BD9F500QUZ [ROHM]

BD9F500QUZ是内置低导通电阻的功率MOSFET的同步整流降压DC/DC转换器。最大可输出5A的电流。采用恒定时间控制方式,具有高速负载响应性能。通过轻负载模式控制,可以改善轻负载下的效率,适用于要降低待机功耗的设备。具有电源良好输出功能,可进行系统的时序控制。采用小型封装,可在大功率密度下减少贴装面积。Power Supply Reference BoardFor Xilinx’s FPGA Spartan-7;
BD9F500QUZ
型号: BD9F500QUZ
厂家: ROHM    ROHM
描述:

BD9F500QUZ是内置低导通电阻的功率MOSFET的同步整流降压DC/DC转换器。最大可输出5A的电流。采用恒定时间控制方式,具有高速负载响应性能。通过轻负载模式控制,可以改善轻负载下的效率,适用于要降低待机功耗的设备。具有电源良好输出功能,可进行系统的时序控制。采用小型封装,可在大功率密度下减少贴装面积。Power Supply Reference BoardFor Xilinx’s FPGA Spartan-7

转换器
文件: 总58页 (文件大小:3269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Nano Pulse ControlTM  
Datasheet  
4.5 V to 36 V Input, 5 A Integrated MOSFET  
Single Synchronous Buck DC/DC Converter  
BD9F500QUZ  
General Description  
Key Specifications  
Input Voltage Range:  
Output Voltage Range:  
Output Current:  
BD9F500QUZ is a synchronous buck DC/DC converter  
with built-in low on-resistance power MOSFETs. It is  
capable of providing current up to 5 A. It features fast  
transient response due to Constant On-Time control  
system. The Light Load Mode control improves efficiency in  
light-load conditions. It is ideal for reducing standby power  
consumption of equipment. Power Good function makes it  
possible for system to control sequence. It achieves the  
high power density and offer a small footprint on the PCB  
by employing small package.  
4.5 V to 36 V  
0.6 V to 14 V  
5 A (Max)  
Switching Frequency: 600 kHz, 1 MHz, 2.2 MHz (Typ)  
High-Side FET ON Resistance:  
Low-Side FET ON Resistance:  
Shutdown Current:  
40 mΩ (Typ)  
22 mΩ (Typ)  
2 μA (Typ)  
Operating Quiescent Current:  
20 μA (Typ)  
Package  
VMMP16LZ3030  
W (Typ) x D (Typ) x H (Max)  
3.0 mm x 3.0 mm x 0.40 mm  
Features  
Single Synchronous Buck DC/DC Converter  
Constant On-Time Control  
Light Load Mode Control  
Adjustable Soft Start  
Power Good Output  
Nano Pulse Control™  
Output Capacitor Discharge Function  
Over Voltage Protection (OVP)  
Over Current Protection (OCP)  
Short Circuit Protection (SCP)  
Thermal Shutdown Protection (TSD)  
Under Voltage Lockout Protection (UVLO)  
VMMP16LZ3030 Package  
Backside Heat Dissipation, 0.5 mm Pitch  
VMMP16LZ3030  
Applications  
Step-down Power Supply for SoC, FPGA,  
Microprocessor  
Printer (MFP / LBP / IJP / POS)  
OA Equipment  
Laptop PC  
USB Type-C Applications  
Typical Application Circuit  
BD9F500QUZ  
VEN  
EN  
PGD  
VIN  
VIN  
BOOT  
SW  
0.1 μF  
CIN  
VOUT  
PGND  
L
VSEL1  
VSEL2  
SEL1  
SEL2  
VREG  
R1  
R2  
CFB  
COUT  
FB  
CREG  
AGND  
SS  
Nano Pulse Control™ is a trademark or a registered trademark of ROHM Co., Ltd.  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
1/55  
TSZ22111 14 001  
BD9F500QUZ  
Pin Configuration  
(TOP VIEW)  
16  
15  
14  
13  
12  
11  
10  
9
FB  
1
2
PGND  
PGND  
PGND  
PGND  
VREG  
SEL2  
SEL1  
17  
18  
3
4
5
6
7
8
Pin Descriptions  
Pin No. Pin Name  
Function  
1-4  
PGND  
SW  
Ground pins for the output stage of the switching regulator.  
Switch pin. This pin is connected to the source of the High-Side FET and the drain of the  
Low-Side FET. Connect a bootstrap capacitor of 0.1 µF between this pin and the BOOT pin.  
In addition, connect an inductor considering the direct current superimposition characteristic.  
5, 17  
Pin for bootstrap. Connect a bootstrap capacitor of 0.1 µF between this pin and the SW pin.  
The voltage of this pin is the gate drive voltage of the High-Side FET.  
6
7
BOOT  
PGD  
Power Good pin. This pin is an open drain output that requires a pull-up resistor. See  
Function Explanations (4) Power Good for setting the resistance. If not used, this pin can be  
left floating or connected to the ground.  
Pin for setting the soft start time of output voltage. The soft start time is 2 ms (Typ) when the  
SS pin is open. A ceramic capacitor connected to the SS pin makes the soft start time more  
than 2 ms. See Selection of Components Externally Connected 4. Soft Start Capacitor for  
how to calculate the capacitance.  
8
SS  
Pin for setting switching control mode. See Function Explanations (7) Control Mode  
Selectable Function for how to control.  
9
SEL1  
SEL2  
Pin for setting switching control mode. See Function Explanations (7) Control Mode  
Selectable Function for how to control.  
10  
Internal power supply output pin. This node supplies power 5.2 V (Typ) to other blocks which  
are mainly responsible for the control function of the switching regulator. Connecting 2.2 µF  
(Typ) ceramic capacitor is recommended.  
11  
VREG  
Output voltage feedback pin. See Selection of Components Externally Connected 3. Output  
Voltage Setting, FB Capacitor for the output voltage setting.  
12  
13  
14  
FB  
AGND  
EN  
Ground pin for the control circuit.  
Enable pin. The device starts up with setting VEN to 1.2 V (Typ) or more. The device enters  
the shutdown mode with setting VEN to 1.1 V (Typ) or less. This pin must be terminated.  
Power supply pin. Connecting 0.1 µF (Typ) and 10 µF (Typ) ceramic capacitors is  
recommended. The detail of a selection is described in Selection of Components Externally  
Connected 1. Input Capacitor. Connecting to the PCB VIN pattern by using thermal vias  
provides excellent heat dissipation characteristics. See PCB Layout Design for the detailed  
PCB layout design.  
15, 16,  
18  
VIN  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
2/55  
TSZ22111 15 001  
BD9F500QUZ  
Block Diagram  
VREG  
11  
REG  
HOCP  
15  
16  
18  
VIN  
EN  
VIN  
UVLO  
TSD  
6
BOOT  
14  
8
EN  
SS  
VREF  
SS  
Error Amplifier  
Main Comparator  
Control  
Logic  
On-Time  
5
SW  
SW  
17  
VREG  
SCP  
OVP  
FB 12  
LOCP  
PGOOD  
1
2
3
4
PGND  
ZX/ROCP  
FREQ  
9
SEL1  
SEL2  
OCP  
SELECTOR  
10  
MODE  
7
13  
PGD  
AGND  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
3/55  
TSZ22111 15 001  
BD9F500QUZ  
Description of Blocks  
1. VREF  
This block generates the internal reference voltage.  
2. REG  
This block generates the internal power supply.  
3. Soft Start  
The Soft Start circuit slows down the rise of output voltage during start-up and controls the current, which allows the  
prevention of output voltage overshoot and inrush current. The internal soft start time is 2 ms (Typ) when the SS pin is  
open. A capacitor connected to the SS pin makes the rising time more than 2 ms.  
4. Error Amplifier  
The Error Amplifier adjusts the Main Comparator input voltage to make the internal reference voltage equal to FB  
voltage.  
5. Main Comparator  
The Main Comparator compares the Error Amplifier output voltage and FB voltage (VFB). When VFB becomes lower than  
the Error Amplifier output voltage, the output turns high and reports to the On-Time block that the output voltage has  
dropped below the control voltage.  
6. On-Time  
This block generates On-Time. The designed On-Time is generated after the Main Comparator output turns high.  
7. PGOOD  
The PGOOD block is for power good function. When the output voltage reaches within ±7 % (Typ) of the setting voltage,  
the built-in open drain Nch MOSFET connected to the PGD pin is turned off and the PGD pin becomes Hi-Z (High  
impedance). When the output voltage reaches outside ±10 % (Typ) of the setting voltage, the open drain Nch MOSFET  
is turned on and PGD pin is pulled down with 500 Ω (Typ).  
8. UVLO  
The UVLO block is for under voltage lockout protection. The device is shutdown when input voltage (VIN) falls to 4.0 V  
(Typ) or less. The threshold voltage has the 200 mV (Typ) hysteresis.  
9. TSD  
The TSD block is for thermal protection. The device is shutdown when the junction temperature Tj reaches to 175 °C  
(Typ) or more. The device is automatically restored to normal operation with a hysteresis of 25 °C (Typ) when the Tj  
goes down.  
10. OVP  
The OVP block is for output over voltage protection. When the FB voltage (VFB) exceeds 120 % (Typ) or more of FB  
threshold voltage VFBTH, the SW pin is pulled down with 400 Ω (Typ). After VFB falls 115 % (Typ) or less of VFBTH, the  
device is returned to normal operation condition.  
11. HOCP  
This block is for over current protection of the High-Side FET. When the current that flows through the High-Side FET  
reaches the value of over current limit, it turns off the High-Side FET and turns on the Low-Side FET.  
12. LOCP  
This block is for over current protection of the Low-Side FET. While the current that flows through the Low-Side FET  
over the value of over current limit, the condition that being turned on the Low-Side FET is continued.  
13. SCP  
This block is for short circuit protection. After soft start is completed and in condition where VFB is 90 % (Typ) of 0.6 V or  
less, this block counts the number of times of which current flowing in the Low-Side FET reaches over current limit.  
When 128 times is counted, the device is shutdown for 16 times of soft start time (Typ) and re-operates.  
14. ZX/ROCP  
The ZX/ROCP is a comparator that monitors the inductor current. When inductor current falls below 0 A (Typ) while the  
Low-Side FET is on, it turns off the Low-Side FET (Light Load Mode). When the current that flows through the Low-Side  
FET reaches the value of over current limit, it turns off the Low-Side FET (Fixed PWM Mode).  
15. Control Logic  
The Control Logic controls the switching operation and protection function operation.  
16. SELECTOR  
This block controls switching frequency, maximum output current, and operating mode.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
4/55  
TSZ22111 15 001  
BD9F500QUZ  
Absolute Maximum Ratings (Ta = 25 °C)  
Parameter  
Symbol  
Rating  
Unit  
Input Voltage  
VIN  
VSW  
-0.3 to +39  
-0.3 to VIN + 0.3  
-2 to VIN + 0.3  
-1 to VIN + 0.3  
-0.3 to +45  
-0.3 to +7  
V
V
SW Voltage  
SW Voltage (3 ns pulse width)  
SW Voltage (30 ns pulse width)  
Voltage from GND to BOOT  
Voltage from SW to BOOT  
FB Voltage  
VSWAC1  
VSWAC2  
VBOOT  
ΔVBOOT-SW  
VFB  
V
V
V
V
-0.3 to +7  
V
VREG Voltage  
VVREG  
VSEL1  
VSEL2  
VPGD  
-0.3 to +7  
V
SEL1 Voltage  
-0.3 to VVREG + 0.3  
-0.3 to VVREG + 0.3  
-0.3 to +45  
-0.3 to +39  
-0.3 to +7  
V
SEL2 Voltage  
V
PGD Voltage  
V
EN Voltage  
VEN  
V
SS Voltage  
VSS  
V
Output Current  
IOUT  
6
A
Maximum Junction Temperature  
Tjmax  
150  
°C  
Storage Temperature Range  
Tstg  
-55 to +150  
°C  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
VMMP16LZ3030  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
125.1  
12  
50.7  
8
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A (Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70 μm  
Thermal Via(Note 5)  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
Footprints and Traces  
70 μm  
74.2 mm x 74.2 mm  
35 μm  
74.2 mm x 74.2 mm  
70 μm  
(Note 5) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
5/55  
BD9F500QUZ  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Input Voltage  
Operating Temperature(Note 1)  
VIN  
4.5  
-40  
0
-
-
-
-
-
36.0  
+85  
5
V
°C  
A
Topr  
Output Current(Note 1)(Note 2)  
Output Voltage Setting(Note 3)  
IOUT  
0
3
A
VOUT  
0.6  
14.0  
V
(Note 1) Tj must be 150 °C or less under the actual operating environment. Life time is derated at junction temperature greater than 125 °C.  
(Note 2) The maximum value of the output current is determined by the control mode selection.  
(Note 3) The switching frequency is reduced as needed to always ensure a proper regulation at low duty and high duty cycles. Use under the condition of VOUT  
VIN × 0.8 [V].  
Electrical Characteristics (Unless otherwise specified Ta = 25 °C, VIN = 12 V, VEN = 3 V)  
Parameter  
Input Supply  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Shutdown Current  
ISDN  
IQ  
VUVLO1  
VUVLO2  
-
-
2
10  
40  
µA  
µA  
VEN = 0 V  
IOUT = 0 A,  
No switching  
Operating Quiescent Current  
20  
UVLO Detection Threshold Voltage  
UVLO Release Threshold Voltage  
UVLO Hysteresis Voltage  
Enable  
3.7  
3.9  
100  
4.0  
4.2  
4.3  
4.5  
400  
V
V
VIN falling  
VIN rising  
VUVLOHYS  
200  
mV  
EN Threshold Voltage High  
EN Threshold Voltage Low  
EN Hysteresis Voltage  
EN Input Current  
VENH  
VENL  
1.1  
1.0  
50  
-
1.2  
1.1  
100  
0
1.3  
1.2  
200  
2
V
V
VEN rising  
VEN falling  
VENHYS  
IEN  
mV  
µA  
VEN = 3 V  
VEN = 0 V  
VREG  
VREG Shutdown Voltage  
VREG Output Voltage  
VVREG_SD  
VVREG  
-
0
0.1  
5.4  
V
V
5.0  
5.2  
Reference Voltage, Error Amplifier, Soft Start  
FB Threshold Voltage  
FB Input Current  
Soft Start Time  
VFBTH  
IFB  
0.594  
-
0.600  
-
0.606  
100  
2.6  
V
PWM mode  
nA  
ms  
µA  
VFB = 0.6 V  
tSS  
1.4  
1.6  
2.0  
2.0  
The SS pin is open.  
Soft Start Charge Current  
Control  
ISS  
2.4  
VVREG  
-0.3  
-
VVREG  
V
SEL1, SEL2 High Level Voltage  
VSELH  
SEL1, SEL2 Low Level Voltage  
SEL1, SEL2 Input Current  
VSELL  
ISEL  
tON1  
0
-
-
-
0.3  
3
V
µA  
VOUT = 3.3 V, PWM mode,  
600 kHz setting  
VOUT = 3.3 V, PWM mode,  
1 MHz setting  
VOUT = 3.3 V, PWM mode,  
2.2 MHz setting  
-
-
458  
275  
-
-
ns  
ns  
On-Time1  
On-Time2  
On-Time3  
tON2  
tON3  
-
-
125  
48  
-
-
ns  
ns  
Minimum On-Time(Note 4)  
tMINON  
SW (MOSFET)  
VBOOT - VSW = 5 V,  
IOUTMAX = 5 A setting  
VBOOT - VSW = 5 V,  
IOUTMAX = 3 A setting  
High-Side FET ON Resistance1  
RONH1  
RONH2  
-
-
40  
65  
80  
mΩ  
mΩ  
High-Side FET ON Resistance2  
Low-Side FET ON Resistance1  
130  
RONL1  
RONL2  
-
-
22  
38  
44  
76  
mΩ  
mΩ  
IOUTMAX = 5 A setting  
IOUTMAX = 3 A setting  
Low-Side FET ON Resistance2  
(Note 4) No tested on outgoing inspection.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
6/55  
TSZ22111 15 001  
BD9F500QUZ  
Electrical Characteristics continued (Unless otherwise specified Ta = 25 °C, VIN = 12 V, VEN = 3 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Power Good  
VFB rising,  
VPGDTHGR = VFB / VFBTH x 100  
VFB falling,  
VPGDTHGF = VFB / VFBTH x 100  
VFB rising,  
VPGDTHFR = VFB / VFBTH x 100  
VFB falling,  
Power Good Rising  
Threshold Voltage  
Power Good Falling  
Threshold Voltage  
Power Fault Rising  
Threshold Voltage  
Power Fault Falling  
Threshold Voltage  
VPGDTHGR  
VPGDTHGF  
VPGDTHFR  
VPGDTHFF  
90  
104  
107  
87  
93  
107  
110  
90  
96  
110  
113  
93  
%
%
%
%
VPGDTHFF = VFB / VFBTH x 100  
PGD Output Leakage Current  
PGD MOSFET ON Resistance  
Protection  
ILKPGD  
RPGD  
-
-
0
1
µA  
VPGD = 5 V  
500  
1000  
Ω
Low-Side FET Over Current  
ILOCP1  
ILOCP2  
5.3  
3.2  
6.7  
4.0  
8.1  
4.8  
A
A
IOUTMAX = 5 A setting  
IOUTMAX = 3 A setting  
Detection Current 1(Note 1)  
Low-Side FET Over Current  
Detection Current 2(Note 1)  
(Note 1) No tested on outgoing inspection.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
7/55  
TSZ22111 15 001  
BD9F500QUZ  
Typical Performance Curves  
10  
40  
35  
30  
25  
20  
15  
10  
5
VIN = 12 V  
VIN = 12 V  
8
6
4
2
0
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 1. Shutdown Current vs Temperature  
Figure 2. Operating Quiescent Current vs Temperature  
4.5  
1.3  
VIN = 12 V  
4.4  
4.3  
4.2  
4.1  
4
1.25  
VENH ( VEN rising)  
UVLO Release ( VIN rising)  
UVLO Detection ( VIN falling)  
1.2  
1.15  
VENL ( VEN falling)  
1.1  
3.9  
3.8  
3.7  
1.05  
1
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 3. UVLO Threshold Voltage vs Temperature  
Figure 4. EN Threshold Voltage vs Temperature  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
8/55  
TSZ22111 15 001  
BD9F500QUZ  
Typical Performance Curves continued  
0.1  
0.08  
0.06  
0.04  
0.02  
0
2
VIN = 12 V  
VIN = 12 V, VEN = 3 V  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 5. EN Input Current vs Temperature  
Figure 6. VREG Shutdown Voltage vs Temperature  
5.4  
0.61  
VIN = 12 V  
VIN = 12 V  
0.608  
5.35  
5.3  
0.606  
0.604  
0.602  
0.6  
5.25  
5.2  
0.598  
0.596  
0.594  
0.592  
0.59  
5.15  
5.1  
5.05  
5
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 7. VREG Output Voltage vs Temperature  
Figure 8. FB Threshold Voltage vs Temperature  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
9/55  
TSZ22111 15 001  
BD9F500QUZ  
Typical Performance Curves continued  
100  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
VIN = 12 V  
VIN = 12 V  
80  
60  
40  
20  
0
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 9. FB Input Current vs Temperature  
Figure 10. Soft Start Time vs Temperature  
5.2  
5.1  
5
2.4  
VIN = 12 V, VVREG = 5.2 V (Typ)  
VIN = 12 V  
2.3  
2.2  
2.1  
2
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4
1.9  
1.8  
1.7  
1.6  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 11. Soft Start Charge Current vs Temperature  
Figure 12. SEL1, SEL2 High Threshold Voltage vs  
Temperature  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
10/55  
TSZ22111 15 001  
BD9F500QUZ  
Typical Performance Curves continued  
1
3
2.5  
2
VIN = 12 V  
0.9  
VSEL1, VSEL2 = 0 V  
VSEL1, VSEL2 = 5.25 V  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.5  
1
0.5  
0
-0.5  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 13. SEL1, SEL2 Low Threshold Voltage vs  
Temperature  
Figure 14. SEL1, SEL2 Input Current vs Temperature  
80  
VIN = 12 V  
70  
VIN = 12 V  
120  
100  
80  
60  
40  
20  
0
60  
50  
40  
30  
20  
10  
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 15. High-Side FET ON Resistance1 vs Temperature  
Figure 16. High-Side FET ON Resistance2 vs Temperature  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
11/55  
BD9F500QUZ  
Typical Performance Curves continued  
50  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 12 V  
VIN = 12 V  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 17. Low-Side FET ON Resistance1 vs Temperature  
Figure 18. Low-Side FET ON Resistance2 vs Temperature  
0.72  
0.69  
0.66  
0.63  
0.6  
1.2  
1.15  
1.1  
1.05  
1
0.57  
0.54  
0.51  
0.48  
0.95  
0.9  
0.85  
0.8  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 19. Switching Frequency vs Temperature  
(VIN = 12 V, VOUT = 3.3 V, IOUT = 2 A,  
Figure 20. Switching Frequency vs Temperature  
(VIN = 12 V, VOUT = 3.3 V, IOUT = 2 A,  
600 kHz_IOUTMAX = 5 A_PWM setting)  
1 MHz_IOUTMAX = 5 A_PWM setting)  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
12/55  
TSZ22111 15 001  
BD9F500QUZ  
Typical Performance Curves continued  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
115  
110  
105  
100  
95  
VIN = 12 V  
Power Fault (VFB rising)  
Power Good (VFB falling)  
Power Good (VFB rising)  
Power Fault (VFB falling)  
90  
1.9  
1.8  
85  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 21. Switching Frequency vs Temperature  
(VIN = 12 V, VOUT = 3.3 V, IOUT = 2 A, 2.2 MHz setting)  
Figure 22. Power Good / Fault Threshold Voltage vs  
Temperature  
1
1000  
VIN = 12 V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VIN = 12 V  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 23. PGD Output Leakage Current vs Temperature  
Figure 24. PGD MOSFET ON Resistance vs Temperature  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
13/55  
BD9F500QUZ  
Typical Performance Curves continued  
Time: 1 ms/div  
Time: 50 ms/div  
VIN: 5 V/div  
VEN: 3 V/div  
VIN: 5 V/div  
VEN: 3 V/div  
VOUT: 2 V/div  
VPGD: 5 V/div  
VOUT: 2 V/div  
VPGD: 5 V/div  
Figure 25. Start-up at No Load: VEN = 0 V to 5 V  
(VIN = 12 V, VOUT = 3.3 V, CSS = OPEN,  
1 MHz_IOUTMAX = 5 A_LLM setting)  
Figure 26. Shutdown at No Load: VEN = 5 V to 0 V  
(VIN = 12 V, VOUT = 3.3 V, CSS = OPEN,  
1 MHz_IOUTMAX = 5 A_LLM setting)  
Time: 1 ms/div  
Time: 1 ms/div  
VIN: 5 V/div  
VEN: 3 V/div  
VIN: 5 V/div  
VEN: 3 V/div  
VOUT: 2 V/div  
VPGD: 5 V/div  
VOUT: 2 V/div  
VPGD: 5 V/div  
Figure 27. Start-up at RLOAD = 0.66 Ω: VEN = 0 V to 5 V  
(VIN = 12 V, VOUT = 3.3 V, CSS = OPEN,  
1 MHz_IOUTMAX = 5 A_LLM setting)  
Figure 28. Shutdown at RLOAD = 0.66 Ω: VEN = 5 V to 0 V  
(VIN = 12 V, VOUT = 3.3 V, CSS = OPEN,  
1 MHz_IOUTMAX = 5 A_LLM setting)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
14/55  
BD9F500QUZ  
Typical Performance Curves continued  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
V
V
V
OUT = 5 V  
V
V
V
OUT = 5 V  
50  
45  
40  
OUT = 3.3 V  
OUT = 1.0 V  
OUT = 3.3 V  
OUT = 1.0 V  
0
1
2
3
4
5
0.001  
0.01  
0.1  
1
10  
Output Current : IOUT [A]  
Output Current : IOUT [A]  
Figure 29. Efficiency vs Output Current  
Figure 30. Efficiency vs Output Current  
(VIN = 12 V, 600 kHz_IOUTMAX = 5 A_LLM setting)  
(VIN = 12 V, 600 kHz_IOUTMAX = 5 A_PWM setting)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
V
V
V
OUT = 5 V  
V
V
V
OUT = 5 V  
50  
45  
40  
50  
45  
40  
OUT = 3.3 V  
OUT = 1.0 V  
OUT = 3.3 V  
OUT = 1.0 V  
0
1
2
3
4
5
0.001  
0.01  
0.1  
1
10  
Output Current : IOUT [A]  
Output Current : IOUT [A]  
Figure 31. Efficiency vs Output Current  
(VIN = 24 V, 600 kHz_IOUTMAX = 5 A_LLM setting)  
Figure 32. Efficiency vs Output Current  
(VIN = 24 V, 600 kHz_IOUTMAX = 5 A_PWM setting)  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
15/55  
TSZ22111 15 001  
BD9F500QUZ  
Typical Performance Curves continued  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
55  
V
V
V
OUT = 5 V  
= 5 V  
VOUT  
50  
OUT = 3.3 V  
OUT = 1.0 V  
VOUT= 3.3 V  
45  
40  
V
OUT= 1.0 V  
0
1
2
3
4
5
0.001  
0.01  
0.1  
1 10  
Output Current : IOUT [A]  
Output Current : IOUT [A]  
Figure 33. Efficiency vs Output Current  
(VIN = 12 V, 1 MHz_IOUTMAX = 5 A_LLM setting)  
Figure 34. Efficiency vs Output Current  
(VIN = 12 V, 1 MHz_IOUTMAX = 5 A_PWM setting)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
= 5 V  
VOUT  
V
V
OUT = 5 V  
45  
40  
VOUT = 3.3 V  
OUT = 3.3 V  
0
1
2
3
4
5
0.001  
0.01  
0.1  
1
10  
Output Current : IOUT [A]  
Output Current : IOUT [A]  
Figure 35. Efficiency vs Output Current  
(VIN = 24 V, 1 MHz_IOUTMAX = 5 A_LLM setting)  
Figure 36. Efficiency vs Output Current  
(VIN = 24 V, 1 MHz_IOUTMAX = 5 A_PWM setting)  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
16/55  
TSZ22111 15 001  
BD9F500QUZ  
Typical Performance Curves continued  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
V
V
V
OUT= 5 V  
V
V
V
OUT = 5 V  
50  
45  
40  
OUT= 3.3 V  
OUT= 1.0 V  
OUT = 3.3 V  
OUT = 1.0 V  
0
1
2
3
0.001  
0.01  
0.1  
1
10  
Output Current : IOUT [A]  
Output Current : IOUT [A]  
Figure 37. Efficiency vs Output Current  
Figure 38. Efficiency vs Output Current  
(VIN = 12 V, 600 kHz_IOUTMAX = 3 A_LLM setting)  
(VIN = 12 V, 600 kHz_IOUTMAX = 3 A_PWM setting)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
V
V
V
OUT = 5 V  
V
V
V
OUT = 5 V  
50  
45  
40  
50  
45  
40  
OUT = 3.3 V  
OUT = 1.0 V  
OUT = 3.3 V  
OUT = 1.0 V  
0
1
2
3
0.001  
0.01  
0.1  
1
10  
Output Current : IOUT [A]  
Output Current : IOUT [A]  
Figure 39. Efficiency vs Output Current  
(VIN = 24 V, 600 kHz_IOUTMAX = 3 A_LLM setting)  
Figure 40. Efficiency vs Output Current  
(VIN = 24 V, 600 kHz_IOUTMAX = 3 A_PWM setting)  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
17/55  
TSZ22111 15 001  
BD9F500QUZ  
Typical Performance Curves continued  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
V
V
V
OUT = 5 V  
V
V
V
OUT = 5 V  
50  
45  
40  
OUT = 3.3 V  
OUT = 1.0 V  
OUT = 3.3 V  
OUT = 1.0 V  
0
1
2
3
0.001  
0.01  
0.1  
1
10  
Output Current : IOUT [A]  
Output Current : IOUT [A]  
Figure 41. Efficiency vs Output Current  
(VIN = 12 V, 1 MHz_IOUTMAX = 3 A_LLM setting)  
Figure 42. Efficiency vs Output Current  
(VIN = 12 V, 1 MHz_IOUTMAX = 3 A_PWM setting)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
V
OUT = 5 V  
V
V
OUT = 5 V  
45  
40  
V
OUT = 3.3 V  
OUT = 3.3 V  
0
1
2
3
0.001  
0.01  
0.1  
1
10  
Output Current : IOUT [A]  
Output Current : IOUT [A]  
Figure 43. Efficiency vs Output Current  
(VIN = 24 V, 1 MHz_IOUTMAX = 3 A_LLM setting)  
Figure 44. Efficiency vs Output Current  
(VIN = 24 V, 1 MHz_IOUTMAX = 3 A_PWM setting)  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
18/55  
TSZ22111 15 001  
BD9F500QUZ  
Typical Performance Curves continued  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
3.4  
3.35  
3.3  
3.25  
3.2  
= 24 V  
Fixed PWM Mode  
Light Load Mode  
VIN  
45  
40  
VIN = 12 V  
0
1
2
3
0
1
2
3
4
5
Output Current : IOUT [A]  
Output Current : IOUT [A]  
Figure 45. Efficiency vs Output Current  
(VOUT = 3.3 V, 2.2 MHz setting)  
Figure 46. Load Regulation  
(VIN = 12 V, VOUT = 3.3 V, 600 kHz_IOUTMAX = 5 A setting)  
3.4  
3.35  
3.3  
3.4  
3.35  
3.3  
3.25  
3.2  
3.25  
3.2  
Fixed PWM Mode  
Light Load Mode  
0
1
2
3
0
1
2
3
4
5
Output Current : IOUT [A]  
Output Current : IOUT [A]  
Figure 47. Load Regulation  
(VIN = 12 V, VOUT = 3.3 V, 1 MHz_IOUTMAX = 5 A setting)  
Figure 48. Load Regulation  
(VIN = 12 V, VOUT = 3.3 V, 2.2 MHz setting)  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
19/55  
TSZ22111 15 001  
BD9F500QUZ  
Typical Performance Curves continued  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Fixed PWM Mode  
Light Load Mode  
Fixed PWM Mode  
Light Load Mode  
0.1  
0
0
1
2
3
4
5
0
1
2
3
4
5
Output Current : IOUT [A]  
Output Current : IOUT [A]  
Figure 49. Switching Frequency vs Output Current  
(VIN = 12 V, VOUT = 3.3 V, 600 kHz_IOUTMAX = 5 A setting)  
Figure 50. Switching Frequency vs Output Current  
(VIN = 12 V, VOUT = 3.3 V, 1 MHz_IOUTMAX = 5 A setting)  
3.4  
3.35  
3.3  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
3.25  
3.2  
1.9  
1.8  
0
1
2
3
4
8
12  
16  
20  
24  
28  
32  
36  
Output Current : IOUT [A]  
Input Voltage : VIN [V]  
Figure 51. Switching Frequency vs Output Current  
(VIN = 12 V, VOUT = 3.3 V, 2.2 MHz setting)  
Figure 52. Line Regulation  
(VOUT = 3.3 V, IOUT = 2 A,  
600 kHz_IOUTMAX = 5 A_PWM setting)  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
20/55  
TSZ22111 15 001  
BD9F500QUZ  
Typical Performance Curves continued  
3.4  
3.35  
3.3  
3.4  
3.35  
3.3  
3.25  
3.2  
3.25  
3.2  
4
8
12  
16  
20  
24  
28  
32  
36  
4
8
12  
16  
20  
24  
28  
32  
36  
Input Voltage : VIN [V]  
Input Voltage : VIN [V]  
Figure 53. Line Regulation  
(VOUT = 3.3 V, IOUT = 2 A, 1 MHz_IOUTMAX = 5 A_PWM setting)  
Figure 54. Line regulation  
(VOUT = 3.3 V, IOUT = 1 A, 2.2 MHz setting)  
0.72  
0.69  
0.66  
0.63  
0.6  
1.2  
1.15  
1.1  
1.05  
1
0.57  
0.54  
0.51  
0.48  
0.95  
0.9  
0.85  
0.8  
4
8
12  
16  
20  
24  
28  
32  
36  
4
8
12  
16  
20  
24  
28  
32  
36  
Input Voltage : VIN [V]  
Input Voltage : VIN [V]  
Figure 55. Switching Frequency vs Input Voltage  
(VOUT = 3.3 V, IOUT = 2 A,  
Figure 56. Switching Frequency vs Input Voltage  
(VOUT = 3.3 V, IOUT = 2 A, 1 MHz_IOUTMAX = 5 A_PWM setting)  
600 kHz_IOUTMAX = 5 A_PWM setting)  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
21/55  
TSZ22111 15 001  
BD9F500QUZ  
Typical Performance Curves continued  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
6.5  
6
VIN  
VIN  
= 24 V  
= 12 V  
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
1.9  
1.8  
0.5  
0
4
8
12  
16  
20  
24  
28  
32  
36  
-60 -40 -20  
0
20  
40  
60  
80 100  
Input Voltage : VIN [V]  
Temperature : Ta [°C]  
Figure 57. Switching Frequency vs Input Voltage  
(VOUT = 3.3 V, IOUT = 1 A, 2.2 MHz setting)  
Figure 58. Output Current vs Temperature(Note 1)  
Operating Range: Tj < 150 °C (VOUT = 3.3 V, 600 kHz setting)  
6.5  
4
VIN  
VIN  
VIN  
VIN  
= 24 V  
= 12 V  
= 24 V  
= 12 V  
6
5.5  
5
3.5  
3
4.5  
4
2.5  
2
3.5  
3
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-60 -40 -20  
0
20  
40  
60  
80 100  
-60 -40 -20  
0
20  
40  
60  
80 100  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 59. Output Current vs Temperature(Note 1)  
Figure 60. Output Current vs Temperature(Note 1)  
Operating Range: Tj < 150 °C (VOUT = 3.3 V, 1 MHz setting)  
Operating Range: Tj < 150 °C (VOUT = 3.3 V, 2.2 MHz setting)  
(Note 1) Measured on FR-4 board 85 mm x 85 mm, Copper Thickness: Top and Bottom 70 μm, 2 Internal Layers 35 μm.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
22/55  
TSZ22111 15 001  
BD9F500QUZ  
Function Explanations  
1. Basic Operation  
(1) DC/DC Converter Operation  
BD9F500QUZ is a synchronous rectifying step-down switching regulator that has original On-Time control method.  
Device operates as the SEL1 pin and the SEL2 pin setting. When the operating mode is Light Load Mode, it utilizes  
switching operation in Pulse Width Modulation (PWM) mode control at heavier load, and it operates in Light Load  
mode (LLM) control at lighter load to improve efficiency. When the operating mode is Fixed PWM Mode, the device  
operates in PWM mode control regardless of the load.  
Light Load Mode Control  
PWM Control  
Fixed PWM Mode Control  
Output Current [A]  
Figure 61. Efficiency Image between Light Load Mode Control and PWM Mode Control  
(2) Enable Control  
The startup and shutdown can be controlled by the EN voltage (VEN). When VEN becomes 1.2 V (Typ) or more, the  
internal circuit is activated and the device starts up. When VEN becomes 1.1 V (Typ) or less, the device is shutdown. In  
this shutdown mode, the High-Side FET and the Low-Side FET are turned off and the SW pin is connected to GND  
through an internal resistor 400 Ω (Typ) to discharge the output. The start-up with VEN must be at the same time of the  
input voltage VIN (VIN = VEN) or after supplying VIN.  
VIN  
0 V  
VEN  
VENH  
VENL  
0 V  
VOUT  
0 V  
Startup  
Shutdown  
Figure 62. Startup and Shutdown with Enable Control Timing Chart  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
23/55  
TSZ22111 15 001  
BD9F500QUZ  
1. Basic Operation continued  
(3) Soft Start  
When VEN goes high, soft start function operates and output voltage gradually rises. This soft start function can  
prevent overshoot of the output voltage and excessive inrush current. The soft start time tSS is 2 ms (Typ) when the SS  
pin is left floating. A capacitor connected to the SS pin makes tSS more than 2 ms. See Selection of Components  
Externally Connected 4. Soft Start Capacitor for how to set the soft start time.  
VIN  
0 V  
VEN  
0 V  
VOUT  
0 V  
VFBTH x 90 %  
0.6 V  
(Typ)  
VFB  
0 V  
VPGD  
0 V  
0.4 ms (Typ)  
tSS  
Figure 63. Soft Start Timing Chart  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
24/55  
TSZ22111 15 001  
BD9F500QUZ  
1. Basic Operation continued  
(4) Power Good  
When the output voltage VOUT reaches within ±7 % (Typ) of the voltage setting, the built-in open drain Nch MOSFET  
connected to the PGD pin is turned off, and the PGD pin goes Hi-Z (High impedance). When VOUT reaches outside  
±10 % (Typ) of the voltage setting, the open drain Nch MOSFET is turned on and PGD pin is pulled down with 500 Ω  
(Typ). It is recommended to connect a pull-up resistor of 20 kΩ to 100 kΩ.  
Table 1. PGD Output  
State  
Before Supply Input Voltage  
Shutdown  
Condition  
VIN < 2.5 V (Typ)  
PGD Output  
Hi-Z  
VEN 1.1 V (Typ)  
Low (Pull-down)  
Hi-Z  
93 % (Typ) VFB / VFBTH 107 % (Typ)  
VFB / VFBTH 90 % (Typ) or 110 % (Typ) VFB / VFBTH  
2.5 V (Typ) < VIN 4.0 V (Typ)  
Tj 175 °C (Typ)  
Enable  
VEN 1.2 V (Typ)  
Low (Pull-down)  
Low (Pull-down)  
Low (Pull-down)  
UVLO  
TSD  
VIN  
0 V  
VEN  
0 V  
+10 % (Typ)  
-10 % (Typ)  
+7 % (Typ)  
-7 % (Typ)  
VOUT  
0 V  
VFBTH x 110 % (Typ)  
VFBTH x 90 % (Typ)  
VFBTH x 107 % (Typ)  
VFBTH x 93 % (Typ)  
VFB  
0 V  
tSS  
VPGD  
0 V  
Figure 64. Power Good Timing Chart  
(Connecting a pull-up resistor to the PGD pin)  
(5) Nano Pulse ControlTM  
Nano Pulse ControlTM is an original technology developed by ROHM Co., Ltd. It enables to control voltage stably,  
which is difficult in the conventional technology, even in a narrow SW ON time such as less than 50 ns at typical  
condition.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
25/55  
TSZ22111 15 001  
BD9F500QUZ  
1. Basic Operation continued  
(6) Output Capacitor Discharge Function  
When even one of the following conditions is satisfied, output is discharged with 400 Ω (Typ) resistor through the SW  
pin.  
Shutdown: VEN 1.1 V (Typ)  
UVLO: VIN 4.0 V (Typ)  
TSD: Tj 175 °C (Typ)  
OVP: VFB / VFBTH 120 % (Typ)  
When all of the above conditions are released, output discharge is stopped.  
(7) Control Mode Selectable Function  
BD9F500QUZ has the SEL1 pin and the SEL2 pin that can offer 9 different states of operation as a combination of  
Switching Frequency, Maximum Output Current and Operation mode. It can operate at two different current limits to  
support an output continuous current of 5 A, 3 A respectively. It can operate at three different frequencies of 600 kHz, 1  
MHz and 2.2 MHz and also can choose between Light Load Mode and Fixed PWM mode for 600 kHz and 1 MHz  
operation. Do not change the mode control of Switching Frequency and Maximum Output Current during operation.  
Table 2. Control Mode Selection  
Maximum  
SEL1 pin  
condition  
SEL2 pin  
condition  
Switching  
Frequency  
Output Current  
Operation Mode  
(IOUTMAX  
)
GND  
GND  
GND  
OPEN  
GND  
Light Load Mode (LLM)  
Fixed PWM Mode  
5 A  
1 MHz (Typ)  
VREG  
VREG  
OPEN  
OPEN  
GND  
Light Load Mode (LLM)  
Fixed PWM Mode  
3 A  
5 A  
OPEN  
GND  
Light Load Mode (LLM)  
Fixed PWM Mode  
OPEN  
VREG  
VREG  
VREG  
600 kHz (Typ)  
2.2 MHz (Typ)  
Light Load Mode (LLM)  
Fixed PWM Mode  
3 A  
3 A  
OPEN  
VREG  
Fixed PWM Mode  
Table 3. OCP Value  
Maximum Output  
Low-Side Sink OCP  
(Fixed PWM mode)  
IROCP1 = 4.2 A (Typ)  
IROCP2 = 2.5 A (Typ)  
Low-Side OCP  
High-Side OCP  
Current (IOUTMAX  
)
5 A  
3 A  
ILOCP1 = 6.7 A (Typ)  
ILOCP2 = 4.0 A (Typ)  
IHOCP1 = 8.25 A (Typ)  
IHOCP2 = 5.0 A (Typ)  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
26/55  
TSZ22111 15 001  
BD9F500QUZ  
Function Explanations continued  
2. Protection  
The protection circuits are intended for prevention of damage caused by unexpected accidents. Do not use the  
continuous protection.  
(1) Over Current Protection (OCP) / Short Circuit Protection (SCP)  
Over Current Protection (OCP) restricts the flowing current through the Low-Side FET and the High-Side FET for every  
switching period. If the inductor current exceeds the Low-Side OCP ILOCP1 = 6.7 A (Typ), ILOCP2 = 4.0 A (Typ) while the  
Low-Side FET is on, the Low-Side FET remains on even with FB voltage VFB falls to VFBTH = 0.6 V (Typ) or less. If the  
inductor current becomes less than ILOCP1, ILOCP2, the High-Side FET is able to be turned on. When the inductor current  
becomes the High-Side OCP IHOCP1 = 8.25 A (Typ), IHOCP2 = 5.0 A (Typ) or more while the High-Side FET is on, the  
High-Side FET is turned off. Output voltage may decrease by changing frequency and duty due to the OCP operation.  
Short Circuit Protection (SCP) function is a Hiccup mode. When Low-Side OCP 128 times is counted while VFB is VFBTH  
x 90 % or less (VPGD = Low), the device stops the switching operation for 16 times of Soft Start Time (Typ). After that,  
the device restarts. SCP does not operate during the soft start even if the device is in the SCP conditions. Do not  
exceed the maximum junction temperature (Tjmax = 150 °C) during OCP and SCP operation.  
Table 4. The Operating Condition of OCP and SCP  
VEN  
VFB  
Start-up  
OCP  
SCP  
VFBTH x 90 % (Typ)  
> VFBTH x 93 % (Typ)  
VFBTH x 90 % (Typ)  
-
During Soft Start  
Enable  
Enable  
Enable  
Disable  
Disable  
Disable  
Enable  
Disable  
1.2 V (Typ)  
1.1 V (Typ)  
Complete Soft Start  
Shutdown  
VOUT  
VFBTH x 93 % (Typ)  
VFBTH x 90 % (Typ)  
VFB  
VPGD  
VSW  
High-Side FET  
Internal Gate Signal  
Low-Side FET  
Internal Gate Signal  
IHOCP  
ILOCP  
Inductor Current  
High-Side OCP  
Internal Signal  
Low-Side OCP  
Internal Signal  
OCP 128 counts  
Less than  
OCP 128 counts  
SCP  
Internal Signal  
16 tims of SS time (Typ)  
Figure 65. OCP and SCP Timing Chart  
27/55  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
BD9F500QUZ  
2. Protection continued  
(2) Low-Side Sink (Reverse) Over Current Protection (ROCP)  
When operating mode is Fixed PWM and inductor current exceeds the sink current limit threshold value IROCP1 = 4.2 A  
(Typ), IROCP2 = 2.5 A (Typ) while Low-Side FET is ON, the Low-Side FET turns OFF.  
(3) Under Voltage Lockout Protection (UVLO)  
When input voltage VIN falls to 4.0 V (Typ) or less, the device is shutdown. When VIN becomes 4.2 V (Typ) or more, the  
device starts up. The hysteresis is 200 mV (Typ).  
VIN  
(=VEN  
)
Hysteresis  
VUVLOHYS = 200 mV (Typ)  
VOUT  
UVLO Release  
VUVLO2 = 4.2 V (Typ)  
UVLO Detection  
VUVLO1 = 4.0 V (Typ)  
0 V  
VOUT  
0 V  
tSS  
Figure 66. UVLO Timing Chart  
(4) Thermal Shutdown Protection (TSD)  
Thermal shutdown circuit prevents heat damage to the IC. The device should always operate within the IC’s maximum  
junction temperature rating (Tjmax = 150 °C). However, if it continues exceeding the rating and the junction  
temperature Tj rises to 175 °C (Typ), the TSD circuit is activated and it turns the output MOSFETs off. When the Tj falls  
below the TSD threshold, the circuits are automatically restored to normal operation. The TSD threshold has a  
hysteresis of 25 °C (Typ). Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings.  
Therefore, under no circumstances, should the TSD circuit be used in a set design or for any purpose other than  
protecting the IC from heat damage.  
(5) Over Voltage Protection (OVP)  
When the FB voltage VFB exceeds VFBTH x 120 % (Typ) or more, output is discharged with 400 Ω (Typ) resister through  
the SW pin to prevent the increase in the output voltage. After the VFB falls VFBTH x 115 % (Typ) or less, the output  
MOSFETs are returned to normal operation condition. Switching operation restarts after VFB falls below VFBTH (Typ).  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
28/55  
TSZ22111 15 001  
BD9F500QUZ  
Application Examples  
1. VIN = 12 V to 24 V, VOUT = 3.3 V, fSW = 1 MHz  
Table 5. Specification of Application  
Parameter  
Input Voltage  
Symbol  
Specification Value  
12 V to 24 V (Typ)  
3.3 V (Typ)  
VIN  
Output Voltage  
VOUT  
IOUTMAX  
fSW  
Maximum Output Current  
Switching Frequency  
Operation Mode  
5 A  
1 MHz (Typ)  
Light Load Mode  
25 °C  
-
Temperature  
Ta  
BD9F500QUZ  
EN  
EN  
VIN  
BOOT  
SW  
VIN  
CBOOT  
CIN2  
CIN1  
VOUT  
PGND  
VREG  
L
R0  
RS2U  
RS2D  
RS1U  
RS1D  
SEL1  
R1A  
R1B  
R2  
COUT1  
COUT2  
RPGD  
CFB  
CREG  
SEL2  
PGD  
SS  
FB  
AGND  
PGD  
CSS  
Figure 67. Application Circuit  
Table 6. Recommended Component Values  
Part No.  
Value  
Part Name  
Size Code (mm)  
Manufacturer  
L
1.5 μH  
1217AS-H-1R5N  
8080  
1005  
3225  
1005  
2012  
2012  
1005  
0603  
-
Murata  
(Note 1)  
CIN1  
0.1 μF (50 V, X5R, ±10 %)  
10 μF (50 V, X5R, ±20 %)  
0.1 μF (50 V, X5R, ±10 %)  
22 μF (25 V, X5R, ±20 %)  
22 μF (25 V, X5R, ±20 %)  
2.2 μF (25 V, X5R, ±20 %)  
82 pF (50 V, C0G, ±5 %)  
-
UMK105BJ104KV-F  
TAIYO YUDEN  
(Note 2)  
CIN2  
UMK325BJ106MM-P  
TAIYO YUDEN  
(Note 3)  
CBOOT  
UMK105BJ104KV-F  
TAIYO YUDEN  
(Note 4)  
COUT1  
TMK212BBJ226MG-TT  
TAIYO YUDEN  
(Note 4)  
COUT2  
TMK212BBJ226MG-TT  
TAIYO YUDEN  
(Note 5)  
CREG  
TMK105CBJ225MV-F  
TAIYO YUDEN  
CFB  
CSS  
GRM0335C1H820JA01  
Murata  
-
-
R1A  
1.5 kΩ (1 %, 1/16 W)  
120 kΩ (1 %, 1/16 W)  
27 kΩ (1 %, 1/16 W)  
100 kΩ (1 %, 1/16 W)  
-
MCR01MZPF1500  
1005  
1005  
1005  
1005  
-
ROHM  
R1B  
MCR01MZPF1203  
ROHM  
R2  
MCR01MZPF2702  
ROHM  
RPGD  
RS1U  
RS1D  
RS2U  
RS2D  
MCR01MZPF1003  
ROHM  
-
-
-
-
-
-
-
-
-
-
Short  
-
-
-
Short  
-
(Note 6)  
R0  
Short  
-
(Note 1) In order to reduce the influence of high frequency noise, connect a 0.1 μF ceramic capacitor CIN1 as close as possible to the VIN pin and the PGND pin.  
(Note 2) For the input capacitor CIN2, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no less  
than 3 μF.  
(Note 3) For the bootstrap capacitor CBOOT, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no  
less than 0.022 μF.  
(Note 4) In case of changing the actual capacitance value due to temperature characteristics, DC bias characteristics, etc. of the output capacitor COUT1 and COUT2  
,
the loop response characteristics may change. Confirm with the actual application.  
(Note 5) For the VREG capacitor CREG, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no less  
than 0.82 μF.  
(Note 6) R0 is an option, used for feedback’s frequency response measurement. By inserting a resistor at R0, it is possible to measure the frequency response  
(phase margin) using a FRA. However, the resistor is not used in actual application, use this resistor pattern in short-circuit mode.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
29/55  
TSZ22111 15 001  
 
BD9F500QUZ  
1. VIN = 12 V to 24 V, VOUT = 3.3 V, fSW = 1 MHz continued  
100  
90  
80  
70  
60  
Time: 1 µs/div  
VOUT: 30 mV/div  
VSW: 5 V/div  
50  
VIN = 12 V  
VIN = 24 V  
40  
0.001  
0.01  
0.1  
1
10  
Output Current : IOUT [A]  
Figure 68. Efficiency vs Output Current  
Figure 69. Output Ripple Voltage (VIN = 12 V, IOUT = 5 A)  
80  
60  
180  
135  
90  
Gain  
Time: 200 µs/div  
VOUT: 50 mV/div  
Phase  
40  
20  
45  
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
IOUT: 1 A/div  
1
10  
100  
1000  
Frequency [kHz]  
Figure 70. Frequency Characteristics (VIN = 12 V, IOUT = 3 A)  
Figure 71. Load Transient Response  
(VIN = 12 V, IOUT = 0.1 A to 3.0 A)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
30/55  
BD9F500QUZ  
Application Examples continued  
2. VIN = 12 V to 24 V, VOUT = 3.3 V, fSW = 600 kHz  
Table 7. Specification of Application  
Parameter  
Input Voltage  
Symbol  
Specification Value  
12 V to 24 V (Typ)  
3.3 V (Typ)  
VIN  
Output Voltage  
VOUT  
IOUTMAX  
fSW  
Maximum Output Current  
Switching Frequency  
Operation Mode  
5 A  
600 kHz (Typ)  
Light Load Mode  
25 °C  
-
Temperature  
Ta  
BD9F500QUZ  
EN  
EN  
VIN  
BOOT  
SW  
VIN  
CBOOT  
CIN2  
CIN1  
VOUT  
PGND  
VREG  
L
R0  
RS2U  
RS2D  
RS1U  
RS1D  
SEL1  
R1A  
R1B  
R2  
COUT1  
COUT2  
RPGD  
CFB  
CREG  
SEL2  
PGD  
SS  
FB  
AGND  
PGD  
CSS  
Figure 72. Application Circuit  
Table 8. Recommended Component Values  
Part No.  
Value  
Part Name  
Size Code (mm)  
Manufacturer  
L
3.3 μH  
1217AS-H-3R3N  
8080  
1005  
3225  
1005  
2012  
2012  
1005  
0603  
-
Murata  
(Note 1)  
CIN1  
0.1 μF (50 V, X5R, ±10 %)  
10 μF (50 V, X5R, ±20 %)  
0.1 μF (50 V, X5R, ±10 %)  
22 μF (25 V, X5R, ±20 %)  
22 μF (25 V, X5R, ±20 %)  
2.2 μF (25 V, X5R, ±20 %)  
82 pF (50 V, C0G, ±5 %)  
-
UMK105BJ104KV-F  
TAIYO YUDEN  
(Note 2)  
CIN2  
UMK325BJ106MM-P  
TAIYO YUDEN  
(Note 3)  
CBOOT  
UMK105BJ104KV-F  
TAIYO YUDEN  
(Note 4)  
COUT1  
TMK212BBJ226MG-TT  
TAIYO YUDEN  
(Note 4)  
COUT2  
TMK212BBJ226MG-TT  
TAIYO YUDEN  
(Note 5)  
CREG  
TMK105CBJ225MV-F  
TAIYO YUDEN  
CFB  
CSS  
GRM0335C1H820JA01  
Murata  
-
-
R1A  
1.5 kΩ (1 %, 1/16 W)  
120 kΩ (1 %, 1/16 W)  
27 kΩ (1 %, 1/16 W)  
100 kΩ (1 %, 1/16 W)  
-
MCR01MZPF1500  
1005  
1005  
1005  
1005  
-
ROHM  
R1B  
MCR01MZPF1203  
ROHM  
R2  
MCR01MZPF2702  
ROHM  
RPGD  
RS1U  
RS1D  
RS2U  
RS2D  
MCR01MZPF1003  
ROHM  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Short  
-
(Note 6)  
R0  
Short  
-
(Note 1) In order to reduce the influence of high frequency noise, connect a 0.1 μF ceramic capacitor CIN1 as close as possible to the VIN pin and the PGND pin.  
(Note 2) For the input capacitor CIN2, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no less  
than 3 μF.  
(Note 3) For the bootstrap capacitor CBOOT, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no  
less than 0.022 μF.  
(Note 4) In case of changing the actual capacitance value due to temperature characteristics, DC bias characteristics, etc. of the output capacitor COUT1 and COUT2  
,
the loop response characteristics may change. Confirm with the actual application.  
(Note 5) For the VREG capacitor CREG, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no less  
than 0.82 μF.  
(Note 6) R0 is an option, used for feedback’s frequency response measurement. By inserting a resistor at R0, it is possible to measure the frequency response  
(phase margin) using a FRA. However, the resistor is not used in actual application, use this resistor pattern in short-circuit mode.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
31/55  
TSZ22111 15 001  
BD9F500QUZ  
2. VIN = 12 V to 24 V, VOUT = 3.3 V, fSW = 600 kHz continued  
100  
90  
80  
70  
60  
50  
Time: 1 µs/div  
VOUT: 30 mV/div  
VSW: 5 V/div  
VIN  
VIN  
= 12 V  
= 24 V  
40  
0.001  
0.01  
0.1  
1
10  
Output Current : IOUT [A]  
Figure 73. Efficiency vs Output Current  
Figure 74. Output Ripple Voltage (VIN = 12 V, IOUT = 5 A)  
80  
60  
180  
135  
90  
Gain  
Time: 200 µs/div  
VOUT: 50 mV/div  
Phase  
40  
20  
45  
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
IOUT: 1 A/div  
1
10  
100  
1000  
Frequency [kHz]  
Figure 75. Frequency Characteristics (VIN = 12 V, IOUT = 3 A)  
Figure 76. Load Transient Response  
(VIN = 12 V, IOUT = 0.1 A to 3.0 A)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
32/55  
BD9F500QUZ  
Application Examples continued  
3. VIN = 5 V, VOUT = 3.3 V, fSW = 1 MHz  
Table 9. Specification of Application  
Parameter  
Input Voltage  
Symbol  
Specification Value  
5 V (Typ)  
VIN  
VOUT  
IOUTMAX  
fSW  
Output Voltage  
3.3 V (Typ)  
5 A  
Maximum Output Current  
Switching Frequency  
Operation Mode  
1 MHz (Typ)  
Light Load Mode  
25 °C  
-
Temperature  
Ta  
BD9F500QUZ  
EN  
EN  
VIN  
BOOT  
SW  
VIN  
CBOOT  
CIN2  
CIN1  
VOUT  
PGND  
VREG  
L
R0  
RS2U  
RS2D  
RS1U  
RS1D  
SEL1  
R1A  
R1B  
R2  
COUT1  
COUT2  
RPGD  
CFB  
CREG  
SEL2  
PGD  
SS  
FB  
AGND  
PGD  
CSS  
Figure 77. Application Circuit  
Table 10. Recommended Component Values  
Part No.  
Value  
Part Name  
Size Code (mm)  
Manufacturer  
L
1.0 μH  
FDSD0518-H-1R0M  
5249  
1005  
3225  
1005  
2012  
2012  
1005  
0603  
-
Murata  
(Note 1)  
CIN1  
0.1 μF (50 V, X5R, ±10 %)  
10 μF (50 V, X5R, ±20 %)  
0.1 μF (50 V, X5R, ±10 %)  
22 μF (25 V, X5R, ±20 %)  
22 μF (25 V, X5R, ±20 %)  
2.2 μF (25 V, X5R, ±20 %)  
33 pF (50 V, C0G, ±5 %)  
-
UMK105BJ104KV-F  
TAIYO YUDEN  
(Note 2)  
CIN2  
UMK325BJ106MM-P  
TAIYO YUDEN  
(Note 3)  
CBOOT  
UMK105BJ104KV-F  
TAIYO YUDEN  
(Note 4)  
COUT1  
TMK212BBJ226MG-TT  
TAIYO YUDEN  
(Note 4)  
COUT2  
TMK212BBJ226MG-TT  
TAIYO YUDEN  
(Note 5)  
CREG  
TMK105CBJ225MV-F  
TAIYO YUDEN  
CFB  
CSS  
GRM0335C1H330JA01  
Murata  
-
-
R1A  
120 kΩ (1 %, 1/16 W)  
330 kΩ (1 %, 1/16 W)  
100 kΩ (1 %, 1/16 W)  
100 kΩ (1 %, 1/16 W)  
-
MCR01MZPF1203  
1005  
1005  
1005  
1005  
-
ROHM  
R1B  
MCR01MZPF3303  
ROHM  
R2  
MCR01MZPF1003  
ROHM  
RPGD  
RS1U  
RS1D  
RS2U  
RS2D  
MCR01MZPF1003  
ROHM  
-
-
-
-
-
-
-
-
-
-
Short  
-
-
-
Short  
-
(Note 6)  
R0  
Short  
-
(Note 1) In order to reduce the influence of high frequency noise, connect a 0.1 μF ceramic capacitor CIN1 as close as possible to the VIN pin and the PGND pin.  
(Note 2) For the input capacitor CIN2, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no less  
than 3 μF.  
(Note 3) For the bootstrap capacitor CBOOT, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no  
less than 0.022 μF.  
(Note 4) In case of changing the actual capacitance value due to temperature characteristics, DC bias characteristics, etc. of the output capacitor COUT1 and COUT2  
,
the loop response characteristics may change. Confirm with the actual application.  
(Note 5) For the VREG capacitor CREG, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no less  
than 0.82 μF.  
(Note 6) R0 is an option, used for feedback’s frequency response measurement. By inserting a resistor at R0, it is possible to measure the frequency response  
(phase margin) using a FRA. However, the resistor is not used in actual application, use this resistor pattern in short-circuit mode.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
33/55  
TSZ22111 15 001  
BD9F500QUZ  
3. VIN = 5 V, VOUT = 3.3 V, fSW = 1 MHz continued  
100  
90  
80  
70  
60  
50  
40  
Time: 1 µs/div  
VOUT: 30 mV/div  
VSW: 2 V/div  
0.001  
0.01  
0.1  
1
10  
Output Current : IOUT [A]  
Figure 78. Efficiency vs Output Current  
Figure 79. Output Ripple Voltage (IOUT = 5 A)  
80  
60  
180  
135  
90  
Gain  
Time: 200 µs/div  
VOUT: 50 mV/div  
Phase  
40  
20  
45  
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
IOUT: 1 A/div  
1
10  
100  
1000  
Frequency [kHz]  
Figure 80. Frequency Characteristics (IOUT = 3 A)  
Figure 81. Load Transient Response (IOUT = 0.1 A to 3.0 A)  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
34/55  
TSZ22111 15 001  
BD9F500QUZ  
Application Examples continued  
4. VIN = 5 V, VOUT = 3.3 V, fSW = 600 kHz  
Table 11. Specification of Application  
Parameter  
Input Voltage  
Symbol  
Specification Value  
5 V (Typ)  
VIN  
VOUT  
IOUTMAX  
fSW  
Output Voltage  
3.3 V (Typ)  
5 A  
Maximum Output Current  
Switching Frequency  
Operation Mode  
600 kHz (Typ)  
Light Load Mode  
25 °C  
-
Temperature  
Ta  
BD9F500QUZ  
EN  
EN  
VIN  
BOOT  
SW  
VIN  
CBOOT  
CIN2  
CIN1  
VOUT  
PGND  
VREG  
L
R0  
RS2U  
RS2D  
RS1U  
RS1D  
SEL1  
R1A  
R1B  
R2  
COUT1  
COUT2  
RPGD  
CFB  
CREG  
SEL2  
PGD  
SS  
FB  
AGND  
PGD  
CSS  
Figure 82. Application Circuit  
Table 12. Recommended Component Values  
Part No.  
Value  
Part Name  
Size Code (mm)  
Manufacturer  
L
2.2 μH  
FDSD0630-H-2R2M  
7066  
1005  
3225  
1005  
2012  
2012  
1005  
0603  
-
Murata  
(Note 1)  
CIN1  
0.1 μF (50 V, X5R, ±10 %)  
10 μF (50 V, X5R, ±20 %)  
0.1 μF (50 V, X5R, ±10 %)  
22 μF (25 V, X5R, ±20 %)  
22 μF (25 V, X5R, ±20 %)  
2.2 μF (25 V, X5R, ±20 %)  
39 pF (50 V, C0G, ±5 %)  
-
UMK105BJ104KV-F  
TAIYO YUDEN  
(Note 2)  
CIN2  
UMK325BJ106MM-P  
TAIYO YUDEN  
(Note 3)  
CBOOT  
UMK105BJ104KV-F  
TAIYO YUDEN  
(Note 4)  
COUT1  
TMK212BBJ226MG-TT  
TAIYO YUDEN  
(Note 4)  
COUT2  
TMK212BBJ226MG-TT  
TAIYO YUDEN  
(Note 5)  
CREG  
TMK105CBJ225MV-F  
TAIYO YUDEN  
CFB  
CSS  
GRM0335C1H390JA01  
Murata  
-
-
R1A  
120 kΩ (1 %, 1/16 W)  
330 kΩ (1 %, 1/16 W)  
100 kΩ (1 %, 1/16 W)  
100 kΩ (1 %, 1/16 W)  
-
MCR01MZPF1203  
1005  
1005  
1005  
1005  
-
ROHM  
R1B  
MCR01MZPF3303  
ROHM  
R2  
MCR01MZPF1003  
ROHM  
RPGD  
RS1U  
RS1D  
RS2U  
RS2D  
MCR01MZPF1003  
ROHM  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Short  
-
(Note 6)  
R0  
Short  
-
(Note 1) In order to reduce the influence of high frequency noise, connect a 0.1 μF ceramic capacitor CIN1 as close as possible to the VIN pin and the PGND pin.  
(Note 2) For the input capacitor CIN2, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no less  
than 3 μF.  
(Note 3) For the bootstrap capacitor CBOOT, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no  
less than 0.022 μF.  
(Note 4) In case of changing the actual capacitance value due to temperature characteristics, DC bias characteristics, etc. of the output capacitor COUT1 and COUT2  
,
the loop response characteristics may change. Confirm with the actual application.  
(Note 5) For the VREG capacitor CREG, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no less  
than 0.82 μF.  
(Note 6) R0 is an option, used for feedback’s frequency response measurement. By inserting a resistor at R0, it is possible to measure the frequency response  
(phase margin) using a FRA. However, the resistor is not used in actual application, use this resistor pattern in short-circuit mode.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
35/55  
TSZ22111 15 001  
BD9F500QUZ  
4. VIN = 5 V, VOUT = 3.3 V, fSW = 600 kHz continued  
100  
90  
80  
70  
60  
50  
40  
Time: 1 µs/div  
VOUT: 30 mV/div  
VSW: 2 V/div  
0.001  
0.01  
0.1  
1
10  
Output Current : IOUT [A]  
Figure 83. Efficiency vs Output Current  
Figure 84. Output Ripple Voltage (IOUT = 5 A)  
80  
60  
180  
135  
90  
Gain  
Time: 200 µs/div  
VOUT: 50 mV/div  
Phase  
40  
20  
45  
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
IOUT: 1 A/div  
1
10  
100  
1000  
Frequency [kHz]  
Figure 85. Frequency Characteristics (IOUT = 3 A)  
Figure 86. Load Transient Response (IOUT = 0.1 A to 3.0 A)  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
36/55  
TSZ22111 15 001  
BD9F500QUZ  
Application Examples continued  
5. VIN = 12 V, VOUT = 1 V, fSW = 1 MHz  
Table 13. Specification of Application  
Parameter  
Input Voltage  
Symbol  
Specification Value  
12 V (Typ)  
1 V (Typ)  
VIN  
VOUT  
IOUTMAX  
fSW  
Output Voltage  
Maximum Output Current  
Switching Frequency  
Operation Mode  
5 A  
1 MHz (Typ)  
Fixed PWM Mode  
25 °C  
-
Temperature  
Ta  
BD9F500QUZ  
EN  
EN  
VIN  
BOOT  
SW  
VIN  
CBOOT  
CIN2  
CIN1  
VOUT  
PGND  
VREG  
L
R0  
RS2U  
RS2D  
RS1U  
RS1D  
SEL1  
R1A  
R1B  
R2  
COUT1  
COUT2  
RPGD  
CFB  
CREG  
SEL2  
PGD  
SS  
FB  
AGND  
PGD  
CSS  
Figure 87. Application Circuit  
Table 14. Recommended Component Values  
Part No.  
Value  
Part Name  
Size Code (mm)  
Manufacturer  
L
0.68 μH  
FDSD0518-H-R68M  
5249  
1005  
3225  
1005  
2012  
2012  
1005  
0603  
-
Murata  
(Note 1)  
CIN1  
0.1 μF (50 V, X5R, ±10 %)  
UMK105BJ104KV-F  
TAIYO YUDEN  
(Note 2)  
CIN2  
10 μF (50 V, X5R, ±20 %)  
UMK325BJ106MM-P  
TAIYO YUDEN  
(Note 3)  
CBOOT  
0.1 μF (50 V, X5R, ±10 %)  
UMK105BJ104KV-F  
TAIYO YUDEN  
(Note 4)  
COUT1  
22 μF (25 V, X5R, ±20 %)  
TMK212BBJ226MG-TT  
TAIYO YUDEN  
(Note 4)  
COUT2  
22 μF (25 V, X5R, ±20 %)  
TMK212BBJ226MG-TT  
TAIYO YUDEN  
(Note 5)  
CREG  
2.2 μF (25 V, X5R, ±20 %)  
TMK105CBJ225MV-F  
TAIYO YUDEN  
CFB  
CSS  
27 pF (50 V, C0G, ±5 %)  
GRM0335C1H270JA01  
Murata  
-
-
-
R1A  
Short  
-
-
-
R1B  
180 kΩ (1 %, 1/16 W)  
MCR01MZPF1803  
1005  
1005  
1005  
-
ROHM  
R2  
270 kΩ (1 %, 1/16 W)  
MCR01MZPF2703  
ROHM  
RPGD  
RS1U  
RS1D  
RS2U  
RS2D  
100 kΩ (1 %, 1/16 W)  
MCR01MZPF1003  
ROHM  
-
-
-
-
-
-
-
-
-
-
-
Short  
-
-
-
-
-
(Note 6)  
R0  
Short  
-
(Note 1) In order to reduce the influence of high frequency noise, connect a 0.1 μF ceramic capacitor CIN1 as close as possible to the VIN pin and the PGND pin.  
(Note 2) For the input capacitor CIN2, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no less  
than 3 μF.  
(Note 3) For the bootstrap capacitor CBOOT, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no  
less than 0.022 μF.  
(Note 4) In case of changing the actual capacitance value due to temperature characteristics, DC bias characteristics, etc. of the output capacitor COUT1 and COUT2  
,
the loop response characteristics may change. Confirm with the actual application.  
(Note 5) For the VREG capacitor CREG, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no less  
than 0.82 μF.  
(Note 6) R0 is an option, used for feedback’s frequency response measurement. By inserting a resistor at R0, it is possible to measure the frequency response  
(phase margin) using a FRA. However, the resistor is not used in actual application, use this resistor pattern in short-circuit mode.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
37/55  
TSZ22111 15 001  
BD9F500QUZ  
5. VIN = 12 V, VOUT = 1 V, fSW = 1 MHz continued  
100  
90  
80  
70  
60  
50  
40  
Time: 1 µs/div  
VOUT: 30 mV/div  
VSW: 5 V/div  
0
1
2
3
4
5
Output Current : IOUT [A]  
Figure 88. Efficiency vs Output Current  
Figure 89. Output Ripple Voltage (IOUT = 5 A)  
80  
60  
180  
Gain  
Time: 200 µs/div  
VOUT: 50 mV/div  
135  
90  
Phase  
40  
20  
45  
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
IOUT: 1 A/div  
1
10  
100  
1000  
Frequency [kHz]  
Figure 90. Frequency Characteristics (IOUT = 3 A)  
Figure 91. Load Transient Response (IOUT = 0 A to 3 A)  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
38/55  
TSZ22111 15 001  
BD9F500QUZ  
Application Examples continued  
6. VIN = 12 V, VOUT = 1 V, fSW = 600 kHz  
Table 15. Specification of Application  
Parameter  
Input Voltage  
Symbol  
Specification Value  
12 V (Typ)  
VIN  
VOUT  
IOUTMAX  
fSW  
Output Voltage  
1 V (Typ)  
Maximum Output Current  
Switching Frequency  
Operation Mode  
5 A  
600 kHz (Typ)  
Fixed PWM Mode  
25 °C  
-
Temperature  
Ta  
BD9F500QUZ  
EN  
EN  
VIN  
BOOT  
SW  
VIN  
CBOOT  
CIN2  
CIN1  
VOUT  
PGND  
VREG  
L
R0  
RS2U  
RS2D  
RS1U  
RS1D  
SEL1  
R1A  
R1B  
R2  
COUT1  
COUT2  
RPGD  
CFB  
CREG  
SEL2  
PGD  
SS  
FB  
AGND  
PGD  
CSS  
Figure 92. Application Circuit  
Table 16. Recommended Component Values  
Part No.  
Value  
Part Name  
Size Code (mm)  
Manufacturer  
L
1.5 μH  
FDSD0630-H-1R5N  
7066  
1005  
3225  
1005  
2012  
2012  
1005  
0603  
-
Murata  
(Note 1)  
CIN1  
0.1 μF (50 V, X5R, ±10 %)  
UMK105BJ104KV-F  
TAIYO YUDEN  
(Note 2)  
CIN2  
10 μF (50 V, X5R, ±20 %)  
UMK325BJ106MM-P  
TAIYO YUDEN  
(Note 3)  
CBOOT  
0.1 μF (50 V, X5R, ±10 %)  
UMK105BJ104KV-F  
TAIYO YUDEN  
(Note 4)  
COUT1  
22 μF (25 V, X5R, ±20 %)  
TMK212BBJ226MG-TT  
TAIYO YUDEN  
(Note 4)  
COUT2  
22 μF (25 V, X5R, ±20 %)  
TMK212BBJ226MG-TT  
TAIYO YUDEN  
(Note 5)  
CREG  
2.2 μF (25 V, X5R, ±20 %)  
TMK105CBJ225MV-F  
TAIYO YUDEN  
CFB  
CSS  
33 pF (50 V, C0G, ±5 %)  
GRM0335C1H330JA01  
Murata  
-
-
-
R1A  
Short  
-
1005  
1005  
1005  
1005  
-
ROHM  
R1B  
180 kΩ (1 %, 1/16 W)  
MCR01MZPF1803  
ROHM  
R2  
270 kΩ (1 %, 1/16 W)  
MCR01MZPF2703  
ROHM  
RPGD  
RS1U  
RS1D  
RS2U  
RS2D  
100 kΩ (1 %, 1/16 W)  
MCR01MZPF1003  
ROHM  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(Note 6)  
R0  
Short  
-
(Note 1) In order to reduce the influence of high frequency noise, connect a 0.1 μF ceramic capacitor CIN1 as close as possible to the VIN pin and the PGND pin.  
(Note 2) For the input capacitor CIN2, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no less  
than 3 μF.  
(Note 3) For the bootstrap capacitor CBOOT, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no  
less than 0.022 μF.  
(Note 4) In case of changing the actual capacitance value due to temperature characteristics, DC bias characteristics, etc. of the output capacitor COUT1 and COUT2  
,
the loop response characteristics may change. Confirm with the actual application.  
(Note 5) For the VREG capacitor CREG, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no less  
than 0.82 μF.  
(Note 6) R0 is an option, used for feedback’s frequency response measurement. By inserting a resistor at R0, it is possible to measure the frequency response  
(phase margin) using a FRA. However, the resistor is not used in actual application, use this resistor pattern in short-circuit mode.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
39/55  
TSZ22111 15 001  
BD9F500QUZ  
6. VIN = 12 V, VOUT = 1 V, fSW = 600 kHz continued  
100  
90  
80  
70  
60  
50  
40  
Time: 1 µs/div  
VOUT: 30 mV/div  
VSW: 5 V/div  
0
1
2
3
4
5
Output Current : IOUT [A]  
Figure 93. Efficiency vs Output Current  
Figure 94. Output Ripple Voltage (IOUT = 5 A)  
80  
60  
180  
Gain  
Time: 200 µs/div  
VOUT: 50 mV/div  
135  
90  
Phase  
40  
20  
45  
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
IOUT: 1 A/div  
1
10  
100  
1000  
Frequency [kHz]  
Figure 95. Frequency Characteristics (IOUT = 3 A)  
Figure 96. Load Transient Response (IOUT = 0 A to 3 A)  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
40/55  
TSZ22111 15 001  
BD9F500QUZ  
Application Examples continued  
7. VIN = 12 V, VOUT = 3.3 V, fSW = 2.2 MHz  
Table 17. Specification of Application  
Parameter  
Input Voltage  
Symbol  
Specification Value  
12 V (Typ)  
VIN  
VOUT  
IOUTMAX  
fSW  
Output Voltage  
3.3 V (Typ)  
3 A  
Maximum Output Current  
Switching Frequency  
Operation Mode  
2.2 MHz (Typ)  
Fixed PWM Mode  
25 °C  
-
Temperature  
Ta  
BD9F500QUZ  
EN  
EN  
VIN  
BOOT  
SW  
VIN  
CBOOT  
CIN2  
CIN1  
VOUT  
PGND  
VREG  
L
R0  
RS2U  
RS2D  
RS1U  
RS1D  
SEL1  
R1A  
R1B  
R2  
COUT1  
COUT2  
RPGD  
CFB  
CREG  
SEL2  
PGD  
SS  
FB  
AGND  
PGD  
CSS  
Figure 97. Application Circuit  
Table 18. Recommended Component Values  
Part No.  
Value  
Part Name  
Size Code (mm)  
Manufacturer  
L
1.0 μH  
FDSD0518-H-1R0M  
5249  
1005  
3225  
1005  
2012  
2012  
1005  
0603  
-
Murata  
(Note 1)  
CIN1  
0.1 μF (50 V, X5R, ±10 %)  
10 μF (50 V, X5R, ±20 %)  
0.1 μF (50 V, X5R, ±10 %)  
22 μF (25 V, X5R, ±20 %)  
22 μF (25 V, X5R, ±20 %)  
2.2 μF (25 V, X5R, ±20 %)  
33 pF (50 V, C0G, ±5 %)  
-
UMK105BJ104KV-F  
TAIYO YUDEN  
(Note 2)  
CIN2  
UMK325BJ106MM-P  
TAIYO YUDEN  
(Note 3)  
CBOOT  
UMK105BJ104KV-F  
TAIYO YUDEN  
(Note 4)  
COUT1  
TMK212BBJ226MG-TT  
TAIYO YUDEN  
(Note 4)  
COUT2  
TMK212BBJ226MG-TT  
TAIYO YUDEN  
(Note 5)  
CREG  
TMK105CBJ225MV-F  
TAIYO YUDEN  
CFB  
CSS  
GRM0335C1H330JA01  
Murata  
-
-
R1A  
1.5 kΩ (1 %, 1/16 W)  
120 kΩ (1 %, 1/16 W)  
27 kΩ (1 %, 1/16 W)  
100 kΩ (1 %, 1/16 W)  
Short  
MCR01MZPF1500  
1005  
1005  
1005  
1005  
-
ROHM  
R1B  
MCR01MZPF1203  
ROHM  
R2  
MCR01MZPF2702  
ROHM  
RPGD  
RS1U  
RS1D  
RS2U  
RS2D  
MCR01MZPF1003  
ROHM  
-
-
-
-
-
-
-
-
-
-
-
-
Short  
-
-
-
(Note 6)  
R0  
Short  
-
(Note 1) In order to reduce the influence of high frequency noise, connect a 0.1 μF ceramic capacitor CIN1 as close as possible to the VIN pin and the PGND pin.  
(Note 2) For the input capacitor CIN2, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no less  
than 3 μF.  
(Note 3) For the bootstrap capacitor CBOOT, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no  
less than 0.022 μF.  
(Note 4) In case of changing the actual capacitance value due to temperature characteristics, DC bias characteristics, etc. of the output capacitor COUT1 and COUT2  
,
the loop response characteristics may change. Confirm with the actual application.  
(Note 5) For the VREG capacitor CREG, take temperature characteristics, DC bias characteristics, etc. into consideration to set to the actual capacitance of no less  
than 0.82 μF.  
(Note 6) R0 is an option, used for feedback’s frequency response measurement. By inserting a resistor at R0, it is possible to measure the frequency response  
(phase margin) using a FRA. However, the resistor is not used in actual application, use this resistor pattern in short-circuit mode.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
41/55  
TSZ22111 15 001  
BD9F500QUZ  
7. VIN = 12 V, VOUT = 3.3 V, fSW = 2.2 MHz continued  
100  
90  
80  
70  
60  
50  
40  
Time: 1 µs/div  
VOUT: 30 mV/div  
VSW: 5 V/div  
0
1
2
3
Output Current : IOUT [A]  
Figure 98. Efficiency vs Output Current  
Figure 99. Output Ripple Voltage (IOUT = 3 A)  
80  
60  
180  
Gain  
Time: 200 µs/div  
VOUT: 50 mV/div  
135  
90  
Phase  
40  
20  
45  
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
IOUT: 1 A/div  
1
10  
100  
1000  
Frequency [kHz]  
Figure 100. Frequency Characteristics (IOUT = 2 A)  
Figure 101. Load Transient Response (IOUT = 0 A to 2 A)  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
42/55  
TSZ22111 15 001  
BD9F500QUZ  
Selection of Components Externally Connected  
Contact us if not use the recommended component values in Application Examples.  
1. Input Capacitor  
Use ceramic type capacitor for the input capacitor. The input capacitor is used to reduce the input ripple noise and it is  
effective by being placed as close as possible to the VIN pin. Set the capacitor value so that it does not fall to 3 μF  
considering the capacitor value variances, temperature characteristics, DC bias characteristics, aging characteristics, and  
etc. The PCB layout and the position of the capacitor may lead to IC malfunction. Refer to the notes on the PCB layout on  
PCB Layout Design when designing PCB layout. In addition, the capacitor with value 0.1 μF can be connected as close as  
possible to the VIN pin and the PGND pin in order to reduce the high frequency noise.  
2. Output LC Filter  
In order to supply a continuous current to the load, the DC/DC converter requires an LC filter for smoothing the output  
voltage. For recommended inductance, use the values listed in Table 19.  
VIN  
IL  
Inductor saturation current > IOUTMAX + IL/2  
L
VOUT  
Driver  
IL  
Maximum Output Current IOUTMAX  
COUT  
t
Figure 102. Waveform of Inductor Current  
Figure 103. Output LC Filter Circuit  
For example, given that VIN = 12 V, VOUT = 3.3 V, L = 1.5 μH, and the switching frequency fSW = 1.0 MHz, Inductor current  
ΔIL can be represented by the following equation.  
1
(
)
×
∆퐼= 푂푈푇 × 푉 푂푈푇  
= ꢄ.595 [A]  
ꢀ푁  
ꢂꢃ  
×푓 ×퐿  
푆푊  
The rated current of the inductor (Inductor saturation current) must be larger than the sum of the maximum output current  
IOUTMAX and 1/2 of the inductor ripple current ΔIL.  
Use ceramic type capacitor for the output capacitor COUT. For recommended actual capacitance, use the values listed in  
Table 19. COUT affects the output ripple voltage. Select COUT so that it must satisfy the required ripple voltage  
characteristics.  
The output ripple voltage can be estimated by the following equation.  
1
푅푃퐿 = ∆퐼× ꢅꢆ퐸ꢇ푅  
+
[V]  
푆푊  
8×퐶  
×푓  
ꢈꢉꢊ  
where:  
퐸ꢇ푅 is the Equivalent Series Resistance (ESR) of the output capacitor.  
For example, given that COUT = 44 μF and RESR = 3 mΩ, ΔVRPL can be calculated as below.  
1
푅푃퐿 = ꢄ.595 퐴 × ꢅ3 푚훺 + 8×44 휇퐹×1 푀퐻푧ꢋ = 9.3 [mV]  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
43/55  
TSZ22111 15 001  
BD9F500QUZ  
2. Output LC Filter continued  
In addition, the total capacitance connected to VOUT needs to satisfy the value obtained by the following equation.  
∆ꢀ  
푂푈푇푀ꢍ푋  
< +  
푆푆ꢎꢂꢃ × (퐼푂푈푇푀ꢍ푋 − 퐼푂푈푇ꢇꢇ) [F]  
ꢁ 2  
ꢈꢉꢊ  
where:  
ꢇꢇ푀ꢀ푁 is the minimum soft start time.  
푂푈푇 is the output voltage.  
푂푈푇푀ꢍ푋 is the maximum output current.  
IL is the inductor current.  
IOUTSS is the maximum output current during soft start.  
For example, given that VIN = 12 V, VOUT = 3.3 V, L = 1.5 µH, fSW = 1 MHz (Typ), tSSMIN = 1.4 ms (CSS = OPEN), IOUTMAX = 5  
A, and IOUTSS = 5 A, COUTMAX can be calculated as below.  
푂푈푇푀ꢍ푋  
<
1.4 ꢑ푠 × (5 퐴 + 1.ꢓꢔꢓ ꢍ − 5 퐴) = 33ꢕ [µF]  
ꢒ.ꢒ ꢁ 2  
If the total capacitance connected to VOUT is larger than COUTMAX, over current protection may be activated by the inrush  
current at startup and prevented to turn on the output. Confirm this on the actual application.  
Table 19. Recommended inductance and output capacitance  
(Note 1)  
Frequency  
[MHz]  
COUT_EFF  
[μF]  
VIN [V]  
VOUT [V]  
IOUTMAX [A]  
Inductor L[μH]  
0.6  
12  
12  
24  
24  
5
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1
1
1
1
5
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
3
3
3.3  
4.7  
3.3  
4.7  
2.2  
2.2  
1.5  
1.5  
1.5  
1.5  
4.7  
5.6  
4.7  
5.6  
6.8  
8.2  
1.5  
2.2  
1.5  
2.2  
1
1.5  
0.68  
1
0.68  
1
3.3  
3.3  
3.3  
3.3  
4.7  
5.6  
1
25 to 50  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
1
1
1
1
1
1
1
1
1
25 to 50  
25 to 50  
25 to 50  
25 to 50  
25 to 50  
35 to 50  
35 to 50  
35 to 50  
35 to 50  
30 to 50  
30 to 50  
30 to 50  
30 to 50  
45 to 60  
45 to 60  
25 to 50  
25 to 50  
25 to 50  
25 to 50  
25 to 50  
25 to 50  
25 to 50  
25 to 50  
25 to 50  
25 to 50  
20 to 50  
20 to 50  
20 to 50  
20 to 50  
30 to 50  
30 to 50  
20 to 50  
20 to 50  
5
12  
12  
5
5
12  
12  
24  
24  
24  
24  
12  
12  
24  
24  
5
5
5
5
12  
12  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1
1
1
1
5
5
5
5
12  
12  
3.3  
3.3  
5
12  
12  
5
1
1
1
1
1
1
1
2.2  
5
12  
12  
24  
24  
24  
24  
12  
24  
2.2  
1
(Note 1) COUT_EFF is the sum of actual output capacitance.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
44/55  
TSZ22111 15 001  
BD9F500QUZ  
Selection of Components Externally Connected continued  
3. Output Voltage Setting, FB Capacitor  
The output voltage can be set by the feedback resistance ratio connected to the FB pin. For recommended R1 and R2, use  
the values listed in Table 20.  
VOUT  
The output voltage VOUT can be calculated as below.  
CFB  
R1  
푅 ꢗ푅  
× 0.6 [V]  
Error Amplifier  
푂푈푇  
=
FB  
0.6 ≤ 푂푈푇 ≤ ꢄꢙ [V]  
R2  
0.6 V  
(Typ)  
푂푈푇 ≤ (푉 × 0.ꢕ) [V]  
ꢀ푁  
Figure 104. Feedback Resistor Circuit  
The Constant On-Time control required the sufficient ripple voltage on FB voltage for the operation stability. This device is  
designed to correspond to low ESR output capacitors by injecting the ripple voltage to FB voltage inside the IC. The FB  
capacitor CFB should be set with the following expression as typical value in order to inject an appropriate ripple. For  
recommended CFB, use the values listed in Table 20.  
600 kHz setting  
×(1ꢚꢁ  
)
ꢈꢉꢊ  
ꢈꢉꢊ  
ꢂꢃ  
퐹퐵  
=
[F]  
×ꢓ.2ꢓ×1ꢛ  
푆푊  
where:  
is the input voltage.  
ꢀ푁  
푂푈푇 is the output voltage.  
fSW is the switching frequency 600 kHz (Typ).  
1MHz, 2.2MHz setting  
×(1ꢚꢁ  
ꢂꢃ  
)
ꢈꢉꢊ  
ꢈꢉꢊ  
퐹퐵  
=
[F]  
×ꢒ.ꢓ×1ꢛ  
푆푊  
where:  
is the input voltage.  
ꢀ푁  
푂푈푇 is the output voltage.  
fSW is the switching frequency 1 MHz, 2.2 MHz (Typ).  
Load transient response and the loop stability depends on L, COUT, R1, R2, and CFB. Actually, these characteristics may  
change depending on PCB layout, wiring, the type of components, and the conditions (temperature, etc.). Be sure to  
check them on the actual application.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
45/55  
TSZ22111 15 001  
BD9F500QUZ  
3. Output Voltage Setting, FB Capacitor continued  
Table 20. Recommended feedback resistance, CFB capacitance  
Frequency  
[MHz]  
VIN [V]  
VOUT [V]  
R1 [kΩ]  
R2 [kΩ]  
CFB [pF]  
0.6  
12  
24  
5
12  
5
12  
24  
24  
12  
24  
5
3.3  
3.3  
3.3  
1
1
5
1.5 + 120  
1.5 + 120  
120 + 330  
180  
27  
27  
100  
270  
270  
30  
30  
33  
27  
27  
100  
270  
270  
30  
30  
33  
82  
82  
39  
33  
27  
100  
100  
180  
82  
82  
33  
27  
22  
100  
100  
180  
33  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
1
1
1
1
1
1
1
1
2.2  
2.2  
180  
220  
220  
5
12  
3.3  
3.3  
3.3  
1
1
5
5
68 + 560  
1.5 + 120  
1.5 + 120  
120 + 330  
180  
12  
5
180  
220  
220  
12  
24  
24  
12  
24  
12  
3.3  
3.3  
68 + 560  
1.5 + 120  
1.5 + 120  
27  
27  
33  
4. Soft Start Capacitor (Soft Start Time Setting)  
The soft start time tSS depends on the value of the capacitor connected to the SS pin. The tSS is 2 ms (Typ) when the SS  
pin is left floating. The capacitor connected to the SS pin makes tSS more than 2 ms. The tSS and CSS can be calculated  
using below equation. The CSS should be set in the range between 0.01 μF and 0.1 μF.  
푆푆  
×ꢛ.ꢝ×1.ꢒ  
ꢇꢇ =  
[s]  
푆푆  
where:  
ꢇꢇ is the Soft Start Charge Current 2.0 µA (Typ).  
With CSS = 0.022 μF, tSS can be calculated as below.  
ꢛ.ꢛ22 휇퐹×ꢛ.ꢝ×1.ꢒ  
ꢇꢇ =  
= ꢕ.5ꢕ [ms]  
2.ꢛ 휇ꢍ  
5. VREG Capacitor  
The VREG capacitor 2.2 μF is recommended. Connect the capacitor between the VREG pin and the AGND pin. For the  
capacitance, take temperature characteristics, DC bias characteristics, and etc. into consideration to set to the actual  
capacitance of no less than 0.82 μF.  
6. Bootstrap Capacitor  
The bootstrap capacitor 0.1 μF is recommended. Connect the capacitor between the SW pin and the BOOT pin. For the  
capacitance, take temperature characteristics, DC bias characteristics, and etc. into consideration to set to the actual  
capacitance of no less than 0.022 μF.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
46/55  
TSZ22111 15 001  
BD9F500QUZ  
PCB Layout Design  
PCB layout design for DC/DC converter is very important. Appropriate layout can avoid various problems concerning power  
supply circuit. Figure 105-a to Figure 105-c show the current path in a buck DC/DC converter circuit. The Loop 1 in Figure  
105-a is a current path when H-side switch is ON and L-side switch is OFF, the Loop 2 in Figure 105-b is when H-side switch is  
OFF and L-side switch is ON. The thick line in Figure 105-c shows the difference between Loop1 and Loop2. The current in  
thick line change sharply each time the switching element H-side and L-side switch change from OFF to ON, and vice versa.  
These sharp changes induce a waveform with harmonics in this loop. Therefore, the loop area of thick line that is consisted by  
input capacitor and IC should be as small as possible to minimize noise. For more details, refer to application note of switching  
regulator series “PCB Layout Techniques of Buck Converter”.  
Loop1  
VIN  
VOUT  
L
H-side Switch  
CIN  
COUT  
L-side Switch  
GND  
GND  
Figure 105-a. Current Path when H-side Switch = ON, L-side Switch = OFF  
VIN  
VOUT  
L
H-side Switch  
CIN  
COUT  
Loop2  
L-side Switch  
GND  
GND  
Figure 105-b. Current Path when H-side Switch = OFF, L-side Switch = ON  
VIN  
VOUT  
L
CIN  
COUT  
High-Side FET  
Low-Side FET  
GND  
GND  
Figure 105-c. Difference of Current and Critical Area in Layout  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
47/55  
TSZ22111 15 001  
BD9F500QUZ  
PCB Layout Design continued  
When designing the PCB layout, pay attention to the following points:  
Connect the input capacitor CIN1 and CIN2 as close as possible to the VIN pin and the PGND pin on the same plane as  
the IC.  
Switching nodes such as SW are susceptible to noise due to AC coupling with other nodes. Route the inductor pattern L  
as thick and as short as possible.  
The feedback line connected to the FB pin should be as far away from the SW nodes as possible.  
Place the output capacitor COUT away from input capacitor CIN1 and CIN2 to avoid harmonics noise from the input.  
Separate the reference ground and the power ground and connect them through VIA. The reference ground should be  
connected to the power ground that is close to the output capacitor COUT. It is because COUT has less high frequency  
switching noise.  
To provide excellent heat dissipation characteristics connect the VIN pins to the PCB VIN pattern by using thermal vias.  
Place the bypass capacitor between the VREG and AGND pins at a position as close as possible to the pin.  
When the SEL1 and SEL2 pins are left open, the parasitic capacitance with the VIN, SW, and BOOT pins should be 0.2  
pF or less.  
R0 is provided for the measurement of feedback frequency characteristics (optional). By inserting a resistor into R0, it is  
possible to measure the frequency characteristics of feedback (phase margin) using FRA etc. R0 is short-circuited for  
normal use.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
48/55  
BD9F500QUZ  
PCB Layout Design continued  
R2  
R1B  
R1A  
R0  
CREG  
(2.2 μF)  
RS2U RS2D  
RS1U RS1D  
CFB  
12  
11  
10  
9
CSS  
13  
14  
15  
16  
8
7
6
5
VIN  
SW  
RPGD  
PGD  
AGND  
SS  
18  
17  
EN  
EN  
PGD  
CBOOT  
(0.1 μF)  
VIN  
BOOT  
VIN  
VOUT  
GND  
VIN  
SW  
L
CIN2  
(10 μF)  
CIN1  
(0.1 μF)  
3
4
1
2
COUT2  
COUT1  
GND  
Figure 106. Application Circuit  
Thermal VIA  
Signal VIA  
BD9F500QUZ  
VIN  
CBO OT  
L
VOUT  
Pin 1  
GND  
GND  
Top Layer  
Inner1 Layer  
VIN  
VIN  
GND  
Inner2 Layer  
Bottom Layer  
Figure 107. Example of PCB Layout  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
49/55  
TSZ22111 15 001  
BD9F500QUZ  
I/O Equivalence Circuits  
5, 17. SW  
6. BOOT  
VIN  
BOOT  
VREG  
VIN  
BOOT  
SW  
30 Ω  
350 Ω  
SW  
VREG  
100 kΩ  
7. PGD  
8. SS  
PGD  
10 kΩ  
100 Ω  
3 kΩ  
25 kΩ  
SS  
300 Ω  
9. SEL1, 10. SEL2  
VREG  
11. VREG  
VREG  
VIN  
BOOT  
10 kΩ  
20 kΩ  
VREG  
2.5 MΩ  
SEL1  
SEL2  
10 kΩ  
5 MΩ  
1.5 MΩ  
12. FB  
14.EN  
VREG  
20 kΩ  
EN  
10 kΩ  
10 kΩ  
10 kΩ  
50 kΩ  
100 kΩ  
FB  
(Note) Resistor values are typical.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
50/55  
TSZ22111 15 001  
BD9F500QUZ  
Operational Notes  
1.  
2.  
3.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. However,  
pins that drive inductive loads (e.g. motor driver outputs, DC-DC converter outputs) may inevitably go below ground  
due to back EMF or electromotive force. In such cases, the user should make sure that such voltages going below  
ground will not cause the IC and the system to malfunction by examining carefully all relevant factors and conditions  
such as motor characteristics, supply voltage, operating frequency and PCB wiring to name a few.  
4.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
51/55  
BD9F500QUZ  
Operational Notes continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 108. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
52/55  
TSZ22111 15 001  
BD9F500QUZ  
Ordering Information  
B D 9  
F
5
0
0
Q U Z -  
E 2  
Package  
VMMP16LZ3030  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
VMMP16LZ3030 (TOP VIEW)  
Part Number Marking  
D 9 F  
5 0 0  
LOT Number  
Pin 1 Mark  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
53/55  
TSZ22111 15 001  
BD9F500QUZ  
Physical Dimension and Packing Information  
Package Name  
VMMP16LZ3030  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
54/55  
BD9F500QUZ  
Revision History  
Date  
Revision  
001  
Changes  
02.Apr.2020  
New Release  
www.rohm.com  
TSZ02201-0F2F0AJ00270-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
55/55  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.) ; or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD9F800MUX-Z

BD9F800MUX是内置低导通电阻的功率MOSFET的同步整流降压DC/DC转换器。最大可输出8A的电流。还是恒定时间控制DC/DC转换器,具有高速负载响应性能,无需外接的相位补偿电路。Power Supply Reference BoardFor Xilinx’s FPGA Spartan-7
ROHM

BD9G101G

Simple Step-down Switching Regulators with Built-in Power MOSFET
ROHM

BD9G101G-TR

Simple Step-down Switching Regulators with Built-in Power MOSFET
ROHM

BD9G102G-LB

本产品是面向工业设备市场的产品,保证可长期稳定供货。是适合这些用途的产品。BD9G102G-LB是内置支持42V、0.5A电流输出功率MOSFET的非同步降压DC/DC转换器。根据内部电路,工作频率为1.0MHz。还通过内置斜率补偿的电流模式控制方式,实现了简便的相位补偿设定。作为保护功能,内置了过流保护电路、温度保护电路、低电压误动作防止电路等保护电路。
ROHM

BD9G201EFJ-LB

本IC为可在电源电压4.5V~42V的范围内工作的内置高边FET的二极管整流型降压开关稳压器。通过电流模式控制实现了高速负载响应和简便的相位补偿设定。可用于小型二次电源,例如:可从12V、24V等电源输出3.3V/5V的降压电压。还具备与外部CLK同步的功能,可进行噪声管理。
ROHM

BD9G201EFJ-M

本IC为可在电源电压4.5V~42V的范围内工作的内置高边FET的二极管整流型降压开关稳压器。通过电流模式控制实现了高速负载响应和简便的相位补偿设定。可用于小型二次电源,例如:可从12V、24V等电源输出3.3V/5V的降压电压。还具备与外部CLK同步的功能,可进行噪声管理。
ROHM

BD9G201UEFJ-LB

本IC是内置高边FET的二极管整流式降压型开关稳压器,支持在4.5V~42V的电源电压范围内工作。该产品通过电流模式控制实现了高速负载响应和简单的相位补偿设置。例如在小型二次侧电源应用中,可以将12V、24V等电源降压后输出3.3V、5V等电压。另外,该产品还具有与外部CLK同步的功能,可以进行噪声管理。本IC是为提高生产效率而对本系列产品中的BD9G201EFJ-LB变更生产线后形成的型号,在新项目选型时,建议选择该型号,在技术规格书中的保证特性并没有差异。此外,由于文档和设计模型等也没有差异,因此除非另有说明,ROHM将公开BD9G201EFJ-LBE2的数据。
ROHM

BD9G201UEFJ-M

BD9G201UEFJ-M is a buck converter with built-in high side MOSFET. It has an input voltage range of
ROHM

BD9G341AEFJ

BD9G341AEFJ是内置对应76V高输入电压的功率MOSFET的降压1ch开关稳压器。内置80V耐压3.5A额定、导通电阻150mΩ的功率MOSFET。还通过电流模式控制方式,实现了高速瞬态响应和简便的相位补偿设定。频率在50kHz ~ 750kHz的范围内可变,内置低电压误动作防止电路、过电流保护电路等保护功能。此外,可通过高精度的EN引脚阈值进行低电压锁定,及使用外接电阻设定滞后。
ROHM

BD9G341AEFJ-LB

1ch Buck Converter Integrated FET
ROHM

BD9G341AEFJ-LBE2

1ch Buck Converter Integrated FET
ROHM

BD9G401EFJ-M

本IC为可在电源电压4.5V~42V的范围内工作的内置高边FET的二极管整流型降压开关稳压器。通过电流模式控制实现了高速负载响应和简便的相位补偿设定。可用于小型二次测电源,例如:可从12V、24V等电源输出3.3V/5V的降压电压。还具备与外部CLK同步的功能,可进行噪声管理。
ROHM