BM1050AF [ROHM]

BM1050AF是组合了应对高次谐波的功率因数校正(Power Factor Correction)转换器(以下简称PFC部)与DC/DC转换器(以下简称DC/DC部)的复合LSI。DC/DC部采用准谐振方式动作,有助于实现低EMI。BM1050AF内置650V耐压启动电路。PFC部、DC/DC部均外接开关MOSFET及电流检测电阻,可实现自由度高的电源设计。PFC部采用峰值电流控制。利用带AC电压过低补偿电路的乘法器、应对负载变动的电路、最大功率补偿电路等各种保护电路,提供合适的应用方案。此外,内置跳频功能,有助于实现低EMI。DC/DC部的准谐振方式为软开关动作,有助于实现低EMI。内置脉冲串模式,可降低轻负载时的功耗。内置了软启动功能、脉冲串功能、逐周期过电流限制、过电压保护、过负荷保护等各种保护功能。与微控制器间设有通信控制用端子、外部停止端子,可提供适用于各种应用的系统方案。;
BM1050AF
型号: BM1050AF
厂家: ROHM    ROHM
描述:

BM1050AF是组合了应对高次谐波的功率因数校正(Power Factor Correction)转换器(以下简称PFC部)与DC/DC转换器(以下简称DC/DC部)的复合LSI。DC/DC部采用准谐振方式动作,有助于实现低EMI。BM1050AF内置650V耐压启动电路。PFC部、DC/DC部均外接开关MOSFET及电流检测电阻,可实现自由度高的电源设计。PFC部采用峰值电流控制。利用带AC电压过低补偿电路的乘法器、应对负载变动的电路、最大功率补偿电路等各种保护电路,提供合适的应用方案。此外,内置跳频功能,有助于实现低EMI。DC/DC部的准谐振方式为软开关动作,有助于实现低EMI。内置脉冲串模式,可降低轻负载时的功耗。内置了软启动功能、脉冲串功能、逐周期过电流限制、过电压保护、过负荷保护等各种保护功能。与微控制器间设有通信控制用端子、外部停止端子,可提供适用于各种应用的系统方案。

通信 开关 控制器 微控制器 软启动 脉冲 功率因数校正 转换器
文件: 总50页 (文件大小:2422K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Quasi-Resonant Control DC/DC  
converter and Power Factor Correction  
converter IC for AC/DC Converter  
BM1050AF-G  
General Description  
Features  
Quasi-resonant circuit + PFC circuit  
BM1050AF is compounded LSI of Power Factor Correction  
converter (PFC) for harmonic solution and DC/DC converter  
(DC/DC). Because DC/DC operates on Quasi-resonant  
method, DC/DC contributes to Low EMI.  
Built-in HV Starter circuit  
Low consumption current (typ.10uA) when starter  
circuit is OFF.  
BM1050AF built in a HV starter circuit that tolerates 650V.  
Because of putting the current sense resistors externally  
both the PFC part and the DC/DC part, IC enables power  
supply design free.  
In the PFC part, IC adopts peak current control operation.  
Suitable application is proposed by a various protection  
circuit, such as the multiplier with a revision circuit on the AC  
voltage falls, the load regulation revision circuit, and the  
maximum power feed-forward circuit, etc.  
Quasi resonant circuit  
Max operating frequency(120kHz)  
Frequency reduction function  
Over-current limiting variable function  
Pulse-by-pulse over-current protection circuit  
Built-in Soft start  
Voltage protection function (brown out) during low  
input  
ZT pin Over Voltage Protection  
Output overload protection (auto recovery /latch  
switching enabled)  
Moreover, the frequency hopping function is built in and it  
contributes to low EMI.  
The Quasi-resonant system of a DC/DC part contributes to  
low EMI because PFC operates by soft switching.  
A burst mode is built in, so the power is reduced at light load.  
Various protection functions, such as a soft start function, a  
burst function, an over-current limiting for every cycle,  
overvoltage protection, and over current protection, are built  
in. The pin for communicated control with a controller and the  
external stop pin are prepared; it proposes the system that  
can be adapted for various applications.  
250nsec Leading-Edge Blanking  
Power Factor Correction circuit  
Peak current control (65kHz)  
Frequency hopping function  
Per-cycle over current protection circuit  
Maximum power revision  
the multiplier with a revision circuit when the AC  
voltage falls  
the load change measure circuit  
Selectable protection method by LATCH/AUTOR  
terminal.  
Basic specifications  
Operating Power Supply Voltage Range:  
VCC8.5 to 24.0V  
LATCH/AUTOR=H : Latch  
LATCH/AUTOR=L : Auto recovery  
External stop function (COMP pin)  
AC input voltage stop detected function (ACDET)  
Built-in PFC stop terminal (PFCON/OFF)  
Operating Current:  
QR ON (PFC OFF)1.20mA(pulse on)  
QR ON (PFC OFF)1.00mA(pulse off)  
QR ON (PFC ON)1.80mA(pulse on)  
Package(s)  
SOP24 15.0mm×5.40mm ×1.80mm pitch1.27mm  
Oscillation Frequency QR part :120kHz(FB=2.0V typ)  
Operating Temperature: -40to +85℃  
(Typ.)  
(Typ.)  
(TYP.)  
TYP.)  
Typical Application Circuit(s)  
Applications  
TV, AC adapters, printers, LED lighting  
Figure 1. Application circuit  
Product structureSilicon monolithic integrated circuit This product is not designed for protection against radioactive rays  
.www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
1/47  
TSZ2211114001  
Daattaasshheeeett  
BM1050AF-G  
Absolute Maximum Ratings (Ta = 25)  
Parameter  
Maximum applied voltage 1  
Maximum applied voltage 2  
Symbol  
Vmax1  
Vmax2  
Rating  
650  
30  
Unit  
V
V
Conditions  
VH_IN  
VCC, QR_SEL  
P_BO, P_VSEO, P_VS, P_BOPK  
P_CS,PFCON/OFF,COMP,  
ACDET, ACTIMER,QR_CS, QR_ZT,  
QR_FB,LATCH/AUTOR, VREF  
GCLAMP, P_OUT, QR_OUT  
QR_OUT, P_OUT  
Maximum applied voltage 3  
Vmax3  
5.5  
V
Maximum applied voltage 4  
output peak current 1  
Vmax4  
IOH  
15  
-0.5  
V
A
output peak current 2  
IOL  
1.0  
A
QR_OUT, P_OUT  
QR_ZT pin current 1  
QR_ZT pin current 2  
Allowable dissipation  
Operating temperature range  
Maximum junction temperature  
Storage temperature range  
ISZT1  
ISZT2  
Pd  
Topr  
Tjmax  
Tstr  
-2.0  
3.0  
687.6 (Note1)  
-40 +85  
150  
mA  
mA  
mW  
oC  
oC  
oC  
-55 +150  
(Note1) When mounted (on 70 mm × 70 mm, 1.6 mm thick, glass epoxy on single-layer substrate).  
Reduce to 5.5 mW/C when Ta = 25C or above.  
Operating Conditions (Ta = 25)  
Parameter  
Symbol  
VCC  
Rating  
8.524.0  
80600  
0.01.8  
Unit  
V
Conditions  
VCC  
Power supply voltage range 1  
Power supply voltage range 2  
Power supply voltage range 3  
VH_IN  
P_BO  
V
VH_IN  
V
P_BO  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
2/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
Electrical Characteristics (Unless otherwise noted, Ta=25, VH_IN=320Vdc, VCC=12V)  
Specifications  
Parameter  
Circuit current]  
Symbol  
Unit  
Conditions  
Minimum  
Standard Maximum  
VCC=12.0V  
(QR=ON, PFC=OFF)  
QR_FB=1.0V  
(during pulse operation)  
Circuit current (ON) 1  
Circuit current (ON) 2  
ION1  
0.700  
1.200  
1.700  
mA  
VCC=12.0V  
(QR =ON, PFC=OFF)  
QR_FB=VREF  
ION2  
0.700  
0.800  
1.000  
1.800  
1.300  
2.800  
mA  
mA  
(during  
pulse  
operation  
when OFF)  
VCC=12.0V  
(QR =ON, PFC=ON)  
QR_FB=1.0V  
Circuit current (ON) 3  
ION3  
(during pulse operation)  
Start circuit Block]  
Start current 1  
Start current 2  
ISTART1  
ISTART2  
0.100  
1.000  
0.500  
3.000  
1.000  
5.000  
mA  
mA  
VCC= 0V  
VCC=10V  
Input current from VH_IN  
terminal after releasing  
UVLO  
OFF Current  
ISTART3  
VSC  
-
10  
16  
uA  
V
VH voltage switched  
start current  
0.400  
0.800  
1.400  
VREF Block]  
VREF output voltage  
VREF output capacitor  
GCLAMP voltage 1  
GCLAMP voltage 2  
VREF1  
CREF  
GCL1  
GCL2  
3.500  
0.68  
11.0  
11.0  
4.000  
1.00  
12.5  
12.5  
4.500  
2.20  
14.0  
14.0  
V
uF  
V
VCC=15V  
VCC=22V  
V
When VREF rise  
The ratio of VREF pin  
voltage.  
77.5  
3.100V)  
87.5  
(3.500V)  
97.5  
(3.900V)  
VREF UVLO 1  
VRUVLO1  
%
When VREF drop  
The ratio of VREF pin  
voltage.  
52.5  
(2.100V)  
62.5  
(2.500V)  
72.5  
(2.900V)  
VREF UVLO 2  
VRUVLO2  
VRUVLO3  
%
%
25  
1.000V)  
13.50  
7.00  
6.50  
27.0  
23.0  
4.0  
0.400  
0.200  
0.200  
VREF UVLO hysteresis  
-
-
VRUVLO3= VRUVLO1- VRUVLO2  
VCC UVLO voltage 1  
VCC UVLO voltage 2  
VCC UVLO hysteresis  
VCC OVP voltage 1  
VCC OVP voltage 2  
VCC OVP hysteresis  
Brown out detection voltage 1  
Brown out detection voltage 2  
Brown out hysteresis  
Brown out detection  
delay time 1  
VUVLO1  
VUVLO2  
VUVLO3  
VOVP1  
VOVP2  
VOVP3  
VBO1  
12.50  
5.50  
-
24.0  
20.0  
-
0.350  
-
-
14.50  
8.50  
-
30.0  
26.0  
-
0.450  
-
-
V
V
V
V
V
V
V
V
V
VCC rise  
VCC drop  
VUVLO3= VUVLO1- VUVLO2  
VCC rise  
VCC drop  
VOVP3= VOVP1 - VOVP2  
P_BO rise  
P_BO drop  
VBO2  
VBO3  
VBO3 = VBO1VBO2  
Times until ACDET logic  
change ( ACTIMER=L)  
Times until ACDET logic  
change ( ACTIMER=H)  
Times until PFC and QR  
stop  
TBO1  
TBO2  
TBO3  
21.8  
87.0  
170  
32.0  
128.0  
250  
42.2  
169.0  
330  
ms  
ms  
ms  
Brown out detection  
delay time 2  
Brown out detection  
delay time 3  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
3/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
Electrical Characteristics (Unless otherwise noted ,Ta=25,VH_IN=320Vdc,VCC=12V)  
Specifications  
Parameter  
Symbol  
Unit  
Conditions  
Minimum  
50  
Standard Maximum  
ACDET pin characteristics]  
ACDET pin ON resister  
RACDET  
100  
200  
ACTIMER pin characteristics]  
ACTIMER pin input L level  
ACTIMER pin input H level  
ACTIMER pin  
VACTIMEL  
VACTIMEH  
-
-
-
0.3  
-
V
V
1.2  
RACTIMEH  
165  
330  
500  
k  
pull-down resistor  
PFCON/OFF pin characteristics]  
PFCON/OFF pin input L level  
PFCON/OFF pin input H level  
PFCON/OFF pin  
pull-down resistor  
PFCON/OFF pin timer time  
VPON/OFFL  
-
-
-
0.3  
-
V
V
PFC = ON  
PFC = OFF  
VPON/OFFH  
RPON/OFFH  
TPFCON/OFF  
1.2  
50  
100  
150  
kΩ  
0.50  
1.50  
3.00  
ms  
LATCH/AUTOR pin characteristics]  
LATCH/AUTOR pin  
input L level  
LATCH/AUTOR pin  
input H level  
LATCH/AUTOR pin  
pull-down resistor  
VMODEL  
VMODEH  
RMODEH  
-
-
-
0.3  
-
V
V
1.2  
50  
100  
150  
kΩ  
[COMP pin characteristics]  
COMP pin detection voltage  
COMP pin pull-up resistor  
External Thermistor resistor  
VCOMP  
RCOMP  
RT  
0.370  
19.4  
3.32  
0.500  
25.9  
3.70  
0.630  
32.3  
4.08  
V
kΩ  
kΩ  
Latch release voltage  
VCC pin voltage)  
VLATCHOFF  
TCOMP  
-
VUVLO2 -0.5  
150  
-
V
Latch mask time  
70  
240  
us  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
4/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
Electrical Characteristics (Unless otherwise noted Ta=25, VH_IN=320Vdc, VCC=12V)  
Specifications  
Parameter  
[Quasi-resonant Control Block]  
[Quasi-resonant DC/DC converter Block (turn off)]  
Symbol  
Unit  
Conditions  
Minimum  
Standard Maximum  
QR_FB pin pull-up resistance  
RFB  
15  
20  
25  
kΩ  
CS over-current  
detect voltage 1A  
Vlim1A  
0.950  
1.000  
1.050  
V
Izt<1.0mA  
CS over-current  
detect voltage 1B  
Vlim1B  
Vlim1C  
Vlim1D  
0.630  
0.700  
0.250  
0.750  
0.770  
V
V
V
Izt>1.0mA  
Izt<1.0mA  
Izt<1.0mA  
CS over-current  
detect voltage 1C  
-
-
-
-
CS over-current  
detect voltage 1D  
CS over-current  
detect voltage 2A  
CS switched ZT current  
CS Leading  
Vlim2A  
IZT  
-
0.800  
-
0.150  
1.000  
0.250  
-
1.200  
-
V
QR_FB=0.3V (Izt<1.0mA)  
mA  
us  
TLEB  
Edge Blanking time  
Turn off time  
Minimum ON width  
TOFF  
Tmin  
-
-
0.250  
0.500  
-
-
us  
us  
*1  
TLEBTOFF  
[Quasi-resonant DC/DC converter Block (turn on)]  
Maximum operating  
frequency 1  
FSW1  
FSW2  
106  
24  
120  
30  
134  
36  
KHz  
KHz  
V
QR_FB=2.00V  
QR_FB=0.50V  
Maximum operating  
frequency 2  
Frequency reduction  
start FB voltage  
Frequency reduction  
end FB voltage  
VFBSW1  
VFBSW2  
1.15  
0.35  
1.250  
0.50  
1.350  
0.65  
V
V (QR_FB)/V  
QR_CS)  
Voltage gain  
AVCS  
1.70  
2.00  
2.30  
V/V  
ZT comparator voltage 1  
ZT comparator voltage 2  
ZT trigger timeout period  
VZT1  
VZT2  
TZTOUT  
60  
300  
-
100  
400  
15  
140  
500  
-
mV  
mV  
us  
QR_ZT drop  
QR_ZT rise  
Count from final ZT trigger  
[Quasi-resonant DC/DC converter protection functions]  
Soft start time1  
Soft start time2  
FB OLP Voltage 1a  
FB OLP Voltage 1b  
TSS1  
TSS2  
VFOLP1A  
VFOLP1B  
0.60  
2.60  
2.5  
-
1.00  
4.00  
2.8  
1.40  
5.40  
3.1  
-
ms  
ms  
V
Operate QR_FB rise  
Operate QR_FB drop  
Switched latch / Auto  
recovery rise  
Switched latch / Auto  
recovery drop  
2.6  
V
FB OLP Voltage 2a  
FB OLP Voltage 2b  
VFOLP2A  
VFOLP2B  
3.3  
-
3.6  
3.4  
3.9  
-
V
V
QR_FB  
resistance value (during  
latch mode)  
pin  
external  
FB OLP mode switched  
external connected resistor  
RFOLP2  
90  
100  
110  
kΩ  
FB OLP timer  
ZT OVP Voltage  
TFOLP  
VZTL  
44  
3.2  
64  
3.5  
84  
3.8  
ms  
V
[QR_OUT pin]  
QR_OUT pin  
PMOS ON resistor  
QR_OUT pin  
NMOS ON resistor  
RPOUT  
RNOUT  
5
2
15  
5
30  
10  
[QR_SEL pin]  
QR_SEL pin Ron  
RMASK  
-
150  
-
*1 Pulse is applied to QR_CS pin  
*2 Pulse is applied to QR_ZT pin  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
5/47  
Daattaasshheeeett  
BM1050AF-G  
Electrical Characteristics (Unless otherwise noted Ta=25, VH_IN=320Vdc, VCC=12V)  
Specifications  
Parameter  
Symbol  
Unit  
Conditions  
Minimum  
Standard Maximum  
[Power Factor CorrectionPFCcontroller block]  
[Power Factor Correction (PFC) Gm amplifier block]  
P_VS pin pull-up current  
Gm amplifier normal voltage  
Gm amplifier  
trans-conductance  
Maximum Gm amplifier  
source current  
IP_VS  
VVSAMP  
-
0.50  
2.500  
-
uA  
V
2.460  
2.540  
VVSGM  
IVSAMP1  
IVSAMP2  
30.8  
15  
44.0  
25  
57.2  
35  
uS  
uA  
uA  
P_VS=1.0V  
Maximum Gm amplifier  
sink current  
24  
40  
56  
P_VS=3.5V  
[Power Factor Correction (PFC) input voltage monitor block]  
P_BO input voltage range  
P_BO pin leak current  
VP_BOIN  
IBOLEAK  
0.000  
-1.00  
-
1.800  
1.00  
V
uA  
0.00  
[Power Factor Correction (PFC) input voltage peak detect block]  
P_BOPK max charge current  
P_BOPK max  
discharge current  
IBOPKCHG  
IBOPKDIS  
36  
72  
144  
0.4  
uA  
uA  
0.1  
0.2  
[Power Factor Correction (PFC) multiplier block]  
Multiplier constant  
P_VSEO stop voltage 1  
P_VSEO stop voltage 2  
KMULTI  
VVSEO1  
VVSEO2  
0.37  
181  
88  
0.54  
226  
128  
0.71  
271  
168  
mV  
mV  
BOPK=0.56V  
BOPK=1.30V  
[Power Factor Correction (PFC) Oscillation frequency block]  
PFC Oscillation frequency  
PFC Frequency hopping width  
PFC hopping frequency  
Minimum Pulse width  
FPSW1  
FPSWEL  
FPCH  
Tmin  
Dmax  
60  
-
75  
-
65  
4.0  
125  
500  
94.0  
70  
-
175  
-
KHz  
KHz  
Hz  
ns  
%
Maximum DUTY  
90.0  
98.0  
[Power Factor Correction (PFC) Driver block]  
P_OUT pin PMOS ON resistor  
P_OUT pin NMOS ON resistor  
RPPOUT  
RPNOUT  
5
2
15  
5
30  
10  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
6/47  
Daattaasshheeeett  
BM1050AF-G  
Electrical Characteristics (Unless otherwise noted Ta=25, VH_IN=320Vdc, VCC=12V)  
Specifications  
Parameter  
Symbol  
Unit  
Conditions  
Minimum  
[Power Factor Correction (PFC) controller block ]  
Standard  
Maximum  
[Power Factor Correction (PFC) protection function block ]  
Leading Edge Blanking time  
P_CS over current limit  
voltage 1  
P_CS over current limit  
voltage 2  
TPLEB  
VPCS1  
-
250  
-
ns  
V
0.93  
1.16  
1.40  
P_BOPK=0.56V  
P_BOPK=1.30V  
VPCS2  
0.48  
0.60  
0.72  
V
V
Figure of () is comparison  
with P_VS standard voltage  
2.5V  
0.300  
-88%)  
0.200  
(-92%)  
0.400  
(-84%)  
P_VS short protection voltage  
VP_SHORT  
1.800  
(-28%)  
1.100  
2.000  
(-20%)  
1.250  
2.200  
(-12%)  
1.400  
Figure of () is the ratio of  
P_VS standard voltage 2.5V  
Figure of () is the ratio of  
P_VS standard voltage 2.5V  
QR power-limit P_VS voltage1  
QR power limit P_VS voltage2  
VPFCON  
V
V
VPFCOFF  
(-56%)  
(-50%)  
(-44%)  
P_VS QR power  
limit hysteresis  
0.750  
(30%)  
Figure of () is the ratio of  
P_VS standard voltage 2.5V  
VPFCHYS  
-
-
V
2. 250  
-10%)  
2.625  
+5%)  
2.725  
2.050  
(-18%)  
2.450  
(-2%)  
Figure of () is the ratio of  
P_VS standard voltage 2.5V  
Figure of () is the ratio of  
P_VS standard voltage 2.5V  
Figure of () is the ratio of  
P_VS standard voltage 2.5V  
The time to detect P_VS  
over voltage protection  
P_VS gain rise voltage  
P_VS gain fall voltage  
VPGUP  
VPOVP1  
VPOVP2  
TPOVP2  
V
V
-
-
-
-
P_VS over voltage  
protection voltage  
P_VS over voltage  
protection timer  
V
+9%)  
16  
32  
48  
ms  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
7/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
PIN Configure  
Table 1. I/O Pin Functions  
Function  
ESD protection system  
NO  
PIN  
I/O  
VCC  
-
-
-
GND  
-
-
1
2
P_BO  
I
I/O  
I
Input AC Voltage monitor pin  
PFC gm amplifier output pin  
PFC Output voltage monitor pin  
Connected capacitor to the pin  
PFC Coil current monitor pin  
PFC ON/OFF control input pin  
External latch stop pin  
P_VSEO  
P_VS  
3
4
P_BOPK  
P_CS  
O
I
5
6
PFCON/OFF  
COMP  
ACDET  
ACTIMER  
GND  
I
7
I
8
O
I
Input AC voltage state communication pin  
Brown out detection time setting input pin  
GND  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
I/O  
O
I/O  
I/O  
O
O
I/O  
I
P_OUT  
GCLAMP  
VCC  
PFC Output drive pin  
Gate H level clamp pin  
Power supply pin  
QR_OUT  
QR_SEL  
GND  
Quasi-resonant Output drive pin  
Quasi-resonant Mask pin  
GND  
QR_CS  
QR_FB  
QR_ZT  
LATCH/AUTOR  
VREF  
Quasi-resonant Over current detected pin  
Quasi-resonant Feedback detected pin  
Quasi-resonant Zero cross detected pin  
Protection mode switched input pin  
Internal power supply pin  
-
-
I
I
I
-
O
-
-
-
-
-
-
-
VH_IN  
I
AC Input voltage applied pin  
-
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
8/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
I/O Equivalent Circuit Diagram  
Figure 2. I/O Equivalent Circuit Diagram  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
9/47  
Daattaasshheeeett  
BM1050AF-G  
Block Diagram  
+
FUSE  
Diode  
Bridge  
AC  
85-265Vac  
Filter  
P_VS  
-
BD9212F  
BD92XX  
AND  
AND  
Internal  
Supply  
100k  
-
+
+
-
QR_ZT  
AND  
-
+
+
-
OR  
-
+
0.5V  
GateClamp  
+
-
ERROR  
AMP  
1/VBOPK  
+
-
MIN ON  
WIDTH  
Internal CLK  
65kHz±4.0kHz  
+
-
S
R
Q
RAMP  
MAX DUTY  
94%  
15Ω  
5Ω  
PRE  
Driver  
AND  
-
+
OR  
K
*K3  
+
-
1MΩ  
P_VS  
+
-
*K1  
Leading Edge  
Blanking  
(250ns)  
+
-
3.50V  
STOP  
QR_ZT  
+
-
1
shot  
AND  
7V  
OR  
ZT Blanking  
OUT(H->L) 0.60us  
TimeOut  
15 usec  
100mV  
/400mV  
NOUT  
1.25V  
(
)
AND  
S
R
MAX Blanking  
Frequency  
(120kHz)  
+
+
-
OR  
POUT  
15Ω  
Q
PRE  
Driver  
BURST_OH  
AND  
20kΩ  
+
-
0.50V  
NOUT  
5Ω  
Timer  
(64ms)  
+
-
1MΩ  
FBOLP_OH  
Soft  
Start  
+
-
200kΩ  
200kΩ  
FB/2  
-
-
SS1ms  
SS4ms  
1.00V  
+
Leading Edge  
Blanking  
(250ns)  
CURRENT SENSE (V-V Change)  
Normal ×1.0  
:
Figure 3. Block Diagram  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
10/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
AND  
AND  
Internal  
Supply  
100k  
-
+
+
-
AND  
-
+
+
-
OR  
-
+
0.5V  
GateClamp  
+
-
1/VBOPK  
+
-
MIN ON  
WIDTH  
Internal CLK  
65kHz±4.0kHz  
S
R
Q
RAMP  
MAX DUTY  
94%  
15Ω  
5Ω  
-
PRE  
Driver  
AND  
-
+
OR  
K
*K3  
+
-
1MΩ  
+
-
*K1  
Leading Edge  
Blanking  
(250ns)  
+
-
3.50V  
STOP  
+
-
1 shot  
AND  
7V  
OR  
ZT Blanking  
OUT(H->L) 0.60us  
TimeOut  
( 15 usec )  
100mV  
/400mV  
NOUT  
1.25V  
AND  
S
R
MAX Blanking  
Frequency  
(120kHz)  
+
+
-
OR  
POUT  
15Ω  
Q
PRE  
Driver  
BURST_OH  
AND  
20kΩ  
+
-
0.50V  
NOUT  
5Ω  
Timer  
(64ms)  
+
-
1MΩ  
FBOLP_OH  
Soft  
Start  
+
-
200kΩ  
200kΩ  
FB/2  
-
-
SS4ms  
SS1ms  
1.00V  
+
Leading Edge  
Blanking  
(250ns)  
CURRENT SENSE (V-V Change)  
Normal : ×1.0  
Figure 3-2. Block Diagram  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
11/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
Explanation of each block  
(1) Starter block (24pin)  
BM1050AF built in the starter circuit that withstands 650V. For that, application used the IC is enabled faster start time and  
low standby power. After start-up, consumption power is idling current ISTART3typ=10uAonly.  
Reference of start-up time is shown in Figure 6.  
It can start-up less than 0.1sec when Cvcc=10uF.  
Figure 4. Start Circuit Block Diagram  
Figure 5. Start-up current vs VCC voltage  
*Start current flows from VH_IN pin to VCC pin.  
Figure 6. Start time vs Cvcc (Reference values)  
ex) When Vac=100V; consumption power of start-up circuit only.  
PVH100V*2*10uA=1.41mW  
ex) When Vac=240V; consumption power of start-up circuit only.  
PVH240V*2*10uA=3.38mW  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
12/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(2) Start sequence  
The start sequence of IC operates DC/DC part, next PFC part (See the figure 7).  
A : Input voltage VH is applied.  
B : Charge current flows from VH_IN pin to the VCC pin capacitor. Then VCC pin voltage rises.  
C : Monitor the AC voltage by P_BO pin. And confirm normal state by releasing brown out.  
D :When VUVLO1typ=13.5V< VCC pin, release the inside UVLO and ON the inside regulator VREF.  
E : When VRUVLO1typ=87.5%< VREF pin, release the inside VREFUVLO.  
F : If the ‘E’ state continues constant period, DC/DC part starts because it recognizes normal state.  
When the switching starts, VOUT voltage rises.  
When the DC/DC start-up, please set external parts to be regulated output voltage within the TFOLP period (64ms .typ ).  
[QR start-up operation]  
G: This IC adjusts over current limiter of DC/DC by operation of soft start 1 against over voltage and current rising.  
That term continues Tss1 (typ=1ms).  
H: This IC adjusts over current limiter of DC/DC by operation of soft start 2 against over voltage and current rising.  
Soft start 2 operation continues power limiter operation until P_VS pin voltage > VPFCON (2.00V typ) and TSS2typ=4ms.  
This IC operates the state that maximum power of QR is 50% at this state.  
I: If secondary voltage is setting value, QR_FB pin voltage is constant value corresponded load by current from photo coupler.  
At normal state, QR_FB voltage is QR_FB<VFBOLP1B (2.60V typ).  
[PFC start up operation]  
J: At the point in I time, This IC recognizes that the part of DC/DC operation is normal, Part of PFC starts operation.  
K: If P_VS pin voltage is upper VP_SHORT (typ = 0.3V), this IC judges short detection normal.  
L: P_VSEO voltage rises from 0V to prevent from over rising voltage and current at PFC part.  
At this time P_OUT pin DUTY increase from 0% with P_VSEO voltage increasing.  
Figure 7. Start sequences Timing chart  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
13/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
About figure7, condition is PFCON/OFF=L.  
Start up operation is shown at figure8, 9 by the state shift figure.  
Figure 8 is LATCH/AUTOR=L (auto return operation), and figure 9 is LATCH/AUTOR=H (LATCH operation)  
(Note) When the latch mode is used, it is necessary to apply 3.5V~4.5V to VREF terminal from the outside.  
Figure 8. Diagram of state machine (LATCH/AUTOR=L)  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
14/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
Figure 9. Diagram of state machine (LATCH/AUTOR=H)  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
15/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(3) VCC protection function and VREF pin function  
(3-1) VCC pin protection function(13pin)  
BM1050AF built in VCC low voltage protection function of VCCUVLO (Under Voltage Lock Out) and over voltage protection  
function of VCC OVP (Over Voltage Protection).  
This function monitors VCC pin and prevent VCC pin from destroying switching MOSFET at abnormal voltage.  
VCCUVLO is auto recovery comparator that has voltage hysteresis. VCCOVP operates as latch mode comparator in the  
LATCH/AUTOR=H and as auto return comparator in the LATCH/AUTOR=L.  
VCC<VLATCHOFF (typ = Vuvlo1 - 0.5) is condition of latch release (reset) after detection of latch operation by VCCOVP.  
Refer to the operation figure10.  
VCCOVP built in mask time TCOMP (typ=150us), in case of continuing VCCOVP 150us, operates over voltage detection.  
By this function, this IC masks pin generated surge etc.  
(Note) When the latch mode is used, it is necessary to apply 3.5V~4.5V to VREF terminal from the outside.  
Figure10. VCC UVLO / OVP (LATCH/AUTOR=H at Latch stop)  
A:VH input, VCC voltage rise  
B:VCC>Vuvlo1,DC/DC operation start  
C:VCC<Vuvlo2,DC/DC operation stop  
D:VCC>Vuvlo1,DC/DC operation start  
E:VCC voltage decreases until starting DC/DC switching  
F:VCC rise  
F:When VCC>Vovp1,DC/DC operation is stopped. Switching is stopped by internal latch signal.  
G:Then DC/DC operation is stopped, power supply is lost from auxiliary, VCC voltage downs.  
H:VCC<Vuvlo2, VCC voltage rises for dropping IC's consumption current.  
I:VCC>Vuvlo1, this IC dose not operate DC/DC for latch operation. VCC voltage drops because of dropping of IC's consumption  
current.  
J:same of H  
K:same of I  
L:same of J  
M:VH is open(the state is outlet out).VCC drops.  
N:VCC <VCOMP, latch releases.  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
16/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(3-2) VREF pin function(21pin)  
VREF pin is internal regulator output pin.  
The use of VREF pin is IC's internal supply and connection of LATCH/AUTOR pin changing.  
This pin needs an external capacitance, please use the capacitance following table.  
(Note) When the latch mode is used, it is necessary to apply 3.5V~4.5V to VREF terminal from the outside.  
Table 2. VREF pin output capacitor capacitance  
Specification  
Parameter  
Symbol  
Unit  
uF  
Conditions  
Minimum  
Standard Maximum  
VREF Output Capacitor  
CREF  
0.68  
1.00 2.20  
(3-3) VREF pin protection function(21pin)  
VREF pin built in low voltage protection function VREF UVLO (Under Voltage Protection).  
This IC prevents from error operating at the time, VREF starts up and VREF is low, by this function.  
Figure11. VREF UVLO Function  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
17/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
3-4Blown out function(1 pin)  
BM1050AF built in blown out function. This function is that this IC stops DCDC operating at the time when input AC voltage is  
low. Show the example figure12. This IC divides input voltage by the resistance, and input P_BO pin.  
This IC detects from circuit normal state, and starts DC/DC operation the time when P_BO pin exceeds Vbo1(0.4V typ).  
ACDET=L after TBO1(typ.32ms) or Tbo2(typ.128ms) from P_BO pin drops from VBO2(0.2V typ).  
Moreover, if TBO3 (typ.250ms) passes from P_BO<VBO2, DC/DC part and PFC part is stopped.  
About every resistance of fugure12, because P_BO pin is used PFC operation, please set Rbo1=4Mohm,Rbo2=16kohm for  
operating the range of P_BO pin voltage 0~1.8V. In this case, by the following formula, P_BO=0V~0.56V at the case AC100V,  
P_BO=0V~1.237V at the case AC220V.  
RBO2  
P_BO =2 ×VAC VF1×  
RBO1 +RBO2  
Then  
×VAC>> VF1  
RBO2  
P_BO = × VAC  
×
RBO1 +RBO2  
Figure12. Block Diagram of Blown out Function  
Figure13. Detection Way of Blown out Function  
A : P_BO > VBO1(typ.0.4V) ACDET=L->H  
B: After 150us from A DC/DC part starts up.  
C:QR_FB<VFCLP1Btyp.2.6V. PFC part starts up.  
D: If PFC output is larger than constant voltage, ACTIMER=L->H.  
E: P_BO<VBO2 (typ.0.2V) Timer start operation by detection blown out protection.  
F:After TBO1(typ.32ms) or TBO (typ.128ms) from E, ACDET=H->L. It is possible to set TBO1 and TBO at ACTIMER pin  
G:After TBO2(typ.250ms) from E, DC/DC part and PFC part are OFF  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
18/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(4)Controller part  
(4-1)ACDET pin (8pin)  
ACDET pin is NMOS open drain output. It monitors AC voltage, and is used for controlling secondary micon.  
Show the using example figure14, 15. Please set VIN is H voltage of micon.  
ACDET=L Abnormal stateP_BO < 0.2V)  
ACDET=H Normal state  
Figure14. Using Example of ACDET Pin  
Figure15. Explanation of ACDET Pin  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
19/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
Next, show an easy sequence.  
Figure16. At applied AC Input VoltageP_BO voltage<0.4V)  
Because P_BO < 0.4V, DC/DC part is OFF.  
VCC voltage>13.5V  
Figure17. At appied AC Inpt VoltageP_BO voltage >0.4V)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
20/47  
Daattaasshheeeett  
BM1050AF-G  
ADetect P_BO0.4V, Quasi resonance starts operation After 150μs  
BPFC start up  
CPFC output stabilized  
*About PFC operation, by the micon, is able to be controlled using PFCON/OFF pin.  
Figure18. At AC Power Supply OFF  
ADetect P_BO0.2V, internal ACDET timer operates. At this time, output of PWC downs.  
BAfter 32ms ACTIMER=Lfrom the point A, ACDET pin voltage is H->L, send to the μ-controller abnormal signals.  
CAfter 250ms from the point of A,PFC and Quasi Resonant are stopped  
Figure19. At AC Power Supply the case of operation moment stop  
The case of AC voltage is OFF suddenly, constant area is masked.  
The time of constant area of masking is depends on ACTIMER pin.  
The case of ACTIMER pin=L, Mask time=32msthe case of ACTIMER pin=H, mask time=128ms.  
The moment of AC voltage momentary power interruption, because PFC output voltage is down by corresponding to load,  
please watch out.  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
21/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(4-3) PFCON/OFF pin  
PFCON/OFF pin is NMOS gate input pin. Refer to following the functions.  
An internal timer is integrated for noise protection on PFCON/OFF pin.  
After TPFCON/OFF(typ.1ms) from PFCON/OFF HL, PFCON/OFF L operation starts. At PFCON/OFF LH, internal timer is not  
integrated.  
function1PFC circuit operation is OFF control.  
In order to reduce standby power, IC controls PFC part operation at PFCON/OFF pin.  
function2QR_SEL pin is Hi-zL  
Refer to example of using at figure 20.  
PFCON/OFF=L DC/DC partONPFC partONQR_SELHi-Z  
PFCON/OFF=H DC/DC partONPFC partOFFQR_SEL=L  
VREF  
LOGIC  
PFC  
ON/OFF  
uCOM  
PC  
Controlled by Nch OPEN-drain  
Plimary Side  
Secondary Side  
Figure20. Using example of PFCON/OFF pin  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
22/47  
Daattaasshheeeett  
BM1050AF-G  
(4-4) LATCH/AUTOR pin  
LATCH/AUTOR pin is NMOS gate input pin. Refer to example of using at figure21.  
Operation setting of protection function is shown at table3.  
LATCH/AUTOR=L Auto recovery  
LATCH/AUTOR=H Latch  
(Note) When the latch mode is used, it is necessary to apply 3.5V~4.5V to VREF terminal from the outside.  
Figure21. Using example of LATCH/AUTOR pin  
LATCH/AUTOR=GND  
LATCH/AUTOR  
ITEM  
VREFUVLO  
VCCUVLO  
VCCOVP  
Contents  
detection  
method  
operation  
release  
mothod  
operaetion  
at detection  
detection  
method  
operation  
at detection  
release  
mothod  
operaetion  
at detection  
at detection  
VREF PIN  
ꢀLow voltage protection  
function  
PFC part, DC/DC  
part operation  
stops  
PFC partDC/DC  
part  
ꢀenable to operate  
VREF<2.5V  
(VREF falling)  
VREF>3.5V  
ꢀ(VREFrising)  
same as LATCH/AUTOR=GND  
same as LATCH/AUTOR=GND  
VCC PIN  
ꢀLow voltage protection  
function  
PFC part, DC/DC  
part operation  
stops  
PFC partDC/DC  
part  
ꢀenable to operate  
VCC<7.0V  
(VCC falling)  
VCC>13.5V  
ꢀ(VCC rising)  
VCC PIN  
VCC>27V state  
PFC part, DC/DC  
ꢀOver voltage protection continues between part operation  
PFC partDC/DC  
part  
ꢀenable to operate  
PFC part, DC/DC  
part latch operation  
stops  
PFC part,  
DC/DCpart enable  
to operate  
VCC<23.0V  
ꢀ(VCCfalling)  
VCC>27V  
(VCC rising)  
VCC<6.5V  
ꢀ(VCC falling)  
function  
150us(VCC rising) stops  
P_BO<0.2V state  
continues between  
250ms  
Input AC voltage  
ꢀLow voltage protection  
function  
PFC part, DC/DC  
part operation  
stops  
PFC partDC/DC  
part  
ꢀenable to operate  
P_BO>0.4V  
ꢀ(P_BOrising)  
same as LATCH/AUTOR=GND  
same as LATCH/AUTOR=GND  
same as LATCH/AUTOR=GND  
blown out  
QR_FB>2.8V state  
continues between  
250ms(QR_FB  
QR_FB pin  
DC/DC part  
ꢀoperation stops  
QR_FB<2.6V  
ꢀ(QR_FB falling)  
QR_FB_OLP1 ꢀOver current protection  
function  
normal operation  
normal operation  
normal operation  
normal operation  
normal operation  
normal operation  
normal operation  
normal operation  
QR_FB pin  
QR_FB_OLP2 ꢀOver current protection  
function  
QR_FB>3.6V  
(QR_FB rising)  
DC/DC part  
ꢀoperation stops  
QR_FB<3.4V  
ꢀ(QR_FB falling)  
QR_ZT>3.5V state  
continues between  
150us(QR_ZT  
QR_ZT>3.5V state  
continues between  
150us(QR_ZT  
QR_ZT pin  
ꢀOver voltage protection  
function  
PFC part, DC/DC  
part latch operation  
stops  
DC/DC part  
ꢀoperation stops  
QR_ZT<3.5V  
ꢀ(QR_ZT falling)  
VCC<6.5V  
ꢀ(VCC falling)  
QR_ZT OVP  
normal operation  
P_VS pin  
ꢀShort protection  
function  
P_VS short  
protection  
P_VS<0.30V  
(P_VS falling)  
PFC part  
ꢀoperation stops  
P_VS>0.30V  
ꢀ(P_VS rising)  
same as LATCH/AUTOR=GND  
same as LATCH/AUTOR=GND  
same as LATCH/AUTOR=GND  
P_VS pin  
ꢀLow voltage gain  
increasing function  
P_VS GAIN  
increasing  
P_VS<2.25V  
(P_VS falling)  
GM AMP GAIN  
increasing  
P_VS>2.25V  
ꢀ(P_VS rising)  
P_VS pin  
ꢀOver voltage protection  
function1  
P_VS>2.625V  
(P_VS rising)  
GM AMP GAIN  
falling  
P_VS<2.625V  
ꢀ(P_VS falling)  
P_VSꢀOVP1  
P_VSꢀOVP2  
COMP function  
P_VS pin  
ꢀOver voltage protection  
function2  
PFC part, DC/DC  
part latch operation  
stops  
P_VS>2.725V  
(P_VS rising)  
P_VS<2.600V  
ꢀ(P_VS falling)  
P_VS>2.725V  
(P_VS rising)  
VCC<6.5V  
ꢀ(VCC下降時)  
PFC part stops  
normal operation  
normal operation  
COMP<0.5V state  
continues between  
150us(COMP  
COMP<0.5V state  
continues between  
150us(COMP  
PFC part, DC/DC  
part operation  
stops  
PFC part, DC/DC  
part latch operation  
stops  
COMP pin  
ꢀProtection function  
COMP>0.50V  
ꢀ(COMP rising)  
VCC<6.5V  
ꢀ(VCC falling)  
Table 3. List of Protection Function Operation Setting by LATCH/AUTOR pin  
*Comparator level of protection function is shown by TYP value.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
23/47  
Daattaasshheeeett  
BM1050AF-G  
(4-5) ACTIMER pin  
ACTIMER pin is NMOS gate input pin. Show example of using figure 22, 23  
Set the detect timer of AC voltage drop. please refer to ACDET pin page)  
Figure22. Using example of ACTIMER pin  
ACTIMER=GND  
: 32ms Timer  
ACTIMER=VREF :128ms Timer  
Figure23. AC power at the case momentary power interruption OFF  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
24/47  
Daattaasshheeeett  
BM1050AF-G  
(4-6) COMP pinexternal stop control function)  
COMP pin is stop control pin. When COMP pin voltage drops from VCOMP (0.5V. typ), COMP pin stops PFC and DC/DC part  
operation.  
This IC built in TCOMP (150us .typ) until stopping switching, prevent from stopping by noise.  
COMP pin is in pull-up resistor RCOMP (25.9k. typ), When COMP pin is the state of pull-down with lower resistance than  
RT(3.70k.typ), COMP pin detects abnormal. Show application examples at the figure24, 25, and 26.  
Temperature protection by NTC thermister  
By putting a thermister at the COMP pin, it is possible to stop latch on temperature rising.  
The case of this application, please design thermister resister is RT(3.70k.typ) on temperature detection.  
Figure24 and 25 is application circuit that latch on Ta=110℃)  
(Note) When the latch mode is used, it is necessary to apply 3.5V~4.5V to VREF terminal from the outside.  
20.0  
18.0  
16.0  
14.0  
12.0  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
RTt(typ3.7kΩ)  
Detect  
0
20  
40  
60  
80 100 120 140 160 180 200  
Temparature T[]  
Figure 24. Temperature Protection Application  
Figure 25. Temperature–Thermistor Resistor characteristic  
Secondary over- voltage protection  
This IC can detect secondary over-voltage by putting photo coupler to COMP pin.  
(Note) When the latch mode is used, it is necessary to apply 3.5V~4.5V to VREF terminal from the outside.  
Figure26.Output Over Voltage Protection Application  
Table 4. Changes of COMP function Operation by LATCH/AUTOR pin  
LATCH/AUTOR=GND  
LATCH/AUTOR=VREF  
ITEM  
contents  
detection  
method  
operation  
release  
operaetion  
detection  
method  
operation  
release  
operaetion  
at detection  
mothod  
at detection  
at detection  
mothod  
at detection  
COMP<0.5V state  
continues between  
150us(COMP falling)  
COMP<0.5V state  
PFC part, DC/DC  
COMP pin  
PFC part, DC/DC  
COMP>0.50V  
P_VCC<6.5V  
COMP function  
normal operation  
continues between part latch operation  
150us(COMP falling) stops  
normal operation  
ꢀprotection function  
part operation stops ꢀ(COMP rising)  
ꢀ(P_VCC falling)  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
25/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(5)Quasi-Resonant DC/DC converter function  
Part of quasi-resonant DC/DC uses PFM(Pulse Frequency Modulation)mode control.  
The QR_FB pin, QR_ZT pin and QR_CS pin are monitored to provide a system optimized for DC/DC."  
The switching MOSFET ON width (turn OFF) is controlled via the QR_FB pin and QR_CS pin, and the OFF width(turn ON).  
Show following detail explanation. (refer to figure27).  
Figure27. Diagram of Quasi-resonant DC/DC Operation  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
26/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(5-1) Determination of ON width (turn OFF)  
ON width is controlled via the QR_FB pin and QR_CS pin.  
The QR_FB pin voltage is compared with the IC internal voltage Vlim1 (1.0V typ) and, as is shown in Figure28.  
And the comparator level changes linearly.  
The QR_CS pin is also used for the pulse-by-pulse over current limiter circuit.  
By changing voltage at the QR_FB pin, DC/DC results in changes of the maximum blanking frequency and  
over-current limiter level.  
mode1: Burst operation  
mode2: Frequency reduction operation(reduces maximum frequency)  
mode3: Maximum frequency operation(operates at maximum frequency)  
mode4: Overload operation(pulse operation is stopped when overload is detected)  
(a) Izt<1.0mA  
b) Izt>1.0mA  
Figure 28. Relation of QR_FB pin, over current limiter and maximum frequency  
The over current limiter level is adjusted, when the input voltage is changed, operate the soft start function.  
In this case, the Vlim1 and Vlim2 values are as listed below."  
Table 5. current protection voltage of Quasi-resonant DC/DC  
AC=100V  
AC=230V  
Soft start  
Vlim1  
Vlim2  
Vlim1  
Vlim2  
Start1ms  
0.250V ( 25.0%)  
0.750V ( 75.0%)  
1.000V (100.0%)  
0.039V ( 3.9%)  
0.113V ( 11.3%)  
0.150V ( 15.0%)  
0.176V ( 17.6%)  
0.525V ( 52.5%)  
0.700V ( 70.0%)  
0.026V ( 2.6%)  
0.079V ( 7.9%)  
0.105V ( 10.5%)  
1msPFC Start &4ms  
PFC Start & 4ms~  
*( ) is AC=100V, these show relative value of compare with Vlim11.0Vtypof normal operation.  
This table is separated AC100V and AC230V for the function of QR_CS current changing function that is shown 4-3.  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
27/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(5-2)LEB(Leading Edge Blanking)function  
When the switching MOSFET is turned ON, surge current occurs at each capacitor charge /discharge or drive current.  
For that, QR_CS voltage rise temporarily, over current limiter may be detected errors.  
To prevent detection errors blanking time is built in to mask TLEB (typ=250ns).  
This blanking function enables a reduction of CS pin filtering.  
(5-3) CS over current protection function  
When the AC input voltage (VHIN) is high, the ON time is reduced and the operating frequency increases. As a result, the  
maximum rated power is increased for a constant over current limiter level. As a countermeasure, DC/DC is switched over  
current detected level.  
AC input voltage detection method is that monitoring QR_ZT current.  
When MOSFET is turn ON, the auxiliary voltage (Va) is the minus voltage that depends on input voltageVH.  
QR_ZT pin is clamped about 0V internal IC.  
Following is the formula for that case.  
Refer to the block figure29. See the graph figure30 and 31.  
Izt = (VaVzt/Rz1 Va/Rz1 VH * Na/Np /Rz1  
Rzt1 Va/Izt  
For that, VH voltage is set by the resistance value of Rzt1. Then, QR_ZT bottom detection voltage is decided, Please set timing  
by Czt.  
NOUT  
+
-
+
-
1 shot  
+
-
OR  
OR  
AND  
TimeOut  
( 15 usec )  
7V  
POUT  
NOUT  
ZT Blanking  
OUT(H->L)  
0.60us  
100mV  
/400mV  
S
R
AND  
Q
NOUT  
PRE  
Driver  
FBOLP_OH AND  
MAX  
Blanking  
Frequency  
(120kHz)  
+
+
-
1.25V  
20k  
+
-
0.30V  
FBOLP_OH  
Timer  
(250ms)  
+
-
+
-
Soft Start  
200kΩ  
200kΩ  
FB/2  
-
-
1.00V  
SS4ms  
SS1ms  
+
Leading Edge  
Blanking  
CURRENT SENSE (V-V Change)  
Normal : ×1.0  
Figure 29. Diagram of CS switching current  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
28/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
Figure 30. QR_CS Switching QR_FB Voltage VS QR_CS Voltage Figure 31. QR_CS Switching Izt Current VS QR_CS  
Voltage  
ex) setting methodoperate changing AC100V and AC220V)  
AC100V 141V±42V±30margin)  
AC220V 308V±62V±20margin)  
The case of above, Between 182V246V, operates changing of CS current => Operate VH214VH  
Np=100, Na=15  
Va=Vin*Na/Np = 214V*15/100 *(-1) = -32.1V  
Rzc = Va/ IZT = -32.1V/-1mA = 32.1kΩ  
By the above explanation, Rzt=32KΩ  
Figure 32. Example over current limiter of CS hing  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
29/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(5-4) Determination of OFF width(turn ON)  
OFF width is controlled at the QR_ZT pin.  
When switching is OFF, the power stored in the coil is supplied to the secondary-side output capacitor.  
When this power supply ends there is no more current flowing to secondary side, so the switching MOS drain pin voltage drops.  
Consequently, the voltage on the auxiliary coil side also drops.  
A voltage that was resistance-divided from the QR_ZT pin by Rzt1 and Rat2 is applied. When this voltage level drops to  
Vzt1(100mV typ) or below, switching is turned ON the QR_ZT comparator. Since bottom status is detected at the QR_ZT pin,  
time constants are generated using Czt, Rzt1, and Rzt2.  
Additionally, a QR_ZT trigger mask function (described in section 5-5) and a QR_ZT time out function  
(described in section 5-6) are built in.  
(5-5)QR_ZT trigger mask function  
The QR_ZT trigger mask function is shown below figure33.  
When switching is set ON -> OFF, super position of noise may occur at the QR_ZT pin.  
At such times, the QR_ZT comparator is masked for the Tztmask time to prevent QR_ZT comparator operation errors.  
Fiure 33. ZT triger mask Functon  
A: QR_OUT OFF=>ON  
B: QR_OUT ON=>OFF  
C: Because of generation of QR_ZT pin noise, TZTMASK doesn’t operate the QR_ZT comparator.  
D: Same as A  
E: Same as B  
F: Same as C  
G: Same as A  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
30/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(5-6)ZT time out function(Figeure34)  
After the ZT comparator is detected, this function forcibly turns switching ON if the following is not detected, even when Tztout  
(15us typ) has elapsed.  
If, the secondary output voltage is low, the auxiliary coil voltage VA is reduced, and the QR_ZT pin voltage drops below Vzt1  
(100mVtyp).  
In such cases, this function turns switching ON forcibly.  
As for Tztout, since 15 us (typ) = 66.7kHz, when the maximum frequency is in frequency reduction mode, the QR_ZT timeout time  
depends on the frequency reduction mode  
Figure 34. ZT Time out Function  
A: QR_ZTVZT1 DC/DC is ON. Count maximum frequency at this point.  
B: DC/DC ON=>OFF  
C: Because noise is generated at QR_ZT pin, TZTMASK doesn’t operate QR_ZT comparator.  
D: DC/DC OFF=>ON  
E: Same as B  
F: Same as C  
G: Count maximum frequency  
H: Because 1cycle>TZTOUT, forcibly be DC/DC OFF=>ON  
(5-7)Soft start operations  
Normally, when the power supply is turned ON, a large current flows to the AC/DC power supply. The BM1050AF builds-in a  
soft start function to prevent large changes in the output voltage and output current during startup.  
this function is reset when the VCC pin voltage is at  
power-on.  
VUVLO2(7.0V typ) or below, soft start is performed again at the next AC  
During a soft start, the following post-startup operations are performed. (See turn OFF described in section 5-1)  
Start to 1ms -> Set to 25% when CS limiter value is normal  
1ms PFC normal status -> Set to 75% when CS limiter value is normal  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
31/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(5-8)Overload protection function/Overload protection mode switching  
The overload protection function monitors the overload status of the secondary output current at the FB pin, and fixes the OUT  
pin at low level when overload status is detected.  
During overload status, current no longer flows to the photocoupler, so the QR_FB pin voltage rises.  
When this status continues for the TFOLP time (64ms typ), it is considered an over load, and the OUT pin is fixed at low level.  
Once the QR_FB pin voltage exceeds VFOLP1a (2.8V typ), if it drops to lower than VFOLP1b (2.6V typ) during the TFOLP time (64ms typ),  
the overload protection timer is reset. At startup, the QR_FB voltage is pulled up to the internal voltage by pull-up resistor, and  
operation starts once the voltage reaches VFOLP1a (2.8V typ) or above. Therefore, the design must set the QR_EB voltage at or  
below the VFOLP1b (2.6V typ) voltage within the TFOLP (64ms typ) time. In other words, the secondary output voltage start time must  
be set to within TFOLP (64ms typ) after IC startup.  
When an overload is detected, either auto recovery mode or latch mode can be selected for the BM1050AF.When pull-down  
resistance RFOLP (100ktyp)is attached to QR_FB pin, latch mode is set. Do not attach any RFOLP value other than 100ktyp,  
since that would prevent latching due to the IC7s internal resistance ratio.  
To release latching after selecting latch mode, first unplug the power supply, and then set VCC<VLATCH (typ=6.5V) to release  
latching.  
(Note) When the latch mode is used, it is necessary to apply 3.5V~4.5V to VREF terminal from the outside.  
(5-9)QR_ZT pin OVP(Over Voltage Protection)  
An OVPOver Voltage Protection) function is built in for the QR_ZT pin.  
When the QR_ZT pin voltage reaches VZLT (TYP=3.5V),over voltage status is detected. QR_ZT pin OVP protection performed  
latch mode.  
A mask time defined as TLATCH (TYP=150us) is built in for the QR_ZT pin OVP function. When QR_ZT OVP status continues for  
150us, overvoltage is detected. This function masks any surges (etc.) that occur at the pin. See the illustration in Figure 35.  
(Like VCC OVP, TLATCH (TYP=150us) is built in)  
Figure 35. ZTOVP and Lach mask Function  
A: DC/DC pulse operates. QR_ZT pin operates too.  
B: QR_ZT pin voltageVZTL (TYP=3.5V)  
C: QR_ZT pin voltageVZTL (TYP=3.5V) state within TCOMPtyp=150us, returns to normal DC/DC operation.  
D: QR_ZT pin voltageVZTL (TYP=3.5V)  
E: QR_ZT pin voltageVZTL (TYP=3.5V) state continues TCOMPtyp=150us, operates latch and DC/DC OFF.  
(Note) When the latch mode is used, it is necessary to apply 3.5V~4.5V to VREF terminal from the outside.  
(5-10) Quasi-resonant DC/DC block protection operation mode  
Show every protection function operation mode table 6.  
FB pin over load protection function is able to change AUTR/LATCH by FB pin pull down resistance.  
(Note) When the latch mode is used, it is necessary to apply 3.5V~4.5V to VREF terminal from the outside.  
Table 6. Protection Circuit Operation Mode of Quasi-resonant DC/DC  
LATCH/AUTOR=GND  
release  
mothod  
LATCH/AUTOR=VREF  
operation  
at detection  
ITEM  
contents  
detection  
method  
operation  
at detection  
operaetion  
at detection  
detection  
method  
release  
mothod  
operaetion  
at detection  
QR_FB pin  
ꢀover current protection  
function  
QR_FB>2.8V state  
continues 250ms  
(QR_FB rising)  
DC/DC part  
ꢀoperation stop  
QR_FB<2.6V  
ꢀ(QR_FB falling)  
QR_FB_OLP1  
normal operation  
normal operation  
normal operation  
same as LATCH/AUTOR=GND  
same as LATCH/AUTOR=GND  
QR_FB pin  
ꢀover current protection  
function  
QR_FB>3.6V  
(QR_FB rising)  
DC/DC part  
ꢀoperation stop  
QR_FB<3.4V  
ꢀ(QR_FB falling)  
QR_FB_OLP2  
QR_ZT OVP  
QR_ZT ipn  
ꢀover voltage protection  
function  
QR_ZT>3.5V state  
continue 150us  
(QR_QR_ZTrising)  
QR_ZT>3.5V state  
continues 150us  
(QR_ZT rising)  
DC/DC part  
ꢀLATCH operation  
stop  
DC/DC part  
ꢀoperation stop  
QR_ZT<3.5V  
ꢀ(QR_ZT falling)  
VCC<6.5V  
ꢀ(VCC falling)  
normal operation  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
32/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(6)Power Factor Correction Circuit (PFC: Power Factor Correction)Part  
Power Factor Correction Circuit is peak current control method of fixed frequency.  
It is possible to supply proper system as PFC by monitoring P_VS pin, P_CS pin, and P_BO.  
It is possible to control the MOSFET ON width by monitoring output voltage at P_VS pin, AC input voltage at P_BO pin, and  
MOSFET current at P_CS pin.  
The switching frequency is FPSW1(typ=65kH),built in frequency hopping function (±4kHz),and contribute to low EMI. Following is  
detail explanation of PFC (reference figure36).  
+
Diode  
Bridge  
AC  
85-265Vac  
P_VS  
CM  
-
0.01uF  
P_BOPK  
Peak  
Hold  
I
IO  
P_BO  
VSOVP2_OK  
VSOVP1_OK  
+
-
GCLAMP  
GCLAMP  
IO  
1/V  
*K3  
2.725V(+9%)  
S
R
MIN ON  
WIDTH  
Internal CLK  
65kHz±4kHz  
+
-
2.625V(+5%)  
VM = K1*V(P_BO)* K2*V(P_VS)*K3/V(P_BOPK)*K4  
≒K * V(P_BO) * V(P_VS) / V(P_BOPK)  
Q
P_OUT  
MAX DUTY  
94%  
15Ω  
VSGUP_OK  
VPFC_ON  
+
-
PRE  
Driver  
O
AND  
OR  
-
+
*K2  
*K4  
×
2.25V(-10%)  
NGB  
+
-
1MΩ  
P_GND  
5Ω  
2.00V(-20%) / 1.25V(-50%)  
+
P_VS  
IO  
-
VSSHORT_OK  
+
-
0.30V(-88%)  
P_VS  
I
-
+
*K1  
P_CS  
VPCS  
Leading Edge  
Blanking  
(250ns)  
I
2.500V  
P_VSEO  
RS  
O
Figure 36. Diagram of PFC block  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
33/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(6-1) gm AMP  
P_VS pin monitors a divide voltage between resistors of PFC output voltage. P_VS pin is piled up ripple voltage of AC  
frequency (50kHz/60kHz).  
The gmAMP filters this ripple voltage and controls the voltage level of P_VSEO, by responding to error of P_VS pin voltage  
P_VS pin voltage and internal reference voltage VVSAMP (typ 2.5V).  
Please set cut-off frequency of filter at P_VSEO pin showed in figure 37, to about 5~10Hz.  
Gm constant is designed 44[uA/V].  
Figure 37. Diagram of gmAMP  
(6-2)Monitor of input voltage  
PFC is monitored AC input voltage at the P_BO pin.  
Because the range of input voltage at P_BO pin is 0~1.8V, please select Rbo1 and Rbo2 to set P_BO voltage in the range.  
Refer to block figure at figure38.  
Figure 38. Diagram of Input Voltage Monitor  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
34/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(6-3)Maximum power limiting function  
PFC maximum power is also larger as input voltage is larger.  
To compensate this maximum power, PFC built-in Maximum power limiting.  
Maximum power is in proportion to the square of output of multiplier V_MULT, so it is possible to correct that maximum power  
depends on input voltage by dividing P_BO voltage by P_BOPK voltage which is peak voltage of P_BO pin.  
P_BOPK  
0.01uF  
PEAK  
HOLD  
IO  
I
P_BO  
1/V  
VM = K1* V(P_BO) * K2* V(P_VS)/{K3*V(P_BOPK)}*K4  
≒K * V(P_BO) * V(P_VS )/V(P_BOPK)  
*K2  
×
*K3  
P_ VS  
P_VS  
I
-
+
*K1  
2.500V  
P_ VSEO  
O
Figure 39. Diagram of Maximum Power Restriction Function  
(6-4)Multiplier  
A multiplier is calculated gmAMP output voltage and P_BO pin voltage, and P_BOPK pin voltage.  
Following is formula of Multiplier output.  
K1  
V(P_BO)K2 V(P_VSEO)  
VMULT  
K3 V(P_BOPK)  
K V(P_BO)V(P_VSEO)/V(P_BOPK))  
V
MULT: Multiplier output voltage K: Multiplier constant  
(6-5) Switching frequency  
Switching frequency is averaged typ.65kHz. MAX DUTY is DMAX (typ 94%), always the period has OFF width.  
PFC built in frequency hopping function, frequency changes every 500us. The amplitude is FPSWEL (typ=±4kHz)  
The cycle is FPCH (typ = 125Hz)( figure40).  
By this function, frequency spectrums are diffused, and contribute to low EMI.  
Switching Frequency  
[kHz]  
69 kHz  
65 kHz  
61 kHz  
125 Hz  
Time  
Figure 40. Frequency Hopping Function  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
35/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(6-6)LEB(Leading Edge Blanking) function  
When the switching MOSFET is turned ON, surge current occurs at each capacitor charge /discharge or drive current.  
For that, P_CS voltage rise temporarily, over current limiter may be detected errors.  
To prevent detection errors blanking time is built in during TPLEB (typ=250ns) from P_OUT pin changing L H..  
This blanking function enables a reduction of P_CS pin noise filter.  
(6-7) Over current protection function  
P_CS pin built in over current protection function for MOSFET. This function operates in pulse by pulse, and detects over  
current. Over current detection voltage is changed by P_BOPK pin voltage. Over current detection voltage is VPCS1 (typ = 1.16V)  
at P_BOPK voltage =0.56V, VPCS2 (typ = 0.60V) at P_BOPK voltage = 1.30V.  
Show figure41 changing of over current detection voltage by P_BOPK pin voltage.  
Over-current detection value IPCS is decided IPCS=VPCS/Rs by external resistance Rs at figure42.  
Figure 41. Over-current detection Voltage - P_BOPK Voltage Peculiarity  
Leading Edge  
+
Blanking  
(250ns)  
-
Figure 42. Diagram of Over current Protection  
(6-8)P_VS short protection function  
PFC built in short protection function at P_VS. Switching is stopped at P_VS voltage<VP_SHORT (0.30Vtyp).  
Figure 43. P_VS Short Protection Operation  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
36/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(6-9) Gain increase function in P_VS low voltage  
Dropping output voltage by suddenly load change, because PFC voltage response is slow, output voltage is low for a long time.  
Therefore, PFC is speed up voltage control loop gain when P_VS pin voltage is low up to VPGUP(typ = 2.25V)(Output voltage -  
10%). In the operation, ON-duty at P_OUT pin increases, PFC prevents from output voltage dropping for a long time.  
This operation is stopped when P_VS pin voltage is upper than VGUP (typ=2.25V).  
(6-10)P_VS first over voltage protection function  
In case of output voltage is rise by starting up or output load suddenly change, because PFC voltage response is slow, output  
voltage is high for a long time. Therefore, PFC is speed up voltage control loop gain when P_VS pin voltage is rise VP_OVP1  
(typ=2.625). In this operation, ON-duty at P_OUT pin decrease, PFC prevents from output voltage rising for a long time.  
This operation is stopped when P_VS pin voltage is lower than Vp_ovp1(typ=2.625V).  
(6-11)P_VS second over voltage protection function  
PFC built in second over voltage protection, for the case that P_VS voltage exceeds over first over voltage protection voltage  
VP_OVP1. It is possible to switch Latch protection (LATCH/AUTOR=H) or auto recovery (LATCH/AUTOR=L) by LATCH/AUTOR pin.  
In case of latch operation, P_VS pin voltage exceeds VP_OVP2 (typ=2.725V)(output voltage pulse9%) during TP_OVP2a (Typ=32ms),  
PFC switching is stopped.  
In case of auto recovery, P_VS pin voltage is exceeded VP_OVP2 (typ=2.725V), switching is stopped instantly. When P_VS pin  
voltage decrease lower than VP_OVP2 (typ=2.725V), switching operation is re-start. Refer to figure44.  
(Note) When the latch mode is used, it is necessary to apply 3.5V~4.5V to VREF terminal from the outside.  
Figure 44. VS Second Over Voltage Protection (at auto recovery mode)  
Figure 45. Operation of P_VS Second Over Voltage Protection (at latch mode)  
Switching is stopped by second over voltage protection in the case that the P_VS pin loop of output voltage is open loop.  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
37/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
(6-12)PFC burst operation  
PFC built-in burst operation for preventing PFC output voltage from rising at light load.  
This function is that PFC monitors P_VSEO pin at light load, switched burst operation or not.  
Burst operation voltage depends on P_BOPK voltage.  
In case of P_BOPK voltage = 0.56V, burst function operates when P_VSEO voltage is lower than  
VSEO=VP_BURST (0.266V typ). In case of P_BOPK voltage = 1.30V, burst function operates when P_VSEO voltage is lower than  
VSEO=VP_BURST1 (0.128V typ)  
Refer to the change of burst voltage for P_BOPK voltage figure46.  
Figure 46. Diagram of P_VSEO burst voltage bP_BOPK voltage  
(6-13) Operation mode of PFC block prtection  
Show operation mode every protection fuction at Table7.  
(Note) When the latch mode is used, it is necessary to apply 3.5V~4.5V to VREF terminal from the outside.  
Table 7. Protection Circuit Operation mode of PFC  
LATCH/AUTOR=GND  
release  
mothod  
LATCH/AUTOR=VREF  
operation  
at detection  
ITEM  
contents  
detection  
method  
operation  
at detection  
operaetion  
at detection  
detection  
method  
release  
mothod  
operaetion  
at detection  
P_VS SHORT  
PROTECTION  
P_VS PIN P_VS<0.30V  
ꢀshort protection function (P_VS falling)  
PFCpart  
ꢀoperation stop  
P_VS>0.30V  
ꢀ(P_VS rising)  
normal operation  
normal operation  
normal operation  
normal operation  
Same as LATCH/AUTOR=GND  
Same as LATCH/AUTOR=GND  
Same as LATCH/AUTOR=GND  
P_VS PIN  
P_VS GAIN  
INCREASING  
P_VS<2.25V  
GMAMP GAIN  
INCREASE  
P_VS>2.25V  
ꢀ(P_VSrising)  
ꢀlow voltage gain increasing  
(P_VS falling)  
function  
P_VS PIN  
P_VS>2.625V  
ꢀover voltage protection  
(P_VS rising)  
function1  
GM AMPGAIN  
DECREASE  
P_VS<2.625V  
ꢀ(P_VS falling)  
P_VSꢀOVP1  
P_VSꢀOVP2  
P_VS PIN  
PFC part, DC/DC  
part latch operation  
stops  
P_VS>2.725V  
ꢀover voltage protection  
(P_VS rising)  
function2  
PFC part  
ꢀoperation stop  
P_VS<2.725V  
ꢀ(P_VS falling)  
P_VS>2.725V  
(P_VS rising)  
VCC<6.5V  
ꢀ(VCC falling)  
normal operation  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
38/47  
Daattaasshheeeett  
BM1050AF-G  
Basic Characteristics (This data is for reference only and is not guaranteed.)  
Fig-47-1 Circuit current (ON) 1  
Fig-47-2 Circuit current (ON) 2  
Fig-47-3 Circuit current (ON) 3  
Fig-47-4 Start current 1  
Fig-47-5 Start current 2  
Fig-47-6 OFF Current  
Fig-47-7 VH voltage switched start current Fig-47-8 VREF output voltage  
Fig-47-9 GCLAMP voltage 1  
Fig-47-10 VCC UVLO voltage 1  
Fig-47-11 VCC UVLO voltage 2  
Fig-47-12 VCC OVP voltage 1  
Fig-47-13 VCC OVP voltage 2  
Fig-47-14 Brown out detection voltage 1 Fig-47-15 Brown out detection voltage 2  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
© 2013 ROHM Co., Ltd. All rights reserved.  
39/47  
10.Apr.2015 Rev.003  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
Basic Characteristics (This data is for reference only and is not guaranteed.)  
Fig-47-16 Brown out hysteresis Fig-47-17 Brown out detection delay time 1 Fig-47-18 Brown out detection delay time 2  
Fig-47-19 Brown out detection delay time 3  
Fig-47-20 ACDET pin ON resister Fig-47-21 ACTIMER pin input level  
Fig-47-22 ACTIMER pin pull-down res. Fig-47-23 PFCON/OFF pin input level Fig-47-24 PFCON/OFF pin pull-down res.  
Fig-47-25 LATCH/AUTOR pin input level Fig-47-26 LATCH/AUTOR pin pull-down res. Fig-47-27 COMP pin detection voltage  
Fig-47-28 COMP pin pull-up resistor  
Fig-47-29 External Thermistor resistor Fig-47-30 Latch release voltage2  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0F2F0A200140-1-2  
40/47  
10.Apr.2015 Rev.003  
Daattaasshheeeett  
BM1050AF-G  
Basic Characteristics (This data is for reference only and is not guaranteed.)  
Fig-47-31 Latch mask time  
Fig-47-32 QR_FB pin pull-up resistance  
Fig-47-33 CS over-current detect voltage 1A  
Fig-47-34 CS over-current detect vol.1B Fig-47-35 CS over-current detect vol.1C Fig-47-36 CS over-current detect vol.1D  
Fig-47-37 CS over-current detect vol. 2A  
Fig-47-38 CS switched ZT current Fig-47-39 CS Leading Edge Blanking time  
Fig-47-40 Minimum ON width  
Fig-47-41 Maximum operating frequency 1 Fig-47-42 Maximum operating frequency 2  
Fig-47-43 Freq. reduction start FB voltage Fig-47-44 Freq. reduction end FB voltage  
Fig-47-45 Voltage gain  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
41/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
Basic Characteristics (This data is for reference only and is not guaranteed.)  
Fig-47-46 ZT comparator voltage 1  
Fig-47-47 ZT trigger timeout period  
Fig-47-48 Soft start time  
Fig-47-49 FB OLP Voltage 1a  
Fig-47-50 FB OLP Voltage 2a  
Fig-47-51 FB OLP timer  
Fig-47-52 ZT OVP Voltage  
Fig-47-53 QR_OUT pin PMOS ON resistor  
Fig-47-54 QR_OUT pin NMOS ON resistor  
Fig-47-55 P_VS pin pull-up current  
Fig-47-56 Gm amplifier normal voltage Fig-47-57 Gm amplifier trans-conductance  
Fig-47-58 Max. Gm amplifier source current Fig-47-59 Max. Gm amplifier sink current Fig-47-60 P_VSEO stop voltage1  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
42/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
Basic Characteristics (This data is for reference only and is not guaranteed.)  
Fig-47-61 P_VSEO stop voltage 2  
Fig-47-62 PFC Oscillation frequency  
Fig-47-63 PFC Min. Pulse width  
Fig-47-64 PFC Maximum DUTY Fig-47-65 P_CS over current limit voltage1 Fig-47-66 P_CS over current limit voltage 2  
Fig-47-67 P_VS short protection voltage  
Fig-47-68 P_VS gain rise voltage  
Fig-47-69 P_VS gain fall voltage  
Fig-47-70 P_VS over voltage protection voltage Fig-47-71 P_VS over voltage protection timer  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
43/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
Thermal loss  
The thermal design should set operation for the following conditions.  
(Since the temperature shown below is the guaranteed temperature, be sure to take a margin into account.)  
1. The ambient temperature Ta must be 85or less.  
2. The IC’s loss must be within the allowable dissipation Pd.  
The thermal abatement characteristics are as follows. (Figure 47)  
Ta[℃]  
Figure 48. SOP24 Temperature reduction peculiarity  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
44/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
Use-related cautions  
(1) Absolute maximum ratings  
Damage may occur if the absolute maximum ratings such as for applied voltage or operating temperature range are exceeded,  
and since the type of damage (short, open circuit, etc.) cannot be determined, in cases where a particular mode that may  
exceed the absolute maximum ratings is considered, use of a physical safety measure such as a fuse should be investigated.  
(2) Power supply and ground lines  
In the board pattern design, power supply and ground lines should be routed so as to achieve low impedance. If there are  
multiple power supply and ground lines, be careful with regard to interference caused by common impedance in the routing  
pattern. With regard to ground lines in particular, be careful regarding the separation of large current routes and small signal  
routes, including the external circuits. Also, with regard to all of the LSI’s power supply pins, in addition to inserting capacitors  
between the power supply and ground pins, when using capacitors there can be problems such as capacitance losses at low  
temperature, so check thoroughly as to whether there are any problems with the characteristics of the capacitor to be used  
before determining constants.  
(3) Ground potential  
The ground pin’s potential should be set to the minimum potential in relation to the operation mode.  
(4) Pin shorting and attachment errors  
When attaching ICs to the set board, be careful to avoid errors in the IC’s orientation or position. If such attachment errors  
occur, the IC may become damaged. Also, damage may occur if foreign matter gets between pins, between a pin and a power  
supply line, or between ground lines.  
(5) Operation in strong magnetic fields  
Note with caution that these products may become damaged when used in a strong magnetic field.  
(6) Input pins  
In IC structures, parasitic elements are inevitably formed according to the relation to potential. When parasitic elements are  
active, they can interfere with circuit operations, can cause operation faults, and can even result in damage. Accordingly, be  
careful to avoid use methods that enable parasitic elements to become active, such as when a voltage that is lower than the  
ground voltage is applied to an input pin. Also, do not apply voltage to an input pin when there is no power supply voltage being  
applied to the IC. In fact, even if a power supply voltage is being applied, the voltage applied to each input pin should be either  
below the power supply voltage or within the guaranteed values in the electrical characteristics.  
(7) External capacitors  
When a ceramic capacitor is used as an external capacitor, consider possible reduction to below the nominal capacitance due  
to current bias and capacitance fluctuation due to temperature and the like before determining constants.  
(8) Thermal design  
The thermal design should fully consider allowable dissipation (Pd) under actual use conditions.  
Also, use these products within ranges that do not put output Tr beyond the rated voltage and ASO.  
(9) Rush current  
In a CMOS IC, momentary rush current may flow if the internal logic is undefined when the power supply is turned ON, so  
caution is needed with regard to the power supply coupling capacitance, the width of power supply and GND pattern wires, and  
how they are laid out.  
(10) Handling of test pins and unused pins  
Test pins and unused pins should be handled so as not to cause problems in actual use conditions, according to the  
descriptions in the function manual, application notes, etc. Contact us regarding pins that are not described.  
(11) Document contents  
Documents such as application notes are design documents used when designing applications, and as such their contents are  
not guaranteed. Before finalizing an application, perform a thorough study and evaluation, including for external parts.  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
45/47  
TSZ2211115001  
Daattaasshheeeett  
BM1050AF-G  
Ordering Information  
B
M
1
0
5
0
A
F
-
G E 2  
Product name  
Package  
Packaging and  
F
: SOP24  
forming specification  
E2: Embossed tape and reel  
Physical Dimension Tape and Reel Information  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2000pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
Marking Diagram  
1PIN  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
46/47  
Daattaasshheeeett  
BM1050AF-G  
Revision History  
Date  
Revision  
Changes  
15.Mar.2013  
7.Feb.2014  
11.Apr.2015  
001  
002  
003  
New Release  
Correction of errors  
P13, P16, P17, P23, P25, P31, P32, P37, P38  
The note external application of VREF when the latch mode is used.  
P12 Figure4->Figure6 (Reference of start-up time)  
P25 Figure25->Figure24  
11.Apr.2015  
11.Apr.2015  
11.Apr.2015  
003  
003  
003  
P25 Figure26->Figure25  
www.rohm.com  
TSZ02201-0F2F0A200140-1-2  
10.Apr.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
47/47  
TSZ2211115001  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BM1050AF-GE2

Power Factor And Fluorescent Light Controller,
ROHM

BM1051F

BM1051F是组合了应对高次谐波的功率因数校正(Power Factor Correction)转换器(以下简称PFC部)与DC/DC转换器(以下简称DC/DC部)的复合LSI。DC/DC部采用准谐振方式动作,有助于实现低EMI。BM1051F内置650V耐压启动电路。PFC部、DC/DC部均外接开关MOSFET及电流检测电阻,可实现自由度高的电源设计。PFC部采用峰值电流控制。利用带AC电压过低补偿电路的乘法器、应对负载变动的电路、最大功率补偿电路等各种保护电路,提供合适的应用方案。DC/DC部的准谐振方式为软开关动作,有助于实现低EMI。内置脉冲串模式,可降低轻负载时的功耗。内置了软启动功能、脉冲串功能、逐周期过电流限制、过电压保护、过负荷保护等各种保护功能。与微控制器间设有通信控制用端子、外部停止端子,可提供适用于各种应用的系统方案。
ROHM

BM107

Ring Terminal, 1.5mm2
AMPHENOL

BM10750X8

General Purpose Inductor, 170uH, 2 Element, Amorphous Magnetic-Core
CHEMI-CON

BM10750X8B

General Purpose Inductor, 170uH, 2 Element, Amorphous Magnetic-Core
CHEMI-CON

BM10750X8D

General Purpose Inductor, 170uH, 2 Element, Amorphous Magnetic-Core
CHEMI-CON

BM10750X8E

General Purpose Inductor, 170uH, 2 Element, Amorphous Magnetic-Core
CHEMI-CON

BM108

Ring Terminal, 1.5mm2
AMPHENOL

BM1084

Voltage regulators
BOOKLY

BM1084-1.8

Voltage regulators
BOOKLY

BM1084-2.5

Voltage regulators
BOOKLY

BM1084-2.85

Voltage regulators
BOOKLY