Unless otherwise specified  
Ta=25°C, VSVR=VEX=VB=5V, VCONN_IN=VCCIN, VDDIO=3.3V, GND=0V, Bypass Capacitor(VCCIN)=4.7μF,  
Bypass Capacitors(LDO28CAP, LDO15DCAP, LDO15ACAP) =1μF  
Input Analog Pins: DSCHG  
Discharge Resistor  
RDSCHG  
-
25  
-
Ω
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
18/27  
 
 
 
 
BM92T10MWV  
5.9 Power FET Gate Driver (SINK & SOURCE)  
5.9.1 Outline  
FET Gate Driver is the NMOS switch driver for power line switch.  
- External Nch-FET gate control: S1, S2  
- One of two DC input selection  
OUT  
OUT  
OUT  
OUT  
IN IN  
IN IN  
Figure 5-6. Power FET Gate Driver Block Diagram  
5.9.2 Electrical Characteristics  
Table 5-9. Power FET Gate Driver Characteristics  
Limit  
Item  
Symbol  
Unit  
Comment  
Min  
Typ  
Max  
[Discharge characteristics]  
Unless otherwise specified  
Ta=25°C, VSVR=VEX=VB=5V, VCONN_IN=VCCIN, VDDIO=3.3V, GND=0V, Bypass Capacitor(VCCIN)=4.7μF,  
Bypass Capacitors(LDO28CAP, LDO15DCAP, LDO15ACAP) =1μF  
Input Analog Pins: S1_DRV_SRC, S2_DRV_SRC  
Output Analog Pins: S1_DRV_G1, S1_DRV_G2, S2_DRV_G1, S2_DRV_G2  
S1_DRV_G1 – S1_DRV_SRC  
FET control voltage between gate  
and source  
S1_DRV_G2 – S1_DRV_SRC  
S2_DRV_G1 – S2_DRV_SRC  
S2_DRV_G2 – S2_DRV_SRC  
VGS  
-
6.0  
-
V
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
19/27  
 
 
 
 
BM92T10MWV  
5.10 Power On Sequence  
5.0V  
5.0V  
2.8V  
VSVR  
(VEX/VB)  
0V  
0V  
2.8V  
VCCIN  
vccinuvlo  
LDO28CAP  
vref28ok  
uvlo  
2.8V  
2.0V  
1.5V  
LDO15A/DCAP  
ldo15ok  
0V  
H
POR  
L
(HW wake up complete)  
osc  
RAM  
Start  
End  
EEPROMꢀLoad  
U8_EN  
Figure 5-8. Power On Sequence  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
20/27  
 
BM92T10MWV  
5.11 Power Off Sequence  
5.0V  
5.0V  
2.8V  
VSVR  
(VEX/VB)  
0V  
0V  
2.8V  
VCCIN  
vccinuvlo  
LDO28CAP  
vref28ok  
uvlo  
2.8V  
1.5V  
LDO15A/DCAP  
ldo15ok  
0V  
H
POR  
L
osc  
RAM  
Reset  
U8_EN  
Figure 5-9. Power Off Sequence  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
21/27  
 
BM92T10MWV  
5.12 I/O Equivalence Circuit  
PIN  
No.  
PIN Name  
Equivalent circuit diagram  
6
9
VSVR  
VB  
28  
VEX  
Pin  
Pin  
7
5
DSCHG  
VCCIN  
Internal  
Circuit  
Pin  
16  
17  
15  
14  
GPIO0(VIN_EN)  
GPIO1(ALERT#)  
DBGMODDT  
VDDIO  
VCCIN  
VCCIN  
VDDIO  
DBGRSTCK  
10  
11  
12  
13  
GPIO4(UPSCS)  
GPIO5(UPSDIN)  
GPIO6(UPSDO)  
GPIO7(UPSCLK)  
VDDIO  
VCCIN  
Pin  
Pin  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
29  
GPO2_VDIV  
Pin  
30  
18  
GPO3_FB  
Pin  
VDDIO  
I/O Interface  
Circuit  
Pin  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
22/27  
 
BM92T10MWV  
32  
31  
CSENSEP  
CSENSEN  
CSENSEP  
Pin  
CSENSEN  
Pin  
19  
21  
SMDATA  
SMCLK  
VDDIO  
Pin  
32  
22  
23  
24  
25  
26  
S2_DRV_G1  
S2_DRV_SRC  
S2_DRV_G2  
S1_DRV_G1  
S1_DRV_SRC  
S1_DRV_G2  
Pin  
Sx_DRV_G1  
Sx_DRV_G2  
Sx_DRV_SRC  
Pin  
33  
34  
XCLPOFF1  
XCLPOFF2  
Pin  
35  
37  
CC1  
CC2  
Pin  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
23/27  
BM92T10MWV  
36  
VCONN_IN  
Pin  
4
XRST  
VCCIN  
VCCIN  
Pin  
38  
40  
LDO15DCAP  
LDO15ACAP  
Pin  
Internal  
Circuit  
39  
LDO28CAP  
Pin  
Internal  
Circuit  
2
3
VSTR/ATST2  
IDSEL/ATST1  
Pin  
Pin  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
24/27  
BM92T10MWV  
Application Example  
6
Q1  
Q2  
Charger Power  
VBUS  
10μF  
Q3  
Q4  
Power Supply  
For Prov (5V)  
Hi-side  
Switch  
SGND  
SGND  
1μF  
1μF  
SGND  
SGND  
1μF  
VSVR  
(3.3V5.0V)  
1kΩ  
0.01  
μF  
1μF  
SGND  
1μF  
SGND  
SGND  
VDDIO  
VDDIO  
(1.7V3.6V)  
VCONN  
Voltage  
D1  
100  
kΩ  
10 10 100 100  
kΩ kΩ kΩ kΩ  
VCONN_IN  
SMDATA  
SMCLK  
1μF  
GPIO0VIN_EN)  
GPIO1ALERT#)  
CC1  
CC1  
CC2  
CC2  
GPO2/VDIV(BST_EN)  
GPO3/FB(HSSWEN)  
USB Type-C  
Receptacle  
XCLPOFF1  
XCLPOFF2  
BM92T10MWV  
UQFN40V5050A  
GPIO7(UPSCLK)  
GPIO6(UPSDO)  
GPIO5(UPSDIN)  
GPIO4(UPSCS)  
SCK  
SI  
SPI-IF  
SO  
CSB  
VCCIN  
DBGMODDT  
DBGRSTCK  
IDSEL/ATST1  
VSTR/ATST2  
XRST  
100 100  
kΩ kΩ  
0.01μF  
VCCIN  
100  
100  
SGND  
kΩ  
kΩ  
100100100100100100100100 100  
kΩ kΩ kΩ kΩ kΩ kΩ kΩ kΩ kΩ  
VCCIN  
1μF  
1μF  
1μF  
CVCCIN  
GND  
SGND  
GND  
SGND  
6.1 Selection of Components Externally connected  
Item  
Symbol  
Min  
Typ  
Max  
Unit  
Comment  
VCCIN Capacitance(*)  
Q1,Q2,Q3,Q4  
Gate-Source Capacitance  
CVCCIN  
CQx_gs  
2.2  
4.7  
-
10  
μF  
220p  
0.5μ  
F
(*)Please set the capacity of the condenser not to be less than the minimum in consideration of temperature properties, DC bias properties.  
7
Function Description  
Please refer to the Technical Note  
8
Application Circuits for Different Firmware Types  
Please refer to the Technical Note  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
30, Jul.2015, Rev.001  
25/27  
 
 
 
 
BM92T10MWV  
9
Operational Notes  
(1) Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting  
the power supply, such as mounting an external diode between the power supply and the IC’s power supply pins.  
(2) Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and  
analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore,  
connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value  
when using electrolytic capacitors.  
(3) Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
(4) Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected  
to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large  
currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground  
lines must be as short and thick as possible to reduce line impedance.  
(5) Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of  
the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent  
exceeding the Pd rating.  
(6) Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The  
electrical characteristics are guaranteed under the conditions of each parameter.  
(7) Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of  
connections.  
(8) Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
(9) Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to  
stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off  
completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static  
discharge, ground the IC during assembly and use similar precautions during transport and storage.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
26/27  
30, Jul.2015, Rev.001  
 
BM92T10MWV  
Operational Notes – continued  
(10) Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging  
the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be  
due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge  
deposited in between pins during assembly to name a few.  
(11) Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely  
low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way  
is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So  
unless otherwise specified, unused input pins should be connected to the power supply or ground line.  
(12) Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N  
junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor.  
For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference  
among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as  
applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided.  
Figure xx. Example of monolithic IC structure  
(13) Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with temperature and  
the decrease in nominal capacitance due to DC bias and others.  
(14) Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe Operation  
(ASO).  
(15) Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This protection circuit  
is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not be used in applications  
characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0232AA000180 -1-2  
27/27  
30, Jul.2015, Rev.001  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
Buy  
BM92T10MWV - Web Page  
Distribution Inventory  
Part Number  
Package  
Unit Quantity  
BM92T10MWV  
UQFN40V5050A  
2500  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
2500  
Taping  
inquiry  
Yes  

相关型号:

BM92T10MWV-E2

Type-C USB Power Delivery Controller
ROHM

BM92T20MWV

Type-C USB Power Delivery Controller
ROHM

BM92T20MWV-E2

Type-C USB Power Delivery Controller
ROHM

BM92T30MWV

Type-C USB Power Delivery Controller
ROHM

BM92T30MWV-E2

Type-C USB Power Delivery Controller
ROHM

BM92T50MWV

Type-C USB Power Delivery Controller
ROHM

BM92T50MWV-E2

Type-C USB Power Delivery Controller
ROHM

BMA1-05D1H6

Isolated DC-DC Converters
BOTHHAND

BMA1-05D2H6

Isolated DC-DC Converters
BOTHHAND

BMA1-05D3H6

Isolated DC-DC Converters
BOTHHAND

BMA1-05DAH6

Isolated DC-DC Converters
BOTHHAND

BMA1-05S1H6

Isolated DC-DC Converters
BOTHHAND